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Notation

G: = connected graph

τ(G): = maximum number of edge-disjoint spanning
trees of G (spanning tree packing number)

Survey Paper: E. M. Palmer, [On the spanning tree
packing number of a graph, a survey, Discrete Math.
230 (2001) 13 - 21].
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Packing and Covering Theorems

ω(H): = number of connected components of H.

Theorem (Nash-Williams, Tutte [J. London Math. Soc.
36 (1961)]) For a connected graph G, τ(G) ≥ k iff
∀X ⊆ E(G), |E − X| ≥ k(ω(G − X) − 1).

a1(G):= edge-arboricity, the minimum number of
spanning trees whose union equals E(G).

Theorem (Nash-Williams, [J. London Math. Soc. 39
(1964)]) a1(G) ≤ k iff ∀X ⊆ E(G),
|X| ≤ k|V (G[X])| − ω(G[X]).
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When does τ(G) = k?

By Nash-Williams and Tutte, for a connected G,
τ(G) = k if and only if both of the following holds:
(i) ∀X ⊆ E(G), |E − X| ≥ k(ω(G − X) − 1), and
(ii) ∃X0 ⊆ E(G), |E − X0| < (k + 1)(ω(G − X) − 1).

What is next?
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Motivations of Research

Suppose that τ(G) < k. What is the minimum number
of edges that must be added to G such that the
resulting graph has k edge-disjoint spanning trees?

F (G, k) = this minimum number (Must Added Edges).
Determine F (G, k).

Suppose that τ(G) ≥ k. Which edge ∈ E(G) has the
property that τ(G − e) ≥ k?

Ek(G): = edges with this property (Excessive Edges).
Determine Ek(G).
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Example: F (G,K)

F (K3, 2) = 1, F (K2,t, 2) = 2, and F (P10, 2) = 3

s s

s s
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s

s

s

s
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��

Every spanning tree must use one of the two edges in
the 2-cut. Thus F (G, 2) = 1.
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Example: Ek(G)
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|V (G)| = 8, |E(G)| = 18, k = 2 and
|E(G)| − 2(|V (G)| − 1) = 4.

E2(G) = E(K5), (by inspection, or proof postponed).
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Matroids as a Generalization of Graphs

A matroid M consists of a finite set E = E(M) and a
collection I(M) of independent subsets of E,
satisfying these axioms:
(I1) ∅ is independent.
(I2) Any subset of an independent set is independent.
(I3) All maximal independent set in any subset of E

have the same cardinality.

Circuits: = minimal dependent sets.

Bases = maximal independent sets

Rank of a subset X: r(X) = cardinality of a maximal
independent subset in X.
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Matroids as a Generalization of Graphs

M = M(G): Cycle matroid of G on E := E(G).

∀X ⊆ E, X := G[X] denotes the induced subgraph.

Independent Sets: X ⊆ E such that X induces an
acyclic subgraph

Circuits (minimal dependent sets): X ⊆ E such that X

is a cycle of G.

Bases (maximal independent sets): X ⊆ E such that
X is a spanning tree of G.

Rank rM(G)(X) = |V (X)| − ω(X).
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Packing and Covering Theorems of Matroids

τ(M) : = maximum number disjoint bases of M .

If r(M) = 0, then ∀k > 0, τ(M) ≥ k.

γ1(M): = mimimum number of bases whose union
equals E(M).

Theorem (Edmonds, [J. Res. Nat. Bur. Standards
Sect. B 69B, (1965), 73-77]) Let M be a matroid with
r(M) > 0. Each of the following holds.
(i) τ(M) ≥ k if and only if ∀X ⊆ E(M),
|E(M) − X| ≥ k(r(M) − r(X)).
(ii) γ1(M) ≤ k if and only if ∀X ⊆ E(M), |X| ≤ kr(X).
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Motivations of Research

Suppose that τ(M) < k. A (τ ≥ k)-extension of M is a
matroid M ′ that contains M as a restriction with
τ(M ′) ≥ k. What is the minimum |E(M ′)| − |E(M)|

among all (τ ≥ k)-extension of M?

