Mod $(2 p+1)$-orientation of Graphs

Hong-Jian Lai

Department of Mathematics, West Virginia University

Motivation: Score Sequence

■ Suppose that n teams $v_{1}, v_{2}, \cdots, v_{n}$ are in a tournament. A non negative integer sequence $s_{1}, s_{2}, \cdots, s_{n}$ is a score sequence if it is a possible outcome that there is a permutation π on $\{1,2, \cdots, n\}$ such that for each i, the team v_{i} will win exactly $s_{\pi(i)}$ games in the tournament.

Motivation: Score Sequence

$■$ Suppose that n teams $v_{1}, v_{2}, \cdots, v_{n}$ are in a tournament. A non negative integer sequence $s_{1}, s_{2}, \cdots, s_{n}$ is a score sequence if it is a possible outcome that there is a permutation π on $\{1,2, \cdots, n\}$ such that for each i, the team v_{i} will win exactly $s_{\pi(i)}$ games in the tournament.

- Landau's score sequence problem: Given a non negative integer sequence $s_{1}, s_{2}, \cdots, s_{n}$, how do you know if this sequence is a score sequence?

Score Sequence

- Theorem 1 (Landau 1953) Let $n \geq 1$ be an integer. A nondecreasing sequence $\left(s_{1}, s_{2}, \cdots, s_{n}\right)$ of nonnegative integers is a score sequence if and only if

$$
\sum_{i=1}^{k} s_{i} \geq\binom{ k}{2}, \forall k \text { with } 1 \leq k \leq n
$$

where equality holds if and only if $n=k$.

Graph Formulation

$\square G:=$ a graph with vertices $\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$. (Representing the teams).

Graph Formulation

$\square G:=$ a graph with vertices $\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$. (Representing the teams).
$\square D(G):=$ an orientation of G. (Team v_{i} beats Team v_{j} is represented as an oriented edge from v_{i} to v_{j}).

Graph Formulation

$\square G:=$ a graph with vertices $\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$. (Representing the teams).
$\square D(G):=$ an orientation of G. (Team v_{i} beats Team v_{j} is represented as an oriented edge from v_{i} to v_{j}).
$\square \forall v \in V(G), d_{D}^{+}(v)=\#$ of edges directed from v (out-degree), $d_{D}^{-}(v)=\#$ of edges directed into v (in-degree).

Graph Formulation

$\square G:=$ a graph with vertices $\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$. (Representing the teams).
$\square D(G):=$ an orientation of G. (Team v_{i} beats Team v_{j} is represented as an oriented edge from v_{i} to v_{j}).
$\square \forall v \in V(G), d_{D}^{+}(v)=\#$ of edges directed from v (out-degree), $d_{D}^{-}(v)=\#$ of edges directed into v (in-degree).
\square Formulation: A function $c: V(G) \mapsto \mathbf{Z}$ represents a score sequence if and only if the complete graph K_{n} has an orientation D such that at each $v, d_{D}^{+}(v)=c(v)$.

Graph Formulation

$G:=a$ graph with vertices $\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$. (Representing the teams).
$D(G):=$ an orientation of G. (Team v_{i} beats Team v_{j} is represented as an oriented edge from v_{i} to v_{j}).

Problem: Suppose that G is a graph (not necessarily complete). Given an integer valued function $c: V(G) \mapsto \mathbf{Z}$, can we find an orientation $D(G)$ such that at each v, $d_{D}^{+}(v)=c(v) ?$

Motivation: From Face Coloring to

Orientation

■ Suppose a graph G has been drawn on a plane with edge crossing occurring only at vertices. (Called a plane graph). A proper face coloring of G is a way to assign colors on the faces so that adjacent faces are colored differently.

Motivation: From Face Coloring to

Orientation

■ Suppose a graph G has been drawn on a plane with edge crossing occurring only at vertices. (Called a plane graph). A proper face coloring of G is a way to assign colors on the faces so that adjacent faces are colored differently.

- Suppose a plane graph G is properly colored with three colors $\{0$-white, 1 -red, 2 -yellow $\}$.

Motivation: From Face Coloring to

Orientation

- Suppose a graph G has been drawn on a plane with edge crossing occurring only at vertices. (Called a plane graph). A proper face coloring of G is a way to assign colors on the faces so that adjacent faces are colored differently.
- Suppose a plane graph G is properly colored with three colors \{0-white, 1-red, 2-yellow \}.

■ Get an orientation D on $E(G)$: each edge e is oriented so that the face with greater color number is on the right side of the oriented edge $e \Leftrightarrow$ the greater - the smaller $=1$.

Motivation: From Face Coloring to Orientation

- Suppose a graph G has been drawn on a plane with edge crossing occurring only at vertices. (Called a plane graph). A proper face coloring of G is a way to assign colors on the faces so that adjacent faces are colored differently.
- Suppose a plane graph G is properly colored with three colors \{0-white, 1-red, 2-yellow \}.

■ Get an orientation D on $E(G)$: each edge e is oriented so that the face with greater color number is on the right side of the oriented edge $e \Leftrightarrow$ the greater - the smaller $=1$.

- The resulted orientation D satisfied that $\forall v$, $d_{D}^{+}(v)-d_{D}^{-}(v) \equiv 0(\bmod 3)$, (called a mod 3-orientation of $\left.G\right)$.

