Math 156 Fall 2015 Quiz 9

Name:

Instruction. Need to show your work to get your answer. Solutions without supporting work, even with correct answer, will have at most half the credit.

1: Find the Maclauring series of $f(x)=\sin (-3 x)$.

2: Find the Maclauring series of $f(x)=\ln (2-x)$.

3: Find the sum of $1-e+\frac{e^{2}}{2!}-\frac{e^{3}}{3!}+\ldots+(-1)^{n} \frac{e^{n}}{n!}+\ldots$.

4: Find the first 4 terms of the Maclauring series of $f(x)=\frac{1}{\sqrt[3]{1+x}}$.

Solutions

1: Find the Maclauring series of $f(x)=\sin (-3 x)$.
Solution. Since the Maclauring series of $\sin (u)$ is

$$
\sin (x)=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!} x^{2 n+1}, \quad(-\infty, \infty)
$$

Replace x in the formula above by $(-3 x)$ to get the answer:

$$
\sin (-3 x)=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!}(-3 x)^{2 n+1}=\sum_{n=0}^{\infty} \frac{(-1)^{n+1} 3^{2 n+1}}{(2 n+1)!} x^{2 n+1}
$$

2: Find the Maclaurin series of $f(x)=\ln (2-x)$.
Solution 1. (Use Maclaurin series of $\ln (1-x)$ and substitution.)
If we have in mind the formula (lectured in class)

$$
\ln (1-x)=-\sum_{n=0}^{\infty} \frac{x^{n+1}}{n+1}, \quad[-1,1)
$$

Write $2-x=2\left(1-\frac{x}{2}\right)$. Thus $\ln (2-x)=\ln \left(2\left(1-\frac{x}{2}\right)\right)=\ln (2)+\ln \left(1-\frac{x}{2}\right)$. Replace x in the formula above by $\frac{x}{2}$ to get the answer:

$$
\ln (2-x)=\ln (2)+\ln \left(1-\frac{x}{2}\right)=\ln (2)+-\sum_{n=0}^{\infty} \frac{\left(\frac{x}{2}\right)^{n+1}}{n+1}=\ln (2)+-\sum_{n=0}^{\infty} \frac{x^{n+1}}{2^{n+1}(n+1)}, \quad[2,-2)
$$

Solution 2. (Use differentiation and integration)
Step 1. Compute $f^{\prime}(x)=\frac{-1}{2-x}=\frac{-1}{2} \cdot \frac{1}{1-\frac{x}{2}}$.
Step 2. Find the power series of $f^{\prime}(x)$.

$$
f^{\prime}(x)=\frac{-1}{2-x}=\frac{-1}{2} \cdot \frac{1}{1-\frac{x}{2}}=\frac{-1}{2} \cdot \sum_{n=0}^{\infty}\left(\frac{x}{2}\right)^{n}=\sum_{n=0}^{\infty} \frac{-1}{2^{n+1}} x^{n}
$$

Step 3. Find the power series of $f(x)$, (inside the interval of convergence)

$$
f(x)=\int f^{\prime}(x) d x=\sum_{n=0}^{\infty} \frac{-1}{2^{n+1}} \int x^{n} d x=\sum_{n=0}^{\infty} \frac{-1}{2^{n+1}(n+1)} x^{n+1}+C .
$$

As $f(0)=\ln (2)=C$,

$$
f(x)=\ln (2)+\sum_{n=0}^{\infty} \frac{-1}{2^{n+1}(n+1)} x^{n+1}
$$

Step 4. Find the radius of convergence. (Use ratio test) Here $\left|u_{n}(x)\right|=\frac{1}{2^{n+1}(n+1)}\left|x^{n+1}\right|$ and so we need

$$
\lim _{n \rightarrow \infty} \frac{\left|u_{n+1}(x)\right|}{\left|u_{n}(x)\right|}=\lim _{n \rightarrow \infty} \frac{1}{2^{(n+1)+1}((n+1)+1)} \left\lvert\, x^{(n+1)+1 \mid} \cdot \frac{2^{n+1}(n+1)}{\left|x^{n+1}\right|}=\lim _{n \rightarrow \infty} \frac{|x|}{2} \cdot \frac{n+1}{n+2}=\frac{|x|}{2}<1\right.
$$

