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Notation

B (7. = connected graph

® 7(G): = maximum number of edge-disjoint spanning
trees of G (spanning tree packing number)
m Survey Paper: E. M. Palmer, [On the spanning tree

packing number of a graph, a survey, Discrete Math.
230 (2001) 13 - 21].
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Packing and Covering Theorems

®m w(H): = number of connected components of H.
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Packing and Covering Theorems

®m w(H): = number of connected components of H.

® Theorem (Nash-Williams, Tutte [J. London Math. Soc.
36 (1961)]) For a connected graph G, 7(G) > k iff
VX CEG),|E—-X|>kwG-X)-—1).

® o, (G):= edge-arboricity, the minimum number of
spanning trees whose union equals E(G).

®m Theorem (Nash-Williams, [J. London Math. Soc. 39
(1964)]) a1 (G) < kiff VX C E(G),
X[ < EV(GIX])] — w(G[X]).
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When does 7(G) = k?

m By Nash-Williams and Tutte, for a connected G,
7(G) = k if and only if both of the following holds:
)VX CFEG),|F-X|>kwGd-X)-1),and
(i) 3Xo C E(G), |E — Xo| < (F+1)(w(G — X) —1).
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When does 7(G) = k?

m By Nash-Williams and Tutte, for a connected G,
7(G) = k if and only if both of the following holds:
)VX CFEG),|F-X|>kwGd-X)-1),and
(i) 3Xo C E(G), |E — Xo| < (F+1)(w(G — X) —1).

m \What Is next?
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Motivations of Research

®m Suppose that 7(G) < k. What is the minimum number
of edges that must be added to &G such that the
resulting graph has k£ edge-disjoint spanning trees?
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Motivations of Research

®m Suppose that 7(G) < k. What is the minimum number
of edges that must be added to &G such that the
resulting graph has k£ edge-disjoint spanning trees?

m (G, k) = this minimum number (Must Added Edges).
Determine F(G, k).

m Suppose that 7(G) > k. Which edge € E(G) has the
property that 7(G — e) > k?

®m . (G). = edges with this property (Excessive Edges).
Determine E,(G).
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Example: F (G, K)

= F(Kg, 2) =1, F(Kg’t, 2) = 2, and F(Plo, 2) =3
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Example: F(G, K)

[ F(Kg, 2) = 1, F(Kg’t, 2) = 2, and F(Plo, 2) =3

m Every spanning tree must use one of the two edges in
the 2-cut. Thus F(G,2) = 1.
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Example: E.(G)




Example: E(G)

m|V(G)| =8,|E(G)| =18,k =2and
E(G)| —2(V(G) —1) = 4.



Example: E(G)

m|V(G) =8, |FEG)|=18k=2and
E(G)| —2(V(G) —1) = 4.

ml,(G) = E(K:), (by inspection, or proof postponed). *™



Matroids as a Generalization of Graphs

®m A matroid M consists of a finite set £ = F(M) and a
collection Z(M) of independent subsets of F,
satisfying these axioms:

(11) @ is independent.

(I12) Any subset of an independent set is independent.
(I13) All maximal independent set in any subset of £
have the same cardinality.
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Matroids as a Generalization of Graphs

®m A matroid M consists of a finite set £ = F(M) and a
collection Z(M) of independent subsets of F,
satisfying these axioms:

(11) @ is independent.

(I12) Any subset of an independent set is independent.
(I13) All maximal independent set in any subset of £
have the same cardinality.

m Circuits: = minimal dependent sets.
®m Bases = maximal independent sets

m Rank of a subset X: r(X) = cardinality of a maximal
Independent subset in X.
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Matroids as a Generalization of Graphs

m VM = M(G): Cycle matroid of G on E := E(G).
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® Independent Sets: X C £ such that X induces an
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Matroids as a Generalization of Graphs

m VM = M(G): Cycle matroid of G on E := E(G).
mVYX C F, X := G|X]| denotes the induced subgraph.