Face 3-Coloring of Planar Graphs

■ Theorem (Tutte, 1954) A plane graph G is face-3-colorable if and only if G has a mod 3-orientation.

Face 3-Coloring of Planar Graphs

■ Theorem (Tutte, 1954) A plane graph G is face-3-colorable if and only if G has a mod 3-orientation.
\square Edge-connectivity is the smallest number of edges whose removal increases the number of components.

Face 3-Coloring of Planar Graphs

■ Theorem (Tutte, 1954) A plane graph G is face-3-colorable if and only if G has a mod 3-orientation.

■ Edge-connectivity is the smallest number of edges whose removal increases the number of components.

G is not 2-edge-connected

H is 2-edge-comnected

Conjectures

■ Conjecture (Tutte 1960) Every 4-edge-connected graph has a mod 3-orientation.

Conjectures

■ Conjecture (Tutte 1960) Every 4-edge-connected graph has a mod 3-orientation.

■ Fact: There exists a 3-edge-connected graph that does not have a mod 3-orientation. (For example, K_{4}).

Conjectures

■ Conjecture (Tutte 1960) Every 4-edge-connected graph has a mod 3-orientation.

- Fact: There exists a 3-edge-connected graph that does not have a mod 3 -orientation. (For example, K_{4}).
- Conjecture (Jaeger 1988) There exists an integer $k \geq 4$ such that every k-edge-connected graph has a mod 3-orientation.

Graph Formulation

■ Tutte's mod 3-orientation problem: (also known as the 3-flow Problem) Given a graph G, can we find an orientation $D(G)$ such that at $v, d_{D}^{+}(v)-d_{D}^{-}(v) \equiv 0$ $(\bmod 3)$? Or: does G have a mod 3-orientation? (NP-complete even within planar graphs).

Graph Formulation

- Tutte's mod 3-orientation problem: (also known as the 3-flow Problem) Given a graph G, can we find an orientation $D(G)$ such that at $v, d_{D}^{+}(v)-d_{D}^{-}(v) \equiv 0$ $(\bmod 3)$? Or: does G have a mod 3-orientation? (NP-complete even within planar graphs).
- Problem: Let A be an abelian (additive) group. Given an A-valued function $b: V(G) \mapsto A$, can we find an orientation $D(G)$ such that at $v, d_{D}^{+}(v)-d_{D}^{-}(v)=b(v)$ in A ?

Notation

$G:=a \operatorname{graph}$, with vertex set

$$
V=V(G)=\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}
$$

and edge set

$$
E=E(G)=\left\{e_{1}, e_{2}, \cdots, e_{m}\right\}
$$

Notation

$\square D(G):=$ an orientation of G.

Notation

$\square D(G):=$ an orientation of G.
$\square D=\left(d_{i j}\right)_{n \times m}:=$ vertex-edge incidence matrix, where

$$
d_{i j}= \begin{cases}1 & \text { if } e_{j} \text { is oriented away from } v_{i} \\ -1 & \text { if } e_{j} \text { is oriented into } v_{i} \\ 0 & \text { otherwise }\end{cases}
$$

Notation

$\square D(G):=$ an orientation of G.
$\square D=\left(d_{i j}\right)_{n \times m}:=$ vertex-edge incidence matrix, where

$$
d_{i j}= \begin{cases}1 & \text { if } e_{j} \text { is oriented away from } v_{i} \\ -1 & \text { if } e_{j} \text { is oriented into } v_{i} \\ 0 & \text { otherwise }\end{cases}
$$

$\square \mathbf{1}=(1,1, \cdots, 1)^{T}$ is a vector each of whose component equals 1.

Notation

$\square D(G):=$ an orientation of G.
$\square D=\left(d_{i j}\right)_{n \times m}:=$ vertex-edge incidence matrix, where

$$
d_{i j}= \begin{cases}1 & \text { if } e_{j} \text { is oriented away from } v_{i} \\ -1 & \text { if } e_{j} \text { is oriented into } v_{i} \\ 0 & \text { otherwise }\end{cases}
$$

$\square \mathbf{1}=(1,1, \cdots, 1)^{T}$ is a vector each of whose component equals 1.

■ The i th row (component) of $D 1$ equals the net out degree of v_{i}.

Non-Homogeneous System Formulation

$\square A:=$ an abelian (additive) group with identity 0 , and with $|A| \geq 3$.

Description of an Orientation

■ Suppose that G has an orientation D (whose adjacency matrix is also denoted by D).

Description of an Orientation

■ Suppose that G has an orientation D (whose adjacency matrix is also denoted by D).
\square Suppose we reverse the orientation of e_{i} in D to obtain a new orientation D^{\prime}. If $\exists f: E \mapsto\{1,-1\}$ such that $f^{-1}(-1)=\left\{e_{i}\right\}$, then $D \mathbf{1}=D^{\prime} f$. Therefore, with an arbitrarily given orientation of G, any other orientation of G can be viewed as a function $\exists f: E \mapsto\{1,-1\}$.

Mod ($2 p+1$)-orientation of Graphs

$\square \mathrm{Z}_{2 p+1}:=$ the additive group of $\bmod 2 p+1$ integers.

