Graphs with mod $(2 p+1)$-orientations and mod $(2 p+1)$-contractible graphs
 Hong-Jian Lai

Department of Mathematics, West Virginia University
College of Mathematics and System Sciences, Xinjiang University

Joint work with: Yanting Liang, Juan Liu, Jixiang Meng, Yehong Shao, Zhao Zhang

Flow/coloring duality for plane graphs

■ Four Color Theorem: Given a plane graph, the faces can be colored using at most four colors so that no two adjacent faces have the same color.

Flow/coloring duality for plane graphs

- Four Color Theorem: Given a plane graph, the faces can be colored using at most four colors so that no two adjacent faces have the same color.
- Given a plane graph G, a k-face-coloring is a map $f:\{$ faces $\} \rightarrow\{0,1, \cdots, k-1\}$ such that no two adjacent faces have the same color.

Flow/coloring duality for plane graphs

Flow/coloring duality for plane graphs

Flow/coloring duality for plane graphs

Let the colors be elements in an abelian (additive) group. Define $f(e)=$ color of the left face - color of the right face.

Flow/coloring duality for plane graphs

Let the colors be elements in an abelian (additive) group. Define $f(e)=$ color of the left face - color of the right face.

Flow/coloring duality for plane graphs

Let the colors be elements in an abelian (additive) group. Define $f(e)=$ color of the left face - color of the right face.

Flow/coloring duality for plane graphs

■ $\delta^{+}(v)$: outgoing edges from v.

Flow/coloring duality for plane graphs

■ $\delta^{+}(v)$: outgoing edges from v.
$\square \delta^{-}(v)$: incoming edges into v.

Flow/coloring duality for plane graphs

■ $\delta^{+}(v)$: outgoing edges from v.
$\square \delta^{-}(v)$: incoming edges into v.

Flow/coloring duality for plane graphs

■ $\delta^{+}(v)$: outgoing edges from v.
$\square \delta^{-}(v)$: incoming edges into v.

$$
\begin{aligned}
& \sum_{e \in \delta^{+}(v)} \Phi(e)-\sum_{e \in \delta^{-}(v)} \Phi(e)=\sum_{e \in \delta^{+}(v)} \Phi(e) \\
= & \left(a_{1}-a_{2}\right)+\left(a_{2}-a_{3}\right)+\cdots+\left(a_{k}-a_{1}\right)=0
\end{aligned}
$$

Flow/coloring duality for plane graphs

■ A map $f: E(G) \mapsto\{-(k-1), \cdots, k-1\}-\{0\}$ is a nowhere-zero k-flow (k-NZF) if under orientation D,

$$
\partial f(v)=\sum_{e \in \delta^{+}(v)} f(e)-\sum_{e \in \delta^{-}(v)} f(e)=0
$$

Flow/coloring duality for plane graphs
\square A map $f: E(G) \mapsto\{-(k-1), \cdots, k-1\}-\{0\}$ is a nowhere-zero k-flow (k-NZF) if under orientation D,

$$
\partial f(v)=\sum_{e \in \delta^{+}(v)} f(e)-\sum_{e \in \delta^{-}(v)} f(e)=0
$$

- An undirected G has an NZF or not is independent of the choice of the orientation of G.

Flow/coloring duality for plane graphs

\square A map $f: E(G) \mapsto\{-(k-1), \cdots, k-1\}-\{0\}$ is a nowhere-zero k-flow (k-NZF) if under orientation D,

$$
\partial f(v)=\sum_{e \in \delta^{+}(v)} f(e)-\sum_{e \in \delta^{-}(v)} f(e)=0
$$

\square An undirected G has an NZF or not is independent of the choice of the orientation of G.
\square Theorem (Tutte): Let G and G^{*} are plane dual graphs. Then G^{*} is k-colorable if and only if G has a k-NZF.

Flow/coloring duality for plane graphs

■ $A=$ abelian group.

Flow/coloring duality for plane graphs

■ $A=$ abelian group .
$\square \Phi: E(G) \rightarrow A \backslash\{0\}$ is a nowhere-zero A-flow $(A$-NZF) if under orientation D

$$
\partial f(v)=\sum_{e \in \delta^{+}(v)} \Phi(e)-\sum_{e \in \delta^{-}(v)} \Phi(e)=0
$$

Flow/coloring duality for plane graphs

■ $A=$ abelian group .
$\square \Phi: E(G) \rightarrow A \backslash\{0\}$ is a nowhere-zero A-flow $(A$-NZF) if under orientation D

$$
\partial f(v)=\sum_{e \in \delta^{+}(v)} \Phi(e)-\sum_{e \in \delta^{-}(v)} \Phi(e)=0
$$

$\square \mathrm{Z}_{2 p+1}:=$ the additive group of order $2 p+1$.