F (M,k) = this minimum number (Must Added
Elements). Determine F (M,k).

Suppose that τ(M) ≥ k. Which element e ∈ E(M) has
the property that τ(M − e) ≥ k?

Ek(M): = elements with this property (Excessive
Elements). Determine Ek(M).
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Density of a Subset

∀X ⊆ E(M) with r(X) > 0, d(X) = |X|
r(X)

.

d(M) = d(E(M)).

For a (loopless) graph G, ∀∅ 6= X ⊆ E(G),
d(X) = |X|

|V (G[X])|−ω(G[X])
.

d(G) = d(E(G)).

Example d(Kn) = n
2
, d(K2,t) = 2t

t+1
, d(P10) = 5

3
.

d(X) ≥ 1, equality holds iff X is independent (G[X] is a
forest).
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Matroid and Graph Contractions

For X ⊆ E(M), M/X is the matroid with rank function

rM/X(Y ) = rM(X ∪ Y ) − rM(X), ∀Y ⊆ E − X.

For X ⊆ E(G), G/X is obtained from G by identifying
the two vertices of each edge in X. The rank function
of the cycle matroid of G/X is ∀Y ⊆ E − X,

rM(G/X)(Y ) = |V (X ∪ Y )| − ω(X ∪ Y )− |V (X)|+ ω(X).

Example

j j

j j

�
�

K6 K4

K6K8

G

j j

q j

�
�

K6 K4

K6

G/K8

q q

q q

�
�

�

G/K8 ∪ K2

6
∪ K4
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Strength and Fractional Arboricity

Reference: [Discrete Applied Math. 40 (1992)
285-302].

Strength: η(M) = min{ |E−X|
r(M)−r(X)

: r(X) < r(M)} =

min{d(G/X) : r(X) < r(M)}.

Fractional Arboricity: γ(M) = max{d(X) : r(X) > 0}.

η(M) ≤ d(M) ≤ γ(M).

η(G) = η(M(G)), γ(G) = γ(M(G)).

η(G) ≤ d(G) ≤ γ(G).

– p. 14/30



Strength and Fractional Arboricity

Reference: [Discrete Applied Math. 40 (1992)
285-302].

Strength: η(M) = min{ |E−X|
r(M)−r(X)

: r(X) < r(M)} =

min{d(G/X) : r(X) < r(M)}.

Fractional Arboricity: γ(M) = max{d(X) : r(X) > 0}.

η(M) ≤ d(M) ≤ γ(M).

η(G) = η(M(G)), γ(G) = γ(M(G)).

η(G) ≤ d(G) ≤ γ(G).

– p. 14/30



Strength and Fractional Arboricity

Reference: [Discrete Applied Math. 40 (1992)
285-302].

Strength: η(M) = min{ |E−X|
r(M)−r(X)

: r(X) < r(M)} =

min{d(G/X) : r(X) < r(M)}.

Fractional Arboricity: γ(M) = max{d(X) : r(X) > 0}.

η(M) ≤ d(M) ≤ γ(M).

η(G) = η(M(G)), γ(G) = γ(M(G)).

η(G) ≤ d(G) ≤ γ(G).

– p. 14/30



Strength and Fractional Arboricity

Reference: [Discrete Applied Math. 40 (1992)
285-302].

Strength: η(M) = min{ |E−X|
r(M)−r(X)

: r(X) < r(M)} =

min{d(G/X) : r(X) < r(M)}.

Fractional Arboricity: γ(M) = max{d(X) : r(X) > 0}.

η(M) ≤ d(M) ≤ γ(M).

η(G) = η(M(G)), γ(G) = γ(M(G)).

η(G) ≤ d(G) ≤ γ(G).

– p. 14/30



Strength and Fractional Arboricity

Reference: [Discrete Applied Math. 40 (1992)
285-302].

Strength: η(M) = min{ |E−X|
r(M)−r(X)

: r(X) < r(M)} =

min{d(G/X) : r(X) < r(M)}.

Fractional Arboricity: γ(M) = max{d(X) : r(X) > 0}.

η(M) ≤ d(M) ≤ γ(M).