Mod $(2 p+1)$-orientation of Graphs

$\square \mathbf{Z}_{2 p+1}:=$ the additive group of $\bmod 2 p+1$ integers.
$■$ Assume that G has a fixed orientation. If
$\exists f: E \mapsto\{1,-1\}$ such that $D f=0$ over $\mathbf{Z}_{2 p+1}$, then we say that G has a mod ($2 p+1$)-orientation.

Mod ($2 p+1$)-orientation of Graphs

$\square \mathrm{Z}_{2 p+1}:=$ the additive group of $\bmod 2 p+1$ integers.
\square Assume that G has a fixed orientation. If
$\exists f: E \mapsto\{1,-1\}$ such that $D f=0$ over $\mathbf{Z}_{2 p+1}$, then we say that G has a mod $(2 p+1)$-orientation.

■ For an undirected graph G, whether G has a mod $(2 p+1)$-orientation or not is independent of the choice of the orientation of G.

Mod ($2 p+1$)-orientation of Graphs

\square A necessary Condition: If $\forall b: V(G) \mapsto \mathbf{Z}_{2 p+1}$, $\exists f: E \mapsto\{1,-1\}$ such that $D f=b$ over $\mathbf{Z}_{2 p+1}$, then

$$
\sum_{v \in V(G)} b(v) \equiv 0(\bmod 2 p+1)
$$

Mod $(2 p+1)$-orientation of Graphs

\square A necessary Condition: If $\forall b: V(G) \mapsto \mathbf{Z}_{2 p+1}$, $\exists f: E \mapsto\{1,-1\}$ such that $D f=b$ over $\mathbf{Z}_{2 p+1}$, then

$$
\sum_{v \in V(G)} b(v) \equiv 0(\bmod 2 p+1)
$$

■ Proof: View f as an orientation D. Then

$$
\sum_{v \in V(G)} b(v)=\sum_{v \in V(G)}\left[d_{D}^{+}(v)-d_{D}^{-}(v)\right]
$$

Each edge is counted on the right hand side exactly twice, once positive and once negative.

Graphs That Are Mod $(2 p+1)$-Contractible

■ If $\forall b: V(G) \mapsto \mathbf{Z}_{2 p+1}$ with $\sum_{v \in V(G)} b(v) \equiv 0(\bmod 2 p+1)$, $\exists f: E \mapsto\{1,-1\}$ such that $D f=b$ over $\mathbf{Z}_{2 p+1}$, then we say that G is $\bmod (2 p+1)$-contractible.

Graphs That Are Mod $(2 p+1)$-Contractible

■ If $\forall b: V(G) \mapsto \mathbf{Z}_{2 p+1}$ with $\sum_{v \in V(G)} b(v) \equiv 0(\bmod 2 p+1)$, $\exists f: E \mapsto\{1,-1\}$ such that $D f=b$ over $\mathbf{Z}_{2 p+1}$, then we say that G is $\bmod (2 p+1)$-contractible.
$■$ Every mod $(2 p+1)$-contractible graph has a mod $(2 p+1)$-orientation.

Graphs That Are Mod $(2 p+1)$-Contractible

$■$ If $\forall b: V(G) \mapsto \mathbf{Z}_{2 p+1}$ with $\sum_{v \in V(G)} b(v) \equiv 0(\bmod 2 p+1)$, $\exists f: E \mapsto\{1,-1\}$ such that $D f=b$ over $\mathbf{Z}_{2 p+1}$, then we say that G is $\bmod (2 p+1)$-contractible.
$■$ Every mod $(2 p+1)$-contractible graph has a mod $(2 p+1)$-orientation.
\square For an undirected graph G, whether G is mod $(2 p+1)$-contractible or not is independent of the choice of the orientation of G.

Graphs That Are Mod $(2 p+1)$-Contractible

$■$ If $\forall b: V(G) \mapsto \mathbf{Z}_{2 p+1}$ with $\sum_{v \in V(G)} b(v) \equiv 0(\bmod 2 p+1)$, $\exists f: E \mapsto\{1,-1\}$ such that $D f=b$ over $\mathbf{Z}_{2 p+1}$, then we say that G is $\bmod (2 p+1)$-contractible.
$■$ Every mod $(2 p+1)$-contractible graph has a mod $(2 p+1)$-orientation.
\square For an undirected graph G, whether G is mod $(2 p+1)$-contractible or not is independent of the choice of the orientation of G.

■ Examples: $2 K_{2}$ and K_{5} are mod 3-contractible.

Graphs That Are Mod $(2 p+1)$-Contractible

\square Proposition: If H is a subgraph of G, and if H is mod $(2 p+1)$-contractible, then the following are equivalent:
(i) G has mod $(2 p+1)$-orientation,
(ii) the contraction G / H has $\bmod (2 p+1)$-orientation.

Graphs That Are Mod $(2 p+1)$-Contractible

■ Proposition: If H is a subgraph of G, and if H is mod $(2 p+1)$-contractible, then the following are equivalent:
(i) G has $\bmod (2 p+1)$-orientation,
(ii) the contraction G / H has $\bmod (2 p+1)$-orientation.

- Proof: Note that $\bmod (2 p+1)$-contractible implies mod $(2 p+1)$-orientation. This follows from Theorem 2 of next page.

