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Motivation: Score Sequence

Suppose that n teams v1, v2, · · · , vn are in a
tournament. A non negative integer sequence
s1, s2, · · · , sn is a score sequence if it is a possible
outcome that there is a permutation π on {1, 2, · · · , n}

such that for each i, the team vi will win exactly sπ(i)

games in the tournament.

Landau’s score sequence problem: Given a non
negative integer sequence s1, s2, · · · , sn, how do you
know if this sequence is a score sequence?
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Score Sequence

Theorem 1 (Landau 1953) Let n ≥ 1 be an integer. A
nondecreasing sequence (s1, s2, · · · , sn) of
nonnegative integers is a score sequence if and only if

k
∑

i=1

si ≥





k

2



 ,∀k with 1 ≤ k ≤ n,

where equality holds if and only if n = k.
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Graph Formulation

G: = a graph with vertices {v1, v2, · · · , vn}.
(Representing the teams).

D(G): = an orientation of G. (Team vi beats Team vj is
represented as an oriented edge from vi to vj).

∀v ∈ V (G), d+
D(v) = # of edges directed from v

(out-degree), d−

D(v) = # of edges directed into v

(in-degree).

Formulation: A function c : V (G) 7→ Z represents a
score sequence if and only if the complete graph Kn

has an orientation D such that at each v, d+
D(v) = c(v).
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Graph Formulation

G: = a graph with vertices {v1, v2, · · · , vn}. (Representing
the teams).

D(G): = an orientation of G. (Team vi beats Team vj is
represented as an oriented edge from vi to vj).

Problem: Suppose that G is a graph (not necessarily
complete). Given an integer valued function c : V (G) 7→ Z,
can we find an orientation D(G) such that at each v,
d+

D(v) = c(v)?
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Motivation: From Face Coloring to

Orientation

Suppose a graph G has been drawn on a plane with edge

crossing occurring only at vertices. (Called a plane graph).

A proper face coloring of G is a way to assign colors on the

faces so that adjacent faces are colored differently.

Suppose a plane graph G is properly colored with three

colors {0-white, 1-red, 2-yellow }.

Get an orientation D on E(G): each edge e is oriented so

that the face with greater color number is on the right side of

the oriented edge e ⇔ the greater − the smaller = 1.

The resulted orientation D satisfied that ∀v,

d
+
D(v)−d

−

D(v) ≡ 0 (mod 3), (called a mod 3-orientation of G).
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Face 3-Coloring of Planar Graphs

Theorem (Tutte, 1954) A plane graph G is face-3-colorable

if and only if G has a mod 3-orientation.

Edge-connectivity is the smallest number of edges whose

removal increases the number of components.
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Conjectures

Conjecture (Tutte 1960) Every 4-edge-connected
graph has a mod 3-orientation.

Fact: There exists a 3-edge-connected graph that
does not have a mod 3-orientation. (For example, K4).

Conjecture (Jaeger 1988) There exists an integer
k ≥ 4 such that every k-edge-connected graph has a
mod 3-orientation.
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Graph Formulation

Tutte’s mod 3-orientation problem: (also known as the
3-flow Problem) Given a graph G, can we find an
orientation D(G) such that at v, d+

D(v) − d−

D(v) ≡ 0

(mod 3)? Or: does G have a mod 3-orientation?
(NP-complete even within planar graphs).

Problem: Let A be an abelian (additive) group. Given
an A-valued function b : V (G) 7→ A, can we find an
orientation D(G) such that at v, d+

D(v) − d−

D(v) = b(v) in
A?
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Notation

G: = a graph, with vertex set

V = V (G) = {v1, v2, · · · , vn},

and edge set

E = E(G) = {e1, e2, · · · , em}.
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Notation

D(G): = an orientation of G.

D = (dij)n×m: = vertex-edge incidence matrix, where

dij =















1 if ej is oriented away from vi

−1 if ej is oriented into vi

0 otherwise

.