Mod 3-orientation

$\square d_{D}^{-}(v)=$ in degree, and $d_{D}^{+}(v)=$ out degree

Mod 3-orientation

$\square d_{D}^{-}(v)=$ in degree, and $d_{D}^{+}(v)=$ out degree
■ Observation: A graph G, under orientation D, has \mathbf{Z}_{3}-NZF $f: E(G) \mapsto\{1,-1\}$. Can adjust the orientation so that $f \equiv 1$.

Mod 3-orientation

$\square d_{D}^{-}(v)=$ in degree, and $d_{D}^{+}(v)=$ out degree
■ Observation: A graph G, under orientation D, has Z_{3}-NZF $f: E(G) \mapsto\{1,-1\}$. Can adjust the orientation so that $f \equiv 1$.
\square Observation: If $f \equiv 1$ in \mathbf{Z}_{3}, then at $\forall v$, $d_{D}^{+}(v)-d_{D}^{-}(v) \equiv 0(\bmod 3)$.

Mod $(2 p+1)$-orientation

■ Incidence matrix $D=\left(a_{i j}\right)$ of G with orientation:

$$
a_{i j}=\left\{\begin{array}{cc}
1 & \text { if edge } e_{j} \text { is directed from } v_{i} \\
-1 & \text { if edge } e_{j} \text { is directed into } v_{i} \\
0 & \text { if edge } e_{j} \text { is not incident to } v_{i}
\end{array}\right.
$$

Mod $(2 p+1)$-orientation

■ Incidence matrix $D=\left(a_{i j}\right)$ of G with orientation:

$$
a_{i j}=\left\{\begin{array}{cc}
1 & \text { if edge } e_{j} \text { is directed from } v_{i} \\
-1 & \text { if edge } e_{j} \text { is directed into } v_{i} \\
0 & \text { if edge } e_{j} \text { is not incident to } v_{i}
\end{array}\right.
$$

■ If $\exists f: E \mapsto\{1,-1\}$ with $D f=0$ in $\mathbf{Z}_{2 p+1}$, then G has a $\bmod (2 p+1)$-orientation.

Mod $(2 p+1)$-orientation

■ Incidence matrix $D=\left(a_{i j}\right)$ of G with orientation:

$$
a_{i j}=\left\{\begin{array}{cc}
1 & \text { if edge } e_{j} \text { is directed from } v_{i} \\
-1 & \text { if edge } e_{j} \text { is directed into } v_{i} \\
0 & \text { if edge } e_{j} \text { is not incident to } v_{i}
\end{array}\right.
$$

■ If $\exists f: E \mapsto\{1,-1\}$ with $D f=0$ in $\mathbf{Z}_{2 p+1}$, then G has a $\bmod (2 p+1)$-orientation.

■ An undirected G has a mod $(2 p+1)$-orientation or not is independent of the choice of the orientation of G.

Mod $(2 p+1)$-orientation

\square Let $M_{2 p+1}$ denote the set of all graphs which have mod $(2 p+1)$-orientations.

Mod $(2 p+1)$-orientation

\square Let $M_{2 p+1}$ denote the set of all graphs which have mod $(2 p+1)$-orientations.
$\square G$ has a nowhere-zero 3-flow if and only if $G \in M_{3}$.

Mod $(2 p+1)$-orientation

\square Let $M_{2 p+1}$ denote the set of all graphs which have mod $(2 p+1)$-orientations.

■ G has a nowhere-zero 3-flow if and only if $G \in M_{3}$.
\square Conjecture (Tutte, Selected Topics in Graph Theory, III, Beineke and Willson): Every 4-edge-connected graph has a nowhere-zero 3-flow.

Mod $(2 p+1)$-orientation

■ Let $M_{2 p+1}$ denote the set of all graphs which have mod ($2 p+1$)-orientations.

■ G has a nowhere-zero 3-flow if and only if $G \in M_{3}$.
■ Conjecture (Tutte, Selected Topics in Graph Theory, III, Beineke and Willson): Every 4-edge-connected graph has a nowhere-zero 3-flow.

■ Conjecture (Jaeger, Selected Topics in Graph Theory, III, Beineke and Willson): Every (4p)-edge-connected graph is in $M_{2 p+1}$.

