Graphs (Matroids) with $k \pm \epsilon$-disjoint spanning trees (bases)

Hong-Jian Lai, Ping Li and Yanting Liang

Department of Mathematics
West Virginia University
Morgantown, WV

Notation

- G : = connected graph

Notation

■ $G:=$ connected graph
$■ \tau(G):=$ maximum number of edge-disjoint spanning trees of G (spanning tree packing number)

Notation

■ G : = connected graph
$■ \tau(G)$: = maximum number of edge-disjoint spanning trees of G (spanning tree packing number)

■ Survey Paper: E. M. Palmer, [On the spanning tree packing number of a graph, a survey, Discrete Math. 230 (2001) 13-21].

Packing and Covering Theorems

$\square \omega(H):=$ number of connected components of H.

Packing and Covering Theorems

■ $\omega(H)$: = number of connected components of H.
■ Theorem (Nash-Williams, Tutte [J. London Math. Soc. 36 (1961)]) For a connected graph $G, \tau(G) \geq k$ iff $\forall X \subseteq E(G),|E-X| \geq k(\omega(G-X)-1)$.

Packing and Covering Theorems

■ $\omega(H)$: = number of connected components of H.
■ Theorem (Nash-Williams, Tutte [J. London Math. Soc. 36 (1961)]) For a connected graph $G, \tau(G) \geq k$ iff $\forall X \subseteq E(G),|E-X| \geq k(\omega(G-X)-1)$.

- $a_{1}(G)$:= edge-arboricity, the minimum number of spanning trees whose union equals $E(G)$.

Packing and Covering Theorems

■ $\omega(H)$: = number of connected components of H.
■ Theorem (Nash-Williams, Tutte [J. London Math. Soc. 36 (1961)]) For a connected graph $G, \tau(G) \geq k$ iff $\forall X \subseteq E(G),|E-X| \geq k(\omega(G-X)-1)$.

- $a_{1}(G)$:= edge-arboricity, the minimum number of spanning trees whose union equals $E(G)$.

■ Theorem (Nash-Williams, [J. London Math. Soc. 39 (1964)]) $a_{1}(G) \leq k$ iff $\forall X \subseteq E(G)$, $|X| \leq k|V(G[X])|-\omega(G[X])$.

When does $\tau(G)=k$?

■ By Nash-Williams and Tutte, for a connected G, $\tau(G)=k$ if and only if both of the following holds:
(i) $\forall X \subseteq E(G),|E-X| \geq k(\omega(G-X)-1)$, and
(ii) $\exists X_{0} \subseteq E(G),\left|E-X_{0}\right|<(k+1)(\omega(G-X)-1)$.

When does $\tau(G)=k$?

■ By Nash-Williams and Tutte, for a connected G, $\tau(G)=k$ if and only if both of the following holds:
(i) $\forall X \subseteq E(G),|E-X| \geq k(\omega(G-X)-1)$, and
(ii) $\exists X_{0} \subseteq E(G),\left|E-X_{0}\right|<(k+1)(\omega(G-X)-1)$.
$■$ What is next?

Motivations of Research

$■$ Suppose that $\tau(G)<k$. What is the minimum number of edges that must be added to G such that the resulting graph has k edge-disjoint spanning trees?

Motivations of Research

$■$ Suppose that $\tau(G)<k$. What is the minimum number of edges that must be added to G such that the resulting graph has k edge-disjoint spanning trees?
$\square F(G, k)=$ this minimum number (Must Added Edges). Determine $F(G, k)$.

Motivations of Research

- Suppose that $\tau(G)<k$. What is the minimum number of edges that must be added to G such that the resulting graph has k edge-disjoint spanning trees?

■ $F(G, k)=$ this minimum number (Must Added Edges). Determine $F(G, k)$.

- Suppose that $\tau(G) \geq k$. Which edge $\in E(G)$ has the property that $\tau(G-e) \geq k$?

Motivations of Research

- Suppose that $\tau(G)<k$. What is the minimum number of edges that must be added to G such that the resulting graph has k edge-disjoint spanning trees?
■ $F(G, k)=$ this minimum number (Must Added Edges). Determine $F(G, k)$.
- Suppose that $\tau(G) \geq k$. Which edge $\in E(G)$ has the property that $\tau(G-e) \geq k$?
- $E_{k}(G)$: = edges with this property (Excessive Edges). Determine $E_{k}(G)$.

