Graphs (Matroids) with $k \pm \epsilon$ -disjoint spanning trees (bases)

Hong-Jian Lai, Ping Li and Yanting Liang

Department of Mathematics

West Virginia University

Morgantown, WV

Notation

 \blacksquare G: = connected graph

Notation

 \blacksquare *G*: = connected graph

■ \(\tau(G)): = maximum number of edge-disjoint spanning trees of G (spanning tree packing number)

Notation

 \blacksquare *G*: = connected graph

- $\tau(G)$: = maximum number of edge-disjoint spanning trees of G (spanning tree packing number)
- Survey Paper: E. M. Palmer, [On the spanning tree packing number of a graph, a survey, Discrete Math.
 230 (2001) 13 - 21].

• $\omega(H)$: = number of connected components of H.

- $\omega(H)$: = number of connected components of H.
- Theorem (Nash-Williams, Tutte [J. London Math. Soc. 36 (1961)]) For a connected graph G, $\tau(G) \ge k$ iff $\forall X \subseteq E(G)$, $|E X| \ge k(\omega(G X) 1)$.

- $\omega(H)$: = number of connected components of H.
- Theorem (Nash-Williams, Tutte [J. London Math. Soc. 36 (1961)]) For a connected graph G, $\tau(G) \ge k$ iff $\forall X \subseteq E(G)$, $|E X| \ge k(\omega(G X) 1)$.

■ $a_1(G)$:= edge-arboricity, the minimum number of spanning trees whose union equals E(G).

- $\omega(H)$: = number of connected components of H.
- Theorem (Nash-Williams, Tutte [J. London Math. Soc. 36 (1961)]) For a connected graph G, $\tau(G) \ge k$ iff $\forall X \subseteq E(G)$, $|E X| \ge k(\omega(G X) 1)$.
- $a_1(G)$:= edge-arboricity, the minimum number of spanning trees whose union equals E(G).
- Theorem (Nash-Williams, [J. London Math. Soc. 39 (1964)]) $a_1(G) \le k$ iff $\forall X \subseteq E(G)$, $|X| \le k |V(G[X])| - \omega(G[X]).$

When does $\tau(G) = k$?

By Nash-Williams and Tutte, for a connected G,
τ(G) = k if and only if both of the following holds:
(i) ∀X ⊆ E(G), |E − X| ≥ k(ω(G − X) − 1), and
(ii) ∃X₀ ⊆ E(G), |E − X₀| < (k + 1)(ω(G − X) − 1).

When does $\tau(G) = k$?

By Nash-Williams and Tutte, for a connected G,
τ(G) = k if and only if both of the following holds:
(i) ∀X ⊆ E(G), |E − X| ≥ k(ω(G − X) − 1), and
(ii) ∃X₀ ⊆ E(G), |E − X₀| < (k + 1)(ω(G − X) − 1).

What is next?

Suppose that \(\tau(G) < k\). What is the minimum number of edges that must be added to G such that the resulting graph has k edge-disjoint spanning trees?

Suppose that \(\tau(G) < k\). What is the minimum number of edges that must be added to G such that the resulting graph has k edge-disjoint spanning trees?

■ F(G, k) = this minimum number (Must Added Edges). Determine F(G, k).

- Suppose that \(\tau(G) < k\). What is the minimum number of edges that must be added to G such that the resulting graph has k edge-disjoint spanning trees?
- F(G, k) = this minimum number (Must Added Edges). Determine F(G, k).
- Suppose that $\tau(G) \ge k$. Which edge $\in E(G)$ has the property that $\tau(G e) \ge k$?

- Suppose that \(\tau(G) < k\). What is the minimum number of edges that must be added to G such that the resulting graph has k edge-disjoint spanning trees?
- F(G, k) = this minimum number (Must Added Edges). Determine F(G, k).
- Suppose that $\tau(G) \ge k$. Which edge $\in E(G)$ has the property that $\tau(G e) \ge k$?
- $E_k(G)$: = edges with this property (Excessive Edges). Determine $E_k(G)$.

$$F(K_3,2) = 1$$
, $F(K_{2,t},2) = 2$, and $F(P_{10},2) = 3$

 \blacksquare $F(K_3, 2) = 1$, $F(K_{2,t}, 2) = 2$, and $F(P_{10}, 2) = 3$

Every spanning tree must use one of the two edges in the 2-cut. Thus F(G, 2) = 1.