Mod $(2 p+1)$-orientation

■ Theorem (Grötzsch 1958) Every 4-edge-connected planar graph is in M_{3}.

Mod $(2 p+1)$-orientation

■ Theorem (Grötzsch 1958) Every 4-edge-connected planar graph is in M_{3}.

■ Theorem (Steinburg \& D. H. Youngerm, 1989 in ARS, Thomassen, 1994 in JCTB) Every 4-edge-connected projective planar graph is in M_{3}.

Mod $(2 p+1)$-orientation

■ Theorem (Grötzsch 1958) Every 4-edge-connected planar graph is in M_{3}.

■ Theorem (Steinburg \& D. H. Youngerm, 1989 in ARS, Thomassen, 1994 in JCTB) Every 4-edge-connected projective planar graph is in M_{3}.
■ Theorem (Zhang \& HJL, 1992 in DM) Every $4 \log _{2}(|V(G)|)$-edge-connected graph is in M_{3}.

Mod $(2 p+1)$-orientation

\square Theorem: Let G be a connected graph. Then $G \in M_{2 p+1}$ if and only if G is the contraction of a $(2 p+1)$-regular bipartite graph.

Mod $(2 p+1)$-orientation

\square Theorem: Let G be a connected graph. Then $G \in M_{2 p+1}$ if and only if G is the contraction of a $(2 p+1)$-regular bipartite graph.
\square Conjecture: Every ($4 p$)-edge-connected graph is the contraction of a $(2 p+1)$-regular bipartite graph.

Linear Algebra View: Homogeneous System

 Formulation■ Question: Given G, what does $G \in M_{3}$ mean in linear algebra?

Linear Algebra View: Homogeneous System

 Formulation■ Question: Given G, what does $G \in M_{3}$ mean in linear algebra?

Linear Algebra View: Homogeneous System

Formulation

■ Question: Given G, what does $G \in M_{3}$ mean in linear algebra?

$$
\left\{\begin{array}{cccccc}
-x_{1} & + & \left(-x_{2}\right) & + & x_{3} & \equiv \\
0 & 0 & \\
x_{1}+x_{4} & \equiv & & & x_{i} \in\{ \pm 1\} \\
-x_{3} & + & \left(-x_{5}\right) & \equiv & & \\
-x_{4}+ & x_{2} & + & x_{5} & \equiv 0
\end{array}\right.
$$

Non-Homogeneous System Formulation

■ Question: When does $D f \equiv \vec{b}(\bmod 2 p+1)$ have $\mathbf{a} \pm 1$ solution f in $\mathbf{Z}_{2 p+1}$?

Non-Homogeneous System Formulation

■ Question: When does $D f \equiv \vec{b}(\bmod 2 p+1)$ have $\mathbf{a} \pm 1$ solution f in $\mathbf{Z}_{2 p+1}$?
\square A necessary Condition: If $\forall b: V(G) \mapsto \mathbf{Z}_{2 p+1}$,
$\exists f: E \mapsto\{1,-1\}$ with $D f=b$ in $\mathbf{Z}_{2 p+1}$, then
$\sum_{v \in V(G)} b(v) \equiv 0(\bmod 2 p+1)$.

Non-Homogeneous System Formulation

■ Question: When does $D f \equiv \vec{b}(\bmod 2 p+1)$ have $\mathbf{a} \pm 1$ solution f in $\mathbf{Z}_{2 p+1}$?
\square A necessary Condition: If $\forall b: V(G) \mapsto \mathbf{Z}_{2 p+1}$,
$\exists f: E \mapsto\{1,-1\}$ with $D f=b$ in $\mathbf{Z}_{2 p+1}$, then
$\sum_{v \in V(G)} b(v) \equiv 0(\bmod 2 p+1)$.
■ Proof: View f as an orientation D.

$$
\sum_{v \in V(G)} b(v)=\sum_{v \in V(G)}\left[d_{D}^{+}(v)-d_{D}^{-}(v)\right]
$$

Each edge occurs as positive and negative exactly once.

Non-Homogeneous System Formulation

\square Define $M_{2 p+1}^{o}$ to be the collection of graphs such that $G \in M_{2 p+1}^{o}$ if and only if for any zero sum function b of G in $\mathbf{Z}_{2 p+1}$, there exists an orientation D such that $d_{D}^{+}(v)-d_{D}^{-}(v) \equiv b(v)(\bmod 2 p+1)$ at every vertex $v \in V(G)$.