Mod ($2 p+1$)-orientation of Graphs

■ Let $H \subseteq G$ (a connected subgraph of G). The contraction G / H is obtained by identifying all vertices of H into a single vertex and removing all edges of H.

Mod $(2 p+1)$-orientation of Graphs

■ Let $H \subseteq G$ (a connected subgraph of G). The contraction G / H is obtained by identifying all vertices of H into a single vertex and removing all edges of H.

■ Theorem 1 (Z.-H. Chen, H.-J. Lai, H. Y. Lai 2001) Suppose that $H \subseteq G$ and that H is mod 3 -contractible. Then G is mod 3-contractible if and only if G / H is \bmod 3 -contractible.

Mod ($2 p+1$)-orientation of Graphs

- Let $H \subseteq G$ (a connected subgraph of G). The contraction G / H is obtained by identifying all vertices of H into a single vertex and removing all edges of H.
- Theorem 1 (Z.-H. Chen, H.-J. Lai, H. Y. Lai 2001) Suppose that $H \subseteq G$ and that H is mod 3 -contractible. Then G is mod 3-contractible if and only if G / H is mod 3 -contractible.

■ Theorem 2 (Lai, Shao, Wu and Zhou 2006) Suppose that $H \subseteq G$ and that H is $\bmod (2 p+1)$-contractible. Then G is $\bmod (2 p+1)$-contractible if and only if G / H is $\bmod (2 p+1)$-contractible.

What do we know?

■ Theorem 6 (Grötzsch 1958) Every 4-edge-connected planar graph has a mod 3-orientation.

What do we know?

■ Theorem 6 (Grötzsch 1958) Every 4-edge-connected planar graph has a mod 3-orientation.

■ Theorem 7 (Steinburg and D. H. Younger 1989, Thomassen 1994) Every 4-edge-connected projective planar graph has a mod 3-orientation.

What do we know?

■ Theorem 6 (Grötzsch 1958) Every 4-edge-connected planar graph has a mod 3-orientation.

■ Theorem 7 (Steinburg and D. H. Younger 1989, Thomassen 1994) Every 4-edge-connected projective planar graph has a mod 3-orientation.

■ Theorem 8 (Lai and Zhang 1992) Every $4 \log _{2}(|V(G)|)$-edge-connected graph has a mod 3-orientation.

Recent Progress

- Let G be an undirected graph, D be an orientation of G. Let $S \subseteq V(G)$ be a vertex subset.

Recent Progress

\square Let G be an undirected graph, D be an orientation of G. Let $S \subseteq V(G)$ be a vertex subset.
$\square E(S)=$ the set of edges with both ends in S.

Recent Progress

\square Let G be an undirected graph, D be an orientation of G. Let $S \subseteq V(G)$ be a vertex subset.
$\square E(S)=$ the set of edges with both ends in S.
■ $\partial_{G}(S)=$ the set of edges with just one end in S.

Recent Progress

\square Let G be an undirected graph, D be an orientation of G. Let $S \subseteq V(G)$ be a vertex subset.
$\square E(S)=$ the set of edges with both ends in S.
■ $\partial_{G}(S)=$ the set of edges with just one end in S.
■ $\delta_{D}^{+}(S)=$ edges oriented from S.

Recent Progress

- Let G be an undirected graph, D be an orientation of G. Let $S \subseteq V(G)$ be a vertex subset.
$\square E(S)=$ the set of edges with both ends in S.
- $\partial_{G}(S)=$ the set of edges with just one end in S.
- $\delta_{D}^{+}(S)=$ edges oriented from S.
$\square \delta_{D}^{-}(S)=$ edges oriented into S.

Recent Progress

$■$ Necessity: Let $c: V(G) \mapsto \mathbf{Z}$. If G has an orientation D such that $d_{D}^{+}(v)=c(v), \forall v \in V(G)$, then $\forall S \subseteq V(G)$

$$
|E(S)| \leq \sum_{v \in S} c(v) \leq|E(S)|+\left|\partial_{G}(S)\right|
$$

Recent Progress

$■$ Necessity: Let $c: V(G) \mapsto \mathbf{Z}$. If G has an orientation D such that $d_{D}^{+}(v)=c(v), \forall v \in V(G)$, then $\forall S \subseteq V(G)$

$$
|E(S)| \leq \sum_{v \in S} c(v) \leq|E(S)|+\left|\partial_{G}(S)\right|
$$

■ A function $c: V(G) \mapsto \mathbf{Z}$ satisfying inequality above will be called a feasible function of G.

Proof of Necessity

■ Suppose such an orientation D exists.

Proof of Necessity

■ Suppose such an orientation D exists.
$■ \forall S \subseteq V(G), \sum_{v \in S} c(v)=\sum_{v \in S} d_{D}^{+}(v)$.