Example: $F(G, K)$

$\square F\left(K_{3}, 2\right)=1, F\left(K_{2, t}, 2\right)=2$, and $F\left(P_{10}, 2\right)=3$

Example: $F(G, K)$

■ $F\left(K_{3}, 2\right)=1, F\left(K_{2, t}, 2\right)=2$, and $F\left(P_{10}, 2\right)=3$

Example: $F(G, K)$

$\square F\left(K_{3}, 2\right)=1, F\left(K_{2, t}, 2\right)=2$, and $F\left(P_{10}, 2\right)=3$

■ Every spanning tree must use one of the two edges in the 2-cut. Thus $F(G, 2)=1$.

Example: $E_{k}(G)$

Example: $E_{k}(G)$

■ $|V(G)|=8,|E(G)|=18, k=2$ and $|E(G)|-2(|V(G)|-1)=4$.

Example: $E_{k}(G)$

■ $|V(G)|=8,|E(G)|=18, k=2$ and $|E(G)|-2(|V(G)|-1)=4$.
$■ E_{2}(G)=E\left(K_{5}\right)$, (by inspection, or proof postponed).

Matroids as a Generalization of Graphs

\square A matroid M consists of a finite set $E=E(M)$ and a collection $\mathcal{I}(M)$ of independent subsets of E, satisfying these axioms:
(I1) \emptyset is independent.
(I2) Any subset of an independent set is independent.
(I3) All maximal independent set in any subset of E have the same cardinality.

Matroids as a Generalization of Graphs

\square A matroid M consists of a finite set $E=E(M)$ and a collection $\mathcal{I}(M)$ of independent subsets of E, satisfying these axioms:
(I1) \emptyset is independent.
(I2) Any subset of an independent set is independent.
(I3) All maximal independent set in any subset of E have the same cardinality.

■ Circuits: = minimal dependent sets.

Matroids as a Generalization of Graphs

\square A matroid M consists of a finite set $E=E(M)$ and a collection $\mathcal{I}(M)$ of independent subsets of E, satisfying these axioms:
(I1) \emptyset is independent.
(I2) Any subset of an independent set is independent.
(I3) All maximal independent set in any subset of E have the same cardinality.

■ Circuits: = minimal dependent sets.
\square Bases = maximal independent sets

Matroids as a Generalization of Graphs

\square A matroid M consists of a finite set $E=E(M)$ and a collection $\mathcal{I}(M)$ of independent subsets of E, satisfying these axioms:
(I1) \emptyset is independent.
(I2) Any subset of an independent set is independent.
(I3) All maximal independent set in any subset of E have the same cardinality.

■ Circuits: = minimal dependent sets.
$■$ Bases = maximal independent sets
■ Rank of a subset $X: r(X)=$ cardinality of a maximal independent subset in X.

Matroids as a Generalization of Graphs

$\square M=M(G)$: Cycle matroid of G on $E:=E(G)$.

Matroids as a Generalization of Graphs

$\square M=M(G)$: Cycle matroid of G on $E:=E(G)$.
$\square \forall X \subseteq E, X:=G[X]$ denotes the induced subgraph.

Matroids as a Generalization of Graphs

■ $M=M(G)$: Cycle matroid of G on $E:=E(G)$.
$\square \forall X \subseteq E, X:=G[X]$ denotes the induced subgraph.
■ Independent Sets: $X \subseteq E$ such that X induces an acyclic subgraph

Matroids as a Generalization of Graphs

$\square M=M(G)$: Cycle matroid of G on $E:=E(G)$.
$\square \forall X \subseteq E, X:=G[X]$ denotes the induced subgraph.
■ Independent Sets: $X \subseteq E$ such that X induces an acyclic subgraph

■ Circuits (minimal dependent sets): $X \subseteq E$ such that X is a cycle of G.

Matroids as a Generalization of Graphs

■ $M=M(G)$: Cycle matroid of G on $E:=E(G)$.
$■ \forall X \subseteq E, X:=G[X]$ denotes the induced subgraph.
■ Independent Sets: $X \subseteq E$ such that X induces an acyclic subgraph

- Circuits (minimal dependent sets): $X \subseteq E$ such that X is a cycle of G.
■ Bases (maximal independent sets): $X \subseteq E$ such that X is a spanning tree of G.

Matroids as a Generalization of Graphs

■ $M=M(G)$: Cycle matroid of G on $E:=E(G)$.
$\square \forall X \subseteq E, X:=G[X]$ denotes the induced subgraph.
■ Independent Sets: $X \subseteq E$ such that X induces an acyclic subgraph
$■$ Circuits (minimal dependent sets): $X \subseteq E$ such that X is a cycle of G.

