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Flow/coloring duality for plane graphs

Four Color Theorem: Given a plane graph, the faces
can be colored using at most four colors so that no two
adjacent faces have the same color.

Given a plane graph G, a k-face-coloring is a map
f : {faces} → {0, 1, · · · , k − 1} such that no two
adjacent faces have the same color.
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Let the colors be elements in an abelian (additive)
group. Define f(e) = color of the left face - color of the
right face.
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Flow/coloring duality for plane graphs

δ+(v): outgoing edges from v.

δ−(v): incoming edges into v.
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∑

e∈δ+(v)

Φ(e) −
∑

e∈δ−(v)

Φ(e) =
∑

e∈δ+(v)

Φ(e)

= (a1 − a2) + (a2 − a3) + · · · + (ak − a1) = 0

.
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Flow/coloring duality for plane graphs

A map f : E(G) 7→ {−(k − 1), · · · , k − 1} − {0} is a
nowhere-zero k-flow (k-NZF) if under orientation D,

∂f(v) =
∑

e∈δ+(v)

f(e) −
∑

e∈δ−(v)

f(e) = 0

.

An undirected G has an NZF or not is independent of
the choice of the orientation of G.

Theorem (Tutte): Let G and G∗ are plane dual graphs.
Then G∗ is k-colorable if and only if G has a k-NZF.

– p. 9/35



Flow/coloring duality for plane graphs

A map f : E(G) 7→ {−(k − 1), · · · , k − 1} − {0} is a
nowhere-zero k-flow (k-NZF) if under orientation D,

∂f(v) =
∑

e∈δ+(v)

f(e) −
∑

e∈δ−(v)

f(e) = 0

.

An undirected G has an NZF or not is independent of
the choice of the orientation of G.

Theorem (Tutte): Let G and G∗ are plane dual graphs.
Then G∗ is k-colorable if and only if G has a k-NZF.

– p. 9/35



Flow/coloring duality for plane graphs

A map f : E(G) 7→ {−(k − 1), · · · , k − 1} − {0} is a
nowhere-zero k-flow (k-NZF) if under orientation D,

∂f(v) =
∑

e∈δ+(v)

f(e) −
∑

e∈δ−(v)

f(e) = 0

.

An undirected G has an NZF or not is independent of
the choice of the orientation of G.

Theorem (Tutte): Let G and G∗ are plane dual graphs.
Then G∗ is k-colorable if and only if G has a k-NZF.

– p. 9/35



Flow/coloring duality for plane graphs

A = abelian group.

Φ : E(G) → A \ {0} is a nowhere-zero A-flow (A-NZF) if
under orientation D

∂f(v) =
∑

e∈δ+(v)

Φ(e) −
∑

e∈δ−(v)

Φ(e) = 0

.

Z2p+1: = the additive group of order 2p + 1.

Theorem (Tutte): G has a k-NZF if and only if for any
abelian group A with |A| = k, G has an A-NZF.
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Mod 3-orientation

d−
D(v) = in degree, and d+

D(v)=out degree

Observation: A graph G, under orientation D, has
Z3-NZF f : E(G) 7→ {1,−1}. Can adjust the orientation
so that f ≡ 1.

Observation: If f ≡ 1 in Z3, then at ∀v,
d+

D(v) − d−
D(v) ≡ 0 (mod 3).
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Mod (2p + 1)-orientation

Incidence matrix D = (aij) of G with orientation:

aij =















1 if edge ej is directed from vi

−1 if edge ej is directed into vi

0 if edge ej is not incident to vi

If ∃f : E 7→ {1,−1} with Df = 0 in Z2p+1, then G has a
mod (2p + 1)-orientation.

An undirected G has a mod (2p + 1)-orientation or not
is independent of the choice of the orientation of G.

– p. 12/35
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Mod (2p + 1)-orientation

Let M2p+1 denote the set of all graphs which have mod
(2p + 1)-orientations.

G has a nowhere-zero 3-flow if and only if G ∈ M3.

Conjecture (Tutte, Selected Topics in Graph Theory,
III, Beineke and Willson): Every 4-edge-connected
graph has a nowhere-zero 3-flow.

Conjecture (Jaeger, Selected Topics in Graph Theory,
III, Beineke and Willson): Every (4p)-edge-connected
graph is in M2p+1.
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Mod (2p + 1)-orientation

Theorem (Grötzsch 1958) Every 4-edge-connected
planar graph is in M3.