Proof of Necessity

■ Suppose such an orientation D exists.
$■ \forall S \subseteq V(G), \sum_{v \in S} c(v)=\sum_{v \in S} d_{D}^{+}(v)$.
$\begin{aligned} & \square|E(S)|=\sum_{v \in S} d_{D}^{+}(v)-\left|\delta_{D}^{+}(S)\right| \leq \sum_{v \in S} d_{D}^{+}(v) \\ & \quad \leq \sum_{v \in S} d_{D}^{+}(v)+\left|\delta_{D}^{-}(S)\right|=|E(S)|+\left|\partial_{G}(S)\right| .\end{aligned}$

Recent Progress

■ Theorem 9 (Lai, Shao, Wu and Zhou 2006) Let G be a graph, and let $c: V(G) \mapsto \mathbf{Z}$ be a function. The following are equivalent.

Recent Progress

■ Theorem 9 (Lai, Shao, Wu and Zhou 2006) Let G be a graph, and let $c: V(G) \mapsto \mathbf{Z}$ be a function. The following are equivalent.

■ (i) G has an orientation D such that $d_{D}^{+}(v)=c(v), \forall v \in V(G)$.

Recent Progress

$■$ Theorem 9 (Lai, Shao, Wu and Zhou 2006) Let G be a graph, and let $c: V(G) \mapsto \mathbf{Z}$ be a function. The following are equivalent.

■ (i) G has an orientation D such that $d_{D}^{+}(v)=c(v), \forall v \in V(G)$.
■ (ii) c is a feasible function of G. That is, $\forall S \subseteq V(G)$

$$
|E(S)| \leq \sum_{v \in S} c(v) \leq|E(S)|+\left|\partial_{G}(S)\right| .
$$

Recent Progress

■ Corollary (Landau 1953) Let $n \geq 1$ be an integer. A nondecreasing sequence $\left(s_{1}, s_{2}, \cdots, s_{n}\right)$ of nonnegative integers is a score sequence if and only if

$$
\sum_{i=1}^{k} s_{i} \geq\binom{ k}{2}, \forall k \text { with } 1 \leq k \leq n
$$

where equality holds if and only if $n=k$.

Recent Progress

■ Corollary (Landau 1953) Let $n \geq 1$ be an integer. A nondecreasing sequence $\left(s_{1}, s_{2}, \cdots, s_{n}\right)$ of nonnegative integers is a score sequence if and only if

$$
\sum_{i=1}^{k} s_{i} \geq\binom{ k}{2}, \forall k \text { with } 1 \leq k \leq n
$$

where equality holds if and only if $n=k$.
■ Proof Directly verify that the function s is feasible.

Recent Progress

- Theorem 10 (Lai, Shao, Wu and Zhou 2006) Let G be a graph. The following are equivalent.

Recent Progress

■ Theorem 10 (Lai, Shao, Wu and Zhou 2006) Let G be a graph. The following are equivalent.

■ (i) G is $\bmod (2 p+1)$-contractible.

Recent Progress

- Theorem 10 (Lai, Shao, Wu and Zhou 2006) Let G be a graph. The following are equivalent.
- (i) G is $\bmod (2 p+1)$-contractible.

■ (ii) $\forall b: V(G) \mapsto \mathrm{Z}$ satisfying both

$$
\sum_{v \in V(G)} b(v) \equiv 0(\bmod 2 p+1)
$$

and

$$
b(v) \equiv d_{G}(v)(\bmod 2), \forall v \in V(G)
$$

G has an orientation D such that $d_{D}^{+}(v)-d_{D}^{-}(v) \equiv b(v)$ $(\bmod 2 p+1), \forall v \in V(G)$.

Recent Progress

■ Corollary (Lai, Shao, Wu and Zhou, 2006) Let G be a $(4 p+1)$-regular graph. Then G has a mod $(2 p+1)$-orientation if and only if $V(G)$ has a partition (V^{+}, V^{-}) such that $\forall U \subseteq V(G)$,

$$
\left|\partial_{G}(U)\right| \geq(2 p+1)| | U \cap V^{+}\left|-\left|U \cap V^{-}\right|\right| .
$$

Recent Progress

■ Corollary (Lai, Shao, Wu and Zhou, 2006) Let G be a $(4 p+1)$-regular graph. Then G has a mod $(2 p+1)$-orientation if and only if $V(G)$ has a partition (V^{+}, V^{-}) such that $\forall U \subseteq V(G)$,

$$
\left|\partial_{G}(U)\right| \geq(2 p+1)| | U \cap V^{+}\left|-\left|U \cap V^{-}\right|\right| .
$$

- Proof of the "only if" part Suppose G has a mod 3 -orientation D. Since G is 5 -regular, $\forall v \in V(G)$, either $d_{D}^{+}(v)=4 p$ or $d_{D}^{+}(v)=1$. Define $V^{+}=\left\{v \in V(D): d_{D}^{+}(v)=4 p\right\}$ and $V^{-}=V(D)-V^{+}$. Apply Theorem 10.

Recent Progress

■ Proof of the "if" part Define a map $b: V(G) \mapsto \mathbf{Z}$ satisfying $b\left(V^{+}\right)=\{2 p+1\}$ and $b\left(V^{-}\right)=\{-2 p-1\}$. Since G is $(4 p+1)$-regular, $\forall v \in V(G), b(v) \equiv d_{G}(v)$ (mod 2).

Recent Progress

■ Proof of the "if" part Define a map $b: V(G) \mapsto \mathbf{Z}$ satisfying $b\left(V^{+}\right)=\{2 p+1\}$ and $b\left(V^{-}\right)=\{-2 p-1\}$. Since G is $(4 p+1)$-regular, $\forall v \in V(G), b(v) \equiv d_{G}(v)$ (mod 2).

