
Math 156 Quiz 7 (Extended Quiz)

Name:

Instruction. (This is counted as two quizzes. For problems of testing series for convergency, we
must indicate (A) which test is applied, and (B) how the test is applied to claim your conclusion.
Failing to do so would result in point deductions.

1: Determine if the series
∞∑
n=1

3nn2

n!
is absolutely convergent, conditionally convergent or divergent.

Solution (i) Which test will be applied? We use Ratio Test: For a series
∑

an, let

L = limn→∞
|an+1|
|an| .

(a) If L < 1, then
∑

an converges absolutely, (therefore, it is convergent).
(b) If L > 1, then

∑
an diverges.

(c) If L = 1, then the Root test is inconclusive.

(ii) How the test is applied? Let an = 3nn2

n! . Compute

L = lim
n→∞

|an+1|
|an|

= lim
n→∞

3n+1(n + 1)2

(n + 1)!

n!

3nn2
= lim

n→∞
3(n + 1)2

n2(n + 1)
= 0.

(iii) Conclusion. By the Ratio Test, and as L < 1,
∞∑
n=1

3nn2

n!
is absolutely convergent, and so it

is convergent. (Therefore, there is no need to test for conditionally convergency.)

2: Determine if the series
∞∑
n=1

(−2)n−13n+1

nn
is absolutely convergent, conditionally convergent or

divergent.

Solution (i) Which test will be applied? We use Root Test: For a series
∑

an, let L =
limn→∞

n
√
|an|.

(a) If L < 1, then
∑

an converges absolutely, (therefore, it is convergent).
(b) If L > 1, then

∑
an diverges.

(c) If L = 1, then the Root test is inconclusive.

(ii) How the test is applied? Let an = (−2)n−13n+1

nn . Compute

L = lim
n→∞

n

√
|an| = lim

n→∞
n

√
2n−13n+1

nn
= lim

n→∞
21−

1
n 31+

1
n

n
= 0.

(iii) Conclusion. By the Root Test, and as L < 1,
∞∑
n=1

3nn2

n!
is absolutely convergent, and so it is

convergent. (Therefore, there is no need to test for conditionally convergency.)

3: Find the radius of convergence and interval of convergence of the series
∞∑
n=1

(−2)n

n
xn.



Solution (i) Find the radius of convergence. Here a = 0, and cn = (−2)n
n . Compute

L = lim
n→∞

|cn+1|
|cn|

= lim
n→∞

2n+1

n + 1
· n

2n
= lim

n→∞
=

2n

n + 1
= 2.

Therefore, the radius of convergence is RC = 1
L = 1

2 .

(ii) Find the interval of convergence. The interval of convergence contains (0− 1
2 , 0 + 1

2). We
will examine the convergency at the end points.

At x = −1
2 , the power series is

∞∑
n=1

(−2)n

n

(
−1

2

)n

=
∞∑
n=1

1

n
. This is a p-series with p = 1, and so it

is divergent.

At x = 1
2 , the power series is

∞∑
n=1

(−2)n

n

(
1

2

)n

=
∞∑
n=1

(−1)n

n
. As shown above, this is not absolutely

convergent. We note that it is an alternating series and so we use Alternating Series Test: If
the alternating series

∑
(−1)nbn satisfies

(i) bn+1 ≥ bn ≥ 0 for all n, and
(ii) limn→∞ bn = 0, then

∑
(−1)nbn converges.

Compute n+1
<

1
n and limn→∞

1
n = 0. By Alternating Series Test,

∞∑
n=1

(−1)n

n
converges. Therefore,

the interval of convergence is (−12 , 12 ].

4: Find the radius of convergence and interval of convergence of the series
∞∑
n=1

(x− 2)n

n2
.

Solution (i) Find the radius of convergence. Here a = 2, and cn = (1
n2 . Compute

L = lim
n→∞

|cn+1|
|cn|

= lim
n→∞

1

(n + 1)2
· n

2

1
= lim

n→∞
=

n2

(n + 1)2
= 1.

Therefore, the radius of convergence is RC = 1
L = 1.

(ii) Find the interval of convergence. The interval of convergence contains (2−1, 2+1) = (1, 3).
We will examine the convergency at the end points.