® Independent Sets: X C £ such that X induces an
acyclic subgraph

m Circuits (minimal dependent sets). X C E such that X
IS a cycle of G.

m Bases (maximal independent sets): X C E such that
X Is a spanning tree of G.

m Rank TM(G)(X) — ’V(X)| — w(X)
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Packing and Covering Theorems of Matroids

m 7 (M) : = maximum number disjoint bases of M.

—p. 10/30



Packing and Covering Theorems of Matroids

m 7 (M) : = maximum number disjoint bases of M.

mifr(M)=0,thenVk >0, 7(M) > k.

—p. 10/30



Packing and Covering Theorems of Matroids
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Packing and Covering Theorems of Matroids

m 7 (M) : = maximum number disjoint bases of M.
mifr(M)=0,thenVk >0, 7(M) > k.

® v, (M): = mimimum number of bases whose union
equals E(M).

® Theorem (Edmonds, [J. Res. Nat. Bur. Standards
Sect. B 69B, (1965), 73-77]) Let M be a matroid with
r(M) > 0. Each of the following holds.
(i) 7(M) > kifand only if VX C E(M),
[E(M) — X| = k(r(M) —r(X)).
(i) (M) < kifand only if VX C E(M),

X| < kr(X).
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Motivations of Research

m Suppose that 7(M) < k. A (7 > k)-extension of M is a
matroid M’ that contains M as a restriction with
7(M') > k. What is the minimum |E(M')| — |E(M))|
among all (7 > k)-extension of M?
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Motivations of Research

m Suppose that 7(M) < k. A (7 > k)-extension of M is a
matroid M’ that contains M as a restriction with
7(M') > k. What is the minimum |E(M')| — |E(M))|
among all (7 > k)-extension of M?

m (M, k) = this minimum number (Must Added
Elements). Determine F'(M, k).

m Suppose that 7(M) > k. Which element e € E(M) has
the property that 7(M —e) > k?

m £ (M): = elements with this property (Excessive
Elements). Determine Ey(M).

—p. 11/30



Density of a Subset

mYX C E(M) with 7(X) > 0, d(X) =
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Density of a Subset
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Density of a Subset

mVYX C E(M)with r(X) > 0, d(X) = XL,
md(M)=dEM)).
m For a (loopless) graph G, V) # X C E(G),

- | X
d(X) = V(GX])|—w(G[X]) "
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Density of a Subset

mVYX C E(M)with r(X) > 0, d(X) = XL,
md(M)=dE(M)).
m For a (loopless) graph G, V) # X C E(G),

- | X
d(X) = V(GX])|—w(G[X]) "

md(G) = d(E(Q)).
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Density of a Subset

mVYX C E(M)with r(X) > 0, d(X) = XL,

m d(M) = d(E(M)).

m For a (loopless) graph G, V) # X C E(G),
A(X) = oD

md(G) = d(E(G)).

= Example d(Kn) = %, d(KQ’t) = ti_tl’ d(Plo) = g
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Density of a Subset

mVYX C E(M)with r(X) > 0, d(X) = XL,

m d(M) = d(E(M)).

m For a (loopless) graph G, V) # X C E(G),
A(X) = Ny —sEED

mdG)=dEG)).

H Example d(Kn) = %, d(KQ’t) = 2 CZ(Plo) = g

t41?

mJ(X) > 1, equality holds iff X is independent (G| X]is a
forest).
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Matroid and Graph Contractions

mFor X C E(M), M/X is the matroid with rank function

rauyx(Y) =ru(XUY) —ry(X), VY C E - X.
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Matroid and Graph Contractions

mFor X C E(M), M/X is the matroid with rank function
rauyx(Y) =ru(XUY) —ry(X), VY C E - X.

mFor X C F(G), G/X is obtained from G by identifying
the two vertices of each edge in X. The rank function
of the cycle matroid of G/ X isVY C F — X,

rue/x)(Y) = [VXUY)|[ —w(X UY) = [V(X)] + w(X).
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Matroid and Graph Contractions

mFor X C E(M), M/X is the matroid with rank function
rauyx(Y) =ru(XUY) —ry(X), VY C E - X.

mFor X C F(G), G/X is obtained from G by identifying
the two vertices of each edge in X. The rank function
of the cycle matroid of G/ X isVY C F — X,

ruc/x)(Y) = V(X UY)| —w(XUY) - |V(X)] +w(X).

m Example

v

G G/Ks~ G/Ksg UKg U K4 ~p.13/30




Strength and Fractional Arboricity

m Reference: [Discrete Applied Math. 40 (1992)
285-302].
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Strength and Fractional Arboricity

m Reference: [Discrete Applied Math. 40 (1992)
285-302].

m Strength: n(M) = min{r(A'f):ii')() r(X) <r(M)} =

min{d(G/X) : r(X) <r(M)}.
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min{d(G/X) : r(X) <r(M)}.
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m(M) < d(M) < ~y(M).