Theorem (Steinburg & D. H. Youngerm, 1989 in ARS,
Thomassen, 1994 in JCTB) Every 4-edge-connected
projective planar graph is in M3.

Theorem (Zhang & HJL, 1992 in DM) Every
4 log2(|V (G)|)-edge-connected graph is in M3.

– p. 14/35
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Mod (2p + 1)-orientation

Theorem: Let G be a connected graph. Then
G ∈ M2p+1 if and only if G is the contraction of a
(2p + 1)-regular bipartite graph.

Conjecture: Every (4p)-edge-connected graph is the
contraction of a (2p + 1)-regular bipartite graph.
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Linear Algebra View: Homogeneous System

Formulation

Question: Given G, what does G ∈ M3 mean in linear
algebra?
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x1 x2 x3

x4 x5



























−x1 + (−x2) + x3 ≡ 0

x1 + x4 ≡ 0 xi ∈ {±1}

−x3 + (−x5) ≡ 0

−x4 + x2 + x5 ≡ 0

– p. 16/35



Linear Algebra View: Homogeneous System

Formulation

Question: Given G, what does G ∈ M3 mean in linear
algebra?

r

r

r

r�
�

���

@
@

@@R

6@
@

@@R

�
�

���

x1 x2 x3

x4 x5



























−x1 + (−x2) + x3 ≡ 0

x1 + x4 ≡ 0 xi ∈ {±1}

−x3 + (−x5) ≡ 0

−x4 + x2 + x5 ≡ 0

– p. 16/35



Linear Algebra View: Homogeneous System

Formulation

Question: Given G, what does G ∈ M3 mean in linear
algebra?

r

r

r

r�
�

���

@
@

@@R

6@
@

@@R

�
�

���

x1 x2 x3

x4 x5



























−x1 + (−x2) + x3 ≡ 0

x1 + x4 ≡ 0 xi ∈ {±1}

−x3 + (−x5) ≡ 0

−x4 + x2 + x5 ≡ 0

– p. 16/35



Non-Homogeneous System Formulation

Question: When does Df ≡ ~b (mod 2p + 1) have a ±1

solution f in Z2p+1?

A necessary Condition: If ∀b : V (G) 7→ Z2p+1,
∃f : E 7→ {1,−1} with Df = b in Z2p+1, then

∑

v∈V (G)

b(v) ≡ 0 (mod 2p + 1).

Proof: View f as an orientation D.
∑

v∈V (G)

b(v) =
∑

v∈V (G)

[d+
D(v) − d−

D(v)].

Each edge occurs as positive and negative exactly
once.

– p. 17/35
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Non-Homogeneous System Formulation

Define M o
2p+1 to be the collection of graphs such that

G ∈ M o
2p+1 if and only if for any zero sum function b of

G in Z2p+1, there exists an orientation D such that
d+

D(v) − d−
D(v) ≡ b(v) (mod 2p + 1) at every vertex

v ∈ V (G).

M o
2p+1 ⊂ M2p+1 (take b = 0).

Graphs in M o
2p+1 will be referred as mod

(2p + 1)-contractible graphs, for a postponed reason.

– p. 18/35
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Contractible graphs with respect to mod

(2p + 1)-orientations

For an undirected graph G, whether G is in M o
2p+1 or

not is independent of the choice of the orientation of G.

Examples: 2K2 and K5 are mod 3-contractible.

Conjecture (Lai, 2007 in SIAM JDM, Shao, Wu, Zhou &
HJL, 2009 in JCTB): Every (4p + 1)-edge-connected
graph is in M o

2p+1.

– p. 19/35



Contractible graphs with respect to mod

(2p + 1)-orientations

For an undirected graph G, whether G is in M o
2p+1 or

not is independent of the choice of the orientation of G.

Examples: 2K2 and K5 are mod 3-contractible.

Conjecture (Lai, 2007 in SIAM JDM, Shao, Wu, Zhou &
HJL, 2009 in JCTB): Every (4p + 1)-edge-connected
graph is in M o

2p+1.

– p. 19/35



Contractible graphs with respect to mod

(2p + 1)-orientations

For an undirected graph G, whether G is in M o
2p+1 or

not is independent of the choice of the orientation of G.

