Multiple weak 2-linkage and its applications on integer flows of signed graphs

You Lu ${ }^{\text {a }}$, Rong Luo ${ }^{\text {b }}$, Cun-Quan Zhang ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Applied Mathematics, School of Science, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
${ }^{\text {b }}$ Department of Mathematics, West Virginia University, Morgantown, WV 26506, United States

A R T I CLE I N F O

Article history:

Received 29 September 2016
Accepted 5 September 2017

Abstract

For two pairs of vertices x_{1}, y_{1} and x_{2}, y_{2}, Seymour and Thomassen independently presented a characterization of graphs containing no edge-disjoint (x_{1}, y_{1})-path and (x_{2}, y_{2})-path. In this paper we first generalize their result to $k \geq 2$ pairs of vertices. Namely, for $2 k$ vertices $x_{1}, y_{1}, x_{2}, y_{2}, \ldots, x_{k}, y_{k}$, we characterize the graphs without edge-disjoint $\left(x_{i}, y_{i}\right)$-path and $\left(x_{j}, y_{j}\right)$-path for any $1 \leq$ $i<j \leq k$. Then applying this generalization, we present a characterization of signed graphs in which there are no edgedisjoint unbalanced circuits. Finally with this characterization we further show that every flow-admissible signed graph without edge-disjoint unbalanced circuits admits a nowhere-zero 6-flow and thus verify the well-known Bouchet's 6-flow conjecture for this family of signed graphs.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Let $\left\{x_{1}, x_{2}, \ldots, x_{k}, y_{1}, y_{2}, \ldots, y_{k}\right\}$ be an ordered set of vertices of a graph G. The linkage problem is to find vertex-disjoint paths joining some pairs x_{i} and y_{i}, while the weak linkage problem is to find edge-disjoint paths joining some pairs x_{i} and y_{i}. The following is a summary of some weak linkage problems.

Problem 1.1 (Weak 2-Linkage Problem). For $k=2$, does the graph contain a pair of edge-disjoint paths P_{1} and P_{2} such that P_{μ} joins x_{μ} and y_{μ} for each $\mu=1,2$?

[^0]Problem 1.2 (Multiple Weak 2-Linkage Problem). For any integer $k \geq 2$, is there a pair of integers $1 \leq i<j \leq k$ such that the graph G contains a pair of edge-disjoint paths P_{i} and P_{j} such that P_{μ} joins x_{μ} and y_{μ} for each $\mu=i, j$?

Problem 1.3 (Weak Linkage Problem). For any integer $k \geq 2$, does the graph G contain a set of pairwise edge-disjoint paths $\left\{P_{1}, \ldots, P_{k}\right\}$ such that P_{μ} joins x_{μ} and y_{μ}, for each $\mu \in\{1, \ldots, k\}$.

It is evident that both Problems 1.2 and 1.3 are generalizations of Problem 1.1 by simply letting $k=2$. Problem 1.1 was completely solved by Seymour and Thomassen independently in Theorem 1.4.

Let H be a contraction of G and let $x \in V(G)$. We use \hat{x} to denote the vertex in H which x is contracted into.

Theorem 1.4 (Seymour [15], Thomassen [18]). Let G be a 2 -connected graph and $x_{1}, x_{2}, y_{1}, y_{2}$ be vertices in G. Then the following two statements are equivalent.
(i) G does not contain edge-disjoint $\left(x_{1}, y_{1}\right)$-path and (x_{2}, y_{2})-path.
(ii) G is contractible to the 4 -circuit $\hat{x}_{1} \hat{x}_{2} \hat{y}_{1} \hat{y}_{2} \hat{x}_{1}$ or to a graph which is obtained from a 2 -connected plane cubic graph by selecting a facial circuit and inserting the distinct vertices $\hat{x}_{1}, \hat{x}_{2}, \hat{y}_{1}, \hat{y}_{2}$ in that cyclic order on edges of that circuit.

Problem 1.3 is also called integer k-commodity flow problem which was studied recently by Seymour [17].

In this paper, similar to [15] and [18], we will provide a complete characterization for graphs with or without the multiple weak 2-linkage property. It is obvious that Problem 1.3 is stronger than Problem 1.2.

Later in this paper, we will apply our characterization in the study of integer flow problems for signed graphs (see Theorem 1.7).

The following is one of our main theorems.
Theorem 1.5. Let G be a 2 -connected graph and $x_{1}, x_{2}, \ldots, x_{k}, y_{1}, y_{2}, \ldots, y_{k}(k \geq 2)$ be vertices in G. Then the following are equivalent.
(i) For any $i \neq j$, G does not contain edge-disjoint $\left(x_{i}, y_{i}\right)$-path and (x_{j}, y_{j})-path.
(ii) The graph G can be contracted to the $2 k$-circuit C_{1} on the vertices $\hat{x}_{1}, \ldots, \hat{x}_{k}, \hat{y}_{1}, \ldots, \hat{y}_{k}$ or to a cubic graph G^{\prime} which can be obtained from a 2-connected cubic plane graph by selecting a facial circuit C_{2} and inserting the vertices $\hat{x}_{1}, \ldots, \hat{x}_{k}, \hat{y}_{1}, \ldots, \hat{y}_{k}$ on the edges of C_{2} in such a way that for every pair $\{i, j\} \subseteq\{1, \ldots, k\}$, the vertices $\hat{x}_{i}, \hat{x}_{j}, \hat{y}_{i}, \hat{y}_{j}$ are around C_{1} or C_{2} in this cyclic order.
(iii) Let $\left(G^{+}, w\right)$ be the weighted graph where G^{+}is obtained from G by adding edges $F=\left\{x_{i} y_{i}: i \in\right.$ $[1, k]\}$ and the weight $w: E\left(G^{+}\right) \rightarrow\{0,1\}$ such that $w(e)=0$ if $e \in E(G)$ and $w(e)=1$ if $e \in F$. Then G^{+}contains no pair of edge-disjoint circuits with odd weight.

Note that (ii) is equivalent to the following:
(ii) There is a permutation π on $[1, k]$ and G is contractible to the $2 k$-circuit $\hat{z}_{1} \hat{z}_{2} \ldots \hat{z}_{2 k} \hat{z}_{1}$ or to a graph obtained from a 2-connected plane cubic graph by selecting a facial circuit and inserting the $2 k$ distinct vertices $\hat{z}_{1}, \hat{z}_{2}, \ldots, \hat{z}_{2 k}$ in that cyclic order on edges of that circuit, where $\left\{z_{i}, z_{k+i}\right\}=\left\{x_{\pi(i)}, y_{\pi(i)}\right\}$ for each $i \in[1, k]$.

Theorem 1.5 can be applied to characterize signed graphs without edge-disjoint unbalanced circuits.

Theorem 1.6. Let G be a 2-connected signed graph with negativeness $\epsilon(G)=k \geq 2$ and with $|N(G)|=\epsilon(G)$, where $N(G)=\left\{x_{1} y_{1}, x_{2} y_{2}, \ldots, x_{k} y_{k}\right\}$ is the set of all negative edges of G. Then the following are equivalent.
(i) G contains no edge-disjoint unbalanced circuits.
(ii) $G-N(G)$ is contractible to a 2-connected graph containing no edge-disjoint $\left(\hat{x}_{i}, \hat{y}_{i}\right)$-path and $\left(\hat{x}_{j}, \hat{y}_{j}\right)$ path for any $i \neq j$.
(iii) The graph G can be contracted to a cubic graph G^{\prime} such that either $G^{\prime}-\left\{\hat{x}_{1} \hat{y}_{1}, \ldots, \hat{x}_{k} \hat{y}_{k}\right\}$ is a $2 k$-circuit C_{1} on the vertices $\hat{x}_{1}, \ldots, \hat{x}_{k}, \hat{y}_{1}, \ldots, \hat{y}_{k}$ or can be obtained from a 2 -connected cubic plane graph by selecting a facial circuit C_{2} and inserting the vertices $\hat{x}_{1}, \ldots, \hat{x}_{k}, \hat{y}_{1}, \ldots, \hat{y}_{k}$ on the edges of C_{2} in such a way that for every pair $\{i, j\} \subseteq\{1, \ldots, k\}$, the vertices $\hat{x}_{i}, \hat{x}_{j}, \hat{y}_{i}, \hat{y_{j}}$ are around the circuit C_{1} or C_{2} in this cyclic order.

The characterization of signed graphs without edge-disjoint unbalanced circuits can be further applied to study integer flows of this family of signed graphs.

In 1983, Bouchet [3] proposed a flow conjecture which states that every flow-admissible signed graph admits a nowhere-zero 6-flow. This conjecture remains open. Bouchet [3] himself proved that such signed graphs admit nowhere-zero 216-flows. Zýka [26] further proved that such signed graphs admit nowhere-zero 30 -flows. DeVos [4] improved Zýka's result to 12 -flows.

In this paper, we confirm Bouchet's conjecture for signed graphs containing no edge-disjoint unbalanced circuits by applying Theorem 1.6.

Theorem 1.7. Every flow-admissible signed graph without edge-disjoint unbalanced circuits admits a nowhere-zero 6-flow.

2. Notation and terminology

For terminology and notations not defined here we follow [2,5,20]. Graphs or signed graphs considered in this paper are finite and may have multiple edges or loops.

Let $G=(V, E)$ be a graph with vertex set $V=V(G)$ and edge set $E=E(G)$. For $U \subseteq V$, denote $\delta(U)=\delta_{G}(U)$ the set of edges with one end in U and the other in $V \backslash U$. If $U=\{u\}$, we write $\delta(\{u\})$ for $\delta(u)$. A d-vertex is a vertex with degree d. For an edge e of a graph G, contracting e is done by deleting e and then (if e is not a loop) identifying its ends. For $S \subseteq E(G)$, we use G / S to denote the resulting graph obtained from G by contracting all edges in S.