■ Bases (maximal independent sets): $X \subseteq E$ such that X is a spanning tree of G.

■ Rank $r_{M(G)}(X)=|V(X)|-\omega(X)$.

Packing and Covering Theorems of Matroids

$\square \tau(M):=$ maximum number disjoint bases of M.

Packing and Covering Theorems of Matroids

$\square \tau(M):=$ maximum number disjoint bases of M.
■ If $r(M)=0$, then $\forall k>0, \tau(M) \geq k$.

Packing and Covering Theorems of Matroids

$\square \tau(M):=$ maximum number disjoint bases of M.

- If $r(M)=0$, then $\forall k>0, \tau(M) \geq k$.
$\square \gamma_{1}(M):=$ mimimum number of bases whose union equals $E(M)$.

Packing and Covering Theorems of Matroids

$\square \tau(M):=$ maximum number disjoint bases of M.
■ If $r(M)=0$, then $\forall k>0, \tau(M) \geq k$.
$\square \gamma_{1}(M):=$ mimimum number of bases whose union equals $E(M)$.
$■$ Theorem (Edmonds, [J. Res. Nat. Bur. Standards Sect. B 69B, (1965), 73-77]) Let M be a matroid with $r(M)>0$. Each of the following holds.
(i) $\tau(M) \geq k$ if and only if $\forall X \subseteq E(M)$,
$|E(M)-X| \geq k(r(M)-r(X))$.
(ii) $\gamma_{1}(M) \leq k$ if and only if $\forall X \subseteq E(M),|X| \leq k r(X)$.

Motivations of Research

\square Suppose that $\tau(M)<k$. $\mathrm{A}(\tau \geq k)$-extension of M is a matroid M^{\prime} that contains M as a restriction with $\tau\left(M^{\prime}\right) \geq k$. What is the minimum $\left|E\left(M^{\prime}\right)\right|-|E(M)|$ among all $(\tau \geq k)$-extension of M ?

Motivations of Research

$■$ Suppose that $\tau(M)<k$. A $(\tau \geq k)$-extension of M is a matroid M^{\prime} that contains M as a restriction with $\tau\left(M^{\prime}\right) \geq k$. What is the minimum $\left|E\left(M^{\prime}\right)\right|-|E(M)|$ among all ($\tau \geq k)$-extension of M ?

- $F(M, k)=$ this minimum number (Must Added Elements). Determine $F(M, k)$.

Motivations of Research

■ Suppose that $\tau(M)<k$. A $(\tau \geq k)$-extension of M is a matroid M^{\prime} that contains M as a restriction with $\tau\left(M^{\prime}\right) \geq k$. What is the minimum $\left|E\left(M^{\prime}\right)\right|-|E(M)|$ among all $(\tau \geq k)$-extension of M ?

- $F(M, k)=$ this minimum number (Must Added Elements). Determine $F(M, k)$.

■ Suppose that $\tau(M) \geq k$. Which element $e \in E(M)$ has the property that $\tau(M-e) \geq k$?

Motivations of Research

■ Suppose that $\tau(M)<k$. A $(\tau \geq k)$-extension of M is a matroid M^{\prime} that contains M as a restriction with $\tau\left(M^{\prime}\right) \geq k$. What is the minimum $\left|E\left(M^{\prime}\right)\right|-|E(M)|$ among all $(\tau \geq k)$-extension of M ?

- $F(M, k)=$ this minimum number (Must Added Elements). Determine $F(M, k)$.

■ Suppose that $\tau(M) \geq k$. Which element $e \in E(M)$ has the property that $\tau(M-e) \geq k$?

- $E_{k}(M)$: = elements with this property (Excessive Elements). Determine $E_{k}(M)$.

Density of a Subset

■ $\forall X \subseteq E(M)$ with $r(X)>0, d(X)=\frac{|X|}{r_{(X)}}$.

Density of a Subset

- $\forall X \subseteq E(M)$ with $r(X)>0, d(X)=\frac{|X|}{r_{(X)}}$.
- $d(M)=d(E(M))$.

Density of a Subset

$\square \forall X \subseteq E(M)$ with $r(X)>0, d(X)=\frac{|X|}{r(X)}$.
■ $d(M)=d(E(M))$.
■ For a (loopless) graph $G, \forall \emptyset \neq X \subseteq E(G)$,
$d(X)=\frac{|X|}{|V(G[X])|-\omega(G[X])}$.

