Nowhere-zero 3-flows of highly connected graphs

Hong-Jian Lai and Cun-Quan Zhang*
Department of Mathematics, West Virginia University, Morgantown, WV 26506, USA
Received 16 April 1990;
Revised 3 December 1990

Abstract

Lai, H.-J. and C.-Q. Zhang, Nowhere-zero 3-flows of highly connected graphs, Discrete Mathematics 110 (1992) 179-183. Let G be a k-edge-connected graph of order n. If $k \geqslant 4\left\lceil\log _{2} n\right\rceil$ then G has a nowhere-zero 3-flow.

We use the notations of [2]. Let $G=(V, E)$ be a graph with vertex set V and edge set E. An even subgraph of G is a subgraph H of G such that the degree of each vertex is even in H. An orientation D of G is an assignment of a direction to each edge. A weight function f on $E(G)$ is an assignment of an integer $f(e)$ to each edge e. A k-flow of G is a pair (D, f), consisting of an orientation D and a weight function f, such that
(1) $-k<f(e)<k$, for each edge e;
(2) at every vertcx v the net outflow of f is zero, that is the sum of f-values of edges with initial end v equals the sum of f-values of the edges with terminal end v.
(Refer to [12] and [6] for properties of integer flows.) The support of a k-flow is the set of all edges with nonzero weights. A nowhere-zero k-flow is a k-flow such that $f(e) \neq 0$ for every edge e of G.

Tutte's Conjecture (The 3 -flow conjecture $[9,10,5]$). Every 2-edge-connected graph without 3-edge-cut has a nowhere-zero 3 -flow.

Jaeger's Conjecture (The weak 3 -flow conjecture [6]). There is an integer k such that every k-edge-connected graph has a nowhere-zero 3 -flow.

Correspondence to: Cun-Quan Zhang, Department of Mathematics, West Virginia University, Morgantown, WV 26506, USA.

* The research of this author was partially supported by National Science Foundation under the grant DMS-8906973.
0012-365X/92/\$05.00 © 1992 - Elsevier Science Publishers B.V. All rights reserved

Previous results. (A) (Jaeger [5]). A cubic graph has a nowhere-zero 3-flow if and only if it is bipartite.
(B) (Jaeger [5]). Every 4-edge-connected graph has a nowhere-zero 4-flow.
(C) (Grötzsch [4] or see [6, p. 79] and [10]). Every 2-edge-connected planar graph without 3-edge-cut has a nowhere-zero 3-flow.
(D) (Grünbaum [3] and Aksionov [1]). Every 2-edge-connected planar graph with at most three 3-cuts has a nowhere-zero 3-flow.
(E) (Steinberg and Younger [10]). Every 2-edge-connected graph with at most one 3-cut that can be embedded in the projective plane has a nowhere-zero 3-flow.

The following theorem is the main result of this paper.

Theorem. Let G be a k-edge-connected graph with todd vertices. If $k \geqslant 4\left\lceil\log _{2} t\right\rceil$, then G has a nowhere-zero 3-flow.

Corollary. Let G be a k-edge-connected graph of order n. If $k \geqslant 4\left\lceil\log _{2} n\right\rceil$, then G has a nowhere-zero 3-flow.

The following lemmas will be used in the proof of the main theorem.

Lemma 1 (Nash-Williams [8] and Tutte [11], or see [7] or [2, p. 31]). Every $2 k$-edge-connected graph contains k edge-disjoint spanning trees.

The set of odd-degree vertices of a graph G is denoted by $O(G)$. A subgraph H of G is called a parity subgraph of G if $O(H)=O(G)$. A proof of the following well-known lemma will be given for the sake of completeness.

Lemma 2. Every spanning tree of a connected graph G contains a parity subgraph of G.

Proof. Let T be a spanning tree of G. For every edge e in $E(G) \backslash E(T)$, let C_{e} be the unique cycle contained in $T \cup\{e\}$. The symmetric difference (binary sum) of C_{e} 's for all e in $E(G) \backslash E(T)$ is an even subgraph H of G and H contains all edges of $E(G) \backslash E(T)$. Thus $G \backslash E(H)$ is a parity subgraph of G contained in T.

Let H be a graph with a 3 -flow (D, f). The support of f is denoted by $H_{f \neq 0}$ or $\operatorname{Sup}(f)$ if no confusion occurs and the subgraph of H induced by all edges with value zero in f are denoted by $H_{f=0}$. The following lemma plays a central role in the proof of the main theorem.

Lemma 3. Let T_{1}, T_{2} and T_{3} be three edge-disjoint parity subgraphs of G and let H be the subgraph of G induced by the edge set $E\left(T_{1} \cup T_{2} \cup T_{3}\right)$. Then H has a 3-flow (D, f) such that $\left|O\left(H_{f-0}\right)\right| \leqslant \frac{1}{2}|O(G)|$.