• |V(G)| = 8, |E(G)| = 18, k = 2 and |E(G)| - 2(|V(G)| - 1) = 4.

Example: $E_k(G)$

• |V(G)| = 8, |E(G)| = 18, k = 2 and |E(G)| - 2(|V(G)| - 1) = 4.

 \blacksquare $E_2(G) = E(K_5)$, (by inspection, or proof postponed). -p. 7/30

A matroid M consists of a finite set E = E(M) and a collection I(M) of independent subsets of E, satisfying these axioms:

(I1) \emptyset is independent.

(I2) Any subset of an independent set is independent. (I3) All maximal independent set in any subset of E have the same cardinality.

A matroid M consists of a finite set E = E(M) and a collection I(M) of independent subsets of E, satisfying these axioms:

(I1) \emptyset is independent.

(I2) Any subset of an independent set is independent. (I3) All maximal independent set in any subset of E have the same cardinality.

Circuits: = minimal dependent sets.

A matroid M consists of a finite set E = E(M) and a collection I(M) of independent subsets of E, satisfying these axioms:

(I1) \emptyset is independent.

(I2) Any subset of an independent set is independent. (I3) All maximal independent set in any subset of E have the same cardinality.

- Circuits: = minimal dependent sets.
- Bases = maximal independent sets

A matroid M consists of a finite set E = E(M) and a collection I(M) of independent subsets of E, satisfying these axioms:

(I1) \emptyset is independent.

(I2) Any subset of an independent set is independent. (I3) All maximal independent set in any subset of E have the same cardinality.

- Circuits: = minimal dependent sets.
- Bases = maximal independent sets
- Rank of a subset X: r(X) = cardinality of a maximal independent subset in X.

M = M(G): Cycle matroid of G on E := E(G).
∀X ⊆ E, X := G[X] denotes the induced subgraph.

- $\blacksquare M = M(G)$: Cycle matroid of G on E := E(G).
- $\blacksquare \forall X \subseteq E, X := G[X]$ denotes the induced subgraph.
- Independent Sets: $X \subseteq E$ such that X induces an acyclic subgraph

- $\blacksquare M = M(G)$: Cycle matroid of G on E := E(G).
- $\forall X \subseteq E, X := G[X]$ denotes the induced subgraph.
- Independent Sets: $X \subseteq E$ such that X induces an acyclic subgraph
- Circuits (minimal dependent sets): $X \subseteq E$ such that X is a cycle of G.

- $\blacksquare M = M(G)$: Cycle matroid of G on E := E(G).
- \blacksquare $\forall X \subseteq E, X := G[X]$ denotes the induced subgraph.
- Independent Sets: $X \subseteq E$ such that X induces an acyclic subgraph
- Circuits (minimal dependent sets): $X \subseteq E$ such that X is a cycle of G.
- Bases (maximal independent sets): $X \subseteq E$ such that X is a spanning tree of G.

- $\blacksquare M = M(G)$: Cycle matroid of G on E := E(G).
- $\forall X \subseteq E, X := G[X]$ denotes the induced subgraph.
- Independent Sets: $X \subseteq E$ such that X induces an acyclic subgraph
- Circuits (minimal dependent sets): $X \subseteq E$ such that X is a cycle of G.
- Bases (maximal independent sets): $X \subseteq E$ such that X is a spanning tree of G.

Rank $r_{M(G)}(X) = |V(X)| - \omega(X)$.

• $\tau(M)$: = maximum number disjoint bases of M.

\(\tau(M)) := maximum number disjoint bases of M.)
If \(r(M)) = 0\), then \(\forall k > 0\), \(\tau(M)) \ge k\).

- \mathbf{I} $\tau(M)$: = maximum number disjoint bases of M.
- If r(M) = 0, then $\forall k > 0$, $\tau(M) \ge k$.
- $\gamma_1(M)$: = mimimum number of bases whose union equals E(M).

- \mathbf{I} $\tau(M)$: = maximum number disjoint bases of M.
- If r(M) = 0, then $\forall k > 0$, $\tau(M) \ge k$.
- $\gamma_1(M)$: = mimimum number of bases whose union equals E(M).
- Theorem (Edmonds, [J. Res. Nat. Bur. Standards Sect. B 69B, (1965), 73-77]) Let M be a matroid with r(M) > 0. Each of the following holds. (i) $\tau(M) \ge k$ if and only if $\forall X \subseteq E(M)$, $|E(M) - X| \ge k(r(M) - r(X))$. (ii) $\gamma_1(M) \le k$ if and only if $\forall X \subseteq E(M)$, $|X| \le kr(X)$.

