EXAM 2 - Math 251

1. (10%) Let $\rho=2 \sin \phi$ denote an equation in spherical coordinates.
(1A) Convert it to cylindrical coordinates.
(1B) Convert it to rectangular coordinates.
Solution Note that $r=\rho \sin \phi$. Then multiply ρ to both sides to get $\rho^{2}=2 \rho \sin \phi$.
(1A) For cylindrical coordinates, note that $\rho^{2}=r^{2}+z^{2}$. Thus the answer is

$$
r^{2}+z^{2}=2 r .
$$

(1B) Apply $r^{2}=x^{2}+y^{2}$ to get the answer for rectangular coordinates

$$
x^{2}+y^{2}+z^{2}=2 \sqrt{x^{2}+y^{2}} \text { or }\left(x^{2}+y^{2}+z^{2}\right)^{2}=4 x^{2}+y^{2} .
$$

2. (10%) Evaluate the following limits
(2A) $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}+2+y^{2}}{x^{2}-2+y^{2}}$.
Solution $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}+2+y^{2}}{x^{2}-2+y^{2}}=\frac{0^{2}+2+0^{2}}{0^{2}-2+0^{2}}=-1$.
(2B) $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}+y^{2}}{x^{2}-y^{2}}$.
Solution Let the limit be taken along the x-axis that is, set $y=0$, we have $\lim _{(x, 0) \rightarrow(0,0)} \frac{x^{2}+0^{2}}{x^{2}-0^{2}}=$ 1 ; and let the limit be taken along the y-axis that is, set $x=0$, we have $\lim _{(0, y) \rightarrow(0,0)} \frac{0^{2}+y^{2}}{0^{2}-y^{2}}=$ -1 . Therefore, the limit does not exist.
3. (10%) Find an equation of the tangent plane at the point $(1,-1,-1)$ to the surface $z=x y$. Solution Compute $z_{x}=y$ and $z_{y}=x$. Therefore, a normal vector for the tangent plane at $(1,-1,-1)$ is $\mathbf{n}=(-1,1,-1)$, and so the equation is

$$
-(x-1)+(y+1)-(z+1)=0
$$

4. (15 \%)
(4A) Compute all the first order partial derivatives of $f(x, y, z)=\left(x^{2}+y^{3}+z^{4}\right) e^{x y z}$.
Solution Use product rule for each of the partial derivatives:

$$
\begin{aligned}
f_{x} & =2 x e^{x y z}+\left(x^{2}+y^{3}+z^{4}\right)(y z) e^{x y z} \\
f_{y} & =3 y^{2} e^{x y z}+\left(x^{2}+y^{3}+z^{4}\right)(x z) e^{x y z} \\
f_{x} & =4 z^{3} e^{x y z}+\left(x^{2}+y^{3}+z^{4}\right)(x y) e^{x y z}
\end{aligned}
$$

(4B) Verify that $z_{x y}=z_{y x}$, where $z=x^{2} e^{y^{2}}$.
Solution First compute $z_{x}=2 x e^{y^{2}}$ and $z_{y}=2 y x^{2} e^{y^{2}}$. Then compute $z_{x y}=4 x y e^{y^{2}}$ and $z_{y x}=4 y x e^{y^{2}}$, and so $z_{x y}=z_{y x}$.
5. (10 \% for correct procedure and 5% for accuracy of solution) Find the highest and the lowest point of the surface given by

$$
z=f(x, y)=x^{2}+2 x y+3 y^{2}
$$

over a square region with vertices $(-1,-1),(-1,1),(1,-1)$ and $(1,1)$.
Solution We first compute $z_{x}=2 x+2 y$ and $z_{y}=2 x+6 y$. Setting $z_{x}=0$ and $z_{y}=0$ to get the only critical point $(0,0)$. Note that $f(0,0)=0$.

Consider each of the boundaries. Let L_{1} denote the boundary $\{(x, 1):-1 \leq x \leq 1\}$. Then $f(x, 1)=x^{2}+2 x+3=(x+1)^{2}+2$. Therefor, apply Calculus I or High school algebra to get maximum $f(1,1)=6$ and minimum $f(-1,1)=2$.

Let L_{2} denote the boundary $\{(x,-1):-1 \leq x \leq 1\}$. Then $f(x,-1)=x^{2}-2 x+3=(x-$ $1)^{2}+2$. Therefor, apply Calculus I or High school algebra to get maximum $f(-1,-1)=6$ and minimum $f(1,-1)=2$.

Let L_{3} denote the boundary $\{(1, y):-1 \leq y \leq 1\}$. Then $f(1, y)=1+2 y+3 y^{2}$. Therefor, apply Calculus I to get maximum $f(1,1)=6$ and minimum $f(-1,1)=2$.

