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Abstract

In this paper, we obtained some necessary and sufficient conditions for a graph having 5-, 6-
and 7-cycle double covers, etc. We also provide a few necessary and sufficient conditions for a
graph admitting a nowhere-zero 4-flow. With the aid of those basic properties of nowhere-zero 4-
flow and the result about 5-cycle double cover, we are able to prove that each 2-edge-connected
graph with one edge short of admitting a nowhere-zero 4-flow has a 5-cycle double cover which
is a generalization of a theorem due to Huck and Kochol (JCTB, 1995) for cubic graphs.

1. Introduction

All graphs we consider in this paper are all 2-edge-connected. By a circuit, we mean
a connected 2-regular graph. By a cycle, we mean a graph with the degree of every
vertex being even. (Thus, a cycle is a union of edge-disjoint circuits and some isolated
vertices.) Let F' be a subset of E(G). The graph obtained from G by contracting all
edges of F is denoted by G/F. Let H be a subgraph of G and v € V(G). The degree
of v in H is denoted by dy(v). All other standard graph-theoretic terms that are used
in this paper can be found for instance in [4].

1.1. Integer flows

Let G = (V,E) be a graph with vertex set ¥ and edge set E. Let (D, f) be an ordered
pair where D is an orientation of E(G) and f is a weight on E(G):E(G) — Z, where
Z is the set of all integers. For each v € V(G), denote

[ry=3{f@} (or, f~(v)={f(e)}).

! Partial support provided by the National Science Foundation under Grant DMS-9104824.

0012-365X/96/315.00 © 1996—Elsevier Science B.V. All rights reserved
SSDI 0012-365X(95)00047-X



246 C.-Q. Zhang ! Discrete Mathematics 154 (1996) 245-253

where the summation is taken over all oriented edges of G (under the orientation D)
with tails (or, heads, respectively) at the vertex v.

Definition 1.1. (1) An integer flow of G is an ordered pair (D, /') such that
)=/

for every vertex v € V(G).

(2) A k-flow of G is an integer flow (D, /) such that |f(e)| < k for every edge
of G.

(3) The support of a weight f is the set of all edges of G with f(e) # 0 and is
denoted by supp(f').

(4) A nowhere-zero k-flow (D,f) of a graph G is a k-flow such that

supp( f) = E(G).

The concept of integer-flow was introduced by Tutte ([21] also see [23,12], etc.)
as a refinement and generalization of the face-coloring and edge-3-coloring problems.
The following conjectures are the fundamental problems in this area.

Conjecture 1.1 (Tutte [22]). Every 2-edge-connected graph containing no subdivision
of the Petersen graph admits a nowhere-zero 4-flow.

Conjecture 1.2 (Tutte [21]). Every 2-edge-connected graph admits a nowhere-zero
5-flow.

Conjecture 1.3 (Tutte, see [17] and [18]). Every 4-edge-connected graph admits a
nowhere-zero 3-flow.

The topic of integer flow is one of the most important research topics in graph
theory. Many articles have been published in this area (see surveys [12,13,23], etc.)
In this paper, we are mainly interested in the topic of nowhere-zero 4-flow since it
is very closely related to the topic of cycle cover problem. (One of the major results
in this topic is a theorem of Jaeger [10] that every 4-edge-connected graph admits a
nowhere-zero 4-flow.) As a generalization of edge-3-colorings of cubic graphs, graphs
admitting nowhere-zero 4-flows have many properties that correspond to properties of
edge-3-colorable cubic graph. In Section 2, we will provide some direct proofs of these
properties without converting graphs into cubic graphs by a traditional vertex-splitting
method since the method is usually tedious and does not lead to a minor-closure result.

1.2. Cycle covers

Definition 1.2 (1) A family # of cycles of a graph G is called a cycle cover if each
edge of G is contained in a cycle of %.
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(2) A cycle cover # of G is called a cycle double cover of G if each edge of G
is contained in precisely two cycles of .

(3) A family & of cycles of a graph G is called a k-cycle double cover of G if #
is a cycle double cover of G consisting of at most k£ cycles of G.

The following is a very famous conjecture in graph theory. Many papers about this
conjecture have been published in recent years. (See surveys [9,11,26], etc.)