Density of a Subset

$\square \forall X \subseteq E(M)$ with $r(X)>0, d(X)=\frac{|X|}{r(X)}$.
■ $d(M)=d(E(M))$.
■ For a (loopless) graph $G, \forall \emptyset \neq X \subseteq E(G)$, $d(X)=\frac{|X|}{|V(G[X])|-\omega(G[X])}$.
■ $d(G)=d(E(G))$.

Density of a Subset

$\square \forall X \subseteq E(M)$ with $r(X)>0, d(X)=\frac{|X|}{r(X)}$.
■ $d(M)=d(E(M))$.
■ For a (loopless) graph $G, \forall \emptyset \neq X \subseteq E(G)$,
$d(X)=\frac{|X|}{|V(G[X])|-\omega(G[X])}$.
■ $d(G)=d(E(G))$.
■ Example $d\left(K_{n}\right)=\frac{n}{2}, d\left(K_{2, t}\right)=\frac{2 t}{t+1}, d\left(P_{10}\right)=\frac{5}{3}$.

Density of a Subset

$\square \forall X \subseteq E(M)$ with $r(X)>0, d(X)=\frac{|X|}{r(X)}$.
■ $d(M)=d(E(M))$.
■ For a (loopless) graph $G, \forall \emptyset \neq X \subseteq E(G)$, $d(X)=\frac{|X|}{|V(G[X])|-\omega(G[X])}$.
$\square d(G)=d(E(G))$.
■ Example $d\left(K_{n}\right)=\frac{n}{2}, d\left(K_{2, t}\right)=\frac{2 t}{t+1}, d\left(P_{10}\right)=\frac{5}{3}$.
$\square d(X) \geq 1$, equality holds iff X is independent $(G[X]$ is a forest).

Matroid and Graph Contractions

\square For $X \subseteq E(M), M / X$ is the matroid with rank function

$$
r_{M / X}(Y)=r_{M}(X \cup Y)-r_{M}(X), \forall Y \subseteq E-X
$$

Matroid and Graph Contractions

\square For $X \subseteq E(M), M / X$ is the matroid with rank function

$$
r_{M / X}(Y)=r_{M}(X \cup Y)-r_{M}(X), \forall Y \subseteq E-X
$$

\square For $X \subseteq E(G), G / X$ is obtained from G by identifying the two vertices of each edge in X. The rank function of the cycle matroid of G / X is $\forall Y \subseteq E-X$, $r_{M(G / X)}(Y)=|V(X \cup Y)|-\omega(X \cup Y)-|V(X)|+\omega(X)$.

Matroid and Graph Contractions

\square For $X \subseteq E(M), M / X$ is the matroid with rank function

$$
r_{M / X}(Y)=r_{M}(X \cup Y)-r_{M}(X), \forall Y \subseteq E-X
$$

\square For $X \subseteq E(G), G / X$ is obtained from G by identifying the two vertices of each edge in X. The rank function of the cycle matroid of G / X is $\forall Y \subseteq E-X$,

$$
r_{M(G / X)}(Y)=|V(X \cup Y)|-\omega(X \cup Y)-|V(X)|+\omega(X)
$$

■ Example

Strength and Fractional Arboricity

■ Reference: [Discrete Applied Math. 40 (1992) 285-302].

Strength and Fractional Arboricity

■ Reference: [Discrete Applied Math. 40 (1992) 285-302].
■ Strength: $\eta(M)=\min \left\{\frac{|E-X|}{r(M)-r(X)}: r(X)<r(M)\right\}=$ $\min \{d(G / X): r(X)<r(M)\}$.

Strength and Fractional Arboricity

■ Reference: [Discrete Applied Math. 40 (1992) 285-302].
■ Strength: $\eta(M)=\min \left\{\frac{|E-X|}{r(M)-r(X)}: r(X)<r(M)\right\}=$ $\min \{d(G / X): r(X)<r(M)\}$.
■ Fractional Arboricity: $\gamma(M)=\max \{d(X): r(X)>0\}$.

Strength and Fractional Arboricity

■ Reference: [Discrete Applied Math. 40 (1992) 285-302].
■ Strength: $\eta(M)=\min \left\{\frac{|E-X|}{r(M)-r(X)}: r(X)<r(M)\right\}=$ $\min \{d(G / X): r(X)<r(M)\}$.

- Fractional Arboricity: $\gamma(M)=\max \{d(X): r(X)>0\}$.

■ $\eta(M) \leq d(M) \leq \gamma(M)$.