For $U_{1}, U_{2} \subseteq V(G)$, a $\left(U_{1}, U_{2}\right)$-path is a path which starts at a vertex in U_{1} and ends at a vertex in U_{2}, and whose internal vertices belong to neither U_{1} nor U_{2}; if G_{1} and G_{2} are subgraphs of G, we write (G_{1}, G_{2})-path instead of $\left(V\left(G_{1}\right), V\left(G_{2}\right)\right)$-path. Let $C=v_{1} \ldots v_{r} v_{1}$ be a circuit. A segment of C is the path $v_{i} v_{i+1} \ldots v_{j-1} v_{j}(\bmod r)$ contained in C and is denoted by $v_{i} C v_{j}$ or $v_{j} C^{-} v_{i}$.

For a plane graph G embedded in the plane Π, a face of G is a connected topological region (an open set) of $\Pi \backslash G$. If the boundary of a face is a circuit of G, it is called a facial circuit of G. The facial circuit bounding the infinite face is called the outer circuit.

A block of G is a maximal subgraph that does not contain a cut-vertex. The block tree $B(G)$ of G is a bipartite graph with bipartition (\mathcal{B}, S), where \mathcal{B} is the set of blocks of G, S is the set of cut vertices of G, and a block B and a cut vertex v are adjacent in $B(G)$ if and only if B contains v. Note that $B(G)$ is a tree. If G is not 2-connected, the blocks of G which correspond to leaves of its block tree are called leaf blocks. An internal vertex of a block of G is a vertex which is not a cut vertex of G.

3. Signed graphs and flows

3.1. Signed graphs, switching operation, and orientations

A signed graph (G, σ) is a graph G together with a signature $\sigma: E(G) \rightarrow\{ \pm 1\}$. If no confusion arises, we write (G, σ) as G and the signature σ will be specified only when needed. An edge $e \in E(G)$ is positive if $\sigma(e)=1$ and negative otherwise. For a subgraph H of G, denote $N(H)$ the set of negative edges in H. A circuit C of G is balanced if $|N(C)|$ is even, and is unbalanced otherwise. A signed graph is balanced if it does not contain an unbalanced circuit. A barbell is the union of two disjoint unbalanced circuits joined by a path that meets the circuits only at its ends.

For a signed graph G, switching at a vertex u means reversing the signs of all edges incident with u. Obviously, the parity of the number of negative edges in a circuit is an invariant under the switching
operation. Let \mathcal{X}_{G} be the set of signed graphs obtained from G via a sequence of switching operations. The negativeness of G is defined by

$$
\epsilon(G)=\min \left\{\left|N\left(G^{\prime}\right)\right|: G^{\prime} \in \mathcal{X}_{G}\right\} .
$$

The following two propositions directly follow from the definitions of switching operation and negativeness.

Proposition 3.1. Let G be a signed graph. Then $\epsilon(G)=|N(G)|$ if and only if $|N(G) \cap \delta(U)| \leq \frac{1}{2}|\delta(U)|$ for every $U \subseteq V(G)$.

Proposition 3.2. Let G be a signed graph and \mathcal{B} be the set of blocks of G. Then

$$
\epsilon(G)=\sum_{B \in \mathcal{B}} \epsilon(B) .
$$

In a signed graph, every edge is composed of two half-edges, each of which is incident with one end. Denote the set of half-edges of G by $H(G)$ and the set of half-edges incident with v by $H(v)$. For a half-edge $h \in H(G)$, we refer to e_{h} as the edge containing h, and denote the other half-edge of e_{h} by h^{\prime}. An orientation of G is a mapping $\tau: H(G) \rightarrow\{ \pm 1\}$ such that $\tau(h) \tau\left(h^{\prime}\right)=-\sigma_{G}\left(e_{h}\right)$ for each $h \in H(G)$. It is convenient to think of τ as an assignment of orientations on $H(G)$. Namely, if $\tau(h)=1, h$ is a half-edge oriented away from its end and otherwise towards its end.

3.2. Flows in signed graphs

For basic definitions, properties and results about Tutte's Flow Theory, readers are referred to standard textbooks or reference books, such as, [2,5,24], etc.

Definition 3.3. Let τ be an orientation of a signed graph G and $f: E(G) \rightarrow \mathbb{Z}$ be a mapping.
(1) The boundary of f is the function $\partial f: V(G) \rightarrow \mathbb{Z}$ defined as $\partial f(v)=\sum_{h \in H(v)} \tau(h) f\left(e_{h}\right)$ for each vertex v.
(2) If $\partial f(v)=0$ for each $v \in V(G)$ and $|f(e)|<k$ for each $e \in E(G),(\tau, f)$ is called an integer k-flow (or simply a k-flow) of G.
(3) If $\partial f(v) \equiv 0(\bmod k)$ for each $v \in V(G)$ and $0 \leq f(e)<k$ for each $e \in E(G),(\tau, f)$ is called a modular k-flow (or simply a \mathbb{Z}_{k}-flow) of G.
(4) The support of f, denoted by $\operatorname{supp}(f)$, is the set of edges e with $f(e) \neq 0$. A flow (τ, f) is said to be nowhere-zero if $\operatorname{supp}(f)=E(G)$.

Flows on signed graphs arise naturally as duals of local tensions on non-orientable surfaces. More discussions are referred to [1,7-14,21,25].

For the sake of convenience, a nowhere-zero k-flow (resp., nowhere-zero \mathbb{Z}_{k}-flow) is abbreviated as a k-NZF (resp., a \mathbb{Z}_{k}-NZF). Observe that G admits a k-NZF (resp., a \mathbb{Z}_{k}-NZF) under an orientation τ if and only if it admits a k-NZF (resp., a \mathbb{Z}_{k}-NZF) under any orientation τ^{\prime}.

A signed graph G is flow-admissible if it admits a k-NZF for some k. Bouchet characterized all flowadmissible signed graphs.

Proposition 3.4 (Bouchet [3]). A connected signed graph G is flow-admissible if and only if $\epsilon(G) \neq 1$ and there is no cut-edge b such that $G-b$ has a balanced component.

The rest of the paper is organized as follows. Some lemmas on flows will be presented in Section 4. The proof of Theorem 1.7 will be presented in Section 5, and the proofs of Theorems 1.5 and 1.6 will be postponed to Sections 6 and 7, respectively.

4. Some lemmas on flows

In this section we present some lemmas that will be used in the proof of Theorem 1.7.
A graph is even if the degree of each vertex is even. Tutte proved the following result.
Proposition 4.1 (Tutte [19]). A graph admits a 2-NZF if and only if it is even.
The following is a straightforward observation in network theory since, for every $U \subseteq V(G)$, $\sum_{e \in \delta(U)} \phi(e)=\sum_{e \in \delta\left(U^{c}\right)} \phi(e)$ (by Definition 3.3).

Proposition 4.2. If (τ, ϕ) is a positive k-NZF of a graph G, then τ is a strongly connected orientation of G.

Let τ be an orientation of a graph G and $E_{0} \subseteq E(G)$. We denote $\tau_{\widetilde{E}_{0}}$ the orientation of G obtained from τ by reversing the direction of every arc in E_{0}. Let $f: E(G) \rightarrow \mathbb{Z}_{k}$ be a mapping. ${\widetilde{\tilde{F}_{0}}}_{\widetilde{F}_{0}}$ is the mapping of $E(G)$ defined as follows:

$$
f_{\widetilde{E}_{0}}(e)=\left\{\begin{aligned}
f(e) & \text { if } e \notin E_{0}, \\
k-f(e) & \text { if } e \in E_{0} .
\end{aligned}\right.
$$

Lemma 4.3 (Younger [23]). If a graph G admits a $\mathbb{Z}_{k}-N Z F(\tau, f)$, then there is an edge subset E_{0} of G such that $\left(\tau_{\widetilde{E}_{0}},{\tilde{\widetilde{E}_{0}}}^{\tilde{F}_{0}}\right)$ is a positive integer flow.

DeVos [4] proved the following extension lemma on modular flows.
Lemma 4.4 (DeVos [4]). Let G be a graph with an orientation τ and assume that G admits a $\mathbb{Z}_{k}-N Z F$. If a vertex u of G has degree at most 3 and $\gamma: \delta(u) \rightarrow \mathbb{Z}_{k} \backslash\{0\}$ satisfies $\partial \gamma(u) \equiv 0(\bmod k)$, then there is a \mathbb{Z}_{k}-NZF (τ, ϕ) of G so that $\left.\phi\right|_{\delta(u)}=\gamma$, where $\left.\phi\right|_{\delta(u)}$ is the restriction of ϕ on $\delta(u)$.

We extend DeVos's lemma to integer flows in the following lemma.
Lemma 4.5. Let G be a graph with an orientation τ and assume that G admits a k-NZF. If a vertex u of G has degree at most 3 and $\gamma: \delta(u) \rightarrow\{ \pm 1, \ldots, \pm(k-1)\}$ satisfies $\partial \gamma(u)=0$, then there is a k-NZF (τ, ϕ) of G so that $\left.\phi\right|_{\delta(u)}=\gamma$.

Proof. Without loss of generality, assume that $0<\gamma(e)<k$ for each $e \in \delta(u)$. By Lemma 4.4, G has a $\mathbb{Z}_{k}-\operatorname{NZF}\left(\tau, \phi_{1}\right)$ such that $\left.\phi_{1}\right|_{\delta(u)}=\gamma$. By Lemma 4.3, there is a subset $E_{0} \subseteq E(G)$ such that $\left(\tau_{E_{0}}, \phi_{2}\right)$ is a positive k-NZF where $\phi_{2}=\left(\phi_{1}{\widetilde{\tilde{E}_{0}}}\right.$.