Non-Homogeneous System Formulation

\square Define $M_{2 p+1}^{o}$ to be the collection of graphs such that $G \in M_{2 p+1}^{o}$ if and only if for any zero sum function b of G in $\mathbf{Z}_{2 p+1}$, there exists an orientation D such that $d_{D}^{+}(v)-d_{D}^{-}(v) \equiv b(v)(\bmod 2 p+1)$ at every vertex $v \in V(G)$.
$\square M_{2 p+1}^{o} \subset M_{2 p+1}($ take $\mathrm{b}=0)$.

Non-Homogeneous System Formulation

\square Define $M_{2 p+1}^{o}$ to be the collection of graphs such that $G \in M_{2 p+1}^{o}$ if and only if for any zero sum function b of G in $\mathbf{Z}_{2 p+1}$, there exists an orientation D such that $d_{D}^{+}(v)-d_{D}^{-}(v) \equiv b(v)(\bmod 2 p+1)$ at every vertex $v \in V(G)$.
$\square M_{2 p+1}^{o} \subset M_{2 p+1}($ take $\mathrm{b}=0)$.
$■$ Graphs in $M_{2 p+1}^{o}$ will be referred as mod
$(2 p+1)$-contractible graphs, for a postponed reason.

Contractible graphs with respect to mod

($2 p+1$)-orientations

- For an undirected graph G, whether G is in $M_{2 p+1}^{o}$ or not is independent of the choice of the orientation of G.

Contractible graphs with respect to mod

($2 p+1$)-orientations

- For an undirected graph G, whether G is in $M_{2 p+1}^{o}$ or not is independent of the choice of the orientation of G.

■ Examples: $2 K_{2}$ and K_{5} are mod 3-contractible.

Contractible graphs with respect to mod

($2 p+1$)-orientations

- For an undirected graph G, whether G is in $M_{2 p+1}^{o}$ or not is independent of the choice of the orientation of G.

■ Examples: $2 K_{2}$ and K_{5} are mod 3-contractible.

- Conjecture (Lai, 2007 in SIAM JDM, Shao, Wu, Zhou \& HJL, 2009 in JCTB): Every $(4 p+1)$-edge-connected graph is in $M_{2 p+1}^{o}$.

Orientation with given out degrees

$■$ To understand $M_{2 p+1}$ and $M_{2 p+1}^{o}$, we study orientation with given out degrees.

Orientation with given out degrees

$■$ To understand $M_{2 p+1}$ and $M_{2 p+1}^{o}$, we study orientation with given out degrees.
\square Let G be an undirected graph, D be an orientation of G. Let $S \subseteq V(G)$ be a vertex subset.

Orientation with given out degrees

$■$ To understand $M_{2 p+1}$ and $M_{2 p+1}^{o}$, we study orientation with given out degrees.
\square Let G be an undirected graph, D be an orientation of G. Let $S \subseteq V(G)$ be a vertex subset.
$\square E(S)=$ the set of edges with both ends in S.

Orientation with given out degrees

\square To understand $M_{2 p+1}$ and $M_{2 p+1}^{o}$, we study orientation with given out degrees.

- Let G be an undirected graph, D be an orientation of G. Let $S \subseteq V(G)$ be a vertex subset.
$\square E(S)=$ the set of edges with both ends in S.
$\square \partial_{G}(S)=$ the set of edges with just one end in S.

Orientation with given out degrees

\square To understand $M_{2 p+1}$ and $M_{2 p+1}^{o}$, we study orientation with given out degrees.

- Let G be an undirected graph, D be an orientation of G. Let $S \subseteq V(G)$ be a vertex subset.
$\square E(S)=$ the set of edges with both ends in S.
- $\partial_{G}(S)=$ the set of edges with just one end in S.

■ $\delta_{D}^{+}(S)=$ edges oriented from S.

Orientation with given out degrees

\square To understand $M_{2 p+1}$ and $M_{2 p+1}^{o}$, we study orientation with given out degrees.

- Let G be an undirected graph, D be an orientation of G. Let $S \subseteq V(G)$ be a vertex subset.
$\square E(S)=$ the set of edges with both ends in S.
- $\partial_{G}(S)=$ the set of edges with just one end in S.

■ $\delta_{D}^{+}(S)=$ edges oriented from S.
■ $\delta_{D}^{-}(S)=$ edges oriented into S.