■ When $U=V(G)$, we have $\left|V^{+}\right|=\left|V^{-}\right|$, and so
$\sum_{v \in V(G)} b(v)=0$.

Recent Progress

■ Proof of the "if" part Define a map $b: V(G) \mapsto \mathbf{Z}$ satisfying $b\left(V^{+}\right)=\{2 p+1\}$ and $b\left(V^{-}\right)=\{-2 p-1\}$. Since G is $(4 p+1)$-regular, $\forall v \in V(G), b(v) \equiv d_{G}(v)$ (mod 2).

■ When $U=V(G)$, we have $\left|V^{+}\right|=\left|V^{-}\right|$, and so
$\sum_{v \in V(G)} b(v)=0$.
\square By the given inequality with $U=S$,
$\left|\sum_{v \in V(G)} b(v)\right|=(2 p+1)| | S \cap V^{+}\left|-\left|S \cap V^{-} \| \leq\left|\partial_{G}(U)\right|\right.\right.$,

Recent Progress

■ Proof of the "if" part Define a map $b: V(G) \mapsto \mathbf{Z}$ satisfying $b\left(V^{+}\right)=\{2 p+1\}$ and $b\left(V^{-}\right)=\{-2 p-1\}$. Since G is $(4 p+1)$-regular, $\forall v \in V(G), b(v) \equiv d_{G}(v)$ (mod 2).

■ When $U=V(G)$, we have $\left|V^{+}\right|=\left|V^{-}\right|$, and so
$\sum_{v \in V(G)} b(v)=0$.
■ By the given inequality with $U=S$,

$$
\left|\sum_{v \in V(G)} b(v)\right|=(2 p+1)| | S \cap V^{+}\left|-\left|S \cap V^{-} \| \leq\left|\partial_{G}(U)\right|\right.\right.
$$

■ Apply Theorem 10.

Recent Progress

■ Corollary (Da Silva and Dahad, 2005) Let G be a 5 -regular graph. Then G has a mod 3-orientation if and only if $V(G)$ has a partition $\left(V^{+}, V^{-}\right)$such that $\forall U \subseteq V(G)$,

$$
\left|\partial_{G}(U)\right| \geq 3| | U \cap V^{+}\left|-\left|U \cap V^{-}\right|\right|
$$

Recent Progress

■ Corollary (Da Silva and Dahad, 2005) Let G be a 5 -regular graph. Then G has a mod 3-orientation if and only if $V(G)$ has a partition $\left(V^{+}, V^{-}\right)$such that $\forall U \subseteq V(G)$,

$$
\left|\partial_{G}(U)\right| \geq 3| | U \cap V^{+}\left|-\left|U \cap V^{-}\right|\right|
$$

\square Proof Let $p=1$.

Recent Progress

■ Theorem 11 (Lai, Shao, Wu and Zhou 2006) If $n=|V(G)|$ and G is not $\bmod (2 p+1)$-contractible, then:

Recent Progress

■ Theorem 11 (Lai, Shao, Wu and Zhou 2006) If $n=|V(G)|$ and G is not $\bmod (2 p+1)$-contractible, then:

■ (i) $V(G)$ is a disjoint union $V(G)=V_{1} \dot{\cup} V_{2}$ with $\left|V_{1}\right|=k$, $\left|V_{2}\right|=n-k$, and

$$
\left\lceil\frac{\left|E\left(V_{1}, V_{2}\right)\right|+1}{k}\right\rceil+\left\lceil\frac{\left|E\left(V_{1}, V_{2}\right)\right|+1}{n-k}\right\rceil \leq 4 p+2
$$

Recent Progress

■ Theorem 11 (Lai, Shao, Wu and Zhou 2006) If $n=|V(G)|$ and G is not $\bmod (2 p+1)$-contractible, then:

■ (i) $V(G)$ is a disjoint union $V(G)=V_{1} \dot{\cup} V_{2}$ with $\left|V_{1}\right|=k$, $\left|V_{2}\right|=n-k$, and

$$
\left\lceil\frac{\left|E\left(V_{1}, V_{2}\right)\right|+1}{k}\right\rceil+\left\lceil\frac{\left|E\left(V_{1}, V_{2}\right)\right|+1}{n-k}\right\rceil \leq 4 p+2
$$

■ (ii) $V(G)$ is a disjoint union $V(G)=V_{1} \dot{\bigcup} V_{2}$ with $\left|V_{1}\right|=k$, $\left|V_{2}\right|=n-k$, and

$$
\left|E\left(V_{1}, V_{2}\right)\right| \leq \frac{(4 p+2) k(n-k)}{n}
$$

Recent Progress

■ Example: For any positive $p \in \mathbf{Z}, K_{4 p+1}$ is mod $(2 p+1)$-contractible.

Recent Progress

■ Example: For any positive $p \in \mathbf{Z}, K_{4 p+1}$ is mod $(2 p+1)$-contractible.