If $E_{0} \cap \delta(u)=\emptyset$, let $\phi_{3}(e)=-\phi_{2}(e)$ for each $e \in E_{0}$, and $\phi_{3}(e)=\phi_{2}(e)$ for each $e \in E(G) \backslash E_{0}$. Note that $\left.\phi_{3}\right|_{\delta(u)}=\left.\phi_{1}\right|_{\delta(u)}=\gamma$. Thus (τ, ϕ_{3}) is a desired k-NZF.

Now we assume $E_{0} \cap \delta(u) \neq \emptyset$. Let s and t be the numbers of arcs in $E_{0} \cap \delta(u)$ with their tails and their heads at u under $\tau_{\tilde{E}_{0}}$, respectively. Then $s+t \geq 1$ since $E_{0} \cap \delta(u) \neq \emptyset$. Note that each arc e with tail at u under $\tau_{\widetilde{E}_{0}}$ contributes $k-\phi_{1}(e)$ to $\partial \phi_{2}(u)$ and $-\phi(e)$ to $\partial \phi_{1}(u)$ since it has head at u under τ. Similarly, each arc e with head at u under $\tau_{E_{0}}$ contributes $-\left(k-\phi_{1}(e)\right)$ to $\partial \phi_{2}(u)$ and $\phi_{1}(e)$ to $\partial \phi_{1}(u)$. Since both (τ, ϕ_{1}) and ($\tau_{\widetilde{E}_{0}}, \phi_{2}$) are flows of G,

$$
0=\partial \phi_{2}(u)=\partial \phi_{1}(u)+s k-t k=\partial \gamma(u)+(s-t) k=(s-t) k .
$$

Since $1 \leq s+t \leq d(u) \leq 3$, we have $s=t=1$. Let $E_{0} \cap \delta(u)=\left\{e_{1}, e_{2}\right\}$, where $e_{1}=u u_{1}$ with its tail at u and $e_{2}=u u_{2}$ with its head at u under $\tau_{E_{0}}$.

We first show that there is a directed circuit C containing e_{1} and e_{2} under $\tau_{\widetilde{E}_{0}}$. If $u_{1}=u_{2}$, let C be the directed circuit consisting of e_{1} and e_{2}. Now we assume $u_{1} \neq u_{2}$. Since ($\tau_{\widetilde{E}_{0}}, \phi_{2}$) is a positive integer flow, $\tau_{\mathcal{E}_{0}}$ is strongly connected by Proposition 4.2. Thus there is a directed path P from u_{1} to u_{2}. Since $d(u) \leq 3$ and $u_{2} u u_{1}$ is a directed path from u_{2} to u_{1} in $\tau_{\widetilde{E}_{0}}, P$ does not contain u. Hence $u u_{1} P u_{2} u$ is a directed circuit containing e_{1} and e_{2} under $\tau_{\tilde{E}_{0}}$.

Let $E_{1}=E(C) \Delta E_{0}$ be the symmetric difference of $E(C)$ and E_{0}. Then $\delta(u) \cap E_{1}=\emptyset$ and $\tau_{\tilde{E}_{1}}=\left(\tau_{\widetilde{E}_{0}}\right)_{\overparen{E(C)}}$. Let $\phi_{4}: E(G) \rightarrow \mathbb{Z}$ be the mapping such that $\phi_{4}(e)=\phi_{2}(e)$ if $e \notin E(C)$ and $\phi_{4}(e)=k-\phi_{2}(e)$ if $e \in E(C)$.

That is, $\left(\tau_{\widetilde{E}_{1}}, \phi_{4}\right)$ is obtained from ($\tau_{\widetilde{E}_{0}}, \phi_{2}$) by reversing the directions of all arcs in $E(C)$ and replacing the flow $\phi_{2}(e)$ with $k-\phi_{2}(e)$ for each arc e in C. Since C is a directed circuit and $\left(\tau_{\tilde{E}_{0}}, \phi_{2}\right)$ is a positive k-NZF, $\left(\tau_{E_{1}}, \phi_{4}\right)$ is also a positive k-NZF.

Let $\phi_{5}: E(G) \rightarrow \mathbb{Z}$ be the mapping such that $\phi_{5}(e)=-\phi_{4}(e)$ if $e \in E_{1}$ and $\phi_{5}(e)=\phi_{4}(e)$ otherwise. Then $\left(\tau, \phi_{5}\right)$ is the flow obtained from $\left(\tau_{E_{1}}, \phi_{4}\right)$ by reversing the directions of all edges in E_{1} and then negating their flow values. Since $\delta(u) \cap E_{1}=\emptyset$, we have $\left.\phi_{5}\right|_{\delta(u)}=\left.\phi_{4}\right|_{\delta(u)}=\left.\left(\phi_{1}\right)_{\tilde{E}_{1}}\right|_{\delta(u)}=\gamma$. Hence (τ, ϕ_{5}) is a desired k-NZF. This completes the proof of Lemma 4.5.

To introduce and prove our second lemma, we need the following operation and several known results. Let G be a signed graph. We define the following operation.
Φ_{k} : add a balanced circuit or a barbell C into G if $|E(C) \backslash E(G)| \leq k$.
For a subgraph H of G, denote by $\langle H\rangle_{k}$ the maximum subgraph of G obtained from H via Φ_{k}-operations. The following is the well-known 6 -flow theorem due to Seymour.

Theorem 4.6 (Seymour [16]). Every bridgeless graph admits a 6-NZF.
With a similar argument to the proof of Seymour's 6-flow theorem, Zýka obtained the following result.

Lemma 4.7 (Zýka [26]). Let G be a signed graph and H be a subgraph of G. If $\langle H\rangle_{2}=G$, then G admits a \mathbb{Z}_{3}-flow (τ, f) such that $E(G) \backslash E(H) \subseteq \operatorname{supp}(f)$.

Unlike unsigned graphs, for signed graphs, admitting a \mathbb{Z}_{k}-NZF does not guarantee that the signed graph admits a k-NZF. However, the following lemma gives a sufficient condition to guarantee the existence of a 3-NZF if the signed graph admits a \mathbb{Z}_{3}-NZF.

Lemma 4.8 (Xu and Zhang [22]). Let G be a bridgeless signed graph. Then G admits a 3-NZF if and only if G admits a $\mathbb{Z}_{3}-N Z F$.

The following lemma was proved for unsigned graphs originally but can be easily extended to signed graphs.

Lemma 4.9 (See [6] and [16]). Let G be a graph (or a signed graph) and k_{1}, k_{2} be two integers. If G admits a $k_{1}-$ flow $\left(\tau, f_{1}\right)$ and a $k_{2}-$ flow $\left(\tau, f_{2}\right)$ such that $\operatorname{supp}\left(f_{1}\right) \cup \operatorname{supp}\left(f_{2}\right)=E(G)$, then $\left(\tau, f_{1}+k_{1} f_{2}\right)$ is a $k_{1} k_{2}-N Z F$ of G.

Lemma 4.10. Let G be a cubic signed graph with $N(G)=\left\{u_{1} u_{k+1}, \ldots, u_{k} u_{2 k}\right\}(k \geq 2)$. If $G-N(G)$ is the $2 k$-circuit $C=u_{1} \ldots u_{k} u_{k+1} \ldots u_{2 k} u_{1}$ or a graph obtained from a 2 -connected plane cubic graph by selecting a facial circuit C and inserting the vertices $u_{1}, \ldots, u_{k}, u_{k+1}, \ldots, u_{2 k}$ in that cyclic order on edges of C, and if every 2-edge-cut of $G-N(G)$ is contained in $E(C)$, then G admits a 6 -NZF.

Proof. Let τ be an orientation of G. Let H be an even subgraph of G containing C such that
(a) $E(H) \subseteq E(G) \backslash N(G)$,
(b) subject to (a), $\langle H\rangle_{2}$ is connected and $\left|E\left(\langle H\rangle_{2}\right)\right|$ is as large as possible.

Since H is an unsigned even subgraph of G, by Proposition 4.1 we have the following claim.
Claim 4.1. G admits a 2 -flow $\left(\tau, f_{1}\right)$ with $\operatorname{supp}\left(f_{1}\right)=E(H)$.
Claim 4.2. $\langle H\rangle_{2}=G$.
Proof of Claim 4.2. Note that $k \geq 2$ and each negative edge in $N(G)$ is a chord of the unsigned circuit C. Thus $N(G) \subseteq E\left(\langle H\rangle_{2}\right)$ and the unsigned subgraph $\langle H\rangle_{2}-N(G)$ is still connected since $\langle H\rangle_{2}$ is connected. Denote $U=V\left(\langle H\rangle_{2}\right)$ and $W=V(G)-U$. Then $\langle H\rangle_{2}=G[U]$. To prove Claim 4.2, it is sufficient to prove $W=\emptyset$.

Suppose to the contrary $W \neq \emptyset$. Since $\langle H\rangle_{2}-N(G)$ is connected, by the maximality of $\left|E\left(\langle H\rangle_{2}\right)\right|$, every vertex in W has at most one neighbor in U. Thus the minimum degree of $G[W]$ is at least two since G is cubic. Let L be a component of $G[W]$. If L has a bridge, choose a bridge e such that $L-e$ has a 2-edge-connected component L_{0}. If L is bridgeless, let $L_{0}=L$. Since the minimum degree of L is at least two, L_{0} is nontrivial.

Since each 2-edge-cut of G is contained in $E(C)$, we have $\left|\delta_{G}\left(V\left(L_{0}\right)\right)\right| \geq 3$. Since $\left|\delta_{L}\left(V\left(L_{0}\right)\right)\right| \leq 1$, there are two distinct edges $x x^{\prime}, y y^{\prime}$ where $x, y \in V\left(L_{0}\right)$ and $x^{\prime}, y^{\prime} \in U$. Since L_{0} is 2-edge-connected and nontrivial, L_{0} has two edge-disjoint (x, y)-paths P_{1} and P_{2}. Let $H^{\prime}=H \cup P_{1} \cup P_{2}$. By the definition of Φ_{2}-operation, $x x^{\prime}, y y^{\prime} \in E\left(\left\langle H^{\prime}\right\rangle_{2}\right)$. Thus $\left\langle H^{\prime}\right\rangle_{2}$ is connected and $\left|E\left(\left\langle H^{\prime}\right\rangle_{2}\right)\right|>\left|E\left(\langle H\rangle_{2}\right)\right|$. This contradicts the maximality of $\left|E\left(\langle H\rangle_{2}\right)\right|$ and thus completes the proof of the claim.