Suppose that \(\tau(M) < k\). A (\(\tau ≥ k)\)-extension of M is a matroid M' that contains M as a restriction with \(\tau(M')) ≥ k\). What is the minimum \|E(M')| - \|E(M)|\) among all (\(\tau ≥ k)\)-extension of M?</p>

- Suppose that \(\tau(M) < k\). A (\(\tau ≥ k)\)-extension of M is a matroid M' that contains M as a restriction with \(\tau(M')) ≥ k\). What is the minimum \|E(M')| \|E(M)|\) among all (\(\tau ≥ k)\)-extension of M?</p>
- F(M, k) = this minimum number (Must Added Elements). Determine F(M, k).
Motivations of Research

- Suppose that \(\tau(M) < k\). A (\(\tau ≥ k)\)-extension of M is a matroid M' that contains M as a restriction with \(\tau(M')) ≥ k\). What is the minimum \|E(M')| \|E(M)|\) among all (\(\tau ≥ k)\)-extension of M?</p>
- F(M, k) = this minimum number (Must Added Elements). Determine F(M, k).
- Suppose that $\tau(M) \ge k$. Which element $e \in E(M)$ has the property that $\tau(M e) \ge k$?

Motivations of Research

- Suppose that \(\tau(M) < k\). A (\(\tau ≥ k)\)-extension of M is a matroid M' that contains M as a restriction with \(\tau(M')) ≥ k\). What is the minimum \|E(M')| \|E(M)|\) among all (\(\tau ≥ k)\)-extension of M?</p>
- F(M, k) = this minimum number (Must Added Elements). Determine F(M, k).
- Suppose that $\tau(M) \ge k$. Which element $e \in E(M)$ has the property that $\tau(M e) \ge k$?
- $E_k(M)$: = elements with this property (Excessive Elements). Determine $E_k(M)$.

•
$$\forall X \subseteq E(M)$$
 with $r(X) > 0$, $d(X) = \frac{|X|}{r(X)}$.

■
$$\forall X \subseteq E(M)$$
 with $r(X) > 0$, $d(X) = \frac{|X|}{r(X)}$.
■ $d(M) = d(E(M))$.

$$\forall X \subseteq E(M) \text{ with } r(X) > 0, \ d(X) = \frac{|X|}{r(X)}.$$
$$\exists d(M) = d(E(M)).$$

1 1

For a (loopless) graph G, $\forall \emptyset \neq X \subseteq E(G)$, $d(X) = \frac{|X|}{|V(G[X])| - \omega(G[X])}$.

$$\forall X \subseteq E(M) \text{ with } r(X) > 0, \ d(X) = \frac{|X|}{r(X)}.$$

$$d(M) = d(E(M)).$$

$$For a (loopless) \text{ graph } G, \forall \emptyset \neq X \subseteq E(G),$$

$$d(X) = \frac{|X|}{|V(G[X])| - \omega(G[X])}.$$

$$d(G) = d(E(G)).$$

$$\forall X \subseteq E(M) \text{ with } r(X) > 0, \ d(X) = \frac{|X|}{r(X)}.$$
$$d(M) = d(E(M)).$$

. _ _ 1

For a (loopless) graph G, $\forall \emptyset \neq X \subseteq E(G)$, $d(X) = \frac{|X|}{|V(G[X])| - \omega(G[X])}$. d(G) = d(E(G)).

• Example $d(K_n) = \frac{n}{2}$, $d(K_{2,t}) = \frac{2t}{t+1}$, $d(P_{10}) = \frac{5}{3}$.

$$\forall X \subseteq E(M) \text{ with } r(X) > 0, \ d(X) = \frac{|X|}{r(X)}.$$
$$\exists d(M) = d(E(M)).$$

For a (loopless) graph $G, \forall \emptyset \neq X \subseteq E(G),$ $d(X) = \frac{|X|}{|V(G[X])| - \omega(G[X])}.$

$$\blacksquare d(G) = d(E(G)).$$

• Example $d(K_n) = \frac{n}{2}$, $d(K_{2,t}) = \frac{2t}{t+1}$, $d(P_{10}) = \frac{5}{3}$.

■ $d(X) \ge 1$, equality holds iff X is independent (G[X] is a forest).