■ Proof: $n=4 p+1$. By Theorem 11, $V\left(K_{n}\right)$ can be partitioned into two subsets V_{1} and V_{2} with $\left|V_{1}\right|=k$ and $\left|V_{2}\right|=n-k$ satisfying inequality Theorem 11(ii). Since $\left|E\left(V_{1}, V_{2}\right)\right|=k(n-k)$, we have

$$
\begin{aligned}
& \left\lceil\frac{\left|E\left(V_{1}, V_{2}\right)\right|+1}{k}\right\rceil+\left\lceil\frac{\left|E\left(V_{1}, V_{2}\right)\right|+1}{4 p-k}\right\rceil \\
= & \left\lceil\frac{k(n-k)+1}{k}\right\rceil+\left\lceil\frac{\mid k(n-k)+1}{n-k}\right\rceil \\
= & (n-k+1)+(k+1)=n+2>4 p+2 .
\end{aligned}
$$

Recent Progress

■ Theorem 12 (Lai, Shao, Wu and Zhou 2006) Let n, p be positive integers, and let $f(n)=\frac{(2 p+1) n \log _{2}(n)}{2}$ be a function. If G is a graph with n vertices and if $|E(G)| \geq f(n)$, then G has a subgraph H with $E(H) \neq \emptyset$ which is $\bmod (2 p+1)$-contractible.

Recent Progress

- Theorem 12 (Lai, Shao, Wu and Zhou 2006) Let n, p be positive integers, and let $f(n)=\frac{(2 p+1) n \log _{2}(n)}{2}$ be a function. If G is a graph with n vertices and if $|E(G)| \geq f(n)$, then G has a subgraph H with $E(H) \neq \emptyset$ which is $\bmod (2 p+1)$-contractible.
- Theorem 13 (Lai, Shao, Wu and Zhou 2006) Let G be a graph with n vertices. If G is
$(2 p+1) \log _{2}(n)$-edge-connected, then G is mod ($2 p+1$)-contractible.

Recent Progress

- Theorem 12 (Lai, Shao, Wu and Zhou 2006) Let n, p be positive integers, and let $f(n)=\frac{(2 p+1) n \log _{2}(n)}{2}$ be a function. If G is a graph with n vertices and if $|E(G)| \geq f(n)$, then G has a subgraph H with $E(H) \neq \emptyset$ which is $\bmod (2 p+1)$-contractible.
- Theorem 13 (Lai, Shao, Wu and Zhou 2006) Let G be a graph with n vertices. If G is
$(2 p+1) \log _{2}(n)$-edge-connected, then G is mod ($2 p+1$)-contractible.
- Proof: Use connectivity to count the number of edges and use Theorem 12 to find a contractible subgraph.

Recent Progress

- Theorem 13 (Lai, Shao, Wu and Zhou 2006) Let G be a graph with n vertices. If G is
$(2 p+1) \log _{2}(n)$-edge-connected, then G is mod
$(2 p+1)$-contractible.

Recent Progress

- Theorem 13 (Lai, Shao, Wu and Zhou 2006) Let G be a graph with n vertices. If G is
$(2 p+1) \log _{2}(n)$-edge-connected, then G is mod
$(2 p+1)$-contractible.
■ Corollary Let G be a graph with n vertices. If G is $3 \log _{2}(n)$-edge-connected, then G is mod 3-contractible.

Recent Progress

- Theorem 13 (Lai, Shao, Wu and Zhou 2006) Let G be a graph with n vertices. If G is
$(2 p+1) \log _{2}(n)$-edge-connected, then G is mod
$(2 p+1)$-contractible.
- Corollary Let G be a graph with n vertices. If G is $3 \log _{2}(n)$-edge-connected, then G is mod 3 -contractible.
- Theorem 8 (Lai and Zhang 1992) Let G be a graph with n vertices. If G is $4 \log _{2}(n)$-edge-connected, then G has a mod 3-orientation.

$K_{1,3}$-Decomposition

- A claw is an induced $K_{1,3}$

Figure 1.3

$K_{1,3}$-Decomposition

\square A claw is an induced $K_{1,3}$

Figure 1.3
\square A connected loopless graph with 3 edges and a vertex of degree 3 is called a generalized claw.

$K_{1,3}$-Decomposition

■ A graph G with $|E(G)| \equiv 0(\bmod 3)$ has a claw-decomposition if $E(G)$ can be partitioned into disjoint unions $E(G)=X_{1} \cup X_{2} \cup \cdots \cup X_{k}$ such that for each i with $1 \leq i \leq k, G\left[X_{i}\right]$ is a generalized claw.

$K_{1,3}$-Decomposition

■ A graph G with $|E(G)| \equiv 0(\bmod 3)$ has a claw-decomposition if $E(G)$ can be partitioned into disjoint unions $E(G)=X_{1} \cup X_{2} \cup \cdots \cup X_{k}$ such that for each i with $1 \leq i \leq k, G\left[X_{i}\right]$ is a generalized claw.

■ Theorem 14 (Barat and Thomassen 2004) If there exists an integer k such that every k-edge-connected graph G with $|E(G)| \equiv 0(\bmod 3)$ has a claw-decomposition, then every k-edge-connected graph G has a mod 3-orientation.

$K_{1,3}$-Decomposition

- Conjecture 15 (Barat and Thomassen 2004) Every 4-edge-connected simple planar graph G with $|E(G)| \equiv 0(\bmod 3)$ has a claw-decomposition.