1 = (1, 1, · · · , 1)T is a vector each of whose component
equals 1.

The ith row (component) of D1 equals the net out
degree of vi.
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Non-Homogeneous System Formulation

A: = an abelian (additive) group with identity 0, and
with |A| ≥ 3.

A function f : E 7→ A is viewed as a vector

f = (f(e1), f(e2), · · · , f(em))T .

A function b : V 7→ A is viewed as a vector

b = (b(v1), b(v2), · · · , b(vn))T .

Problem: Given a graph G, can we find an orientation
D(G) such that D1 = 0 in A?

Nonhomogeneous Problem: Given a graph G, and a
function b 7→ A, can we find an orientation D(G) such
that D1 = b in A?
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Description of an Orientation

Suppose that G has an orientation D (whose
adjacency matrix is also denoted by D).

Suppose we reverse the orientation of ei in D to obtain
a new orientation D′. If ∃f : E 7→ {1,−1} such that
f−1(−1) = {ei}, then D1 = D′f . Therefore, with an
arbitrarily given orientation of G, any other orientation
of G can be viewed as a function ∃f : E 7→ {1,−1} .
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Mod (2p + 1)-orientation of Graphs

Z2p+1: = the additive group of mod 2p + 1 integers.

Assume that G has a fixed orientation. If
∃f : E 7→ {1,−1} such that Df = 0 over Z2p+1, then we
say that G has a mod (2p + 1)-orientation.

For an undirected graph G, whether G has a mod
(2p + 1)-orientation or not is independent of the choice
of the orientation of G.
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Mod (2p + 1)-orientation of Graphs

A necessary Condition: If ∀b : V (G) 7→ Z2p+1,
∃f : E 7→ {1,−1} such that Df = b over Z2p+1, then

∑

v∈V (G)

b(v) ≡ 0 (mod 2p + 1).

Proof: View f as an orientation D. Then
∑

v∈V (G)

b(v) =
∑

v∈V (G)

[d+
D(v) − d−

D(v)].

Each edge is counted on the right hand side exactly
twice, once positive and once negative.
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Mod (2p + 1)-orientation of Graphs

A necessary Condition: If ∀b : V (G) 7→ Z2p+1,
∃f : E 7→ {1,−1} such that Df = b over Z2p+1, then

∑

v∈V (G)

b(v) ≡ 0 (mod 2p + 1).

Proof: View f as an orientation D. Then
∑

v∈V (G)

b(v) =
∑

v∈V (G)

[d+
D(v) − d−

D(v)].

Each edge is counted on the right hand side exactly
twice, once positive and once negative.

– p. 14/38



Graphs That Are Mod (2p + 1)-Contractible

If ∀b : V (G) 7→ Z2p+1 with
∑

v∈V (G)

b(v) ≡ 0 (mod 2p + 1),

∃f : E 7→ {1,−1} such that Df = b over Z2p+1, then we
say that G is mod (2p + 1)-contractible.

Every mod (2p + 1)-contractible graph has a mod
(2p + 1)-orientation.

For an undirected graph G, whether G is mod
(2p + 1)-contractible or not is independent of the choice
of the orientation of G.

Examples: 2K2 and K5 are mod 3-contractible.
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Graphs That Are Mod (2p + 1)-Contractible

Proposition: If H is a subgraph of G, and if H is mod
(2p + 1)-contractible, then the following are equivalent:
(i) G has mod (2p + 1)-orientation,
(ii) the contraction G/H has mod (2p + 1)-orientation.

Proof: Note that mod (2p + 1)-contractible implies mod
(2p + 1)-orientation. This follows from Theorem 2 of
next page.
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Mod (2p + 1)-orientation of Graphs

Let H ⊆ G (a connected subgraph of G). The
contraction G/H is obtained by identifying all vertices
of H into a single vertex and removing all edges of H.