Matroid and Graph Contractions

For $X \subseteq E(M)$, M/X is the matroid with rank function

$$r_{M/X}(Y) = r_M(X \cup Y) - r_M(X), \ \forall Y \subseteq E - X.$$

Matroid and Graph Contractions

For $X \subseteq E(M)$, M/X is the matroid with rank function

$$r_{M/X}(Y) = r_M(X \cup Y) - r_M(X), \ \forall Y \subseteq E - X.$$

For $X \subseteq E(G)$, G/X is obtained from G by identifying the two vertices of each edge in X. The rank function of the cycle matroid of G/X is $\forall Y \subseteq E - X$,

 $r_{M(G/X)}(Y) = |V(X \cup Y)| - \omega(X \cup Y) - |V(X)| + \omega(X).$

Matroid and Graph Contractions

For $X \subseteq E(M)$, M/X is the matroid with rank function

$$r_{M/X}(Y) = r_M(X \cup Y) - r_M(X), \ \forall Y \subseteq E - X.$$

For $X \subseteq E(G)$, G/X is obtained from G by identifying the two vertices of each edge in X. The rank function of the cycle matroid of G/X is $\forall Y \subseteq E - X$,

 $r_{M(G/X)}(Y) = |V(X \cup Y)| - \omega(X \cup Y) - |V(X)| + \omega(X).$

Example

Reference: [Discrete Applied Math. 40 (1992) 285-302].

- Reference: [Discrete Applied Math. 40 (1992) 285-302].
- Strength: $\eta(M) = \min\{\frac{|E-X|}{r(M)-r(X)} : r(X) < r(M)\} = \min\{d(G/X) : r(X) < r(M)\}.$

- Reference: [Discrete Applied Math. 40 (1992) 285-302].
- Strength: $\eta(M) = \min\{\frac{|E-X|}{r(M)-r(X)} : r(X) < r(M)\} = \min\{d(G/X) : r(X) < r(M)\}.$
- Fractional Arboricity: $\gamma(M) = \max\{d(X) : r(X) > 0\}.$

- Reference: [Discrete Applied Math. 40 (1992) 285-302].
- Strength: $\eta(M) = \min\{\frac{|E-X|}{r(M)-r(X)} : r(X) < r(M)\} = \min\{d(G/X) : r(X) < r(M)\}.$

Fractional Arboricity: $\gamma(M) = \max\{d(X) : r(X) > 0\}.$

 $\ \ \, \blacksquare \eta(M) \le d(M) \le \gamma(M).$

- Reference: [Discrete Applied Math. 40 (1992) 285-302].
- Strength: $\eta(M) = \min\{\frac{|E-X|}{r(M)-r(X)} : r(X) < r(M)\} = \min\{d(G/X) : r(X) < r(M)\}.$
- Fractional Arboricity: $\gamma(M) = \max\{d(X) : r(X) > 0\}.$
- $\ \ \, \blacksquare \eta(M) \leq d(M) \leq \gamma(M).$
- $\blacksquare \eta(G) = \eta(M(G)), \, \gamma(G) = \gamma(M(G)).$

- Reference: [Discrete Applied Math. 40 (1992) 285-302].
- Strength: $\eta(M) = \min\{\frac{|E-X|}{r(M)-r(X)} : r(X) < r(M)\} = \min\{d(G/X) : r(X) < r(M)\}.$

Fractional Arboricity: $\gamma(M) = \max\{d(X) : r(X) > 0\}.$

 $\eta(M) \le d(M) \le \gamma(M).$ $\eta(G) = \eta(M(G)), \gamma(G) = \gamma(M(G)).$ $\eta(G) \le d(G) \le \gamma(G).$

Useful Facts ([Discrete Appl. Math. 40 (1992) 285-302]) Each of the following holds.
 (i) τ(M) = [η(G)].
 (ii) γ₁(M) = [γ(G)].

- Useful Facts ([Discrete Appl. Math. 40 (1992) 285-302]) Each of the following holds.
 (i) τ(M) = [η(G)].
 (ii) γ₁(M) = [γ(G)].
- Theorem (Edmonds, fractional form, [DAM (1992)]) For integers $p \ge q > 0$, (i) $\pi(M) > p$ iff M bac *m* backs such that every element

(i) $\tau(M) \ge \frac{p}{q}$ iff *M* has *p* bases such that every element of *M* is in at most *q* of them.