—p. 14/30



Strength and Fractional Arboricity

m Reference: [Discrete Applied Math. 40 (1992)
285-302].

m Strength: n(M) = min{r(]‘\f)__f(lx) (X)) <r(M)} =

min{d(G/X) : r(X) <r(M)}.
m Fractional Arboricity: v(M) = max{d(X) : r(X) > 0}.
m(M) < d(M) < ~y(M).
m(G) =n(M(G)), 1(G) =v(M(G)).
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Strength and Fractional Arboricity

m Reference: [Discrete Applied Math. 40 (1992)
285-302].

m Strength: n(M) = min{r(]‘\f)__f(lx) (X)) <r(M)} =

min{d(G/X) : r(X) < r(M)}.
m Fractional Arboricity: v(M) = max{d(X) : r(X) > 0}.
m(M) < d(M) < ~y(M).
m(G) =n(M(G)), 1(G) =v(M(G)).
m(G) < d(G) <A(G).
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Strength and Fractional Arboricity

m Useful Facts ([Discrete Appl. Math. 40 (1992)
285-302]) Each of the following holds.

() 7(M) = [n(G)].
(i) v (M) = [(G)].
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Strength and Fractional Arboricity

m Useful Facts ([Discrete Appl. Math. 40 (1992)
285-302]) Each of the following holds.
(i) 7(M) = [n(G)].
(i) (M) = [7(G)].

® Theorem (Edmonds, fractional form, [DAM (1992)])
For integers p > ¢ > 0,
() 7(M) > ¢ iff M has p bases such that every element
of M Is in at most ¢ of them.
(i) v < § Iff M has p bases such that every element of
M is in at least ¢ of them.
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Characterizations

®m Theorem (Catlin, Grossman, Hobbs & HJL, [Discrete
Appl. Math. 40 (1992) 285-302]) The following are
equivalent.
(i) n(M) = d(
(ii) y(M) = d(M).
(iii) n(M) = v(M).
(iv) n(M) = £, M has p bases such that each element
IS In exactly ¢ of them.
(V) v(M) = £, M has p bases such that each element
IS In exactly ¢ of them.

M).
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n-maximal restriction

m A subset X C E(M) is n-maximal if for any Y with
XCYCEM),nM|X)>n(M|Y).
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n-maximal restriction

m A subset X C E(M) is n-maximal if for any Y with
XCYCEM),nM|X)>nM|Y).

m Example

v

G G/Kg G/K8UK§UK4
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n-maximal restriction

m A subset X C E(M) is n-maximal if for any Y with
XCYCEM),nM|X)>nM|Y).

m Example

v

G G/Kg G/KgUKgUK4

m Each of Ky, K¢, K4 IS n-maximal.
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A Decomposition Theorem (i)

®m Theorem Let M be a matroid with (M) > 0. Then
each of the following holds.
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A Decomposition Theorem (i)

®m Theorem Let M be a matroid with (M) > 0. Then
each of the following holds.

m (I) There exist an integer m > 0, and an m-tuple
(I1,1s,...,1,,) of rational numbers such that

n(M) =h<lbhh<..<l,= ’}/(G),
and a sequence of subsets
I C ... C Jo C Jy = EM);

such that for each ; with 1 <i <m, M|J; is an
n-maximal restriction of M with n(M|J;) = I;.
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A Decomposition Theorem (ii)

| (i) The Integer m, the sequences of fractions
n(M)=10 <lIl,<..<l, =vM)and subsets
Jn C ... C Jo C J; = E(M) are uniquely determined by
M.
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A Decomposition Theorem (ii)

| (i) The Integer m, the sequences of fractions
n(M)=10 <lIl,<..<l, =vM)and subsets
Jn C ... C Jo C J; = E(M) are uniquely determined by
M.