By Claim 4.2 and Lemma 4.7, G admits a \mathbb{Z}_{3}-flow $\left(\tau, f_{2}\right)$ with $E(G) \backslash E(H) \subseteq \operatorname{supp}\left(f_{2}\right)$.
Claim 4.3. G admits $a 3$-flow $\left(\tau, f_{3}\right)$ with $\operatorname{supp}\left(f_{3}\right)=\operatorname{supp}\left(f_{2}\right)$.
Proof of Claim 4.3. Let $G^{\prime}=G\left[\operatorname{supp}\left(f_{2}\right)\right]$. Then G^{\prime} admits a $\mathbb{Z}_{3}-N Z F\left(\tau^{\prime}, f_{2}\right)$, where τ^{\prime} is the restriction of τ on G^{\prime}. By Lemma 4.8, it is sufficient to prove that G^{\prime} is bridgeless. Note that by Theorem 1.6, G does not contain two edge-disjoint unbalanced circuits, and neither does G^{\prime}.

Suppose to the contrary that G^{\prime} has a bridge b. Then at least one component of $G^{\prime}-b$ does not contain unbalanced circuits and thus is balanced. Let Q be a balanced component of $G^{\prime}-b$, and switch some vertices of Q such that all edges of Q are positive. We use $G^{\prime \prime}$ to denote the new signed graph obtained from G^{\prime}. Since G^{\prime} admits a $\mathbb{Z}_{3}-N Z F$, so does $G^{\prime \prime}$. Let $\left(\tau^{\prime}, f_{2}^{\prime}\right)$ be a $\mathbb{Z}_{3}-N Z F$ of $G^{\prime \prime}$. Since all edges of Q are positive in $G^{\prime \prime}$,

$$
\left|f_{2}^{\prime}(e)\right| \equiv\left|\sum_{v \in V(Q)} \partial f_{2}^{\prime}(v)\right| \equiv 0 \quad(\bmod 3)
$$

a contradiction. Thus G^{\prime} is bridgeless.
By Lemma 4.9 and Claims 4.1 and $4.3,\left(\tau, f_{1}+2 f_{2}\right)$ is a desired $6-$ NZF of G.

5. Proof of Theorem 1.7

The aim of this section is to prove Theorem 1.7: Every flow-admissible signed graph without edgedisjoint unbalanced circuits admits a nowhere-zero 6-flow.

Note that the balance property of a circuit and the existence of a k-NZF are two invariants under switching operations. Because G is flow-admissible and does not contain edge-disjoint unbalanced circuits, by Proposition $3.4 G$ is bridgeless and at most one block of G is unbalanced. If each block of G is balanced, then G is balanced. By Theorem $4.6, G$ admits a $6-N Z F$. Hence we assume that G has only one unbalanced block. By Proposition 3.2, the negativeness of this unbalanced block is equal to $\epsilon(G)(\geq 2)$. By Theorem 4.6, each balanced block admits a 6 -NZF. Thus we may further assume that G is 2-connected and $\epsilon(G)=|N(G)| \geq 2$.

Denote $N(G)=\left\{x_{1} y_{1}, \ldots, x_{k} y_{k}\right\}$. By Theorem 1.6, let H be a contraction of $G-N(G)$ such that
(a) H is the $2 k$-circuit $C^{\prime}=\hat{z}_{1} \hat{z}_{2} \ldots \hat{z}_{2 k} \hat{z}_{1}$ or a graph obtained from a 2 -connected plane cubic graph by selecting a facial circuit C^{\prime} and inserting the $2 k$ vertices $\hat{z}_{1}, \hat{z}_{2}, \ldots, \hat{z}_{2 k}$ in that cyclic order on edges of C^{\prime}, where π is a permutation on $[1, k]$ and $\left\{z_{i}, z_{k+i}\right\}=\left\{x_{\pi(i)}, y_{\pi(i)}\right\}$ for each $i \in[1, k]$;
(b) subject to (a), $|V(H)|$ is as small as possible.

Clearly, $G_{1}=H+N(G)$ is cubic and by the minimality of H, every 2-edge-cut of H (and thus G_{1}) is contained in $E\left(C^{\prime}\right)$. Let τ be an orientation of G. By Lemma $4.10, G_{1}$ admits a $6-\mathrm{NZF}\left(\tau_{1}, f_{1}\right)$, where τ_{1} is the restriction of τ on G_{1}.

Next we will prove that (τ_{1}, f_{1}) can be extended to a 6 -NZF of G. If $G=G_{1}$, then (τ_{1}, f_{1}) is a 6 -NZF of G. So we assume $G \neq G_{1}$.

Pick an arbitrary vertex x of H such that the subgraph B_{x} of G contracted into x is nontrivial (such x exists since $\left.G \neq G_{1}\right)$. Since G_{1} is cubic, denote $\delta_{G}\left(V\left(B_{x}\right)\right)=\delta_{G_{1}}(x)=\left\{e_{1}, e_{2}, e_{3}\right\}$, and for $i \in[1$, 3], let
h_{i} be the half edge of e_{i} whose end is in B_{x}. We add a new vertex u to $B_{x}+\left\{h_{1}, h_{2}, h_{3}\right\}$ such that u is a common end of all h_{i}, and denote the new graph by G_{2}. Then G_{2} is a bridgeless unsigned graph and thus admits a 6 -NZF by Theorem 4.6.

Let τ_{2} be the restriction of τ on G_{2} and define $\gamma\left(h_{i}\right)=f_{1}\left(e_{i}\right)$ for each h_{i}. Note that $\tau_{2}\left(h_{i}\right)=\tau_{1}\left(h_{i}\right)$ for each h_{i}. Since (τ_{1}, f_{1}) is a 6-NZF of G_{1}, we have $\partial \gamma(u)=\partial f_{1}(x)=0$. By Lemma 4.5, there is a 6-NZF (τ_{2}, f_{2}) of G_{2} such that $\left.f_{2}\right|_{\delta_{G_{2}}(u)}=\gamma=\left.f_{1}\right|_{\delta_{G_{1}}(x)}$, and thus f_{1} can be extended to all edges in $E\left(B_{x}\right)$. By applying the same argument to every x with nontrivial B_{x}, one can extend $\left(\tau_{1}, f_{1}\right)$ to a $6-\mathrm{NZF}$ of G.

6. Proof of Theorem 1.5

The aim of this section is to prove Theorem 1.5. (iii) \Rightarrow (i) is trivial since (i) is a special case of (iii). We only need to show that (i) \Rightarrow (ii) \Rightarrow (iii).
(i) \Rightarrow (ii)

We first show that (i) \Rightarrow (ii) by contradiction. Let k be the smallest integer such that there is a counterexample to it and choose G to be a counterexample with $|V(G)|+|E(G)|$ minimum. Then there are $2 k$ vertices $x_{1}, x_{2}, \ldots, x_{k}, y_{1}, y_{2}, \ldots, y_{k}$ such that G does not contain edge-disjoint $\left(x_{i}, y_{i}\right)$-path and $\left(x_{j}, y_{j}\right)$-path for any $i \neq j$ but (ii) does not hold. Denote $\mathcal{T}=\left\{x_{1}, x_{2}, \ldots, x_{k}, y_{1}, y_{2} \ldots, y_{k}\right\}$. Note that $k \geq 3$ by Theorem 1.4.

By the minimality of G, we have the following claim.
Claim 6.1. If G has a subgraph B such that there is an edge $x y \in \delta_{G}(V(B))$ where $x \in V(B)$ such that B is a leaf block of $G-x y$, then $\left|V(B) \cap\left\{x_{i}, y_{i}: i \in[1, k]\right\}\right| \geq 2$ unless B is a K_{2} in which case $d_{G}(x)=2$ and $x \in \mathcal{T}$.

Proof of Claim 6.1. Let $G_{1}=G / E(B)$ if $|E(B)| \geq 2$ and $|V(B) \cap \mathcal{T}| \leq 1$ or if $|E(B)|=1$ and $x \notin \mathcal{T}$. Since B is a leaf block of $G-x y, G_{1}$ remains 2-connected and satisfies (i). Thus by the minimality of $G, G / E(B)$ satisfies (ii) and so does G, a contradiction. This proves the claim.

By the minimality of k, there is a permutation π on $[1, k-1]$ and G is contractible to a 2-connected graph H with maximum degree at most 3 satisfying
(1) $\hat{z}_{1}, \ldots, \hat{z}_{k-1}, \hat{z}_{k+1}, \ldots, \hat{z}_{2 k-1}$ are distinct 2 -vertices of H appearing in a facial circuit C_{1} of H in the cyclic order, where $\left\{z_{i}, z_{k+i}\right\}=\left\{x_{\pi(i)}, y_{\pi(i)}\right\}$ for $i \in[1, k-1]$.

We choose such H satisfying (1) and
(2) subject to (1), $\left|V\left(C_{1}\right) \cap\left\{\hat{z}_{i}: i \in[1,2 k]\right\} \cap V_{2}(H)\right|$ as large as possible where $V_{2}(H)$ is the set of all 2-vertices in H.