Theorem 1 (Z.-H. Chen, H.-J. Lai, H. Y. Lai 2001)
Suppose that H ⊆ G and that H is mod 3-contractible.
Then G is mod 3-contractible if and only if G/H is mod
3-contractible.

Theorem 2 (Lai, Shao, Wu and Zhou 2006) Suppose
that H ⊆ G and that H is mod (2p + 1)-contractible.
Then G is mod (2p + 1)-contractible if and only if G/H

is mod (2p + 1)-contractible.
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What do we know?

Theorem 6 (Grötzsch 1958) Every 4-edge-connected
planar graph has a mod 3-orientation.

Theorem 7 (Steinburg and D. H. Younger 1989,
Thomassen 1994) Every 4-edge-connected projective
planar graph has a mod 3-orientation.

Theorem 8 (Lai and Zhang 1992) Every
4 log2(|V (G)|)-edge-connected graph has a mod
3-orientation.
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Recent Progress

Let G be an undirected graph, D be an orientation of
G. Let S ⊆ V (G) be a vertex subset.

E(S) = the set of edges with both ends in S.

∂G(S) = the set of edges with just one end in S.

δ+
D(S) = edges oriented from S.

δ−D(S) = edges oriented into S.
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Recent Progress

Necessity: Let c : V (G) 7→ Z. If G has an orientation D

such that d+
D(v) = c(v),∀v ∈ V (G), then ∀S ⊆ V (G)

|E(S)| ≤
∑

v∈S

c(v) ≤ |E(S)| + |∂G(S)|.

A function c : V (G) 7→ Z satisfying inequality above will
be called a feasible function of G.

– p. 20/38
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Proof of Necessity

Suppose such an orientation D exists.

∀S ⊆ V (G),
∑

v∈S

c(v) =
∑

v∈S

d+
D(v).

|E(S)| =
∑

v∈S

d+
D(v) − |δ+

D(S)| ≤
∑

v∈S

d+
D(v)

≤
∑

v∈S

d+
D(v) + |δ−D(S)| = |E(S)| + |∂G(S)|.
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∑

v∈S

d+
D(v)

≤
∑

v∈S

d+
D(v) + |δ−D(S)| = |E(S)| + |∂G(S)|.
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Recent Progress

Theorem 9 (Lai, Shao, Wu and Zhou 2006) Let G be a
graph, and let c : V (G) 7→ Z be a function. The
following are equivalent.

(i) G has an orientation D such that
d+

D(v) = c(v),∀v ∈ V (G).

(ii) c is a feasible function of G. That is, ∀S ⊆ V (G)

|E(S)| ≤
∑

v∈S

c(v) ≤ |E(S)| + |∂G(S)|.

– p. 22/38



Recent Progress

Theorem 9 (Lai, Shao, Wu and Zhou 2006) Let G be a
graph, and let c : V (G) 7→ Z be a function. The
following are equivalent.

(i) G has an orientation D such that
d+

D(v) = c(v),∀v ∈ V (G).

(ii) c is a feasible function of G. That is, ∀S ⊆ V (G)

|E(S)| ≤
∑

v∈S

c(v) ≤ |E(S)| + |∂G(S)|.

– p. 22/38



Recent Progress

Theorem 9 (Lai, Shao, Wu and Zhou 2006) Let G be a
graph, and let c : V (G) 7→ Z be a function. The
following are equivalent.

(i) G has an orientation D such that
d+

D(v) = c(v),∀v ∈ V (G).

(ii) c is a feasible function of G. That is, ∀S ⊆ V (G)

|E(S)| ≤
∑

v∈S

c(v) ≤ |E(S)| + |∂G(S)|.

– p. 22/38



Recent Progress

Corollary (Landau 1953) Let n ≥ 1 be an integer. A
nondecreasing sequence (s1, s2, · · · , sn) of
nonnegative integers is a score sequence if and only if

k
∑

i=1

si ≥





k

2



 ,∀k with 1 ≤ k ≤ n,

where equality holds if and only if n = k.