® Terminologies:
W y-spectrum: (I, 1o, ... Ly).

W 7)-decomposition: J,, C ... C Jo C J; = E(M)
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Example of The Decomposition
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Example of The Decomposition

mm =2 J = EK;), J, = E(G).
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Example of The Decomposition
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Example of The Decomposition

1

G/Kg G/KSUK%UKAL




Example of The Decomposition

1

G/Kg G/KSUK%UKAL

B =4, J4 = E(Kg), J3 = E(KG) U E(K6) U J4,
Jo = J3 U E(Ky).
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Example of The Decomposition

1

G/Kg G/KgUKgUK4

B =4, J4 = E(Kg), J3 = E(Kﬁ) U E(K6) U J4,
Jo = J3U E(Ky).

Wiy —=4,i3=3,ip,=2and i, =

W[t
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Characterization of Excessive Elements

mIf £ > 0is aninteger such that £ < 83, = v(M), then in
the n-spectrum, there exists a smallest 7, such that
i, > k. Jj, 1S the n-maximal subset at level k of M.
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Characterization of Excessive Elements

mIf £ > 0is aninteger such that £ < 83, = v(M), then in
the n-spectrum, there exists a smallest 7, such that
i, > k. Jj, 1S the n-maximal subset at level k of M.

m Theorem Let k£ > 2 be an integer. Let M be a graph
with 7(M) > k. Then each of the following holds.
() Ex(M) = E(M) if and only if n(M) > k.
(i) In general, if (M) = k and if m > 1, then
E,(G) = Jy equals to the n-maximal subset at level £ of
M.
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The Cycle Matroid Case

m Theorem Let k£ > 2 be an integer, and G be a
connected graph with 7(G) > k. Let
n(M) =101 <l <..<l,=~(M)and
Jn C ... C Jo C J; = E(M) denote the n-spectrum and
n-decomposition of M (G), respectively. Then each of
the following holds.
(i) Bx(G) = E(G) ifand only if n(G) > k.
(i) In general, if n(G) = kand if m > 1, then E,(G) = J;
equals the n-maximal subset at level £ of M (G).
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The Cycle Matroid Case

m Theorem Let k£ > 2 be an integer, and G be a
connected graph with 7(G) > k. Let
n(M) =101 <l <..<l,=~(M)and
Jn C ... C Jo C J; = E(M) denote the n-spectrum and
n-decomposition of M (G), respectively. Then each of
the following holds.
(i) Bx(G) = E(G) ifand only if n(G) > k.
(i) In general, if n(G) = kand if m > 1, then E,(G) = J;
equals the n-maximal subset at level £ of M (G).
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Example of The Theorem
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Example of The Theorem

B =2, B(G) = Jo = B(Ks), Ji = E(G).
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Example of The Theorem

. ’[:2 — g, 7:1 — 2_ —p. 24/30



What Must Be Added to Have £ Disjoint

Bases?

m et G be a graph, and let F (G, k) denote the minimum
number of additional edges that must be added to G to
result in a graph G’ with 7(G’) > k.
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to vertices, we must formulate the problem differently.
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What Must Be Added to Have £ Disjoint

Bases?

m et G be a graph, and let F (G, k) denote the minimum
number of additional edges that must be added to G to
result in a graph G’ with 7(G’) > k.

m Since matroids do not have a concept corresponding
to vertices, we must formulate the problem differently.

m For a matroid M, a matroid M’ that contains M as a
restriction, and satisfies 7(M') > k is a
(1 > k)-extension of M.

mif (M) >k, then M’ = M.
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What Must Be Added to Have k Disjoint

Bases?

mF(M, k) =min{|E(M")|—|E(M)|: M"is a
(1 > k)-extension of M }.
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What Must Be Added to Have £ Disjoint

Bases?
mF(M, k) =min{|E(M")|—|E(M)|: M"is a
(1 > k)-extension of M }.