Conjecture 1.4 (Szekeres [19] and Seymour [16]. Or see survey [11]). Every 2-edge-
connected graph has a cycle double cover.

Motivated by the 5-flow conjecture (Conjecture 1.2), a stronger conjecture was pro-
posed by Preissmann and Celmins.

Conjecture 1.5 (Preissmann [15] and Celmins [5]). Every 2-edge-connected graph has
a 5-cycle double cover.

In this paper, we will obtain some necessary and sufficient conditions for graphs
having a 5-cycle double cover (and 6-cycle double cover, 7-cycle double cover, ..., as
well). With these results and some basic properties in the theory of integer flow, we
generalize a result of Huck and Kochol [8] that every 2-edge-connected graph with at
most one edge short of admitting a nowhere-zero 4-flow has a 5-cycle double cover.

2. Nowhere-zero 4-flow

Definition 2.1. Let H, and H, be two subgraphs of a graph G, the symmetric
difference of H, and H,, denoted by H; A H,, is the subgraph of G induced by
the set of edges [E(H;) U E(H))]\ [E(H,) NE(Hy)).

The following facts are either straightforward or elementary:
1. Let A, and H, be two subgraphs of G and § = H; A H,. Then for each vertex
vof G

ds(v) = dp, (v) + dy(v)  (mod 2),

2. If C1,C; are cycles of a graph G, then C; A C, is also a cycle of G.

3. Let # be a cycle cover of a graph G. Then the subgraph of G induced by the
edges contained in an odd number of cycles of % induces a cycle of G.

4. If (D, f) is a 2-flow of G then supp(f) is a cycle of G.

5. If (D, f) is a k-flow of G then the set of edges with odd weights is a cycle
of G.

We present a few basic properties and equivalent definitions of nowhere-zero 4-flow,
some of which are well-known by many mathematicians in this area.
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2.1. Cycle double cover

Theorem 2.1 (Jaeger [11]). Let G = (V,E) be a graph. The following statements are
equivalent:
(1) G admits a nowhere-zero 4-flow,
(ii) G has a 3-cycle double cover,
(i) G has a 4-cycle double cover.

We are not to present the proof of this theorem, since it has appeared in many
papers already.

2.2. Parity subgraphs

The following notion we give here was introduced by Celmins in [5].

Definition 2.2. (1) A spanning subgraph H of a graph G is called a parity subgraph
of G if for each vertex v € V' (G)

dy(v) =dg(v) (mod 2)

(2) A decomposition of the edge-set of a graph G is called parity subgraph decom-
position if each part of the decomposition is a parity subgraph of G.

(3) A parity subgraph decomposition of G is trivial if it has only one element (the
graph G itself).

The following are some observations.

1. A graph G is a parity subgraph of itself and every graph has a parity subgraph
decomposition.

2. A subgraph H of G is a parity subgraph if and only if G\E(H) is a cycle of G.

3. The union of an even (odd) number of edge-disjoint parity subgraphs is a cycle
(parity subgraph).

4. The number of parity subgraphs in a parity subgraph decomposition of a graph
is always odd.

Theorem 2.2. A graph G admits a nowhere-zero 4-flow if and only if G has a non-
trivial parity subgraph decomposition.

Proof. By Theorem 2.1, we only need to prove that G has a 3-cycle double cover if

and only if G has a parity subgraph decomposition consisting of three parity subgraphs.

(Note that if a non-trivial parity subgraph decomposition 2 of G has 1 >3 (¢ odd) ele-

ments then replacing ¢ — 2 elements of & by their union yields a non-trivial parity sub-

graph decomposition with precisely three elements). Thus the theorem is obvious since
(i) for each cycle double cover # of G,

{G\E(C): Cc F}

is a non-trivial parity subgraph decomposition if and only if |#| = 3; and
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(i1) for each non-trivial parity subgraph decomposition 2 of G,
{G\E(P): P € 7}

is a cycle double cover of G if and only if || =3. O

A non-trivial parity subgraph decomposition of a graph G is a generalization of
edge-3-colorings of cubic graphs since a non-trivial parity subgraph decomposition of
a cubic graph is a set of three edge-disjoint perfect matchings.

2.3. Evenly spanning cycles

Definition 2.3. (1) A vertex of a graph G is odd (or even) if the degree of the vertex
is odd (or even, respectively).