$K_{1,3}$-Decomposition

- Conjecture 15 (Barat and Thomassen 2004) Every 4-edge-connected simple planar graph G with $|E(G)| \equiv 0(\bmod 3)$ has a claw-decomposition.

■ Question in our minds: How do we approach this conjecture?

$K_{1,2 p+1}$-Decomposition

- A connected loopless graph with $2 p+1$ edges and a vertex of degree $2 p+1$ is called a generalized $K_{1,2 p+1}$.

$K_{1,2 p+1}$-Decomposition

■ A connected loopless graph with $2 p+1$ edges and a vertex of degree $2 p+1$ is called a generalized $K_{1,2 p+1}$.

- A graph G with $|E(G)| \equiv 0(\bmod 2 p+1)$ has a $K_{1,2 p+1}$-decomposition if $E(G)$ can be partitioned into disjoint unions $E(G)=X_{1} \cup X_{2} \cup \cdots \cup X_{k}$ such that for each i with $1 \leq i \leq k, G\left[X_{i}\right]$ is a generalized $K_{1,2 p+1}$.

$K_{1,2 p+1}$-Decomposition

$■$ Theorem 16 (Lai, Shao, Wu and Zhou 2006) Fix $k>0$. The every k-edge-connected (planar) graph G is mod $(2 p+1)$-contractible if and only if every k-edge-connected (planar) graph G with $|E(G)| \equiv 0$ $(\bmod 2 p+1)$ has a $K_{1,2 p+1}$-decomposition.

$K_{1,2 p+1}$-Decomposition

$■$ Theorem 16 (Lai, Shao, Wu and Zhou 2006) Fix $k>0$. The every k-edge-connected (planar) graph G is mod $(2 p+1)$-contractible if and only if every k-edge-connected (planar) graph G with $|E(G)| \equiv 0$ $(\bmod 2 p+1)$ has a $K_{1,2 p+1}$-decomposition.

- Theorem 17 (Kral, Pangrac and Voss 2005) There exists a family of 4-edge-connected planar graphs G that cannot be mod 3-contractible.

$K_{1,2 p+1}$-Decomposition

$■$ Theorem 16 (Lai, Shao, Wu and Zhou 2006) Fix $k>0$. The every k-edge-connected (planar) graph G is mod $(2 p+1)$-contractible if and only if every k-edge-connected (planar) graph G with $|E(G)| \equiv 0$ $(\bmod 2 p+1)$ has a $K_{1,2 p+1}$-decomposition.

- Theorem 17 (Kral, Pangrac and Voss 2005) There exists a family of 4-edge-connected planar graphs G that cannot be mod 3-contractible.
- Corollary 18 There exist 4-edge-connected planar graphs that cannot have a $K_{1,3}$-decomposition.

$K_{1,2 p+1}$-Decomposition

$■$ Theorem 16 (Lai, Shao, Wu and Zhou 2006) Fix $k>0$. The every k-edge-connected (planar) graph G is mod $(2 p+1)$-contractible if and only if every k-edge-connected (planar) graph G with $|E(G)| \equiv 0$ $(\bmod 2 p+1)$ has a $K_{1,2 p+1}$-decomposition.

- Theorem 17 (Kral, Pangrac and Voss 2005) There exists a family of 4-edge-connected planar graphs G that cannot be mod 3-contractible.
- Corollary 18 There exist 4-edge-connected planar graphs that cannot have a $K_{1,3}$-decomposition.
\square Proof Apply Theorems 16 and 17 when $p=1$.

$K_{1,2 p+1}$-Decomposition

- Question 18 Is there an integer k such that every k-edge-connected planar graph G with $|E(G)| \equiv 0$ $(\bmod 3)$ has a $K_{1,3}$-decomposition?

$K_{1,2 p+1}$-Decomposition

■ Question 18 Is there an integer k such that every k-edge-connected planar graph G with $|E(G)| \equiv 0$ $(\bmod 3)$ has a $K_{1,3}$-decomposition?

■ Theorem 19 (H.-J. Lai and X. Li, 2006) Every 5-edge-connected planar graph is mod 3-contractible.

$K_{1,2 p+1}$-Decomposition

- Question 18 Is there an integer k such that every k-edge-connected planar graph G with $|E(G)| \equiv 0$ $(\bmod 3)$ has a $K_{1,3}$-decomposition?

■ Theorem 19 (H.-J. Lai and X. Li, 2006) Every 5 -edge-connected planar graph is mod 3 -contractible.

- Corollary 20 Every 5-edge-connected planar graph with $|E(G)| \equiv 0(\bmod 3)$ has a claw-decomposition.

$K_{1,2 p+1}$-Decomposition

- Question 18 Is there an integer k such that every k-edge-connected planar graph G with $|E(G)| \equiv 0$ $(\bmod 3)$ has a $K_{1,3}$-decomposition?
- Theorem 19 (H.-J. Lai and X. Li, 2006) Every

5 -edge-connected planar graph is mod 3-contractible.

- Corollary 20 Every 5-edge-connected planar graph with $|E(G)| \equiv 0(\bmod 3)$ has a claw-decomposition.

■ Proof Apply Theorems 16 and 19 when $p=1$.

Thank You!