Strength and Fractional Arboricity

■ Reference: [Discrete Applied Math. 40 (1992) 285-302].
■ Strength: $\eta(M)=\min \left\{\frac{|E-X|}{r(M)-r(X)}: r(X)<r(M)\right\}=$ $\min \{d(G / X): r(X)<r(M)\}$.

- Fractional Arboricity: $\gamma(M)=\max \{d(X): r(X)>0\}$.
- $\eta(M) \leq d(M) \leq \gamma(M)$.

■ $\eta(G)=\eta(M(G)), \gamma(G)=\gamma(M(G))$.

Strength and Fractional Arboricity

■ Reference: [Discrete Applied Math. 40 (1992) 285-302].
■ Strength: $\eta(M)=\min \left\{\frac{|E-X|}{r(M)-r(X)}: r(X)<r(M)\right\}=$ $\min \{d(G / X): r(X)<r(M)\}$.

- Fractional Arboricity: $\gamma(M)=\max \{d(X): r(X)>0\}$.
- $\eta(M) \leq d(M) \leq \gamma(M)$.

■ $\eta(G)=\eta(M(G)), \gamma(G)=\gamma(M(G))$.
■ $\eta(G) \leq d(G) \leq \gamma(G)$.

Strength and Fractional Arboricity

■ Useful Facts ([Discrete Appl. Math. 40 (1992) 285-302]) Each of the following holds.
(i) $\tau(M)=\lfloor\eta(G)\rfloor$.
(ii) $\gamma_{1}(M)=\lceil\gamma(G)\rceil$.

Strength and Fractional Arboricity

■ Useful Facts ([Discrete Appl. Math. 40 (1992) 285-302]) Each of the following holds.
(i) $\tau(M)=\lfloor\eta(G)\rfloor$.
(ii) $\gamma_{1}(M)=\lceil\gamma(G)\rceil$.

■ Theorem (Edmonds, fractional form, [DAM (1992)]) For integers $p \geq q>0$,
(i) $\tau(M) \geq \frac{p}{q}$ iff M has p bases such that every element of M is in at most q of them.
(ii) $\gamma \leq \frac{p}{q}$ iff M has p bases such that every element of M is in at least q of them.

Characterizations

■ Theorem (Catlin, Grossman, Hobbs \& HJL, [Discrete Appl. Math. 40 (1992) 285-302]) The following are equivalent.
(i) $\eta(M)=d(M)$.
(ii) $\gamma(M)=d(M)$.
(iii) $\eta(M)=\gamma(M)$.
(iv) $\eta(M)=\frac{p}{q}, M$ has p bases such that each element is in exactly q of them.
(v) $\gamma(M)=\frac{p}{q}, M$ has p bases such that each element is in exactly q of them.

η-maximal restriction

■ A subset $X \subseteq E(M)$ is η-maximal if for any Y with $X \subset Y \subseteq E(M), \eta(M \mid X)>\eta(M \mid Y)$.

η-maximal restriction

■ A subset $X \subseteq E(M)$ is η-maximal if for any Y with $X \subset Y \subseteq E(M), \eta(M \mid X)>\eta(M \mid Y)$.

■ Example

η-maximal restriction

■ A subset $X \subseteq E(M)$ is η-maximal if for any Y with $X \subset Y \subseteq E(M), \eta(M \mid X)>\eta(M \mid Y)$.

■ Example

■ Each of K_{8}, K_{6}, K_{4} is η-maximal.

A Decomposition Theorem (i)

- Theorem Let M be a matroid with $r(M)>0$. Then each of the following holds.

A Decomposition Theorem (i)

- Theorem Let M be a matroid with $r(M)>0$. Then each of the following holds.
- (i) There exist an integer $m>0$, and an m-tuple $\left(l_{1}, l_{2}, \ldots, l_{m}\right)$ of rational numbers such that

$$
\eta(M)=l_{1}<l_{2}<\ldots<l_{m}=\gamma(G),
$$

and a sequence of subsets

$$
J_{m} \subset \ldots \subset J_{2} \subset J_{1}=E(M) ;
$$

such that for each i with $1 \leq i \leq m, M \mid J_{i}$ is an η-maximal restriction of M with $\eta\left(M \mid J_{i}\right)=l_{i}$.

A Decomposition Theorem (ii)

\square (ii) The integer m, the sequences of fractions $\eta(M)=l_{1} \leq l_{2} \leq \ldots \leq l_{m}=\gamma(M)$ and subsets $J_{m} \subset \ldots \subset J_{2} \subset J_{1}=E(M)$ are uniquely determined by M.