Denote $\hat{\mathcal{T}}_{H}=\left\{\hat{z}_{1}, \ldots, \hat{z}_{k-1}, \hat{z}_{k+1}, \ldots, \hat{z}_{2 k-1}\right\} \cup\left\{\hat{z}_{k}, \hat{z}_{2 k}\right\}$ and let $S \subseteq E(G)$ such that $H=G /$. Note that $\left|V\left(C_{1}\right) \cap \hat{\mathcal{T}}_{H} \cap V_{2}(H)\right|$ is the maximum among all contraction H of G satisfying (1).

Since G does not contain edge-disjoint $\left(z_{i}, z_{i+k}\right)$-path and $\left(z_{j}, z_{j+k}\right)$-path for any $i, j \in[1, k]$ and $i \neq j$, we have the following observation.

Claim 6.2. For any distinct $i, j \in[1, k]$, H does not contain vertex-disjoint $\left(\hat{z}_{i}, \hat{z}_{k+i}\right)$-path and $\left(\hat{z}_{j}, \hat{z}_{k+j}\right)$ path.

By applying Claim 6.1, for any 2-edge-cut $\left\{e_{1}, e_{2}\right\}$ of G, every component of $G-\left\{e_{1}, e_{2}\right\}$ either contains at least two vertices in \mathcal{T} or is a single vertex in \mathcal{T} which has degree 2 in G. Since each 2-edge-cut in H is also a 2-edge-cut in G, the following claim holds.

Claim 6.3. If $\left\{e_{1}, e_{2}\right\}$ is a 2 -edge-cut of H, then every component of $H-\left\{e_{1}, e_{2}\right\}$ either contains at least two vertices in $\hat{\mathcal{T}}_{H}=\left\{\hat{z}_{i}: i \in[1,2 k]\right\}$ or is a single vertex in $\hat{\mathcal{T}}_{H}$ which is a 2 -vertex in H.

Since $\hat{z}_{i} \in V\left(C_{1}\right) \cap V_{2}(H)$ for each $i \in[1, k-1] \cup[k+1,2 k-1]$ by (1), we only need to show the following statements:
$\bullet \hat{z}_{k} \neq \hat{z}_{2 k}$ and $\hat{z}_{d} \neq \hat{z}_{i}$ for any $d \in\{k, 2 k\}$ and $i \in[1, k-1] \cup[k+1,2 k-1]$ (see Claim 6.4);

- $\left\{\hat{z}_{k}, \hat{z}_{2 k}\right\} \subset V\left(C_{1}\right)$ (see Claim 6.5);
- $\left\{\hat{z}_{k}, \hat{z}_{2 k}\right\} \subset V_{2}(H)$ (see Claim 6.6).

From the above three statements, it is not difficult to check that G satisfies (ii) and the suppressed graph of H (contracting all 2-vertices in H) is a desired cubic plane graph which is a contradiction to the minimality of G.

Claim 6.4. $\hat{z}_{k} \neq \hat{z}_{2 k}$ and $\hat{z}_{d} \neq \hat{z}_{i}$ for each $d \in\{k, 2 k\}$ and $i \in[1, k-1] \cup[k+1,2 k-1]$.
Proof of Claim 6.4. Obviously, $\hat{z}_{k} \neq \hat{z}_{2 k}$. Suppose to the contrary that $\hat{z}_{d}=\hat{z}_{i}$ for some $d \in\{k, 2 k\}$ and some $i \in[1, k-1] \cup[k+1,2 k-1]$. Without loss of generality, assume $\hat{z}_{k}=\hat{z}_{k+1}$.

Let W be the connected subgraph of G that is contracted into \hat{z}_{k}. Since \hat{z}_{k+1} is a 2-vertex of H, let $\delta_{G}(V(W))=\delta_{H}\left(\hat{z}_{k+1}\right)=\left\{e_{1}, e_{2}\right\}$, where e_{1}, e_{2} occur on $\hat{z}_{k-1} C_{1} \hat{z}_{k+2}$ cyclically, and denote by h_{1}, h_{2} the ends of e_{1}, e_{2} on W, respectively. Note that $h_{1} \neq h_{2}$ and $G / E(W)$ is 2-edge-connected since G is 2-connected.

Since G is 2-connected, there are two edge-disjoint paths P_{1} and P_{2} in G joining $\left\{z_{1}, z_{2 k}\right\}$ to $V(W)$ (thus to $\left\{h_{1}, h_{2}\right\}$). Without loss of generality, assume that P_{1} is a $\left(z_{1}, h_{1}\right)$-path and P_{2} is a $\left(z_{2 k}, h_{2}\right)$-path.
(6.4.1) There are no edge-disjoint $\left(h_{2}, z_{k}\right)$-path and $\left(h_{1}, z_{k+1}\right)$-path in W.

Otherwise let P_{1}^{\prime} and P_{2}^{\prime} be edge-disjoint $\left(h_{1}, z_{k+1}\right)$-path and (h_{2}, z_{k})-path in W, respectively. Then the ($z_{2 k}, z_{k}$)-path $P_{2} h_{2} P_{2}^{\prime}$ is edge-disjoint from the (z_{1}, z_{k+1})-path $P_{1} h_{1} P_{1}^{\prime}$ in G, a contradiction to (i). This proves (6.4.1).
(6.4.2) W is 2-connected.

Suppose to the contrary that W is not 2-connected. Since $\left\{e_{1}, e_{2}\right\}$ is an edge-cut of G and G is 2 connected, h_{1} and h_{2} belong to distinct leaf blocks of W. Since $|V(W) \cap \mathcal{T}| \leq 2$, by Claim 6.1, each leaf block is a K_{2} in which case $d_{G}\left(h_{i}\right)=2$ for each $i=1,2$. Thus $\left\{h_{1}, h_{2}\right\}=\left\{z_{k}, z_{k+1}\right\} \subset \mathcal{T}$. Let $S^{\prime}=S \backslash\left\{e \mid e\right.$ is in and is incident with or $\left.W h_{1} h_{2}\right\}$ and let $H^{\prime}=G / S^{\prime}$. Then H^{\prime} can be obtained from H by simply splitting the vertex \hat{z}_{k+1} into two adjacent 2 -vertices \hat{z}_{k} and \hat{z}_{k+1}. Let C_{1}^{\prime} be the corresponding facial circuit in H^{\prime} to C_{1}. Then H^{\prime} satisfies (1) but $\left|V\left(C_{1}^{\prime}\right) \cap \hat{\mathcal{T}}_{H^{\prime}} \cap V_{2}\left(H^{\prime}\right)\right|=1+\left|V\left(C_{1}\right) \cap \hat{\mathcal{T}}_{H} \cap V_{2}(H)\right|$, a contradiction to the choice of H. This proves (6.4.2).

By (6.4.1) and (6.4.2), we can apply Theorem 1.4 on W with the vertices $h_{2}, h_{1}, z_{k}, z_{k+1}$. That is, W is contractible to a graph W^{\prime} which is either a 4 -circuit $C^{\prime}=\hat{h}_{2}^{\prime} \hat{h}_{1}^{\prime} \hat{z}_{k}^{\prime} \hat{z}_{k+1}^{\prime} \hat{h}_{2}^{\prime}$ or a graph which is obtained from a 2-connected plane cubic graph by selecting the outer circuit C^{\prime} and inserting the vertices $\hat{h}_{2}^{\prime}, \hat{h}_{1}^{\prime}, \hat{z}_{k}^{\prime}, \hat{z}_{k+1}^{\prime}$ in that cyclic order on edges of C^{\prime}. Replacing \hat{z}_{k} in H with W^{\prime} to obtain a new contraction H^{\prime} of G, the facial circuit C_{1}^{\prime} obtained from C_{1} by replacing the vertex \hat{z}_{k} by the segment $\hat{h}_{1}^{\prime} C^{\prime} \hat{z}_{k}^{\prime} C^{\prime} \hat{z}_{k+1}^{\prime} C^{\prime} \hat{h}_{2}^{\prime}$. Thus H^{\prime} satisfies (1) but $\left|V\left(C_{1}^{\prime}\right) \cap \hat{\mathcal{T}}_{H^{\prime}} \cap V_{2}\left(H^{\prime}\right)\right|=1+\left|V\left(C_{1}\right) \cap \hat{\mathcal{T}}_{H} \cap V_{2}(H)\right|$, a contradiction to the choice of H. This contradiction completes the proof of the claim. \square

Denote the facial circuit $C_{1}=u_{1} u_{2} \ldots u_{\ell} u_{1}$ and assume that $u_{1}=\hat{z}_{1}, u_{s}=\hat{z}_{k-1}$, and $u_{t}=\hat{z}_{k+1}$ with $1<s<t<\ell$ since $\hat{z}_{1}, \ldots, \hat{z}_{k-1}, \hat{z}_{k+1}, \ldots, \hat{z}_{2 k-1}$ occur in C_{1} in the cyclic order. Note that $\Delta(H) \leq 3$ and $d_{H}\left(u_{1}\right)=d_{H}\left(u_{s}\right)=d_{H}\left(u_{t}\right)=2$. Let

$$
\begin{aligned}
& a=\min \left\{i: \text { there is a }\left(\hat{z}_{k}, u_{i}\right) \text {-path } P \text { in } H-E\left(C_{1}\right)\right\}, \\
& b=\max \left\{i: \text { there is a }\left(\hat{z}_{k}, u_{i}\right) \text {-path } P \text { in } H-E\left(C_{1}\right)\right\} .
\end{aligned}
$$

Note that if \hat{z}_{k} is an isolated vertex of $H-E\left(C_{1}\right)$, then $\hat{z}_{k}=u_{a}=u_{b}$.
Claim 6.5. $\left\{\hat{z}_{i}: i \in[1,2 k]\right\} \subseteq V\left(C_{1}\right)$.
Proof of Claim 6.5. Since $\hat{z}_{i} \in V\left(C_{1}\right)$ for each $i \in[1, k-1] \cup[k+1,2 k-1]$, we only need to show $\left\{\hat{z}_{k}, \hat{z}_{2 k}\right\} \subset V\left(C_{1}\right)$. Suppose to the contrary $\hat{z}_{k} \notin V\left(C_{1}\right)$ (without loss of generality). Since H is 2 -connected, there are two internally vertex-disjoint $\left(\hat{z}_{k}, C_{1}\right)$-paths, and thus $a<b$. Since $\hat{z}_{k} \notin V\left(C_{1}\right)$, $d\left(u_{a}\right)=d\left(u_{b}\right)=3$ and thus $u_{i} \neq \hat{z}_{j}$ for any $i \in\{a, b\}$ and $j \in[1,2 k]$.