At x = 3, the power series is
∞∑
n=1

(3− 2)n

n2
==

∞∑
n=1

1

n2
. This is a p-series with p = 2, and so it is

convergent.

At x = 1, the power series is
∞∑
n=1

(1− 2)n

n2
=

∞∑
n=1

(−1)n

n
. As shown above, this is absolutely

convergent. and so it converges. Therefore, the interval of convergence is [1, 3].



Take Home Part
Instruction: For full credit, any time when you are using a convergence/divergence test, write
down the correct statement of the test, do the appropriate computation and explain how the test is
applied to obtain your conclusion. Not following the instruction will have at most half the credit.

5: Determine if
∞∑
n=1

(−1)n
(

2n + 1

3n− 4

)n

is absolutely convergent, conditionally convergent or diver-

gent.

Solution (i) Which test will be applied? We use Root Test: For a series
∑

an, let
L = limn→∞

n
√
|an|.

(a) If L < 1, then
∑

an converges absolutely, (therefore, it is convergent).
(b) If L > 1, then

∑
an diverges.

(c) If L = 1, then the Root test is inconclusive.

(ii) How the test is applied? Let an = (−1)n
(
2n+1
3n−4

)n
. Compute

L = lim
n→∞

n

√
|an| = lim

n→∞
n

√
(−1)n

(
2n + 1

3n− 4

)n

= lim
n→∞

2n + 1

3n− 4
=

2

3
.

(iii) Conclusion. By the Root Test, and as L < 1,
∞∑
n=1

3nn2

n!
is absolutely convergent, and so it is

convergent. (Therefore, there is no need to test for conditionally convergency.)

6: If cn ≥ 0 and
∑

cn6n is convergent, is
∑

cn(−4)n absolutely convergent? conditionally conver-
gent? or divergent?

Solution (Thinking before doing: two series are given, one is convergent and the other is to be
tested. We can use comparison test to test for convergence. ) Let an = |cn(−4)n| = cn4n.

(i) Which test will be applied? We use Comparison Test: Suppose that
∑

an and
∑

bn are
series with positive terms.
(a) If

∑
bn is convergent and an ≤ bn for all n, then

∑
an is convergent.

(b) If
∑

bn is divergent and an ≥ bn for all n, then
∑

an is divergent.

(ii) How the test is applied? Let bn = cn6n. Then as, 4 < 6, for each n ≥ 1,

an = cn4n ≤ cn6n = bn.

It is known that
∑

cn6n is convergent.
(iii) Conclusion. By the comparison test,

∑
cn(−4)n is absolutely convergent, and so it is

convergent.

7: Determine if
∞∑
n=1

(−1)n
1 · 3 · 5 · · · (2n− 1)

5nn!
is absolutely convergent, conditionally convergent or

divergent.

Solution (i) Which test will be applied? We use Ratio Test: For a series
∑

an, let

L = limn→∞
|an+1|
|an| .



(a) If L < 1, then
∑

an converges absolutely, (therefore, it is convergent).
(b) If L > 1, then

∑
an diverges.

(c) If L = 1, then the Root test is inconclusive.

(ii) How the test is applied? Let an = 1·3·5·····(2n−1)
5nn! . Compute

L = lim
n→∞

|an+1|
|an|

= lim
n→∞

1 · 3 · 5 · · · (2n− 1) · (2(n + 1)− 1)

5n+1(n + 1)!
· 5nn!

1 · 3 · 5 · · · (2n− 1)

= lim
n→∞

2n + 1

5(n + 1)
=

2

5
.

(iii) Conclusion. By the Ratio Test, and as L < 1,
∞∑
n=1

3nn2

n!
is absolutely convergent, and so it

is convergent. (Therefore, there is no need to test for conditionally convergency.)

8: Determine if
∞∑
n=1

(−2)n

n2n
is absolutely convergent, conditionally convergent or divergent.

Solution (i) Which test will be applied? This is not a positive termed series. We shall first
test for absolute convergency. If it is not absolute convergent, then we test for conditional
convergency.

(ii) Is it absolutely convergent? Let an = |(−2)n

n2n
| = 1

n
. As a p-series with p = 1 is divergent,

∞∑
n=1

(−2)n

n2n
is NOT absolutely convergent.