Proof Directly verify that the function s is feasible.
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Recent Progress

Theorem 10 (Lai, Shao, Wu and Zhou 2006) Let G be
a graph. The following are equivalent.

(i) G is mod (2p + 1)-contractible.

(ii) ∀b : V (G) 7→ Z satisfying both
∑

v∈V (G)

b(v) ≡ 0 (mod 2p + 1)

and

b(v) ≡ dG(v) (mod 2),∀v ∈ V (G),

G has an orientation D such that d+
D(v) − d−

D(v) ≡ b(v)

(mod 2p + 1), ∀v ∈ V (G).

– p. 24/38
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Theorem 10 (Lai, Shao, Wu and Zhou 2006) Let G be
a graph. The following are equivalent.

(i) G is mod (2p + 1)-contractible.

(ii) ∀b : V (G) 7→ Z satisfying both
∑
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Recent Progress

Corollary (Lai, Shao, Wu and Zhou, 2006) Let G be a
(4p + 1)-regular graph. Then G has a mod
(2p + 1)-orientation if and only if V (G) has a partition
(V +, V −) such that ∀U ⊆ V (G),

|∂G(U)| ≥ (2p + 1)||U ∩ V +| − |U ∩ V −||.

Proof of the "only if" part Suppose G has a mod
3-orientation D. Since G is 5-regular, ∀v ∈ V (G), either
d+

D(v) = 4p or d+
D(v) = 1. Define

V + = {v ∈ V (D) : d+
D(v) = 4p} and V − = V (D) − V +.

Apply Theorem 10.
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Recent Progress

Proof of the "if" part Define a map b : V (G) 7→ Z

satisfying b(V +) = {2p + 1} and b(V −) = {−2p − 1}.
Since G is (4p + 1)-regular, ∀v ∈ V (G), b(v) ≡ dG(v)

(mod 2).

When U = V (G), we have |V +| = |V −|, and so
∑

v∈V (G)

b(v) = 0.

By the given inequality with U = S,

|
∑

v∈V (G)

b(v)| = (2p + 1)||S ∩ V +| − |S ∩ V −|| ≤ |∂G(U)|,

Apply Theorem 10.
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Recent Progress

Corollary (Da Silva and Dahad, 2005) Let G be a
5-regular graph. Then G has a mod 3-orientation if and
only if V (G) has a partition (V +, V −) such that
∀U ⊆ V (G),

|∂G(U)| ≥ 3||U ∩ V +| − |U ∩ V −||.

Proof Let p = 1.
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Recent Progress

Theorem 11 (Lai, Shao, Wu and Zhou 2006) If
n = |V (G)| and G is not mod (2p+1)-contractible, then:

(i) V (G) is a disjoint union V (G) = V1
˙⋃V2 with |V1| = k,

|V2| = n − k, and
⌈

|E(V1, V2)| + 1

k

⌉

+

⌈

|E(V1, V2)| + 1

n − k

⌉

≤ 4p + 2.

(ii) V (G) is a disjoint union V (G) = V1
˙⋃V2 with |V1| = k,

|V2| = n − k, and

|E(V1, V2)| ≤
(4p + 2)k(n − k)

n
.
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Recent Progress

Example: For any positive p ∈ Z, K4p+1 is mod
(2p + 1)-contractible.

Proof: n = 4p + 1. By Theorem 11, V (Kn) can be
partitioned into two subsets V1 and V2 with |V1| = k and
|V2| = n − k satisfying inequality Theorem 11(ii). Since
|E(V1, V2)| = k(n − k), we have

⌈

|E(V1, V2)| + 1

k

⌉

+

⌈

|E(V1, V2)| + 1

4p − k

⌉

=

⌈

k(n − k) + 1

k

⌉

+

⌈

|k(n − k) + 1

n − k

⌉

= (n − k + 1) + (k + 1) = n + 2 > 4p + 2.
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Recent Progress

Theorem 12 (Lai, Shao, Wu and Zhou 2006) Let n, p

be positive integers, and let f(n) =
(2p + 1)n log2(n)

2
be a function. If G is a graph with n vertices and if
|E(G)| ≥ f(n), then G has a subgraph H with
E(H) 6= ∅ which is mod (2p + 1)-contractible.