Let P_{i} be a $\left(\hat{z}_{k}, u_{i}\right)$-path in $H-E\left(C_{1}\right)$ for each $i \in\{a, b\}$. Let P be a $\left(\hat{z}_{2 k}, C_{1}\right)$-path in H and let u_{μ} be the other end of P on C_{1}. Without loss of generality, assume that u_{a} lies in the segment $\hat{z}_{1} C_{1} \hat{z}_{2}$.
(6.5.1) $u_{a} C_{1} u_{b}$ contains the vertex \hat{z}_{2}.

Suppose to the contrary that $u_{a} C_{1} u_{b}$ does not contain the vertex \hat{z}_{2}. Then u_{b} also lies in the segment $\hat{z}_{1} C_{1} \hat{z}_{2}$. Let $e_{a}=u_{a} u_{a-1}$ and $e_{b}=u_{b} u_{b+1}$. Since C_{1} is a facial circuit of H and the maximum degree of H is at most $3,\left\{e_{a}, e_{b}\right\}$ is a 2-edge-cut of H by the definition of a and b. Note that the component of $H-\left\{e_{a}, e_{b}\right\}$ containing \hat{z}_{k} does not contain any other \hat{z}_{i} than \hat{z}_{k} and has at least three vertices. This contradicts Claim 6.3 and this contradiction proves (6.5.1).
(6.5.2) Let $\{i, j\} \subset\{a, b, \mu\}$ such that $\mu \in\{i, j\}$ and $i<j$. Then neither $u_{i} C_{1} u_{j}$ nor $u_{j} C_{1} u_{i}$ contains both \hat{z}_{d} and \hat{z}_{d+k} for any $d \in[1, k-1]$.

Suppose to the contrary that $u_{i} C_{1} u_{j}$ contains both \hat{z}_{d} and \hat{z}_{d+k} for some $d \in[1, k-1]$. Without loss of generality, assume $i=a$ and $j=\mu$. Then $P_{j} u_{j} C_{1} u_{i} P_{i}$ is a $\left(\hat{z}_{2 k}, \hat{z}_{k}\right)$-path which is vertex-disjoint from the ($\hat{z}_{d}, \hat{z}_{d+k}$)-path $\hat{z}_{d} C_{1} \hat{z}_{d+k}$, a contradiction to Claim 6.2. So $u_{i} C_{1} u_{j}$ does not contain both \hat{z}_{d} and \hat{z}_{d+k} for any $d \in[1, k-1]$. By symmetry, we can show that $u_{j} C_{1} u_{i}$ does not contain both \hat{z}_{d} and \hat{z}_{d+k} for any $d \in[1, k-1]$ and thus this proves (6.5.2).

Since u_{a} lies in the segment of $\hat{z}_{1} C \hat{z}_{2}, u_{\mu}$ must lie in the segment of $\hat{z}_{k+1} C \hat{z}_{k+2}$ by (6.5.2). Since u_{μ} lies in the segment of $\hat{z}_{k+1} C \hat{z}_{k+2}$, by (6.5.2) again, u_{b} must lie in the segment of $\hat{z}_{1} C \hat{z}_{2}$. Thus \hat{z}_{2} does not belong to the segment $u_{a} C_{1} u_{b}$, a contradiction to (6.5.1). This completes the proof of the claim.

Claim 6.6. $\left\{\hat{z}_{i}: i \in[1,2 k]\right\} \subseteq V_{2}(H)$. That is, $d_{H}\left(\hat{z}_{k}\right)=d_{H}\left(\hat{z}_{2 k}\right)=2$.
Proof of Claim 6.6. Suppose to the contrary $d_{H}\left(\hat{z}_{k}\right)=3$ (without loss of generality). \hat{z}_{k} is not an isolated vertex of $H-E\left(C_{1}\right)$. Since G is 2 -connected, $a \neq b$. Since both $\hat{z}_{k-1}=u_{s}$ and $\hat{z}_{k+1}=u_{t}$ are isolated vertices in $H-E\left(C_{1}\right), a \neq s$ and $b \neq t$.
(6.6.1) There is $a\left(\hat{z}_{k}, \hat{z}_{2 k}\right)$-path P and an $i \in[1, k-1]$ such that P and $\hat{z}_{i} C_{1} \hat{z}_{i+k}$ share only one common vertex which is \hat{z}_{k}.

Without loss of generality, we assume that \hat{z}_{k} lies in the segment $u_{s} C_{1} u_{t}=\hat{z}_{k-1} C_{1} \hat{z}_{k+1}$. Then $\hat{z}_{2 k}$ must lie in the segment $\hat{z}_{2 k-1} C_{1} \hat{z}_{1}$. Otherwise it is easy to find vertex-disjoint $\left(\hat{z}_{k}, \hat{z}_{2 k}\right)$-path and $\left(\hat{z}_{i}, \hat{z}_{k+i}\right)$-path for some $i \in[1, k-1]$, a contradiction to Claim 6.2. Note that $a \neq s$ and $b \neq t$.

We first show that either $a<s$ or $b>t$. Otherwise suppose $s<a<b<t$. Let $e_{a}=u_{a} u_{a-1}$ and $e_{b}=u_{b} u_{b+1}$. Note that C_{1} is a facial circuit of H and the maximum degree of H is at most 3 . By the definition of a and $b,\left\{e_{a}, e_{b}\right\}$ is a 2-edge-cut of H. Moreover, \hat{z}_{k} is the unique vertex of $\left\{\hat{z}_{i}: i \in[1,2 k]\right\}$ in the component of $H-\left\{e_{a}, e_{b}\right\}$ containing \hat{z}_{k}. This contradicts Claim 6.3 since the component is nontrivial.

If $a<s$, let P_{a} be a $\left(\hat{z}_{k}, u_{a}\right)$-path in $H-E\left(C_{1}\right)$. Then the $\left(\hat{z}_{k}, \hat{z}_{2 k}\right)$-path $\hat{z}_{k} P_{a} u_{a} C_{1}^{-} \hat{z}_{2 k}$ and the $\left(\hat{z}_{k-1}, \hat{z}_{2 k-1}\right)$-path $\hat{z}_{k-1} C_{1} \hat{z}_{2 k-1}$ only share the vertex \hat{z}_{k}.

If $b>t$, let P_{b} be a $\left(\hat{z}_{k}, u_{b}\right)$-path in $H-E\left(C_{1}\right)$. Then the $\left(\hat{z}_{k}, \hat{z}_{2 k}\right)$-path $\hat{z}_{k} P_{b} u_{b} C_{1} \hat{z}_{2 k}$ and the $\left(\hat{z}_{1}, \hat{z}_{k+1}\right)$ path $u_{1} C_{1} u_{t}=\hat{z}_{1} C_{1} \hat{z}_{k+1}$ only share the vertex \hat{z}_{k}. This proves (6.6.1).

Without loss of generality, we take $i=1$ in (6.6.1). That is, there is a $\left(\hat{z}_{k}, \hat{z}_{2 k}\right)$-path P such that P and $\hat{z}_{1} C_{1} \hat{z}_{k+1}$ share only one common vertex \hat{z}_{k}.

Let W be the subgraph of G that is contracted into \hat{z}_{k}. Denote $\delta_{G}(V(W))=\delta_{H}\left(\hat{z}_{k}\right)=\left\{e_{1}, e_{2}, e_{3}\right\}$ where e_{1} is not in C_{1} and e_{2} and e_{3} are in C_{1}. Then $e_{1} \in E(P)$ and both e_{2} and e_{3} are in $\hat{z}_{1} C \hat{z}_{k+1}$. Denote the ends of e_{1}, e_{2}, e_{3} in W by h_{1}, h_{2}, h_{3}, respectively.
(6.6.2) W does not contain edge-disjoint $\left(z_{k}, h_{1}\right)$-path and (h_{2}, h_{3})-path.

If W contains edge-disjoint $\left(z_{k}, h_{1}\right)$-path and (h_{2}, h_{3})-path, one can easily find edge-disjoint $\left(z_{k}, z_{2 k}\right)$-path and $\left(z_{1}, z_{k+1}\right)$-path since the ($\left.\hat{z}_{k}, \hat{z}_{2 k}\right)$-path P and $\hat{z}_{1} C_{1} \hat{z}_{k+1}$ share only one common vertex \hat{z}_{k} in H. This proves (6.6.2).
(6.6.3) W is 2-connected.

Suppose to the contrary that W is not 2-connected. Then it has at least two leaf blocks and thus $|E(W)| \geq 2$. Since $\left|\delta_{G}(V(W))\right|=3$, there must be a leaf block of W which is incident with exactly one of e_{1}, e_{2} and e_{3}, denoted e_{i}. Then W contains a leaf block of $G-e_{i}$. By Claim 6.4, z_{k} is the only vertex in $\left\{z_{i}: i \in[1,2 k]\right\}=\mathcal{T}$ contained in W. By Claim 6.1, $d_{G}\left(h_{i}\right)=2$ and $h_{i}=z_{k}$. Let e_{i}^{\prime} be the edge in W incident with h_{i}. Then $\left\{e_{i}^{\prime}, e_{\alpha}, e_{\beta}\right\}$ is a 3-edge-cut where $\{\alpha, \beta\}=\{1,2,3\} \backslash\{i\}$. Let W^{\prime} be the component of $G-\left\{e_{i}^{\prime}, e_{\alpha}, e_{\beta}\right\}$ contained in W. Then W^{\prime} contains no z_{i} for each $i \in[1,2 k]$ and
$\left|E\left(W^{\prime}\right)\right|=|E(W)|-1$. Moreover $G / E\left(W^{\prime}\right)$ remains 2-connected and satisfies (i). By the minimality of $G, G / E\left(W^{\prime}\right)$ satisfies (ii) and so does G, a contradiction. This proves (6.6.3).