Orientation with given out degrees

$■$ Necessity: Let $c: V(G) \mapsto \mathbf{Z}$. If G has an orientation D such that $d_{D}^{+}(v)=c(v), \forall v \in V(G)$, then $\forall S \subseteq V(G)$

$$
|E(S)| \leq \sum_{v \in S} c(v) \leq|E(S)|+\left|\partial_{G}(S)\right|
$$

Orientation with given out degrees

$■$ Necessity: Let $c: V(G) \mapsto \mathbf{Z}$. If G has an orientation D such that $d_{D}^{+}(v)=c(v), \forall v \in V(G)$, then $\forall S \subseteq V(G)$

$$
|E(S)| \leq \sum_{v \in S} c(v) \leq|E(S)|+\left|\partial_{G}(S)\right|
$$

$■$ A function $c: V(G) \mapsto \mathbf{Z}$ satisfying inequality above will be called a feasible function of G.

Orientation with given out degrees

$■$ Suppose such an orientation D exists.

Orientation with given out degrees

$■$ Suppose such an orientation D exists.
$\square \forall S \subseteq V(G), \sum_{v \in S} c(v)=\sum_{v \in S} d_{D}^{+}(v)$.

Orientation with given out degrees

■ Suppose such an orientation D exists.
$■ \forall S \subseteq V(G), \sum_{v \in S} c(v)=\sum_{v \in S} d_{D}^{+}(v)$.
$\square|E(S)|=\sum_{v \in S} d_{D}^{+}(v)-\left|\delta_{D}^{+}(S)\right| \leq \sum_{v \in S} d_{D}^{+}(v)$
$\leq \sum_{v \in S} d_{D}^{+}(v)+\left|\delta_{D}^{-}(S)\right|=|E(S)|+\left|\partial_{G}(S)\right|$.

Orientation with given out degrees

■ Theorem (Hakimi, 1965, Shao, Wu, Zhou \& HJL, 2009 in JCTB) Let G be a graph, and let $c: V(G) \mapsto \mathbf{Z}$ be a function. The following are equivalent.

Orientation with given out degrees

■ Theorem (Hakimi, 1965, Shao, Wu, Zhou \& HJL, 2009 in JCTB) Let G be a graph, and let $c: V(G) \mapsto \mathbf{Z}$ be a function. The following are equivalent.

■ (i) G has an orientation D such that $d_{D}^{+}(v)=c(v), \forall v \in V(G)$.

Orientation with given out degrees

■ Theorem (Hakimi, 1965, Shao, Wu, Zhou \& HJL, 2009 in JCTB) Let G be a graph, and let $c: V(G) \mapsto \mathbf{Z}$ be a function. The following are equivalent.
■ (i) G has an orientation D such that $d_{D}^{+}(v)=c(v), \forall v \in V(G)$.
■ (ii) c is a feasible function of G. That is, $\forall S \subseteq V(G)$

$$
|E(S)| \leq \sum_{v \in S} c(v) \leq|E(S)|+\left|\partial_{G}(S)\right| .
$$

Application to score sequence

$\square \mathrm{s}=\left\{s_{1} \leq s_{2} \leq \cdots \leq s_{n}\right\}$ is a score sequence if K_{n} has an orientation with s the out degree sequence.

Application to score sequence

$\square \mathrm{s}=\left\{s_{1} \leq s_{2} \leq \cdots \leq s_{n}\right\}$ is a score sequence if K_{n} has an orientation with s the out degree sequence.
■ Corollary 10 (Landau 1953) $0 \leq s_{1} \leq s_{2} \leq \cdots \leq s_{n}$ of nonnegative integers is a score sequence if and only if

$$
\sum_{i=1}^{k} s_{i} \geq\binom{ k}{2}, \forall k \text { with } 1 \leq k \leq n
$$

where equality holds if and only if $n=k$.

Application to score sequence

$\square \mathrm{s}=\left\{s_{1} \leq s_{2} \leq \cdots \leq s_{n}\right\}$ is a score sequence if K_{n} has an orientation with s the out degree sequence.

- Corollary 10 (Landau 1953) $0 \leq s_{1} \leq s_{2} \leq \cdots \leq s_{n}$ of nonnegative integers is a score sequence if and only if

$$
\sum_{i=1}^{k} s_{i} \geq\binom{ k}{2}, \forall k \text { with } 1 \leq k \leq n
$$

where equality holds if and only if $n=k$.

- Proof Directly verify that the function s is feasible.