η(G) = η(M(G)), γ(G) = γ(M(G)).

η(G) ≤ d(G) ≤ γ(G).

– p. 14/30



Strength and Fractional Arboricity

Reference: [Discrete Applied Math. 40 (1992)
285-302].

Strength: η(M) = min{ |E−X|
r(M)−r(X)

: r(X) < r(M)} =

min{d(G/X) : r(X) < r(M)}.

Fractional Arboricity: γ(M) = max{d(X) : r(X) > 0}.

η(M) ≤ d(M) ≤ γ(M).

η(G) = η(M(G)), γ(G) = γ(M(G)).

η(G) ≤ d(G) ≤ γ(G).

– p. 14/30



Strength and Fractional Arboricity

Useful Facts ([Discrete Appl. Math. 40 (1992)
285-302]) Each of the following holds.
(i) τ(M) = bη(G)c.
(ii) γ1(M) = dγ(G)e.

Theorem (Edmonds, fractional form, [DAM (1992)])
For integers p ≥ q > 0,
(i) τ(M) ≥ p

q
iff M has p bases such that every element

of M is in at most q of them.
(ii) γ ≤ p

q
iff M has p bases such that every element of

M is in at least q of them.
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Characterizations

Theorem (Catlin, Grossman, Hobbs & HJL, [Discrete
Appl. Math. 40 (1992) 285-302]) The following are
equivalent.
(i) η(M) = d(M).
(ii) γ(M) = d(M).
(iii) η(M) = γ(M).
(iv) η(M) = p

q
, M has p bases such that each element

is in exactly q of them.
(v) γ(M) = p

q
, M has p bases such that each element

is in exactly q of them.
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η-maximal restriction

A subset X ⊆ E(M) is η-maximal if for any Y with
X ⊂ Y ⊆ E(M), η(M |X) > η(M |Y ).

Example

j j

j j

�
�

K6 K4

K6K8

G

j j

q j

�
�

K6 K4

K6

G/K8

q q

q q

�
�

�

G/K8 ∪ K2

6
∪ K4

Each of K8,K6,K4 is η-maximal.
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A Decomposition Theorem (i)

Theorem Let M be a matroid with r(M) > 0. Then
each of the following holds.

(i) There exist an integer m > 0, and an m-tuple
(l1, l2, ..., lm) of rational numbers such that

η(M) = l1 < l2 < ... < lm = γ(G),

and a sequence of subsets

Jm ⊂ ... ⊂ J2 ⊂ J1 = E(M);

such that for each i with 1 ≤ i ≤ m, M |Ji is an
η-maximal restriction of M with η(M |Ji) = li.

– p. 18/30
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A Decomposition Theorem (ii)

(ii) The integer m, the sequences of fractions
η(M) = l1 ≤ l2 ≤ ... ≤ lm = γ(M) and subsets
Jm ⊂ ... ⊂ J2 ⊂ J1 = E(M) are uniquely determined by
M .

Terminologies:

η-spectrum: (l1, l2, ..., lm).

η-decomposition: Jm ⊂ ... ⊂ J2 ⊂ J1 = E(M).
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Example of The Decomposition

s s

s s

s

s

s

s

s

�
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�
�

��

m = 2, J2 = E(K5), J1 = E(G).

i2 = 5
2
, i1 = 7

4
.
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Example of The Decomposition

n n

n n

�
�

�

K6 K4

K6K8

G

n n

q n

�
�

�

K6 K4

K6

G/K8

q q

q q

�
�

�
�

G/K8 ∪ K2

6
∪ K4

m = 4, J4 = E(K8), J3 = E(K6) ∪ E(K6) ∪ J4,
J2 = J3 ∪ E(K4).

i4 = 4, i3 = 3, i2 = 2 and i1 = 5
3
.
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Characterization of Excessive Elements

If k > 0 is an integer such that k < ßm = γ(M), then in
the η-spectrum, there exists a smallest ij0 such that
ij0 > k. Jj0 is the η-maximal subset at level k of M .