A Decomposition Theorem (ii)

\square (ii) The integer m, the sequences of fractions $\eta(M)=l_{1} \leq l_{2} \leq \ldots \leq l_{m}=\gamma(M)$ and subsets $J_{m} \subset \ldots \subset J_{2} \subset J_{1}=E(M)$ are uniquely determined by M.

■ Terminologies:

A Decomposition Theorem (ii)

$■$ (ii) The integer m, the sequences of fractions $\eta(M)=l_{1} \leq l_{2} \leq \ldots \leq l_{m}=\gamma(M)$ and subsets $J_{m} \subset \ldots \subset J_{2} \subset J_{1}=E(M)$ are uniquely determined by M.

- Terminologies:

■ η-spectrum: $\left(l_{1}, l_{2}, \ldots, l_{m}\right)$.

A Decomposition Theorem (ii)

\square (ii) The integer m, the sequences of fractions $\eta(M)=l_{1} \leq l_{2} \leq \ldots \leq l_{m}=\gamma(M)$ and subsets $J_{m} \subset \ldots \subset J_{2} \subset J_{1}=E(M)$ are uniquely determined by M.

- Terminologies:

■ η-spectrum: $\left(l_{1}, l_{2}, \ldots, l_{m}\right)$.
■ η-decomposition: $J_{m} \subset \ldots \subset J_{2} \subset J_{1}=E(M)$.

Example of The Decomposition

Example of The Decomposition

■ $m=2, J_{2}=E\left(K_{5}\right), J_{1}=E(G)$.

Example of The Decomposition

$\square m=2, J_{2}=E\left(K_{5}\right), J_{1}=E(G)$.
■ $i_{2}=\frac{5}{2}, i_{1}=\frac{7}{4}$.

Example of The Decomposition

Example of The Decomposition

$\square m=4, J_{4}=E\left(K_{8}\right), J_{3}=E\left(K_{6}\right) \cup E\left(K_{6}\right) \cup J_{4}$, $J_{2}=J_{3} \cup E\left(K_{4}\right)$.

Example of The Decomposition

$\square m=4, J_{4}=E\left(K_{8}\right), J_{3}=E\left(K_{6}\right) \cup E\left(K_{6}\right) \cup J_{4}$, $J_{2}=J_{3} \cup E\left(K_{4}\right)$.
$\square i_{4}=4, i_{3}=3, i_{2}=2$ and $i_{1}=\frac{5}{3}$.

Characterization of Excessive Elements

■ If $k>0$ is an integer such that $k<\beta_{m}=\gamma(M)$, then in the η-spectrum, there exists a smallest $i_{j_{0}}$ such that $i_{j_{0}}>k$. $J_{j_{0}}$ is the η-maximal subset at level k of M.

Characterization of Excessive Elements

■ If $k>0$ is an integer such that $k<\beta_{m}=\gamma(M)$, then in the η-spectrum, there exists a smallest $i_{j_{0}}$ such that $i_{j_{0}}>k . J_{j_{0}}$ is the η-maximal subset at level k of M.
$■$ Theorem Let $k \geq 2$ be an integer. Let M be a graph with $\tau(M) \geq k$. Then each of the following holds.
(i) $E_{k}(M)=E(M)$ if and only if $\eta(M)>k$.
(ii) In general, if $\eta(M)=k$ and if $m>1$, then $E_{k}(G)=J_{2}$ equals to the η-maximal subset at level k of M.

The Cycle Matroid Case

■ Theorem Let $k \geq 2$ be an integer, and G be a connected graph with $\tau(G) \geq k$. Let
$\eta(M)=l_{1} \leq l_{2} \leq \ldots \leq l_{m}=\gamma(M)$ and $J_{m} \subset \ldots \subset J_{2} \subset J_{1}=E(M)$ denote the η-spectrum and η-decomposition of $M(G)$, respectively. Then each of the following holds.
(i) $E_{k}(G)=E(G)$ if and only if $\eta(G)>k$.
(ii) In general, if $\eta(G)=k$ and if $m>1$, then $E_{k}(G)=J_{2}$ equals the η-maximal subset at level k of $M(G)$.