Theorem 13 (Lai, Shao, Wu and Zhou 2006) Let G be
a graph with n vertices. If G is
(2p + 1) log2(n)-edge-connected, then G is mod
(2p + 1)-contractible.

Proof: Use connectivity to count the number of edges
and use Theorem 12 to find a contractible subgraph.
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Recent Progress

Theorem 13 (Lai, Shao, Wu and Zhou 2006) Let G be
a graph with n vertices. If G is
(2p + 1) log2(n)-edge-connected, then G is mod
(2p + 1)-contractible.

Corollary Let G be a graph with n vertices. If G is
3 log2(n)-edge-connected, then G is mod 3-contractible.

Theorem 8 (Lai and Zhang 1992) Let G be a graph
with n vertices. If G is 4 log2(n)-edge-connected, then
G has a mod 3-orientation.
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K1,3-Decomposition

A claw is an induced K1,3

r

r rr

center

a claw

Figure 1.3

A connected loopless graph with 3 edges and a vertex
of degree 3 is called a generalized claw.
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K1,3-Decomposition

A graph G with |E(G)| ≡ 0 (mod 3) has a
claw-decomposition if E(G) can be partitioned into
disjoint unions E(G) = X1 ∪ X2 ∪ · · · ∪ Xk such that for
each i with 1 ≤ i ≤ k, G[Xi] is a generalized claw.

Theorem 14 (Barat and Thomassen 2004) If there
exists an integer k such that every k-edge-connected
graph G with |E(G)| ≡ 0 (mod 3) has a
claw-decomposition, then every k-edge-connected
graph G has a mod 3-orientation.
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K1,3-Decomposition

Conjecture 15 (Barat and Thomassen 2004) Every
4-edge-connected simple planar graph G with
|E(G)| ≡ 0 (mod 3) has a claw-decomposition.

Question in our minds: How do we approach this
conjecture?
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K1,2p+1-Decomposition

A connected loopless graph with 2p + 1 edges and a
vertex of degree 2p + 1 is called a generalized K1,2p+1.

A graph G with |E(G)| ≡ 0 (mod 2p + 1) has a
K1,2p+1-decomposition if E(G) can be partitioned into
disjoint unions E(G) = X1 ∪ X2 ∪ · · · ∪ Xk such that for
each i with 1 ≤ i ≤ k, G[Xi] is a generalized K1,2p+1.
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K1,2p+1-Decomposition

Theorem 16 (Lai, Shao, Wu and Zhou 2006) Fix k > 0.
The every k-edge-connected (planar) graph G is mod
(2p + 1)-contractible if and only if every
k-edge-connected (planar) graph G with |E(G)| ≡ 0

(mod 2p + 1) has a K1,2p+1-decomposition.

Theorem 17 (Kral, Pangrac and Voss 2005) There
exists a family of 4-edge-connected planar graphs G

that cannot be mod 3-contractible.

Corollary 18 There exist 4-edge-connected planar
graphs that cannot have a K1,3-decomposition.

Proof Apply Theorems 16 and 17 when p = 1.
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K1,2p+1-Decomposition

Question 18 Is there an integer k such that every
k-edge-connected planar graph G with |E(G)| ≡ 0

(mod 3) has a K1,3-decomposition?

Theorem 19 (H.-J. Lai and X. Li, 2006) Every
5-edge-connected planar graph is mod 3-contractible.

Corollary 20 Every 5-edge-connected planar graph
with |E(G)| ≡ 0 (mod 3) has a claw-decomposition.

Proof Apply Theorems 16 and 19 when p = 1.
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Thank You!
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