Application to orientation with given net out

 degrees- Theorem (Shao, Wu, Zhou \& HJL, 2009 in JCTB) Let G be a graph and $b: V(G) \mapsto \mathbf{Z}$ be a function such that $\sum_{v \in V(G)} b(v)=0$ and $b(v) \equiv d_{G}(v)(\bmod 2), \forall v \in V(G)$.
Then G has an orientation D such that
$d_{D}^{+}(v)-d_{D}^{-}(v)=b(v), \forall v \in V(G)$ if and only if for any $\forall S \subseteq V(G)$

$$
\left|\sum_{v \in S} b(v)\right| \leq\left|\partial_{G}(S)\right| .
$$

Application to $M_{2 p+1}^{o}$

Theorem (Shao, Wu, Zhou \& HJL, 2009 in JCTB) Let G be a graph. The following are equivalent.

Application to $M_{2 p+1}^{o}$

Theorem (Shao, Wu, Zhou \& HJL, 2009 in JCTB) Let G be a graph. The following are equivalent.

- (i) $G \in M_{2 p+1}^{o}$.

Application to $M_{2 p+1}^{o}$

Theorem (Shao, Wu, Zhou \& HJL, 2009 in JCTB) Let G be a graph. The following are equivalent.

- (i) $G \in M_{2 p+1}^{o}$.

■ (ii) $\forall b: V(G) \mapsto \mathbf{Z}$ satisfying both

$$
\sum_{v \in V(G)} b(v) \equiv 0(\bmod 2 p+1)
$$

and

$$
b(v) \equiv d_{G}(v)(\bmod 2), \forall v \in V(G),
$$

G has an orientation D such that $d_{D}^{+}(v)-d_{D}^{-}(v) \equiv b(v)(\bmod 2 p+1), \forall v \in V(G)$.

Application to $M_{2 p+1}$

\square Fact Using the vertex splitting method, it is known that to prove $\kappa^{\prime}(G) \geq 4 p \Longrightarrow G \in M_{2 p+1}$, it suffices to show that this holds for $(4 p+1)$-regular graphs.

Application to $M_{2 p+1}$

■ Fact Using the vertex splitting method, it is known that to prove $\kappa^{\prime}(G) \geq 4 p \Longrightarrow G \in M_{2 p+1}$, it suffices to show that this holds for $(4 p+1)$-regular graphs.
■ Theorem (Shao, Wu, Zhou \& HJL, 2009 in JCTB) Let G be a $(4 p+1)$-regular graph. Then $G \in M_{2 p+1}$ if and only if $V(G)$ has a partition $\left(V^{+}, V^{-}\right)$such that $\forall U \subseteq V(G)$,

$$
\left|\partial_{G}(U)\right| \geq(2 p+1)| | U \cap V^{+}\left|-\left|U \cap V^{-}\right|\right| .
$$

Contractible graphs with respect to mod

($2 p+1$)-orientations
$■$ What graphs are in $M_{2 p+1}^{o}$?

Contractible graphs with respect to mod

$(2 p+1)$-orientations
\square What graphs are in $M_{2 p+1}^{o}$?

- A graph H is $\bmod (2 p+1)$-contractible if for any graph G that contains H as a subgraph,

$$
G \in M_{2 p+1} \text { if and only if } G / H \in M_{2 p+1} .
$$

Contractible graphs with respect to mod

($2 p+1$)-orientations
■ What graphs are in $M_{2 p+1}^{o}$?
$■$ A graph H is $\bmod (2 p+1)$-contractible if for any graph G that contains H as a subgraph,

$$
G \in M_{2 p+1} \text { if and only if } G / H \in M_{2 p+1} .
$$

■ (Barat and Thomassen, 2006 in JGT) If for any map $w: V(G) \mapsto \mathbf{Z}_{2 p+1}$ with $\sum_{v \in V(G)} w(v) \equiv|E(G)|(\bmod$ $2 p+1), G$ has an orientation D such that $\forall v \in V(G)$, $d^{+}(v) \equiv w(v)(\bmod 2 p+1)$, then we say that G admits all $(2 p+1)$-orientations.

Contractible graphs with respect to mod

($2 p+1$)-orientations

- Theorem: Let $p \geq 1$ be an integer. The followings are equivalent for a connected graph H.
(i) $H \in M_{2 p+1}^{o}$,
(ii) H is $\bmod (2 p+1)$-contractible.
(iii) $\forall G$ such that H is a subgraph of $G, G / H \in M_{2 p+1}^{o}$ if and only if $G \in M_{2 p+1}^{o}$.
(iv) H admits all $(2 p+1)$-orientations.