(ii) $\gamma \leq \frac{p}{q}$ iff *M* has *p* bases such that every element of *M* is in at least *q* of them.

Characterizations

Theorem (Catlin, Grossman, Hobbs & HJL, [Discrete Appl. Math. 40 (1992) 285-302]) The following are equivalent.

(i)
$$\eta(M) = d(M)$$
.

(ii) $\gamma(M) = d(M)$.

(iii) $\eta(M) = \gamma(M)$.

(iv) $\eta(M) = \frac{p}{q}$, *M* has *p* bases such that each element is in exactly *q* of them.

(v) $\gamma(M) = \frac{p}{q}$, *M* has *p* bases such that each element is in exactly *q* of them.

η -maximal restriction

A subset $X \subseteq E(M)$ is η -maximal if for any Y with $X \subset Y \subseteq E(M)$, $\eta(M|X) > \eta(M|Y)$.

η -maximal restriction

A subset $X \subseteq E(M)$ is η -maximal if for any Y with $X \subset Y \subseteq E(M)$, $\eta(M|X) > \eta(M|Y)$.

Example

η -maximal restriction

A subset $X \subseteq E(M)$ is η -maximal if for any Y with $X \subset Y \subseteq E(M)$, $\eta(M|X) > \eta(M|Y)$.

Example

Each of K_8, K_6, K_4 is η -maximal.

Theorem Let M be a matroid with r(M) > 0. Then each of the following holds.

- Theorem Let M be a matroid with r(M) > 0. Then each of the following holds.
- (i) There exist an integer m > 0, and an m-tuple $(l_1, l_2, ..., l_m)$ of rational numbers such that

$$\eta(M) = l_1 < l_2 < \dots < l_m = \gamma(G),$$

and a sequence of subsets

$$J_m \subset \ldots \subset J_2 \subset J_1 = E(M);$$

such that for each *i* with $1 \le i \le m$, $M|J_i$ is an η -maximal restriction of *M* with $\eta(M|J_i) = l_i$.

• (ii) The integer m, the sequences of fractions $\eta(M) = l_1 \leq l_2 \leq ... \leq l_m = \gamma(M)$ and subsets $J_m \subset ... \subset J_2 \subset J_1 = E(M)$ are uniquely determined by M.

• (ii) The integer m, the sequences of fractions $\eta(M) = l_1 \leq l_2 \leq ... \leq l_m = \gamma(M)$ and subsets $J_m \subset ... \subset J_2 \subset J_1 = E(M)$ are uniquely determined by M.

Terminologies:

• (ii) The integer m, the sequences of fractions $\eta(M) = l_1 \leq l_2 \leq ... \leq l_m = \gamma(M)$ and subsets $J_m \subset ... \subset J_2 \subset J_1 = E(M)$ are uniquely determined by M.

Terminologies:

¬-spectrum: $(l_1, l_2, ..., l_m)$.

• (ii) The integer *m*, the sequences of fractions $\eta(M) = l_1 \leq l_2 \leq ... \leq l_m = \gamma(M)$ and subsets $J_m \subset ... \subset J_2 \subset J_1 = E(M)$ are uniquely determined by *M*.

Terminologies:

¬-spectrum: $(l_1, l_2, ..., l_m)$.

• η -decomposition: $J_m \subset ... \subset J_2 \subset J_1 = E(M)$.

 $\blacksquare m = 2, J_2 = E(K_5), J_1 = E(G).$

 $G/K_8 \cup K_6^2 \cup K_4$

 $\blacksquare m = 4, J_4 = E(K_8), J_3 = E(K_6) \cup E(K_6) \cup J_4, J_2 = J_3 \cup E(K_4).$

 $\blacksquare m = 4, J_4 = E(K_8), J_3 = E(K_6) \cup E(K_6) \cup J_4, J_2 = J_3 \cup E(K_4).$

 \bullet $i_4 = 4$, $i_3 = 3$, $i_2 = 2$ and $i_1 = \frac{5}{3}$.