By (6.6.2) and (6.6.3), we apply Theorem 1.4 on W with the vertices $z_{k}, h_{2}, h_{1}, h_{3}$. Then W is contractible to a graph W_{1} which is either the 4 -circuit $C^{\prime}=\hat{h}_{1} \hat{h}_{2} \hat{z}_{k}^{\prime} \hat{h}_{3} \hat{h}_{1}$ or a graph which is obtained from a 2-connected plane cubic graph by selecting the outer circuit C^{\prime} and inserting the vertices $\hat{h}_{1}, \hat{h}_{2}, \hat{z}_{k}^{\prime}, \hat{h}_{3}$ in that cyclic order on edges of C^{\prime}. Without loss of generality, assume $\hat{h}_{2}^{\prime} C^{\prime} \hat{h}_{3}^{\prime}$ contains \hat{z}_{k}^{\prime}. Replace \hat{z}_{k} in H with W_{1} to obtain a new contraction H^{\prime} of G. The facial circuit C_{1}^{\prime} is obtained from C_{1} by replacing the vertex \hat{z}_{k} with the segment $\hat{h}_{2}^{\prime} C^{\prime} \hat{h}_{3}^{\prime}$ which contains \hat{z}_{k}^{\prime} as a 2 -vertex. Thus H^{\prime} satisfies (1) but $\left|V\left(C_{1}^{\prime}\right) \cap \hat{\mathcal{T}}_{H^{\prime}} \cap V_{2}\left(H^{\prime}\right)\right|=1+\left|V\left(C_{1}\right) \cap \hat{\mathcal{T}}_{H} \cap V_{2}(H)\right|$, a contradiction to the choice of H. This contradiction completes the proof of Claim 6.6.
(i) \Rightarrow (ii) follows from Claims 6.4, 6.5, and 6.6.
(ii) \Rightarrow (iii)

Now we show (ii) \Rightarrow (iii). Note that if $k=2$, then (ii) implies (iii). We prove by contradiction. Let G be a counterexample such that
(a) k is as small as possible;
(b) subject to (a), $|E(G)|$ is as small as possible.

Since G is a counterexample, let C_{1} and C_{2} be a pair of edge-disjoint circuits with odd weight in G^{+}. Let $F_{i}=F \cap E\left(C_{i}\right)$ where each $\left|F_{i}\right|$ is odd.

By (ii) (or (ii)'), there is a permutation π on $[1, k]$ and a subset $S \subseteq E(G)$ such that G / S is the $2 k$-circuit $C=z_{1} z_{2} \ldots z_{2 k} z_{1}$ or a graph obtained from a 2 -connected plane cubic graph by selecting a facial circuit C and inserting the $2 k$ vertices $z_{1}, z_{2}, \ldots, z_{2 k}$ in that cyclic order on edges of C, where $\left\{z_{i}, z_{k+i}\right\}=\left\{\hat{\chi}_{\pi(i)}, \hat{y}_{\pi(i)}\right\}$ for $i \in[1, k]$.

Claim 6.7. $G=G / S, G^{+}=C \cup C_{1} \cup C_{2}$, and $F=F_{1} \cup F_{2}$.
Proof of Claim 6.7. We first show $G=G / S$. Clearly, $G^{+} / S=G / S+F$. Let X be a component of $G^{+}[S]$. Then X is contracted into a vertex of G^{+} / S. Let C_{0} be a circuit of G^{+}. Since G^{+} / S is cubic, $C_{0} \cap X$ is either a null graph or is a segment of C_{0}. Thus $C_{0} / E\left(C_{0} \cap X\right)$ is a circuit. This implies that $C_{0} /\left(E\left(C_{0}\right) \cap S\right)$ is still a circuit after contracting each component of $G^{+}[S]$. Since $S \subseteq E(G), C_{0}$ and $C_{0} /\left(E\left(C_{0}\right) \cap S\right)$ have the same number of edges in F. Hence $C_{1} /\left(E\left(C_{1}\right) \cap S\right)$ and $C_{2} /\left(E\left(C_{2}\right) \cap S\right)$ remain a pair of edge-disjoint circuits with odd weight in G^{+} / S. Therefore by the minimality of $E(G), G=G / S$.

Now we show that $G^{+}=C \cup C_{1} \cup C_{2}$ and $F=F_{1} \cup F_{2}$. It is obvious that $G^{+}=C \cup C_{1} \cup C_{2}$ implies $F=F_{1} \cup F_{2}$. Let $G^{\prime}=C \cup C_{1} \cup C_{2}$. Then G^{\prime} is a 2-edge-connected subgraph of G^{+}. Since G^{+}is cubic and the edges in F are chords of $C, G^{\prime}-F$ is 2-connected. Note that C_{1} and C_{2} are still a pair of edge-disjoint circuits with odd weight in G^{\prime}. If G^{\prime} is a proper subgraph of G^{+}, then $G^{\prime}-F$ is a proper 2-connected subgraph of G satisfying (ii) and $\left(G^{\prime}-F\right)^{+}=G^{\prime}$, a contradiction to the minimality of G. Therefore $G^{+}=C \cup C_{1} \cup C_{2}$ and thus $F=F_{1} \cup F_{2}$.

Note that C_{1} and C_{2} are vertex-disjoint since G^{+}is cubic and C_{1} is edge-disjoint from C_{2}. For $i=1,2$, let \mathcal{P}_{i} be the set of $\left|F_{i}\right|$ paths which consist of $C_{i}-F_{i}$. Then all paths in $\mathcal{P}_{1} \cup \mathcal{P}_{2}$ are pairwise vertexdisjoint. Let $P \in \mathcal{P}_{1} \cup \mathcal{P}_{2}$. It is obvious that two ends of P both are in $\left\{z_{1}, z_{2}, \ldots, z_{2 k}\right\}$. We denote P by $P_{\alpha, \beta}$ if its end vertices are z_{α} and z_{β} with $\beta>\alpha$, and define the pace of $P_{\alpha, \beta}$ as

$$
\min \{\beta-\alpha, 2 k-(\beta-\alpha)\} .
$$

Let $P_{\alpha^{\prime}, \beta^{\prime}}$ be a path of $\mathcal{P}_{1} \cup \mathcal{P}_{2}$ with smallest pace. Without loss of generality, assume that $P_{\alpha^{\prime}, \beta^{\prime}} \in \mathcal{P}_{1}$. We further assume that $k \geq \beta^{\prime}>\alpha^{\prime}=1$.

Claim 6.8. $\beta^{\prime}=2$.
Proof of Claim 6.8. Suppose to the contrary $\beta^{\prime} \geq 3$. Since $G^{+}=C \cup C_{1} \cup C_{2}$ and $F=F_{1} \cup F_{2}$ by Claim 6.7, z_{2} must be contained in some path $P_{2, \beta^{\prime \prime}} \in \mathcal{P}_{1} \cup \mathcal{P}_{2}$. Then $P_{2, \beta^{\prime \prime}}$ must cross the path $P_{1, \beta^{\prime}}$ since G is plane and $P_{1, \beta^{\prime}}$ has the smallest pace, which contradicts the fact that G^{+}is cubic. This completes the proof of the claim.

Claim 6.9. $z_{k+1} z_{k+2} \notin E\left(C_{1} \cup C_{2}\right)$.
Proof of Claim 6.9. Since G^{+}is cubic and C_{1} passes through z_{k+1} and z_{k+2}, the edge $z_{k+1} z_{k+2} \notin E\left(C_{2}\right)$. If $z_{k+1} z_{k+2} \in E\left(C_{1} \cup C_{2}\right)$, then $z_{k+1} z_{k+2} \in E\left(C_{1}\right)$. Therefore, $C_{1}=z_{1} P_{1,2} z_{2} z_{k+2} z_{k+1} z_{1}$ is an even-weighted circuit, a contradiction. This contradiction completes the proof of the claim.

Let $G^{*}=G^{+}-\left\{z_{1} z_{k+1}, z_{2} z_{k+2}\right\}+z_{k+1} z_{k+2}$, and $F^{*}=F-\left\{z_{1} z_{k+1}, z_{2} z_{k+2}\right\}$. Then G^{*} does contain a pair of edge-disjoint odd-weighted circuits $C_{1}^{\prime}=C_{1}-z_{k+1} z_{1} P_{1,2} z_{2} z_{k+2}+z_{k+1} z_{k+2}$ and C_{2}.

Since $z_{1}, z_{2}, \ldots, z_{2 k}$ appear on C in this cyclic order, the segment $z_{k+1} C z_{k+2}$ contains no vertices in $\left\{z_{1}, z_{2}, \ldots, z_{2 k}\right\}$ as internal vertices. Thus the circuit obtained from C by replacing $z_{k+1} C z_{k+2}$ with the edge $z_{k+1} z_{k+2}$ is also a facial circuit in $G^{*}-F^{*}$. Since $\left|F^{*}\right|=k-2<|F|=k$, by the minimality of k, G^{*} contains no edge-disjoint odd-weighted circuits, a contradiction. This contradiction completes the proof of (ii) \Rightarrow (iii) and thus the proof of Theorem 1.5.