®m Theorem Let M be a matroid and let £ > 0 be an
Integer. Each of the following holds.
(i) n(M) > kifand only if F(M,k) = 0.
(i) If v(M) < k, then

F(M, k) = kr(M) — |B(M)|.

—p. 26/30



What Must Be Added to Have £ Disjoint

Bases?

m(M, k)=min{|E(M")| — |E(M)|: M'"is a
(1 > k)-extension of M }.
m Theorem Let M be a matroid and let £ > 0 be an
Integer. Each of the following holds.
(i) n(M) > kifand only if F'(M,k) = 0.
(i) If v(M) < k, then

F(M, k) = kr(M) — |E(M)|.

m Theorem Let G be a graph. If (edge-arboricity)
a1(G) < k,then F(G, k) =k(|V(G)] —w(G)) — |[E(G)].
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Application: The Graph Case

® Theorem (Haas, Theorem 1 of [Ars Combinatoria, 63
(2002), 129-137]) The following are equivalent for a
graph G, integers £ > 0 and [ > 0.

(i) E(G)| = k(|V(G)| — 1) — [ and for subgraphs H of G
with at least 2 vertices, |E(H)| < k(|V(H)| —1).

(i) There exists some [ edges which when added to G
result in a graph that can be decomposed into &
spanning trees.

—p. 27/30



Application: The Graph Case

® Theorem (Haas, Theorem 1 of [Ars Combinatoria, 63
(2002), 129-137]) The following are equivalent for a
graph G, integers £ > 0 and [ > 0.

(i) E(G)| = k(|V(G)| — 1) — [ and for subgraphs H of G
with at least 2 vertices, |E(H)| < k(|V(H)| —1).

(i) There exists some [ edges which when added to G
result in a graph that can be decomposed into &
spanning trees.

m Proof: Either (i) or |E(H)| < k(|V(H)| — 1) in (i)
implies v(M(G)) < k. Hence by our theorem,
[ = F(G, k) =k(V(G)| - 1) - [E(G)].
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What Must Be Added to Have k Disjoint

Bases?

mIf £ > 0is aninteger such that £ < 83, = v(M), then in
the n-spectrum n(M) =1, <, < ... <l,, = v(M), there
exists a smallest j(k) such that i(k) := i) > k.
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What Must Be Added to Have £ Disjoint

Bases?

mIf £ > 0is aninteger such that £ < 83, = v(M), then in
the n-spectrum n(M) =1, <, < ... <l,, = v(M), there
exists a smallest j(k) such that i(k) := 7;) > k.

m Theorem For integer £ > 0, let M be a matroid with
7(M) < k and let i(k) denote the smallest i, in
nM)=10 <l <..<l,=vM)suchthati(k) > k.
Then
(i) F(M, k) = k(r(M) = r(Jiw) — [E(M) — Jyg|
(i) F(M, k) = maxxycpunikr(M/X) — | M/X|}.
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Application: The Graph Case

® Theorem (D. Liu, H.-J. Lai and Z.-H. Chen, Theorems
3.4 and 3.10 of [Ars Combinatoria, 93 (2009),
113-127]) Let G be a connected graph with
T(M(G)) < k and let ¢(k) denote the smallest ¢; in the
spectrum of M (G) such that i(k) > k. Then
(i) F(G,k) =
E(V(G)| = V(G D+ w(GJiw]) = 1) = [E(G) = Jiw|-
(i) F(G, k) = maxycpe){klw(G -Y) —1] — |Y]}.
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Application: The Graph Case

® Theorem (D. Liu, H.-J. Lai and Z.-H. Chen, Theorems
3.4 and 3.10 of [Ars Combinatoria, 93 (2009),
113-127]) Let G be a connected graph with
T(M(G)) < k and let ¢(k) denote the smallest ¢; in the
spectrum of M (G) such that i(k) > k. Then
(i) F(G,k) =
E(V(G)| = V(G D+ w(GJiw]) = 1) = [E(G) = Jiw|-
(i) F(G, k) = maxycpe){klw(G -Y) —1] — |Y]}.

m Proof: Apply the theorem to cycle matroids.
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Thank you!
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