Examples: 2K2 and K5 are mod 3-contractible.

Conjecture (Lai, 2007 in SIAM JDM, Shao, Wu, Zhou &
HJL, 2009 in JCTB): Every (4p + 1)-edge-connected
graph is in M o

2p+1.

– p. 19/35



Orientation with given out degrees

To understand M2p+1 and M o
2p+1, we study orientation

with given out degrees.

Let G be an undirected graph, D be an orientation of
G. Let S ⊆ V (G) be a vertex subset.

E(S) = the set of edges with both ends in S.

∂G(S) = the set of edges with just one end in S.

δ+
D(S) = edges oriented from S.

δ−D(S) = edges oriented into S.

– p. 20/35
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Orientation with given out degrees

Necessity: Let c : V (G) 7→ Z. If G has an orientation D

such that d+
D(v) = c(v),∀v ∈ V (G), then ∀S ⊆ V (G)

|E(S)| ≤
∑

v∈S

c(v) ≤ |E(S)| + |∂G(S)|.

A function c : V (G) 7→ Z satisfying inequality above will
be called a feasible function of G.

– p. 21/35
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Orientation with given out degrees

Suppose such an orientation D exists.

∀S ⊆ V (G),
∑

v∈S

c(v) =
∑

v∈S

d+
D(v).

|E(S)| =
∑

v∈S

d+
D(v) − |δ+

D(S)| ≤
∑

v∈S

d+
D(v)

≤
∑

v∈S

d+
D(v) + |δ−D(S)| = |E(S)| + |∂G(S)|.
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Orientation with given out degrees

Theorem (Hakimi, 1965, Shao, Wu, Zhou & HJL, 2009
in JCTB) Let G be a graph, and let c : V (G) 7→ Z be a
function. The following are equivalent.

(i) G has an orientation D such that
d+

D(v) = c(v),∀v ∈ V (G).

(ii) c is a feasible function of G. That is, ∀S ⊆ V (G)

|E(S)| ≤
∑

v∈S
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Application to score sequence

s = {s1 ≤ s2 ≤ · · · ≤ sn} is a score sequence if Kn has
an orientation with s the out degree sequence.

Corollary 10 (Landau 1953) 0 ≤ s1 ≤ s2 ≤ · · · ≤ sn of
nonnegative integers is a score sequence if and only if

k
∑

i=1

si ≥





k

2



 ,∀k with 1 ≤ k ≤ n,

where equality holds if and only if n = k.

Proof Directly verify that the function s is feasible.
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Application to orientation with given net out

degrees

Theorem (Shao, Wu, Zhou & HJL, 2009 in JCTB) Let
G be a graph and b : V (G) 7→ Z be a function such that

∑

v∈V (G)

b(v) = 0 and b(v) ≡ dG(v) (mod 2), ∀v ∈ V (G).

Then G has an orientation D such that
d+

D(v) − d−
D(v) = b(v), ∀v ∈ V (G) if and only if for any

∀S ⊆ V (G)

|
∑

v∈S

b(v)| ≤ |∂G(S)|.
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Application to M o
2p+1

Theorem (Shao, Wu, Zhou & HJL, 2009 in JCTB) Let G be a graph. The following
are equivalent.

(i) G ∈ Mo
2p+1.

(ii) ∀b : V (G) 7→ Z satisfying both

∑

v∈V (G)

b(v) ≡ 0 (mod 2p + 1)

and

b(v) ≡ dG(v) (mod 2),∀v ∈ V (G),

G has an orientation D such that d+
D

(v)− d−
D

(v) ≡ b(v) (mod 2p+1), ∀v ∈ V (G).
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Application to M2p+1

Fact Using the vertex splitting method, it is known that
to prove κ′(G) ≥ 4p =⇒ G ∈ M2p+1, it suffices to show
that this holds for (4p + 1)-regular graphs.

Theorem (Shao, Wu, Zhou & HJL, 2009 in JCTB) Let
G be a (4p + 1)-regular graph. Then G ∈ M2p+1 if and
only if V (G) has a partition (V +, V −) such that
∀U ⊆ V (G),

|∂G(U)| ≥ (2p + 1)||U ∩ V +| − |U ∩ V −||.
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Contractible graphs with respect to mod

(2p + 1)-orientations

What graphs are in M o
2p+1?