Proof. Let R_{3} be a minimal parity subgraph of G contained in T_{3}. It is obvious that $T_{3} \backslash E\left(R_{3}\right)$ is an even subgraph of H and hence is the support of a 2 -flow. So it is sufficient to show that $H^{\prime}-E\left(T_{1} \cup T_{2} \cup R_{3}\right)=H \backslash\left[E\left(T_{3}\right) \backslash E\left(R_{3}\right)\right]$ has a 3-flow satisfying the lemma. Since it is minimal, the parity subgraph R_{3} is acyclic and therefore is a union of edge-disjoint paths P_{1}, \ldots, P_{t} such that each P_{μ} joins a pair of odd vertices $v_{2 \mu-1}$ and $v_{2 \mu}$ of G where $O(G)=\left\{v_{1}, \ldots, v_{2 t}\right\}$. Construct an even graph S_{i} for $i=1,2$ by adding edges $v_{2 \mu-1} v_{2 \mu}$ to T_{i} for each $\mu=1, \ldots, t$.

Assign an orientation to $E\left(T_{1}\right), E\left(T_{2}\right)$ and paths P_{1}, \ldots, P_{t}. And let the direction of ech edge in P_{μ} and the direction of the new edges $v_{2 \mu-1} v_{2 \mu}$ in each S_{i} be the same as that of the path P_{μ} for each $\mu=1, \ldots, t$. Let D denote the resulting orientation.

Since each S_{i} is even, let (D, f_{i}) be a nowhere-zero 2 -flow of S_{i}. Let S_{i}^{*} be the even subgraph of G obtained by replacing each edge $v_{2 \mu-1} v_{2 \mu}$ by the path P_{μ} for $\mu=1, \ldots, t$. The flow (D, f_{i}) defines in the obvious way a nowhere-zero 2 -flow of S_{i}^{*} for $i=1,2$ which we also denote by $\left(D, f_{i}\right)$. Then $\left(D, f_{1}+f_{2}\right)$ is a 3 -flow of H^{\prime}. It is obvious that $H_{f_{1}+f_{2}=0}^{\prime}$ is the union of some paths $P_{i_{1}}, \ldots, P_{i_{r}}$. If $r \leqslant t / 2$, then

$$
\left|O\left(\bigcup_{\mu=1}^{r} P_{i_{\mu}}\right)\right|=2 r \leqslant t=\frac{|O(G)|}{2} .
$$

Otherwise, considering the 3 -flow ($D, f_{1}-f_{2}$), we see that $H_{f_{1}-f_{2}=0}^{\prime}$ is the union of the paths in $\left\{P_{1}, \ldots, P_{t}\right\} \backslash\left\{P_{i_{1}}, \ldots, P_{i_{r}}\right\}$ and has $2 t-2 r\left(2 t-2 r<t=\frac{1}{2}|O(G)|\right)$ odd vertices.

Lemma 4. Let $T_{0}, \ldots, T_{2 s-1}$ be edge-disjoint subgraphs of a connected graph G where T_{0} is a parity subgraph of G and $T_{1}, \ldots, T_{2 s-1}$ are spanning trees of G. If $|O(G)| \leqslant 2^{s}$, then G has a nowhere zero 3-flow.

Proof. The following basic property of graphs will be used to verify the cases of $s=0$ and $s=1$,

The number of odd vertices in any graph is even.
When $s=0$ the graph G is an even graph by $(*)$, and hence the graph G admits a nowhere-zero 2-flow. When $s=1$, assume that $O(G)=\{x, y\}$. By ($*$), x and y are contained in the same component of T_{0} and T_{1} and therefore any edge-cut separating x and y must be of order at least two. By (*) again, any edge-cut separating x and y must be of odd order. Thus, by Menger's Theorem, there are three edge-disjoint (x, y)-paths P_{1}, P_{2} and P_{3} in G. Let $P_{\mu}=v_{1}^{\mu} \cdots v_{r_{\mu}}^{\mu}$ where $v_{1}^{\mu}=x$ and $v_{r_{\mu}}^{\mu}=y$ for $\mu=1,2,3$. Assign a flow (D_{1}, f_{1}) on the induced subgraph
$G\left(E\left(P_{1} \cup P_{2} \cup P_{3}\right)\right)$ such that

$$
v_{i}^{\mu} \rightarrow v_{i+1}^{\mu}
$$

for each edge of $G\left(E\left(P_{1} \cup P_{2} \cup P_{3}\right)\right)$ and

$$
f_{1}(e)= \begin{cases}1 & \text { if } e \in P_{1} \cup P_{2}, \\ -2 & \text { if } e \in P_{3} .\end{cases}
$$

So $\left(D_{1}, f_{1}\right)$ is a nowhere-zero 3-flow of $G\left(E\left(P_{1} \cup P_{2} \cup P_{3}\right)\right)$. Since $G \backslash E\left(P_{1} \cup P_{2} \cup\right.$ P_{3}) is even, it has a nowhere-zero 2-flow (D_{2}, f_{2}) and hence the graph G has a nowhere-zero 3 -flow ($D_{1}+D_{2}, f_{1}+f_{2}$).