Thus $|x|<2$. It follows that $|x|<2$, and so the radius of convergence is $R=2$.
3: Find the sum of $1-e+\frac{e^{2}}{2!}-\frac{e^{3}}{3!}+\ldots+(-1)^{n} \frac{e^{n}}{n!}+\ldots$
Solution. The series we want the sum is $\sum_{n=0}^{\infty}(-1)^{n} \frac{e^{n}}{n!}$. This reminds us of the Maclauring series of e^{x} :

$$
e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!} \quad(-\infty, \infty)
$$

Compare the two, we find the answer:

$$
\sum_{n=0}^{\infty}(-1)^{n} \frac{e^{n}}{n!}=\sum_{n=0}^{\infty} \frac{(-e)^{n}}{n!}=e^{-e}
$$

4: Find the first 4 terms of the Maclauring series of $f(x)=\frac{1}{\sqrt[3]{1+x}}$.
Solution 1. (Use Maclaurin series of $(1+x)^{-1 / 3}$.) Write down the Maclaurin series formula of $(1+x)^{k}$ (lectured in class)

$$
(1+x)^{k}=1+\sum_{n=1}^{\infty} \frac{k(k-1)(k-2) \ldots(k-n+1)}{n!} x^{n}, \quad \text { radius of convergence }=1
$$

Now $k=-\frac{1}{3}$. We can write down the first 4 terms as follows

$$
\begin{array}{ll}
n=0 & a_{0}=1 \\
n=1 & a_{1}=-\frac{1}{3} \\
n=2 & \frac{-\frac{1}{3}\left(-\frac{1}{3}-1\right)}{2!}=\frac{-\frac{1}{3}\left(-\frac{4}{3}\right)}{2!}=\frac{4}{2 \cdot 3^{2}}=\frac{2}{9} \\
n=3 & \frac{-\frac{1}{3}\left(-\frac{1}{3}-1\right)\left(-\frac{1}{3}-2\right)}{3!}=\frac{-\frac{1}{3}\left(-\frac{4}{3}\right)\left(-\frac{7}{3}\right)}{3!}=\frac{4 \cdot 7}{3!\cdot 3^{3}}=-\frac{14}{81}
\end{array}
$$

Answer:

$$
\frac{1}{\sqrt[3]{1+x}}=1-\frac{1}{3} x+\frac{4}{9} x^{2}-\frac{14}{81} x^{3}+\ldots
$$

Solution 2. (Use the definition routine)
Step 1. Compute the derivatives. Let $f(x)=(1+x)^{-1 / 3}$.

$$
\begin{aligned}
f^{\prime}(x) & =-\frac{1}{3}(1+x)^{\frac{-1}{3}-1}=-\frac{1}{3}(1+x)^{\frac{-4}{3}} \\
f^{\prime \prime}(x) & =\frac{-1}{3} \cdot \frac{-4}{3}(1+x)^{\frac{-4}{3}-1}=\frac{4}{9}(1+x)^{\frac{-7}{3}} \\
f^{\prime \prime \prime}(x) & =\frac{4}{9} \cdot \frac{-7}{3}(1+x)^{\frac{-7}{3}-1}=\frac{-28}{27}(1+x)^{\frac{-10}{3}}
\end{aligned}
$$

Step 2. Use $a_{n}=\frac{f^{(n)}(0)}{n!}$ to find the coefficients.

$$
\begin{aligned}
& a_{0}=\frac{f(0)}{0!}=1 \\
& a_{1}=\frac{f^{\prime}(0)}{1!}=-\frac{1}{3} . \\
& a_{2}=\frac{f^{\prime \prime}(0)}{2!}=\frac{4}{9} \cdot \frac{1}{2}=\frac{2}{9} . \\
& a_{3}=\frac{f^{\prime \prime \prime}(0)}{3!}=\frac{-28}{27} \cdot \frac{1}{6}=\frac{-14}{81} .
\end{aligned}
$$

Step 3. Answer:

$$
\frac{1}{\sqrt[3]{1+x}}=1-\frac{1}{3} x+\frac{4}{9} x^{2}-\frac{14}{81} x^{3}+\ldots
$$