Contractible graphs with respect to mod

($2 p+1$)-orientations

■ Theorem (Shao, Wu, Zhou \& HJL, 2009 in JCTB) If $n=|V(G)|$ and G is not $\bmod (2 p+1)$-contractible, then:

Contractible graphs with respect to mod

($2 p+1$)-orientations
■ Theorem (Shao, Wu, Zhou \& HJL, 2009 in JCTB) If $n=|V(G)|$ and G is not $\bmod (2 p+1)$-contractible, then:
■ (i) $V(G)$ is a disjoint union $V(G)=V_{1} \dot{\cup} V_{2}$ with $\left|V_{1}\right|=k$, $\left|V_{2}\right|=n-k$, and

$$
\left\lceil\frac{\left|E\left(V_{1}, V_{2}\right)\right|+1}{k}\right\rceil+\left\lceil\frac{\left|E\left(V_{1}, V_{2}\right)\right|+1}{n-k}\right\rceil \leq 4 p+2 .
$$

Contractible graphs with respect to mod

$(2 p+1)$-orientations

- Theorem (Shao, Wu, Zhou \& HJL, 2009 in JCTB) If $n=|V(G)|$ and G is not $\bmod (2 p+1)$-contractible, then:
■ (i) $V(G)$ is a disjoint union $V(G)=V_{1} \dot{\cup} V_{2}$ with $\left|V_{1}\right|=k$, $\left|V_{2}\right|=n-k$, and

$$
\left\lceil\frac{\left|E\left(V_{1}, V_{2}\right)\right|+1}{k}\right\rceil+\left\lceil\frac{\left|E\left(V_{1}, V_{2}\right)\right|+1}{n-k}\right\rceil \leq 4 p+2 .
$$

$■$ (ii) $V(G)$ is a disjoint union $V(G)=V_{1} \dot{\cup} V_{2}$ with $\left|V_{1}\right|=k$, $\left|V_{2}\right|=n-k$, and

$$
\left|E\left(V_{1}, V_{2}\right)\right| \leq \frac{(4 p+2) k(n-k)}{n}
$$

Progress: Complete graphs

■ Example: For any positive $p \in \mathbf{Z}, K_{4 p+1}$ is mod $(2 p+1)$-contractible.

Progress: Complete graphs

■ Example: For any positive $p \in \mathbf{Z}, K_{4 p+1}$ is mod $(2 p+1)$-contractible.
\square Proof: $n=4 p+1$. By Theorem 14, $V\left(K_{n}\right)$ can be partitioned into two subsets V_{1} and V_{2} with $\left|V_{1}\right|=k$ and $\left|V_{2}\right|=n-k$ satisfying inequality Theorem 14(ii). Since $\left|E\left(V_{1}, V_{2}\right)\right|=k(n-k)$, we have

$$
\begin{aligned}
& \left\lceil\frac{\left|E\left(V_{1}, V_{2}\right)\right|+1}{k}\right\rceil+\left\lceil\frac{\left|E\left(V_{1}, V_{2}\right)\right|+1}{4 p-k}\right\rceil \\
= & \left\lceil\frac{k(n-k)+1}{k}\right\rceil+\left\lceil\frac{\mid k(n-k)+1}{n-k}\right\rceil \\
= & (n-k+1)+(k+1)=n+2>4 p+2 .
\end{aligned}
$$

Progress: Complete graphs

■ Example: For any positive $p \in \mathbf{Z}, K_{4 p+1}$ is mod $(2 p+1)$-contractible.
\square Proof: $n=4 p+1$. By Theorem 14, $V\left(K_{n}\right)$ can be partitioned into two subsets V_{1} and V_{2} with $\left|V_{1}\right|=k$ and $\left|V_{2}\right|=n-k$ satisfying inequality Theorem 14(ii). Since $\left|E\left(V_{1}, V_{2}\right)\right|=k(n-k)$, we have

$$
\begin{aligned}
& \left\lceil\frac{\left|E\left(V_{1}, V_{2}\right)\right|+1}{k}\right\rceil+\left\lceil\frac{\left|E\left(V_{1}, V_{2}\right)\right|+1}{4 p-k}\right\rceil \\
= & \left\lceil\frac{k(n-k)+1}{k}\right\rceil+\left\lceil\frac{\mid k(n-k)+1}{n-k}\right\rceil \\
= & (n-k+1)+(k+1)=n+2>4 p+2 .
\end{aligned}
$$

■ Proposition $K_{m} \in M_{2 p+1}^{o}$ if and only if $m=1$ or $m \geq 4 p+1$.

Recent Progress

■ Theorem (Shao, Wu, Zhou \& HJL, 2009 in JCTB) Let n, p be positive integers, and let
$f(n)=\frac{(2 p+1) n \log _{2}(n)}{2}$ be a function. If G is a graph with n vertices and if $|E(G)| \geq f(n)$, then G has a subgraph H with $E(H) \neq \emptyset$ which is mod
$(2 p+1)$-contractible.