Characterization of Excessive Elements

If k > 0 is an integer such that $k < \beta_m = \gamma(M)$, then in the η -spectrum, there exists a smallest i_{j_0} such that $i_{j_0} > k$. J_{j_0} is the η -maximal subset at level k of M.
Characterization of Excessive Elements

- If k > 0 is an integer such that $k < \beta_m = \gamma(M)$, then in the η -spectrum, there exists a smallest i_{j_0} such that $i_{j_0} > k$. J_{j_0} is the η -maximal subset at level k of M.
- Theorem Let k ≥ 2 be an integer. Let M be a graph with τ(M) ≥ k. Then each of the following holds.
 (i) E_k(M) = E(M) if and only if η(M) > k.
 (ii) In general, if η(M) = k and if m > 1, then E_k(G) = J₂ equals to the η-maximal subset at level k of M.

The Cycle Matroid Case

Theorem Let $k \ge 2$ be an integer, and G be a connected graph with $\tau(G) \ge k$. Let $\eta(M) = l_1 \le l_2 \le ... \le l_m = \gamma(M)$ and $J_m \subset ... \subset J_2 \subset J_1 = E(M)$ denote the η -spectrum and η -decomposition of M(G), respectively. Then each of the following holds.

(i) $E_k(G) = E(G)$ if and only if $\eta(G) > k$. (ii) In general, if $\eta(G) = k$ and if m > 1, then $E_k(G) = J_2$ equals the η -maximal subset at level k of M(G).

The Cycle Matroid Case

Theorem Let $k \ge 2$ be an integer, and G be a connected graph with $\tau(G) \ge k$. Let $\eta(M) = l_1 \le l_2 \le ... \le l_m = \gamma(M)$ and $J_m \subset ... \subset J_2 \subset J_1 = E(M)$ denote the η -spectrum and η -decomposition of M(G), respectively. Then each of the following holds.

(i) $E_k(G) = E(G)$ if and only if $\eta(G) > k$. (ii) In general, if $\eta(G) = k$ and if m > 1, then $E_k(G) = J_2$ equals the η -maximal subset at level k of M(G).

The Cycle Matroid Case

Theorem Let $k \ge 2$ be an integer, and G be a connected graph with $\tau(G) \ge k$. Let $\eta(M) = l_1 \le l_2 \le ... \le l_m = \gamma(M)$ and $J_m \subset ... \subset J_2 \subset J_1 = E(M)$ denote the η -spectrum and η -decomposition of M(G), respectively. Then each of the following holds.

(i) $E_k(G) = E(G)$ if and only if $\eta(G) > k$. (ii) In general, if $\eta(G) = k$ and if m > 1, then $E_k(G) = J_2$ equals the η -maximal subset at level k of M(G).

Example of The Theorem

Example of The Theorem

 $\blacksquare m = 2, E_2(G) = J_2 = E(K_5), J_1 = E(G).$

Example of The Theorem

•
$$m = 2, E_2(G) = J_2 = E(K_5), J_1 = E(G).$$

• $i_2 = \frac{5}{2}, i_1 = 2.$

– p. 24/30

Let G be a graph, and let F(G, k) denote the minimum number of additional edges that must be added to G to result in a graph G' with $\tau(G') \ge k$.

- Let G be a graph, and let F(G, k) denote the minimum number of additional edges that must be added to G to result in a graph G' with $\tau(G') \ge k$.
- Since matroids do not have a concept corresponding to vertices, we must formulate the problem differently.

- Let G be a graph, and let F(G, k) denote the minimum number of additional edges that must be added to G to result in a graph G' with $\tau(G') \ge k$.
- Since matroids do not have a concept corresponding to vertices, we must formulate the problem differently.
- For a matroid M, a matroid M' that contains M as a restriction, and satisfies $\tau(M') \ge k$ is a $(\tau \ge k)$ -extension of M.

- Let G be a graph, and let F(G, k) denote the minimum number of additional edges that must be added to G to result in a graph G' with $\tau(G') \ge k$.
- Since matroids do not have a concept corresponding to vertices, we must formulate the problem differently.
- For a matroid M, a matroid M' that contains M as a restriction, and satisfies $\tau(M') \ge k$ is a

 $(\tau \geq k)$ -extension of M.

If $\tau(M) \ge k$, then M' = M.