Theorem Let k ≥ 2 be an integer. Let M be a graph
with τ(M) ≥ k. Then each of the following holds.
(i) Ek(M) = E(M) if and only if η(M) > k.
(ii) In general, if η(M) = k and if m > 1, then
Ek(G) = J2 equals to the η-maximal subset at level k of
M .

– p. 22/30
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The Cycle Matroid Case

Theorem Let k ≥ 2 be an integer, and G be a
connected graph with τ(G) ≥ k. Let
η(M) = l1 ≤ l2 ≤ ... ≤ lm = γ(M) and
Jm ⊂ ... ⊂ J2 ⊂ J1 = E(M) denote the η-spectrum and
η-decomposition of M(G), respectively. Then each of
the following holds.
(i) Ek(G) = E(G) if and only if η(G) > k.
(ii) In general, if η(G) = k and if m > 1, then Ek(G) = J2

equals the η-maximal subset at level k of M(G).
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Example of The Theorem
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What Must Be Added to Have k Disjoint

Bases?

Let G be a graph, and let F (G, k) denote the minimum
number of additional edges that must be added to G to
result in a graph G′ with τ(G′) ≥ k.

Since matroids do not have a concept corresponding
to vertices, we must formulate the problem differently.

For a matroid M , a matroid M ′ that contains M as a
restriction, and satisfies τ(M ′) ≥ k is a
(τ ≥ k)-extension of M .

If τ(M) ≥ k, then M ′ = M .

– p. 25/30
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What Must Be Added to Have k Disjoint

Bases?

F (M,k) = min{|E(M ′)| − |E(M)| : M ′ is a
(τ ≥ k)-extension of M}.

Theorem Let M be a matroid and let k > 0 be an
integer. Each of the following holds.
(i) η(M) ≥ k if and only if F (M,k) = 0.
(ii) If γ(M) ≤ k, then

F (M,k) = kr(M) − |E(M)|.

Theorem Let G be a graph. If (edge-arboricity)
a1(G) ≤ k, then F (G, k) = k(|V (G)| − ω(G)) − |E(G)|.
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Application: The Graph Case

Theorem (Haas, Theorem 1 of [Ars Combinatoria, 63
(2002), 129-137]) The following are equivalent for a
graph G, integers k > 0 and l > 0.
(i) E(G)| = k(|V (G)| − 1) − l and for subgraphs H of G

with at least 2 vertices, |E(H)| ≤ k(|V (H)| − 1).
(ii) There exists some l edges which when added to G

result in a graph that can be decomposed into k

spanning trees.

Proof: Either (ii) or |E(H)| ≤ k(|V (H)| − 1) in (i)
implies γ(M(G)) ≤ k. Hence by our theorem,
l = F (G, k) = k(|V (G)| − 1) − |E(G)|.
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What Must Be Added to Have k Disjoint

Bases?

If k > 0 is an integer such that k < ßm = γ(M), then in
the η-spectrum η(M) = l1 ≤ l2 ≤ ... ≤ lm = γ(M), there
exists a smallest j(k) such that i(k) := ij(k) ≥ k.

Theorem For integer k > 0, let M be a matroid with
τ(M) ≤ k and let i(k) denote the smallest ij in
η(M) = l1 ≤ l2 ≤ ... ≤ lm = γ(M) such that i(k) ≥ k.
Then
(i) F (M,k) = k(r(M) − r(Ji(k)) − |E(M) − Ji(k)|.
(ii) F (M,k) = maxX⊆E(M){kr(M/X) − |M/X|}.
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Application: The Graph Case

Theorem (D. Liu, H.-J. Lai and Z.-H. Chen, Theorems
3.4 and 3.10 of [Ars Combinatoria, 93 (2009),
113-127]) Let G be a connected graph with
τ(M(G)) ≤ k and let i(k) denote the smallest ij in the
spectrum of M(G) such that i(k) ≥ k. Then
(i) F (G, k) =

k(|V (G)|−|V (G[Ji(k)])|+ω(G[Ji(k)])−1)−|E(G)−Ji(k)|.
(ii) F (G, k) = maxY ⊆E(G){k[ω(G − Y ) − 1] − |Y |}.

Proof: Apply the theorem to cycle matroids.
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Thank you!
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