The Cycle Matroid Case

■ Theorem Let $k \geq 2$ be an integer, and G be a connected graph with $\tau(G) \geq k$. Let
$\eta(M)=l_{1} \leq l_{2} \leq \ldots \leq l_{m}=\gamma(M)$ and $J_{m} \subset \ldots \subset J_{2} \subset J_{1}=E(M)$ denote the η-spectrum and η-decomposition of $M(G)$, respectively. Then each of the following holds.
(i) $E_{k}(G)=E(G)$ if and only if $\eta(G)>k$.
(ii) In general, if $\eta(G)=k$ and if $m>1$, then $E_{k}(G)=J_{2}$ equals the η-maximal subset at level k of $M(G)$.

The Cycle Matroid Case

■ Theorem Let $k \geq 2$ be an integer, and G be a connected graph with $\tau(G) \geq k$. Let
$\eta(M)=l_{1} \leq l_{2} \leq \ldots \leq l_{m}=\gamma(M)$ and $J_{m} \subset \ldots \subset J_{2} \subset J_{1}=E(M)$ denote the η-spectrum and η-decomposition of $M(G)$, respectively. Then each of the following holds.
(i) $E_{k}(G)=E(G)$ if and only if $\eta(G)>k$.
(ii) In general, if $\eta(G)=k$ and if $m>1$, then $E_{k}(G)=J_{2}$ equals the η-maximal subset at level k of $M(G)$.

Example of The Theorem

Example of The Theorem

■ $m=2, E_{2}(G)=J_{2}=E\left(K_{5}\right), J_{1}=E(G)$.

Example of The Theorem

$\square m=2, E_{2}(G)=J_{2}=E\left(K_{5}\right), J_{1}=E(G)$.
■ $i_{2}=\frac{5}{2}, i_{1}=2$.

What Must Be Added to Have k Disjoint

Bases?

■ Let G be a graph, and let $F(G, k)$ denote the minimum number of additional edges that must be added to G to result in a graph G^{\prime} with $\tau\left(G^{\prime}\right) \geq k$.

What Must Be Added to Have k Disjoint

Bases?

■ Let G be a graph, and let $F(G, k)$ denote the minimum number of additional edges that must be added to G to result in a graph G^{\prime} with $\tau\left(G^{\prime}\right) \geq k$.

■ Since matroids do not have a concept corresponding to vertices, we must formulate the problem differently.

What Must Be Added to Have k Disjoint

Bases?

■ Let G be a graph, and let $F(G, k)$ denote the minimum number of additional edges that must be added to G to result in a graph G^{\prime} with $\tau\left(G^{\prime}\right) \geq k$.

■ Since matroids do not have a concept corresponding to vertices, we must formulate the problem differently.
\square For a matroid M, a matroid M^{\prime} that contains M as a restriction, and satisfies $\tau\left(M^{\prime}\right) \geq k$ is a ($\tau \geq k)$-extension of M.

What Must Be Added to Have k Disjoint

Bases?

■ Let G be a graph, and let $F(G, k)$ denote the minimum number of additional edges that must be added to G to result in a graph G^{\prime} with $\tau\left(G^{\prime}\right) \geq k$.

■ Since matroids do not have a concept corresponding to vertices, we must formulate the problem differently.
\square For a matroid M, a matroid M^{\prime} that contains M as a restriction, and satisfies $\tau\left(M^{\prime}\right) \geq k$ is a ($\tau \geq k$)-extension of M.

■ If $\tau(M) \geq k$, then $M^{\prime}=M$.

What Must Be Added to Have k Disjoint

Bases?

- $F(M, k)=\min \left\{\left|E\left(M^{\prime}\right)\right|-|E(M)|: M^{\prime}\right.$ is a $(\tau \geq k)$-extension of $M\}$.

What Must Be Added to Have k Disjoint

Bases?

■ $F(M, k)=\min \left\{\left|E\left(M^{\prime}\right)\right|-|E(M)|: M^{\prime}\right.$ is a $(\tau \geq k)$-extension of $M\}$.
$■$ Theorem Let M be a matroid and let $k>0$ be an integer. Each of the following holds.
(i) $\eta(M) \geq k$ if and only if $F(M, k)=0$.
(ii) If $\gamma(M) \leq k$, then

$$
F(M, k)=k r(M)-|E(M)| .
$$

What Must Be Added to Have k Disjoint

Bases?

■ $F(M, k)=\min \left\{\left|E\left(M^{\prime}\right)\right|-|E(M)|: M^{\prime}\right.$ is a $(\tau \geq k)$-extension of $M\}$.
$■$ Theorem Let M be a matroid and let $k>0$ be an integer. Each of the following holds.
(i) $\eta(M) \geq k$ if and only if $F(M, k)=0$.
(ii) If $\gamma(M) \leq k$, then

$$
F(M, k)=k r(M)-|E(M)| .
$$

■ Theorem Let G be a graph. If (edge-arboricity) $a_{1}(G) \leq k$, then $F(G, k)=k(|V(G)|-\omega(G))-|E(G)|$.

