Compute derivatives of implicit functions

Facts: An equation F(x,y) = 0 involving variables x and y (may define y as a function y = y(x). To compute $y' = \frac{dy}{dx}$, one can apply the following procedure.

(Step 1) View y = y(x) and differentiate both sides of the equation F(x, y) = 0 with respect to x. This will yield a new equation involving x, y and y'.

(Step 2) Solve the resulting equation from (Step 1) for y'.

Example 1 Given $x^4 + x^2y^2 + y^4 = 48$, find $\frac{dy}{dx}$.

Solution: View y = y(x) and differentiate both sides of the equation $x^4 + x^2y^2 + y^4 = 48$ to get

$$4x^3 + 2xy^2 + 2x^2yy' + 4y^3y' = 0.$$

To solve this new equation for y', we first combine those terms involving y',

$$(2x^2y + 4y^3)y' = -4x^3 - 2xy^2,$$

and then solve for y':

$$y' = \frac{-4x^3 - 2xy^2}{2x^2y + 4y^3}.$$

Example 2 Find an equation of line tangent to the curve $xy^2 + x^2y = 2$ at the point (1, -2).

Solution: The slope m of this line, is $\frac{dy}{dx}$ at (1, -2), and so we need to find y' first. Apply implicit differentiation. We differentiate both sides of the equation $xy^2 + x^2y = 2$ with respect to x (view y = y(x) in the process) to get

$$y^2 + 2xyy' + 2xy + x^2y' = 0.$$

Then we solve for y'. First we have $(2xy + x^2)y' = -y^2 - 2xy$, and then

$$y' = \frac{-y^2 - 2xy}{2xy + x^2}.$$

At (1, -2), we substitute x = 1 and y = -2 in y' to get the slope $m = \frac{-(-2)^2 - 2(1)(-2)}{2(1)(-2) + 1^2} = 0$, and so the tangent line is y = -2.

Example 3 Find all the points on the graph of $x^2 + y^2 = 4x + 4y$ at which the tangent line is horizontal.

Solution: First find y'. We differentiate both sides of the equation $x^2 + y^2 = 4x + 4y$ with respect to x (view y = y(x) in the process) to get

$$2x + 2yy' = 4 + 4y'$$
.

Then we solve for y'. First we have (2y-4)y'=4-2x, and then

$$y' = \frac{2-x}{y-2}.$$

Note that when x=2, the equation $x^2+y^2=4x+4y$ becomes $4+y^2=8+4y$, or $y^2-4y=4$. Solve this equation we get $y=2+\sqrt{8}$ and $y=2-\sqrt{8}$. Therefore, at $(2,2-\sqrt{8})$ and $(2,2+\sqrt{8})$, the curve has horizontal tangent lines.