7. Proof of Theorem 1.6

The aim of this section is to prove Theorem 1.6.
(ii) \Leftrightarrow (iii) follows from Theorem 1.5. We only need to show that (iii) \Rightarrow (i) \Rightarrow (ii).
(iii) \Rightarrow (i)

Let G be a counterexample with $|E(G)|$ minimum. Let G^{\prime} be the contraction described in (iii). Then by the minimality of G, for each vertex $\hat{x} \in V\left(G^{\prime}\right) \backslash\left\{\hat{z}_{1}, \hat{z}_{2}, \ldots, \hat{z}_{2 k}\right\}$, we have $\hat{x}=x$. By Theorem 1.5 $((\mathrm{ii}) \Rightarrow(\mathrm{iii})), G-N(G)$ contains some cut vertices. Let B be a leaf block of $G-N(G)$. Since G^{\prime} is 2 connected, B must be contained in W where W is the subgraph of G which was contracted into \hat{z}_{i} for some $i \in[1,2 k]$. Moreover, B is also a block of $G-\left\{z_{i} z_{i+k}\right\}$ and $V(B) \cap\left\{z_{1}, \ldots, z_{k}, z_{k+1}, \ldots, z_{2 k}\right\}=\left\{z_{i}\right\}$. Thus z_{i} is not a cut vertex of $G-N(G)$ and $G / E(B)$ is 2 -connected since G is 2 -connected. This implies that every unbalanced circuit of G containing some edges of B must pass through the negative edge $z_{i} z_{i+k}$. Since G is a counterexample, let C_{1} and C_{2} be two edge-disjoint unbalanced circuits of G. Thus $C_{1} /\left(E\left(C_{1}\right) \cap E(B)\right)$ and $C_{2} /\left(E\left(C_{2}\right) \cap E(B)\right)$ are two edge-disjoint unbalanced circuits of $G / E(B)$. Therefore, $G / E(B)$ is also a counterexample but $|E(G / E(B))|<|E(G)|$, a contradiction to the minimality of G. This proves that (iii) implies (i).
(i) \Rightarrow (ii)

Let G be a counterexample with $|E(G)|$ minimum. By (i), there are no edge-disjoint $\left(x_{i}, y_{i}\right)$-path and $\left(x_{j}, y_{j}\right)$-path for any $1 \leq i<j \leq k$. Thus to obtain a contradiction it suffices to show that $G-N(G)$ is 2-connected.

Suppose to the contrary that $G-N(G)$ is not 2-connected. If there are two blocks of $G-N(G)$ such that each contains two ends of some negative edge, then it is obvious that G has two edge-disjoint unbalanced circuits, a contradiction. Since $G-N(G)$ is not 2-connected, it has at least two leaf blocks. Thus it has a leaf block B which contains at most one end of each negative edge. Let z be the unique cut vertex of $G-N(G)$ in B and let $N^{\prime} \subseteq V(B)$ be the set of vertices incident with a negative edge in G. Clearly, $\left|N^{\prime} \backslash\{z\}\right|>0$ since G is 2-connected.

If $\left|N^{\prime}\right|=1$, then z is not adjacent to a negative edge and thus $G^{\prime}=G / E(B)$ remains 2-connected and still satisfies (i). Note that the negativeness is an invariant under contracting some positive edges. Thus, by the minimality of G, there is $S \subseteq E\left(G^{\prime}\right) \backslash N\left(G^{\prime}\right)$ such that $\left(G^{\prime}-N\left(G^{\prime}\right)\right) / S$ satisfies (ii). It follows that $S \cup E(B) \subseteq E(G) \backslash N(G)$ and $(G-N(G)) /(S \cup E(B))=\left(G^{\prime}-N\left(G^{\prime}\right)\right) / S$ satisfies (ii), a contradiction.

Thus $\left|N^{\prime}\right| \geq 2$ and $|V(B)| \geq 2$. Let $x_{1} y_{1}$ and $x_{2} y_{2}$ be two negative edges with $x_{1}, x_{2} \in N^{\prime}$ and $y_{1}, y_{2} \in V(G) \backslash V(B)$. If $B=K$ K $=\{e\}$, then $x_{1} \neq x_{2}$; otherwise $\left\{e, x_{1} y_{1}, x_{2} y_{2}\right\}$ is a 3-edge-cut of G and it contains two edges in $N(G)$, a contradiction to Proposition 3.1. Since $x_{1} \neq x_{2}$ if $B=K_{2}$ and B is 2-connected if $B \neq K_{2}$, there are edge-disjoint (x_{1}, z)-path P_{1} and $\left(x_{2}, z\right)$-path P_{2} in B.

Let $H=G-N(G)-(V(B) \backslash\{z\})$. Then H is connected since $G-N(G)$ is connected and B is a leaf block of $G-N(G)$. We now claim that H contains edge-disjoint $\left(z, y_{1}\right)$-path and $\left(z, y_{2}\right)$-path. Otherwise by Menger's theorem, there is a cut-edge e in H (and thus in $G-N(G)$) separating z from $\left\{y_{1}, y_{2}\right\}$. So $\left\{e, x_{1} y_{1}, x_{2} y_{2}\right\}$ is a 3 -edge-cut of $G-N(G)+\left\{x_{1} y_{1}, x_{2} y_{2}\right\}$ and it contains two edges in $N(G)$, a contradiction to Proposition 3.1.

Let P_{1}^{\prime} and P_{2}^{\prime} be two edge-disjoint $\left(z, y_{1}\right)$-path and $\left(z, y_{2}\right)$-path in $G-N(G)-(V(B) \backslash\{z\})$, respectively. Then $x_{1} P_{1} z P_{1}^{\prime} y_{1} x_{1}$ and $x_{2} P_{2} z P_{2}^{\prime} y_{2} x_{2}$ are two edge-disjoint unbalanced circuits in G, a contradiction to (i). This proves that (i) implies (ii) and thus proves Theorem 1.6.

Acknowledgments

The first author was partially supported by NSFC under grant number 11201374. The second author was partially supported by NSFC under grant numbers 11401003 and 11571149. The third author was partially supported by National Security Agency under grant number H98230-16-1-0004 and National Science Foundation under grant number DMS-126480.

References

[1] M. Beck, T. Zaslavsky, The number of nowhere-zero flows on graphs and signed graphs, J. Combin. Theory Ser. B. 96 (2006) 901-918.
[2] J.A. Bondy, U.S.R. Murty, Graph Theory, in: GTM, vol. 244, Springer, 2008.
[3] A. Bouchet, Nowhere-zero integral flows on a bidirected graph, J. Combin. Theory Ser. B. 34 (1983) 279-292.
[4] M. DeVos, Flows on bidirected graphs, arXiv:1310.8406v1.
[5] R. Diestel, Graph Theory, fourth ed., Springer-Verlag, 2010.
[6] F. Jaeger, Flows and generalized coloring theorems in graphs, J. Combin. Theory Ser. B. 26 (1979) 205-216.
[7] T. Kaiser, R. Lukot́ka, E. Rollová, Nowhere-zero flows in signed graphs: A survey, arXiv:1608.06944v1.
[8] T. Kaiser, E. Rollová, Nowhere-zero flows in signed series-parallel graphs, SIAM J. Discrete Math. 30 (2016) 1248-1258.
[9] E. Máčajová, E. Rollová, Nowhere-zero flows on signed complete and complete bipartite graphs, J. Graph Theory 78 (2015) 108-130.
[10] E. Máčajová, M. Škoviera, Nowhere-zero flows on signed Eulerian graphs, arXiv:1408.1703v1.
[11] E. Máčajová, M. Škoviera, Remarks on nowhere-zero flows in signed cubic graphs, Discrete Math. 338 (2015) 809-815.
[12] A. Raspaud, X.D. Zhu, Circular flow on signed graphs, J. Combin. Theory Ser. B. 101 (2011) 464-479.
[13] E. Rollová, M. Schubert, E. Steffen, Signed graphs with two negative edges, arXiv:1604.08053.
[14] M. Schubert, E. Steffen, Nowhere-zero flows on signed regular graphs, Eur. J. Combin. 48 (2015) 34-47.
[15] P.D. Seymour, Disjoint paths in graphs, Discrete Math. 29 (1980) 293-309.
[16] P.D. Seymour, Nowhere-zero 6-flows, J. Combin. Theory Ser. B. 30 (1981) 130-135.
[17] P. Seymour, Criticality for multicommodity flows, J. Combin. Theory Ser. B. 110 (2015) 136-179.
[18] C. Thomassen, 2-linked graphs preprint Series 1979/80, 17, Matematisk Institut, Aarhus University, 1979.
[19] W.T. Tutte, A class of Abelian groups, Canad. J. Math. 8 (1956) 13-18.
[20] D.B. West, Introduction to Graph Theory, Prentice Hall, Upper Saddle River, NJ, 1996.
[21] Y.Z. Wu, D. Ye, W.A. Zang, C.-Q. Zhang, Nowhere-zero 3-flows in signed graphs, SIAM J. Discrete Math. 28 (3) (2014) 16281637.
[22] R. Xu, C.-Q. Zhang, On flows in bidirected graphs, Discrete Math. 299 (2005) 335-343.
[23] D.H. Younger, Integer flows, J. Graph Theory 7 (1983) 349-357.
[24] C.-Q. Zhang, Integer Flows and Cycle Covers of Graphs, Marcel Dekker Inc., New York, ISBN: 0-8247-9790-6, 1997.
[25] X.-D. Zhu, Circular flow number of highly edge connected signed graphs, J. Combin. Theory Ser. B. 112 (2015) 93-103.
[26] O. Zýka, Nowhere-Zero 30-Flow on Bidirected Graphs(Thesis), Charles University, Praha, KAM-DIMATIA Series 87-26, 1987.

[^0]: E-mail addresses: luyou@nwpu.edu.cn (Y. Lu), rluo@math.wvu.edu (R. Luo), cqzhang@math.wvu.edu (C.-Q. Zhang).