Recent Progress

■ Theorem (Shao, Wu, Zhou \& HJL, 2009 in JCTB) Let n, p be positive integers, and let
$f(n)=\frac{(2 p+1) n \log _{2}(n)}{2}$ be a function. If G is a graph with n vertices and if $|E(G)| \geq f(n)$, then G has a subgraph H with $E(H) \neq \emptyset$ which is mod $(2 p+1)$-contractible.

- Theorem (Shao, Wu, Zhou \& HJL, 2009 in JCTB) Let G be a graph with n vertices. If G is
$(2 p+1) \log _{2}(n)$-edge-connected, then G is \bmod ($2 p+1$)-contractible.

Recent Progress

■ Theorem (Shao, Wu, Zhou \& HJL, 2009 in JCTB) Let n, p be positive integers, and let
$f(n)=\frac{(2 p+1) n \log _{2}(n)}{2}$ be a function. If G is a graph with n vertices and if $|E(G)| \geq f(n)$, then G has a subgraph H with $E(H) \neq \emptyset$ which is mod $(2 p+1)$-contractible.

- Theorem (Shao, Wu, Zhou \& HJL, 2009 in JCTB) Let G be a graph with n vertices. If G is
$(2 p+1) \log _{2}(n)$-edge-connected, then G is \bmod ($2 p+1$)-contractible.
- Proof: Use connectivity to count the number of edges

Recent Progress

■ Theorem (Shao, Wu, Zhou \& HJL, 2009 in JCTB) Let G be a graph with n vertices. If G is
$(2 p+1) \log _{2}(n)$-edge-connected, then G is mod $(2 p+1)$-contractible.

Recent Progress

■ Theorem (Shao, Wu, Zhou \& HJL, 2009 in JCTB) Let G be a graph with n vertices. If G is
$(2 p+1) \log _{2}(n)$-edge-connected, then G is mod $(2 p+1)$-contractible.

■ Corollary Let G be a graph with n vertices. If G is $3 \log _{2}(n)$-edge-connected, then G is mod 3-contractible.

Recent Progress

- Theorem (Shao, Wu, Zhou \& HJL, 2009 in JCTB) Let G be a graph with n vertices. If G is $(2 p+1) \log _{2}(n)$-edge-connected, then G is mod ($2 p+1$)-contractible.
- Corollary Let G be a graph with n vertices. If G is $3 \log _{2}(n)$-edge-connected, then G is mod 3 -contractible.
■ Theorem (Zhang \& HJL, 1992 in DM) Let G be a graph with n vertices. If G is $4 \log _{2}(n)$-edge-connected, then G has a mod 3-orientation.

Recent Progress

■ Definition A simple graph G is chordal if every cycle of length greater than 3 possesses a chord.

Recent Progress

■ Definition A simple graph G is chordal if every cycle of length greater than 3 possesses a chord.

■ Theorem (HJL, 2000 in GC): Every simple 4-connected chordal graph is in M_{3}^{o}.

Recent Progress

■ Definition A simple graph G is chordal if every cycle of length greater than 3 possesses a chord.

■ Theorem (HJL, 2000 in GC): Every simple 4-connected chordal graph is in M_{3}^{o}.

■ Theorem Every simple (4p)-connected chordal graph is in $M_{2 p+1}^{o}$.

Recent Progress

- Definition A simple graph G is chordal if every cycle of length greater than 3 possesses a chord.
- Theorem (HJL, 2000 in GC): Every simple 4-connected chordal graph is in M_{3}^{o}.

■ Theorem Every simple (4p)-connected chordal graph is in $M_{2 p+1}^{o}$.

- Theorem Every ($4 p-1$)-edge-connected graph without a K_{4}-minor is in $M_{2 p+1}^{o}$.

Recent Progress

- Definition A simple graph G is chordal if every cycle of length greater than 3 possesses a chord.
- Theorem (HJL, 2000 in GC): Every simple 4-connected chordal graph is in M_{3}^{o}.
- Theorem Every simple (4p)-connected chordal graph is in $M_{2 p+1}^{o}$.
■ Theorem Every ($4 p-1$)-edge-connected graph without a K_{4}-minor is in $M_{2 p+1}^{o}$.
- Example Let $m=2 p-1$ and let $G=m C_{2 p+1}$. Then G is a ($4 p-2$)-edge-connected graph without K_{4}-minor but $G \notin M_{2 p+1}^{o}$.

Thank you!