•
$$F(M,k) = \min\{|E(M')| - |E(M)| : M' \text{ is a}$$

 $(\tau \ge k)$ -extension of $M\}.$

• $F(M,k) = \min\{|E(M')| - |E(M)| : M' \text{ is a}$ $(\tau \ge k)$ -extension of $M\}.$

Theorem Let M be a matroid and let k > 0 be an integer. Each of the following holds.
(i) η(M) ≥ k if and only if F(M, k) = 0.
(ii) If γ(M) ≤ k, then

$$F(M,k) = kr(M) - |E(M)|.$$

• $F(M,k) = \min\{|E(M')| - |E(M)| : M' \text{ is a}$ $(\tau \ge k)$ -extension of $M\}.$

Theorem Let M be a matroid and let k > 0 be an integer. Each of the following holds.
(i) η(M) ≥ k if and only if F(M, k) = 0.
(ii) If γ(M) ≤ k, then

$$F(M,k) = kr(M) - |E(M)|.$$

Theorem Let G be a graph. If (edge-arboricity) $a_1(G) \le k$, then $F(G, k) = k(|V(G)| - \omega(G)) - |E(G)|$.

Theorem (Haas, Theorem 1 of [Ars Combinatoria, 63 (2002), 129-137]) The following are equivalent for a graph *G*, integers *k* > 0 and *l* > 0.
(i) *E*(*G*)| = *k*(|*V*(*G*)| − 1) − *l* and for subgraphs *H* of *G* with at least 2 vertices, |*E*(*H*)| ≤ *k*(|*V*(*H*)| − 1).
(ii) There exists some *l* edges which when added to *G* result in a graph that can be decomposed into *k* spanning trees.

- Theorem (Haas, Theorem 1 of [Ars Combinatoria, 63 (2002), 129-137]) The following are equivalent for a graph *G*, integers *k* > 0 and *l* > 0.
 (i) *E*(*G*)| = *k*(|*V*(*G*)| − 1) − *l* and for subgraphs *H* of *G* with at least 2 vertices, |*E*(*H*)| ≤ *k*(|*V*(*H*)| − 1).
 (ii) There exists some *l* edges which when added to *G* result in a graph that can be decomposed into *k* spanning trees.
- Proof: Either (ii) or $|E(H)| \le k(|V(H)| 1)$ in (i) implies $\gamma(M(G)) \le k$. Hence by our theorem, l = F(G, k) = k(|V(G)| - 1) - |E(G)|.

If k > 0 is an integer such that $k < \beta_m = \gamma(M)$, then in the η -spectrum $\eta(M) = l_1 \le l_2 \le \dots \le l_m = \gamma(M)$, there exists a smallest j(k) such that $i(k) := i_{j(k)} \ge k$.

- If k > 0 is an integer such that $k < \beta_m = \gamma(M)$, then in the η -spectrum $\eta(M) = l_1 \le l_2 \le \dots \le l_m = \gamma(M)$, there exists a smallest j(k) such that $i(k) := i_{j(k)} \ge k$.
- Theorem For integer k > 0, let M be a matroid with $\tau(M) \le k$ and let i(k) denote the smallest i_j in $\eta(M) = l_1 \le l_2 \le ... \le l_m = \gamma(M)$ such that $i(k) \ge k$. Then
 - (i) $F(M,k) = k(r(M) r(J_{i(k)}) |E(M) J_{i(k)}|.$ (ii) $F(M,k) = \max_{X \subseteq E(M)} \{kr(M/X) - |M/X|\}.$

Theorem (D. Liu, H.-J. Lai and Z.-H. Chen, Theorems 3.4 and 3.10 of [Ars Combinatoria, 93 (2009), 113-127]) Let G be a connected graph with $\tau(M(G)) \le k$ and let i(k) denote the smallest i_j in the spectrum of M(G) such that $i(k) \ge k$. Then (i) F(G,k) = $k(|V(G)| - |V(G[J_{i(k)}])| + \omega(G[J_{i(k)}]) - 1) - |E(G) - J_{i(k)}|$. (ii) $F(G,k) = \max_{Y \subseteq E(G)} \{k[\omega(G - Y) - 1] - |Y|\}.$

Theorem (D. Liu, H.-J. Lai and Z.-H. Chen, Theorems 3.4 and 3.10 of [Ars Combinatoria, 93 (2009), 113-127]) Let *G* be a connected graph with $\tau(M(G)) \le k$ and let i(k) denote the smallest i_j in the spectrum of M(G) such that $i(k) \ge k$. Then (i) F(G, k) = $k(|V(G)| - |V(G[J_{i(k)}])| + \omega(G[J_{i(k)}]) - 1) - |E(G) - J_{i(k)}|.$ (ii) $F(G, k) = \max_{Y \subseteq E(G)} \{k[\omega(G - Y) - 1] - |Y|\}.$

Proof: Apply the theorem to cycle matroids.