(2) If C is a cycle of a graph G, a component N of C is odd (or, even) if N
contains odd (or, even, respectively) number of odd vertices of G.

(3) A cycle C of G is evenly spanning if C contains all odd vertices of G and each
component of C is even.

(The topic of evenly spanning cycle was studied in [3] for graphs with 4-colorable
embedding on orientable surfaces.)

Lemma 2.3. A4 cycle S is evenly spanning in G if and only if S is the union of two
edge-disjoint parity subgraphs of G.

Proof. (i) The proof of the “if” part. Let Py, P; be two edge-disjoint parity subgraphs
of G such that S = P, U P,. It is obvious that S = P; U P, is a cycle of G. Since
each component of P; contains an even number of odd vertices of P; and P, is a
parity subgraph of G, each component of P contains an even number of odd vertices
of G. Since the vertex set of each component C of S is the union of the vertex sets
of several components of P;, the component C of S also contains an even number
of odd vertices of G. All these prove that § = P, U P, is an evenly spanning cycle
of G.

(i1) The proof of the “only if” part. Let S be an evenly spanning cycle of G and
let Vo = {v1,...,v2:} be the set of all odd vertices of G such that vy,_, and vy
are contained in the same component of S for each i = 1,...,7. Let P; be a path
joining vp;_1, vy; and contained in S. Noting that the symmetric difference Q of all
P;’s (i=1,...,t) is a parity subgraph of G. Thus, Q and S\E(Q) are two edge-disjoint
parity subgraph of G whose union is S. O

With the fact that each parity subgraph decomposition of a graph always contains an
odd number of elements, (by observation (4)), we have the following theorem which
is an immediate corollary of Lemma 2.3 and Theorem 2.2.
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Theorem 2.4. A graph G admits a nowhere-zero 4-flow if and only if G has an evenly
spanning cycle.

It is evident that Theorem 2.4 is a generalization of the following fact:

A cubic graph G is edge-3-colorable if and only if G has a 2-factor C such that
each component of C is a circuit of even length.

2.4. Faithful cycle covers

The following theorem for the cubic case was used by Seymour in [16] and is
generalized for the general case in [24].

Theorem 2.5 (Zhang [24]). Let G be a graph. The graph G admits a nowhere-zero
4-flow if and only if for each cycle C of G, G has a 4-cycle double cover € such
that C € 6.

Proof. By Theorem 2.1, we only need to prove the “only if” part of the theorem and
let {Cy, C2,C3} be a 3-cycle double cover of G. Then # = {C,CAC|,CAC,,CACs)
is a 4-cycle double cover of G containing the given cycle C. [

In the case of the cycle double cover (described in Theorem 2.5) containing at most
three cycles, we have the following structural result, which will be useful in the later
discussions.

Theorem 2.6. Let C be a cycle of G. Then the graph G has a 3-cycle double cover
F containing C if and only if C is an evenly spanning cycle of G.

Proof. (i) The proof of the “if” part: By Lemma 2.3, let 2 = {Py,P»,P;} be a parity
subgraph decomposition of G such that P; = G \ E(C), and C = P, U P3. Then,
obviously, {P) U Py, P; UP5;,C} is a 3-cycle double cover of G.

(ii) The proof of the “only if” part: Let {C), C,C} be a 3-cycle double cover of G.
Since C = Cy A (3, the cycle C is the union of two parity subgraphs {G \ E(C\),G \
E(C3)}. By Lemma 2.3, C is an evenly spanning cycle of G. [J

The concept of a cycle double cover containing a given cycle is equivalent to the
concept of faithful cycle cover of a (1, 2)-eulerian weight (see [1,2,6,9,16,24]).

3. 5-cycle double covers

Theorem 3.1. 4 graph G has a 5-cycle double cover if and only if G has two sub-
graphs A and B such that
(i) E(G) = E(4) U E(B),
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(il) ANB = C is a cycle of G,
(i) each A and B admits a nowhere-zero 4-flow, and
(iv) C is an evenly spanning cycle of A

Proof. (i) The proof of the “if” part of the theorem. By Theorems 2.5, and the sub-
graph 4 has a 3-cycle double cover ¢, = {C, C,,C,} and B has a 4-cycle double cover
%, = {C, C5,C4,Cs}. Thus, {Cy,...,Cs} is a 5-cycle double cover of G.