Let L_{4} denote the boundary $\{(-1, y):-1 \leq y \leq 1\}$. Then $f(-1, y)=1-2 y+3 y^{2}$. Therefor, apply Calculus I to get maximum $f(-1,-1)=6$ and minimum $f(-1,1)=2$.

Summing up, the highest points on the surface are $(1,1,6)$ and $-1,-1,6)$; and the lowest points is $(0,0,0)$.
6. (10%) Find every point on the surface $z=3 x^{2}+12 x+4 y^{3}-12 y+1$ at which the tangent plane is horizontal.
Solution Compute $z_{x}=6 x+12$ and $z_{y}=12 y^{2}-12$. Therefore, the critical points are $(-2,1)$ and $(-2,-1)$. Compute $f(-2,1)=-19$ and $f(-2,-1)=-3$. Hence at $(-1,1,-19)$ and at $(-1,-1,-3)$, the surface has horizontal tangent planes.
7. (10%) Find the dimension of the open-topped (rectangular) box with volume $500 \mathrm{in}^{3}$ that has minimum total surface area.
Solution Let x, y, z denote the dimension of the box. Then $x y z=500$ or $z=\frac{500}{x y}$. The
total surface area is formulated as

$$
f(x, y)=x y+2 x z+2 y z=x y+2(x+y) \frac{500}{x y}=x y+\frac{1000}{x}+\frac{1000}{y} .
$$

Compute the partial derivatives to get

$$
f_{x}=y-\frac{1000}{x^{2}}, f_{y}=x-\frac{1000}{y}
$$

Solve the system of $f_{x}=0$ and $f_{y}=0$ to get $x=y=10$, and so $z=\frac{500}{x y}=5$.
8. (20 \%) Let $\mathbf{r}(t)=\left(e^{t} \cos t, e^{t} \sin t, e^{t}\right)$ be a space curve (viewed as a position vector of a moving particle). Compute each of the following.
(8A) The velocity, the speed and the unit tangent vector.
(8B) The acceleration.
(8C) The curvature at the point when $t=0$.
(8D) The unit normal vector at the point when $t=0$.
Solution (8A) The velocity $\mathbf{v}=\left(e^{t}(\cos t-\sin t), e^{t}(\sin t+\cos t), e^{t}\right)$ and $\left(\right.$ use $\sin ^{2} t+\cos ^{2} t=$ 1)

$$
v=\sqrt{\left(e^{t}(\cos t-\sin t)\right)^{2}+\left(e^{t}(\sin t+\cos t)\right)^{2}+e^{2 t}}=e^{t} \sqrt{3}
$$

The unit tangent vector is

$$
\mathbf{T}(t)=\frac{1}{e^{t} \sqrt{3}}\left(e^{t}(\cos t-\sin t), e^{t}(\sin t+\cos t), e^{t}\right)=\frac{1}{\sqrt{3}}(\cos t-\sin t, \sin t+\cos t, 1)
$$

(8B) Differentiate \mathbf{v} to get \mathbf{a}.
$\mathbf{a}(t)=\left(e^{t}(\cos t-\sin t)+e^{t}(-\sin t-\cos t), e^{t}(\sin t+\cos t)+e^{t}(\cos t-\sin t), e^{t}\right)=e^{t}(-2 \sin t, 2 \cos t, 1)$.
$(8 \mathrm{C})$ At $t=0, \mathbf{v}=(1,1,1), v=\sqrt{3}$, and $\mathbf{a}=(0,2,1)$. Compute $\mathbf{v} \times \mathbf{a}=(1,1,1) \times(0,2,1)=$ $(-1,-1,2)$, and so $|\mathbf{v} \times \mathbf{a}|=\sqrt{1+1+4}=\sqrt{6}$. Then use it to compute the curvature

$$
\kappa(0)=\frac{|\mathbf{v} \times \mathbf{a}|}{|\mathbf{v}|^{3}}=\frac{\sqrt{6}}{(\sqrt{3})^{3}}=\frac{\sqrt{2}}{3}
$$

(8D) At $t=0, \mathbf{T}, a_{N}$, and a_{T} are, respectively,

$$
\mathbf{T}=\frac{1}{\sqrt{3}}(1,1,1), a_{N}=\kappa \mathbf{v}^{2}=\frac{\sqrt{2}}{3}(3)=\sqrt{2}, a_{T}=\frac{\mathbf{v} \cdot \mathbf{a}}{|\mathbf{v}|}=\frac{2+1}{\sqrt{3}}=\sqrt{3}
$$

Thus

$$
\mathbf{N}=\frac{1}{a_{N}}\left(\mathbf{a}-a_{T} \mathbf{T}\right)=\frac{1}{\sqrt{2}}\left((0,2,1)-\sqrt{3} \frac{1}{\sqrt{3}}(1,1,1)\right)=\frac{1}{\sqrt{2}}(-1,1,0)
$$