Let $s \geqslant 2$. We proceed by induction on s. Let R_{i} be a parity subgraph contained in T_{i} for $i=0,1,2$. By Lemma 3, let f_{1} be a 3-flow of $H=G\left(E\left(R_{0} \cup R_{1} \cup R_{2}\right)\right)$ such that $\left|O\left(H_{f=0}\right)\right| \leqslant|O(H) / 2|$. Let $G^{\prime}=G \backslash E\left(H_{f \neq 0}\right)$. Since $G^{\prime}=[G \backslash E(H)] \cup$ $E\left(H_{f=0}\right)$ and $G \backslash E(H)$ is an even subgraph of $G, H_{f=0}$ is a parity subgraph of G^{\prime}. Note that $\left|O\left(G^{\prime}\right)\right| \leqslant|O(G) / 2| \leqslant 2^{s-1}$ and $H_{f=0}, T_{3}, \ldots, T_{2 s-1}$ are edge-disjoint subgraphs of G^{\prime}. By inductive hypothesis, G^{\prime} has a nowhere-zero 3 -flow f^{\prime}. Thus $f+f^{\prime}$ is a nowhere-zero 3-flow of G since $\operatorname{Sup}(f) \cap \operatorname{Sup}\left(f^{\prime}\right)=\emptyset$.

Proof of the Theorem. Let $2^{s-1}<t \leqslant 2^{s}$ (that is, $s=\left\lceil\log _{2} t\right\rceil$). By Lemma 1, the graph G contains at least $2 s$ edge-disjoint spanning trees. Then the main theorem is an immediate corollary of Lemma 4.

The main theorem in this paper established a relation between the edgeconnectivity and a number of odd vertices of a graph which guarantees the existence of a nowhere-zero 3-flow. the method applied in the proof of Lemma 4 could be used to prove the weak 3 -flow conjecture if the following conjecture could be verified.

Conjecture. There is a pair of 'large' integers a and b such that any graph G, with $|O(G)| \leqslant|V(G)| / a$ and containing b edge-disjoint spanning trees, must have a nowhere-zero 3 -flow.

Let $a \leqslant 2^{c}$. Let G be a $2 k$-edge-connected graph where $k \geqslant b+2 c$. By Lemma $1, G$ contains at least k edge-disjoint spanning trees T_{0}, \ldots, T_{k-1}. Repeating the inductive argument in the proof of Lemma 4 , we obtain a parity subgraph H such that

$$
E(H) \subseteq \bigcup_{i=0}^{2 c-1} E\left(T_{i}\right)
$$

and a 3-flow f with support in H and

$$
\left|O\left(H_{f=0}\right)\right| \leqslant \frac{|O(G)|}{2^{c}} .
$$

Consider the spanning subgraph $G^{\prime}=G \backslash E\left(H_{f \neq 0}\right)$ which has at least b edgedisjoint spanning trees and has at most $\left|V\left(G^{\prime}\right)\right| / 2^{c}$ odd vertices. If the above conjecture were verified, then G^{\prime} would have a nowhere-zero 3-flow f^{\prime} and therefore G would have a nowhere-zero 3 -flow $f^{\prime}+f$.

References

[1] V.A. Aksionov, On the extension of the 3-coloring of planar graphs (in Russian), Diskret. Analiz. 16 (1974) 3-19.
[2] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications (Macmillan, London and Flsevier, New York, 1976).
[3] B. Grünbaum, Grötzsch's theorem on 3-colorings, Michigan Math. J. 10 (1963) 303-310.
[4] H. Grötzsch, Zur Theorie der diskreten Gebiede. VII. Ein Dreifarbensatz für dreikreisfreie Netze auf der Kugel, Wiss. Z. Martin-Luther-Univ. Halle-Wittenberg. Math.-Natur. Reihe 8 (1958/9) 109-120.
[5] F. Jaeger, Flows and generalized coloring theorems in graphs, J. Combin. Theory' Ser. B 26 (1979) 205-216.
[6] F. Jaeger, Nowhere-zero flow problems, in: Selected topics in graph theory 3 (1988) 71-95.
[7] S. Kundu, Bounds on the number of disjoint spanning trees, J. Combin Theory Ser. B (1974) 199-203.
[8] C. St. J.A. Nash-Williams, Edge-disjoint spanning trees of finite graphs, J. London Math. Soc. 36 (1961) 445-450.
[9] R. Steinberg, Grötzsch's Theorem dualized, M. Math. Thesis, University of Waterloo, Canada, 1976.
[10] R. Steinberg and D.H. Younger, Grötzsch's Theorem for the projective plane, Ars Combin. 28 (1989) 15-31.
[11] W.T. Tutte, On the problem of decomposing a graph into n connected factors, J. London Math. Soc. 36 (1961) 221-230
[12] D.H. Younger, Integer flows, J. Graph Theory 7 (1983) 349-357.