(iii) Is it conditionally convergent? This is an alternating series, we use Alternating Series
Test: If the alternating series

∑
(−1)nbn satisfies

(i) bn+1 ≥ bn ≥ 0 for all n, and
(ii) limn→∞ bn = 0, then

∑
(−1)nbn converges.

How the test is applied? We compute

lim
n→∞

an = lim
n→∞

1

n
= 0,

and verify

an =
1

n
>

1

n + 1
= an+1.

(iv) Conclusion. By the Alternating Series Test,
∞∑
n=1

(−2)n

n2n
is convergent. Since it is not

absolutely convergent,
∞∑
n=1

(−2)n

n2n
is conditionally convergent.

9: Suppose that an ≥ 0. If
∞∑
n=1

an(5n) converges, then
∞∑
n=1

an(−3)n

(circle only one) (i) is always convergent (ii) may be divergent.



10: To test the series
∞∑
n=1

1

n2
for convergency/divergency, we can use (circle all appropriate ones)

Answer: (i) Ratio Test, (ii) Root Test, (iii) Neither Ratio Test nor Root Test.

Solution (i) Can we use Ratio Test? We compute

L = lim
n→∞

|an+1|
|an|

= lim
n→∞

1

(n + 1)2
· · · n

2

1
= 1.

As L = 1, using Ratio Test is inconclusive.

(ii) Can we use Root Test? We compute

L = lim
n→∞

n

√
|an| = lim

n→∞
n

√
1

n2
= lim

n→∞
1

n
2
n

= lim
n→∞

n−
2
n .

We try to compute limn→∞ x−
2
x in Calculus I. (See Section 3.7 of your text book). Let y = x

−2
x .

Then

ln(y) =
−2

x
ln

(
1

x

)
=
−2

x
(ln(1)− ln(x)) =

2 ln(x)

x
.

As x→∞ means ln(x)→∞, by L’Hospital’s Rule, we have

lim
x→∞

ln(y) = lim
x→∞

2 ln(x)

x
= lim

x→∞
2

x
= 0.

Hence limx→∞ x
−2
x = elimx→∞ ln(y) = e0 = 1, and so

L = lim
n→∞

n

√
|an| = lim

n→∞
1

n2/n
= 1.

As L = 1, using Ratio Test is inconclusive.

(iii) Conclusion: Neither Ratio Test nor Root Test.



Extra Credit Problem (the extra credit will be added to your score of Text 3. Example: If
your Test 3 score is 100, and if you earn 3 points from this problem, then your Test 3 score will be
103/100).

Motivation of this exercise: We run into the problem of testing convergence for
∞∑
n=2

1

lnn
. We

tried integral test but we, including the professor, do not know how to compute
∫ dx

ln(x) . Therefore,

comparison test was suggested in class. How can we compare 1
lnn with a p-series? This leads to

this exercise.

Hint: We only need to use our knowledge of Calculus I. Remember, to see if a differentiable
function f(x) is increasing, we can compute to see if f ′(x) is positive.

Extra Credit Problem. (4 points total, 1 point for each question). Let f(x) = x − ln(x). Do
each of the following.
(i) Find the domain of f(x) and compute f(1).
(ii) Compute f ′(x) and explain why f ′(x) > 0 for all x > 1.
(iii) Explain why you can use (ii) to conclude that f(x) > 0 for all x ≥ 1. (Hint: If f(x) is increasing
on [1,∞), then for any x > 1, we have f(x) ≥ f(1). )
(iv) Explain how you can use the above the show that for n ≥ 2, 1

n ≤
1

lnn , for all n ≥ 2.

Solution (i) Since the domain of ln(x) is (0,∞), and the domain of x is (−∞,∞), the domain of
f(x) is the intersection of the two: (0,∞).

(ii) Compute to get f ′(x) = 1− 1

x
. When x > 1,

1

x
< 1, and so f ′(x) > 0 when x > 1.

(iii) From Calculus I, f(x) is an increasing function in[1,∞), and so for any x > 1, f(x) ≥ f(1) =
1 > 0.
(iv) From (iii), we know that if x > 1, then f(x) = x− ln(x) > 0, or x > ln(x). Thus for n ≥ 2, we

have n > ln(n). Hence
1

n
>

1

lnn
.