Application: The Graph Case

■ Theorem (Haas, Theorem 1 of [Ars Combinatoria, 63 (2002), 129-137]) The following are equivalent for a graph G, integers $k>0$ and $l>0$.
(i) $E(G) \mid=k(|V(G)|-1)-l$ and for subgraphs H of G with at least 2 vertices, $|E(H)| \leq k(|V(H)|-1)$.
(ii) There exists some l edges which when added to G result in a graph that can be decomposed into k spanning trees.

Application: The Graph Case

■ Theorem (Haas, Theorem 1 of [Ars Combinatoria, 63 (2002), 129-137]) The following are equivalent for a graph G, integers $k>0$ and $l>0$.
(i) $E(G) \mid=k(|V(G)|-1)-l$ and for subgraphs H of G with at least 2 vertices, $|E(H)| \leq k(|V(H)|-1)$.
(ii) There exists some l edges which when added to G result in a graph that can be decomposed into k spanning trees.

- Proof: Either (ii) or $|E(H)| \leq k(|V(H)|-1)$ in (i) implies $\gamma(M(G)) \leq k$. Hence by our theorem, $l=F(G, k)=k(|V(G)|-1)-|E(G)|$.

What Must Be Added to Have k Disjoint

Bases?

■ If $k>0$ is an integer such that $k<\beta_{m}=\gamma(M)$, then in the η-spectrum $\eta(M)=l_{1} \leq l_{2} \leq \ldots \leq l_{m}=\gamma(M)$, there exists a smallest $j(k)$ such that $i(k):=i_{j(k)} \geq k$.

What Must Be Added to Have k Disjoint

Bases?

- If $k>0$ is an integer such that $k<B_{m}=\gamma(M)$, then in the η-spectrum $\eta(M)=l_{1} \leq l_{2} \leq \ldots \leq l_{m}=\gamma(M)$, there exists a smallest $j(k)$ such that $i(k):=i_{j(k)} \geq k$.
- Theorem For integer $k>0$, let M be a matroid with $\tau(M) \leq k$ and let $i(k)$ denote the smallest i_{j} in $\eta(M)=l_{1} \leq l_{2} \leq \ldots \leq l_{m}=\gamma(M)$ such that $i(k) \geq k$. Then
(i) $F(M, k)=k\left(r(M)-r\left(J_{i(k)}\right)-\left|E(M)-J_{i(k)}\right|\right.$.
(ii) $F(M, k)=\max _{X \subseteq E(M)}\{k r(M / X)-|M / X|\}$.

Application: The Graph Case

■ Theorem (D. Liu, H.-J. Lai and Z.-H. Chen, Theorems 3.4 and 3.10 of [Ars Combinatoria, 93 (2009), 113-127]) Let G be a connected graph with $\tau(M(G)) \leq k$ and let $i(k)$ denote the smallest i_{j} in the spectrum of $M(G)$ such that $i(k) \geq k$. Then
(i) $F(G, k)=$ $k\left(|V(G)|-\left|V\left(G\left[J_{i(k)}\right]\right)\right|+\omega\left(G\left[J_{i(k)}\right]\right)-1\right)-\left|E(G)-J_{i(k)}\right|$.
(ii) $F(G, k)=\max _{Y \subseteq E(G)}\{k[\omega(G-Y)-1]-|Y|\}$.

Application: The Graph Case

■ Theorem (D. Liu, H.-J. Lai and Z.-H. Chen, Theorems 3.4 and 3.10 of [Ars Combinatoria, 93 (2009), 113-127]) Let G be a connected graph with $\tau(M(G)) \leq k$ and let $i(k)$ denote the smallest i_{j} in the spectrum of $M(G)$ such that $i(k) \geq k$. Then
(i) $F(G, k)=$ $k\left(|V(G)|-\left|V\left(G\left[J_{i(k)}\right]\right)\right|+\omega\left(G\left[J_{i(k)}\right]\right)-1\right)-\left|E(G)-J_{i(k)}\right|$.
(ii) $F(G, k)=\max _{Y \subseteq E(G)}\{k[\omega(G-Y)-1]-|Y|\}$.

- Proof: Apply the theorem to cycle matroids.

Thank you!