A graph H is mod (2p + 1)-contractible if for any graph G

that contains H as a subgraph,

G ∈ M2p+1 if and only if G/H ∈ M2p+1.

(Barat and Thomassen, 2006 in JGT) If for any map
w : V (G) 7→ Z2p+1 with

∑

v∈V (G) w(v) ≡ |E(G)| (mod
2p + 1), G has an orientation D such that ∀v ∈ V (G),
d+(v) ≡ w(v) (mod 2p + 1), then we say that G admits
all (2p + 1)-orientations.

– p. 28/35
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Contractible graphs with respect to mod

(2p + 1)-orientations

Theorem: Let p ≥ 1 be an integer. The followings are
equivalent for a connected graph H.
(i) H ∈ M o

2p+1,
(ii) H is mod (2p + 1)-contractible.
(iii) ∀G such that H is a subgraph of G, G/H ∈ M o

2p+1 if
and only if G ∈ M o

2p+1.
(iv) H admits all (2p + 1)-orientations.
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Contractible graphs with respect to mod

(2p + 1)-orientations

Theorem (Shao, Wu, Zhou & HJL, 2009 in JCTB) If
n = |V (G)| and G is not mod (2p+1)-contractible, then:

(i) V (G) is a disjoint union V (G) = V1
˙⋃V2 with |V1| = k,

|V2| = n − k, and
⌈

|E(V1, V2)| + 1

k

⌉

+

⌈

|E(V1, V2)| + 1

n − k

⌉

≤ 4p + 2.

(ii) V (G) is a disjoint union V (G) = V1
˙⋃V2 with |V1| = k,

|V2| = n − k, and

|E(V1, V2)| ≤
(4p + 2)k(n − k)

n
.
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Progress: Complete graphs

Example: For any positive p ∈ Z, K4p+1 is mod
(2p + 1)-contractible.

Proof: n = 4p + 1. By Theorem 14, V (Kn) can be
partitioned into two subsets V1 and V2 with |V1| = k and
|V2| = n − k satisfying inequality Theorem 14(ii). Since
|E(V1, V2)| = k(n − k), we have

⌈

|E(V1, V2)| + 1

k

⌉

+

⌈

|E(V1, V2)| + 1

4p − k

⌉

=

⌈

k(n − k) + 1

k

⌉

+

⌈

|k(n − k) + 1

n − k

⌉

= (n − k + 1) + (k + 1) = n + 2 > 4p + 2.

Proposition Km ∈ M o
2p+1 if and only if m = 1 or

m ≥ 4p + 1.
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Recent Progress

Theorem (Shao, Wu, Zhou & HJL, 2009 in JCTB) Let
n, p be positive integers, and let

f(n) =
(2p + 1)n log2(n)

2
be a function. If G is a graph

with n vertices and if |E(G)| ≥ f(n), then G has a
subgraph H with E(H) 6= ∅ which is mod
(2p + 1)-contractible.

Theorem (Shao, Wu, Zhou & HJL, 2009 in JCTB) Let
G be a graph with n vertices. If G is
(2p + 1) log2(n)-edge-connected, then G is mod
(2p + 1)-contractible.

Proof: Use connectivity to count the number of edges
and use the top Theorem to find a contractible
subgraph.
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Theorem (Shao, Wu, Zhou & HJL, 2009 in JCTB) Let
G be a graph with n vertices. If G is
(2p + 1) log2(n)-edge-connected, then G is mod
(2p + 1)-contractible.

Corollary Let G be a graph with n vertices. If G is
3 log2(n)-edge-connected, then G is mod 3-contractible.

Theorem (Zhang & HJL, 1992 in DM) Let G be a
graph with n vertices. If G is 4 log2(n)-edge-connected,
then G has a mod 3-orientation.
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Recent Progress

Definition A simple graph G is chordal if every cycle of
length greater than 3 possesses a chord.

Theorem (HJL, 2000 in GC): Every simple
4-connected chordal graph is in M o

3 .

Theorem Every simple (4p)-connected chordal graph
is in M o

2p+1.

Theorem Every (4p − 1)-edge-connected graph
without a K4-minor is in M o

2p+1.

Example Let m = 2p − 1 and let G = mC2p+1. Then G

is a (4p − 2)-edge-connected graph without K4-minor
but G 6∈ M o

2p+1.
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Thank you!
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