Math 156 Fall 2013 Quiz 12

Name:

Name: Show your work (full credit will only be given for correct answer with sufficient supporting work), and do problems on both sides.

1: Find an equation of the tangent line to the curve $x=2 t^{2}+1, y=\frac{t^{3}}{3}-t$ at the point $t=3$.

2: Find $\frac{d^{2} y}{d x^{2}}$ for the curve $x=t^{3}-12 t, y=t^{2}-1$. For which values of t is the curve concave upward?

3: Find the points on the curve $x=2 t^{3}+3 t^{2}-12 t, y=2 t^{3}+3 t^{2}+1$ where the tangent is horizontal or vertical.

4: Use the parametric equations of an ellipse $x=3 \cos \theta, y=4 \sin \theta, 0 \leq \theta \leq 2 \pi$, to find the area that it encloses. (Hint: Find the area of the first quadrant and then use symmetry.)

Solutions

1: Find an equation of the tangent line to the curve $x=2 t^{2}+1, y=\frac{t^{3}}{3}-t$ at the point $t=3$.
Solution. The tangent line has equation

$$
y-\underline{y_{0}}=\underline{m}\left(x-\underline{x_{0}}\right),
$$

where $\left(x_{0}, y_{0}\right)$ is the point on the curve when $t=3$, and m is the slope of tangent at that point.
Computing $\left(x_{0}, y_{0}\right)$. When $t=3, x_{0}=2\left(3^{2}\right)+1=19$ and $y_{0}=\frac{3^{3}}{3}-3=6$.
Computing the slope m. This is $\frac{d y}{d x}$ at that point. We compute

$$
\frac{d y}{d t}=t^{2}-1, \frac{d x}{d t}=4 t . \text { and so } \frac{d y}{d x}=\frac{t^{2}-1}{4 t} .
$$

When $t=3, m=\frac{3^{2}-1}{4 \cdot 3}=\frac{2}{3}$. Here is the answer:

$$
y-6=\frac{2}{3}(x-19) .
$$

2: Find $\frac{d^{2} y}{d x^{2}}$ for the curve $x=t^{3}-12 t, y=t^{2}-1$. For which values of t is the curve concave upward?
Solution. To find $\frac{d^{2} y}{d x^{2}}$, we need to find $\frac{d y}{d x}$ first.
Computing $\frac{d y}{d x}$. We compute

$$
y^{\prime}=\frac{d y}{d t}=2 t, \frac{d x}{d t}=t^{2}-12 . \text { and so } \frac{d y}{d x}=\frac{2 t}{3 t^{2}-12} .
$$

Computing $\frac{d^{2} y}{d x^{2}}$. We compute (use quotient rule)

$$
\frac{d y^{\prime}}{d t}=\frac{\left(3 t^{2}-12\right) \cdot 2-2 t(6 t)}{\left(3 t^{2}-12\right)^{2}}=\frac{-6 t^{2}-24}{\left(3 t^{2}-12\right)^{2}}, \frac{d x}{d t}=t^{2}-12,
$$

Thus

$$
y^{\prime \prime}=\frac{d^{2} y}{d x^{2}}=\frac{-6 t^{2}-24}{\left(3 t^{2}-12\right)^{3}}=\frac{-6\left(t^{2}+4\right)}{\left(3 t^{2}-12\right)^{2} \cdot 3(t+2)(t-2)} .
$$

Concavity discussion. From Calculus I, we need to find t so that $y^{\prime \prime}>0$. Since $6\left(t^{2}+4\right)$ and the square $\left(3 t^{2}-12\right)^{2}$ are always positive, the sign of $y^{\prime \prime}$ is determined by the factors $-3(t+2)(t-2)$. The values $t=-2$ and $t=2$ partition the reals into three intervals: $(-\infty,-2),(-2,2)$, and $(2, \infty)$. Testing (or discussing) indicates that when $-2<t<2, y^{\prime \prime}>0$ (and so the curve is concave upwards.

3: Find the points on the curve $x=2 t^{3}+3 t^{2}-12 t, y=2 t^{3}+3 t^{2}+1$ where the tangent is horizontal or vertical.
Solution. We first find $\frac{d y}{d x}$ and then study for what values of t we will have $\frac{d y}{d x}=0$ for horizontal tangent lines, or $\left|y^{\prime}\right|$ tends to infinity (for vertical tangent lines).
Computing $\frac{d y}{d x}$. We compute

$$
y^{\prime}=\frac{d y}{d t}=6 t(t+1), \frac{d x}{d t}=6 t^{2}+6 t-12=6(t+2)(t-1) . \text { and so } \frac{d y}{d x}=\frac{6 t(t+1)}{6(t+2)(t-1)} .
$$

For what value of t we will have $y^{\prime}=0$? Set $\frac{d y}{a t}=6 t(t+1)=0$. We have $t=0$ (and so $(x, y)=(0,1))$ or $t=-1$ (and so $(x, y)=(13,2))$. Thus at the points $(0,1)$ and $(13,2)$, the tangent lines of the curve are horizontal.

For what value of t we will have $\left|y^{\prime}\right|$ goes to infinity? Set $\frac{d x}{a t}=6(t+2)(t-1)=0$. We have $t=-2$ (and so $(x, y)=(20,-3)$) or $t=1$ (and so $(x, y)=(-7,6))$. Thus at the points $(20,-3)$ and $(-7,6)$, the tangent lines of the curve are vertical.

4: Use the parametric equations of an ellipse $x=3 \cos \theta, y=4 \sin \theta, 0 \leq \theta \leq 2 \pi$, to find the area that it encloses.

Solution. By symmetry, we can compute area in the first quadrant and multiply the answer by 4. Hence

$$
\begin{aligned}
A & =4 \int_{0}^{3} y d x=4 \int_{\pi / 2}^{0} 4 \sin (\theta)(-3 \sin (\theta)) d \theta \\
& =4(3)(4) \int_{0}^{\pi / 2} \sin ^{2}(\theta) d \theta=48 \int_{0}^{\pi / 2} \frac{1-\cos (2 \theta)}{2} d \theta \\
& =24\left[\theta-\frac{\sin (2 \theta)}{2}\right]_{0}^{\frac{\pi}{2}}=12 \pi .
\end{aligned}
$$