(ii) The proof of the “only if” part of the theorem. Let {Cj,...,Cs} be a 5-cycle
double cover of a graph G. Let A4 be the subgraph of G induced by the edges contained
in Cy, Cy, and let B be the subgraph of G induced by the edges contained in C3, Cs,
Cs. Since the edge set of the intersection of 4 and B consists of edges of 4 contained in
only one cycle of the cycle cover {C},C,} of the subgraph 4, we have that ANB = C
is a cycle of G. Thus, 4 has a 3-cycle double covers {C,C,,C,} and B has a 4-
cycle double cover {C, C3,Cy4,Cs}. By Theorem 2.1, both 4 and B admit nowhere-zero
4-flows. By Theorem 2.6, C is an evenly spanning cycle of 4. [

With similar proofs as above (without applying Theorem 2.6), we have the following
relaxed theorems.

Theorem 3.2. A graph G has a 6-cycle double cover if and only if G has two sub-
graphs A and B such that
(1) E(G) = E(4) U E(B),
(ii) ANB=C is a cycle of G, and
(iil) each 4 and B admits a nowhere-zero 4-flow.

Theorem 3.3. A graph G has a T-cycle double cover if and only if G has two sub-
graphs A,B and two cycles C,D such that
(i) E(G) = E(4) UE(B),
(iiy CC A4 and DCB,
(iii) ANBCC and ANBCD, and
(iv) each A and B admits a nowhere-zero 4-flow.

The following conjecture is proposed as an approach for verifying Conjecture 1.5
(as well as the famous Cycle Double Cover Conjecture).

Conjecture 3.4. Let S be a spanning cycle of a 3-edge-connected graph G with the
least number of odd components. Let () be a smallest, bridgeless, parity subgraph of
G/E(S). Then the subgraph of G induced by all edges of S and all edges of Q admits
a nowhere-zero 4-flow,

Let 4 be the subgraph of G induced by E(G)\ E(Q) and B be the subgraph of G
induced by E(S) U E(Q). Here S is an evenly spanning cycle of 4. The number of
edges of E(G)\ E(Q) linking a component C of § and 4\ V(C) is even. It implies
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that C contains an even number of odd degree vertices of 4. Hence § is an evenly
spanning cycle of 4. By Theorem 3.1, Conjecture 1.5 follows.

For a graph, which is “almost” admitting a nowhere-zero 4-flow, Conjecture 3.4 is
true and therefore Conjecture 1.5 is true. (Note, the concept of “almost admitting a
nowhere-zero 4-flow” was introduced by Jaeger in [12]. A graph with this property is
called a ‘nearly’ Fy4 graph in [12].)

The following theorem was originally discovered by Huck and Kochol [8] indepen-
dently.

Theorem 3.5 (Huck and Kochol [8]). Let G be an edge-3-colorable cubic graph and
e be an edge of G such that G' = G\{e} is 2-edge-connected. Then G’ has a 5-cycle
double cover.

The proof of Theorem 3.5 in [8] can be adapted and modified for proving the
following lemma.

Lemma 3.6. Let S be a spanning cycle of a 3-edge-connected graph G. Let Q be a
smallest, bridge-less, parity subgraph of G/E(S). If S has at most two odd components,
then the subgraph of G induced by all edges of S and all edges of Q admits a
nowhere-zero 4-flow.

By Theorem 3.1 and Lemma 3.6, we obtain an immediate corollary which is a
generalization of Theorem 3.5 for graphs without the restriction of 3-regularity.

Theorem 3.7. Let G be a graph admitting a nowhere-zero 4-flow and e be an edge
of G such that G' = G\{e} is 2-edge-connected. Then G' has a 5-cycle double cover.

An important application of Theorem 3.5 (as well as Theorem 3.7) is the following
result.

Theorem 3.8 (Huck and Kochol [8]). Every 2-edge-connected graph containing a
Hamilton path has a 5-cycle double cover.

Theorem 3.8 was originally discovered by Tarsi ([20] and also see [7] for a
simplified proof) for a 6-cycle double cover and recently improved by Kochol and
Huck independently (which will be published jointly [8]).
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