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Complete families of connected graphs, introduced by Catlin in the 1980s, have been 
known useful in the study of certain graphical properties that are closed under taking 
contractions. We show that given any complete family C of connected graphs such that C
contains graphs with sufficiently many edge-disjoint spanning trees, for any real number a
and b with 0 < a < 1, there exists a finite obstacle family F = F(a, b, C) such that for any 
simple graph G on n vertices satisfying the Ore-type degree condition

min{dG(u) + dG (v) : u, v ∈ V (G) and uv /∈ E(G)} ≥ an + b,

either G ∈ C or G can be contracted to a member in F . This result is applied to the study 
of spanning connectivity of line graphs. The spanning connectivity is the largest integer s
such that for any k with 0 ≤ k ≤ s and for any u, v ∈ V (G) with u �= v , G has a spanning 
subgraph H consisting of k internally disjoint (u, v)-paths. Z. Ryjáček and P. Vrána in [J. 
Graph Theory, 66 (2011) 152-173] prove that a fascinating conjecture of Thomassen on 
hamiltonian line graphs is equivalent to that every essentially 4-edge-connected graph has 
a 2-spanning-connected line graph. We prove that for any essentially 3-edge-connected 
graph G and any positive integer s, if G satisfies an Ore degree condition lower bounded by 
an arbitrary linear function in the number of vertices, then L(G) is s-spanning-connected 
with only finitely many contraction obstacles. When s = 3, we determine a finite graph 
family J ′(n) such that for every simple graph G on n ≥ 156 vertices with κ(L(G)) ≥ 3 and 
satisfying d(u) +d(v) ≥ 2(n−6)

5 for any pair of nonadjacent vertices u and v , we have either 
κ∗(L(G)) ≥ 3 or G is contractible to a member in J ′(n).

© 2022 Elsevier B.V. All rights reserved.

1. The problem

Graphs under considerations in this paper are loopless but with possible multiple edges, with undefined notation and 
terminologies following those in Bondy and Murty [2]. Unless otherwise stated, a graph is assumed to be non-null (with 
at least one vertex). We shall use δ(G), �(G), κ(G) and κ ′(G) to denote the minimum degree, the maximum degree, the 
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connectivity and the edge connectivity of a graph G , respectively. For vertices u, v ∈ V (G) in a graph G , a path (or a trail, 
respectively) of G with termini u and v will be referred to as an (u, v)-path (or an (u, v)-trail, respectively).

1.1. Complete graph families with strengthened Ore type degree conditions

For a graph G and an edge subset W ⊆ E(G), the contraction G/W is the graph formed from G by contracting edges 
in W with resulting loops deleted. We define G/∅ = G and use G/e for G/{e}. When H is a subgraph of G , then we 
often use G/H for G/E(H). If H is connected, then the vertex in G/H onto which H is contracted is denoted by v H , and 
P IG (v H ) = G[V (H)] is the preimage of v H in G . (Thus even the connected subgraph H may not be an induced subgraph of 
G , P IG (v H ) is an induced subgraph of G spanned by H .) Following [4,7], complete families of connected graphs are defined 
as follows.

Definition 1.1. ([4,7]) A family C of nonempty connected graphs is a complete family if each of the following holds.
(C1) K1 ∈ C .
(C2) If G ∈ C and if e ∈ E(G), then G/e ∈ C .
(C3) If H is subgraph of s graph G and if H, G/H ∈ C , then G ∈ C .

By definition, every spanning tree of the singleton graph K1 has an empty edge set, and so for any integer s ≥ 0, K1
has at least s edge-disjoint spanning trees. Consequently, we in the discussion will use the convention to view κ ′(K1) ≥ s. 
There are quite a few commonly studied graphical properties which would define complete graph families, as shown in the 
example below, each of which can be routinely verified.

Example 1.2. Let s ≥ 0 be an integer.
(i) (Proposition 2.3 of [17]) Let Ts = {G : |V (G)| ≥ 1 and G has at least s edge-disjoint spanning trees}. Then Ts is a complete 
family.
(ii) (Example 4 of [15]) Let E(s) = {G : κ ′(G) ≥ s}. Then E(s) is a complete family.
(iii) The family of all connected planar graphs is a complete family.

There have been many studies using degree conditions to investigate certain graphical properties. This motivates our 
current research. One of the goal of the current research is to seek a unified approach using degree conditions to study 
graphical properties that are related to complete families. For a graph G , define

m2(G) = min{max{dG(u),dG(v)} : u, v ∈ V (G) and uv /∈ E(G)}. (1)

Thus if for any u, v ∈ V (G) with uv /∈ E(G), we have dG (u) + dG(v) ≥ f (n), then we must have m2(G) ≥ f (n)/2. In this 
sense, m2(G) can be viewed as a strengthened Ore type degree condition of a graph G . For any real numbers a and b, and 
for a simple graph G of order n, we define

Za,b(G) = {v ∈ V (G) : dG(v) < an + b}. (2)

Let Ts denote the graph family as defined in Example 1.2. One of our main results is the following, which indicates that for 
any given complete family C , any simple graph G with m2(G) lower bounded by any linear function of the order of G must 
be in C with finitely many contraction obstacles.

Theorem 1.3. Let s be a positive integer, a and b be real numbers with 0 < a < 1, C be a complete family such that Ts+1 ⊆ C , and let 
G be a simple graph of order n satisfying

m2(G) ≥ an + b. (3)

If for some integer M0, we have |Za,b(G)| ≤ M0 , then there exists a finite graph family F such that exactly one of the following holds.
(i) G ∈ C .
(ii) G is contractible to a member in F .

We shall show that this result implies several former results using degree conditions. In particular, we also present an 
application of Theorem 1.3 to some studies related to Thomassen’s fascinating conjecture that every 4-connected line graph 
is hamiltonian.

1.2. Thomassen’s conjecture on hamiltonian line graphs and spanning connectivity

Let s ≥ 0 be an integer. If a subgraph H of G consists of s internally disjoint (u, v)-paths (or edge-disjoint (u, v)-trails, 
respectively) {Q 1, Q 2, ..., Q s}, then H is called an (s; u, v)-path-system (or an (s; u, v)-trail-system, respectively) of G . 
2
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We also use {Q 1, Q 2, ..., Q s} to denote the collection of the corresponding paths (or trails) while using H to denote the 
subgraph. If V (H) = V (G), then H is a spanning (s; u, v)-path-system (or a spanning (s; u, v)-trail-system, respectively).

Following the Menger Theorems (as seen in Theorems 9.1 and 9.7 of [2]), we define a graph G to be k-connected (or 
k-edge-connected, respectively) if for any pair of distinct vertices u and v , G contains a (k; u, v)-path-system (or a (k; u, v)-
trail-system, respectively). It follows that the connectivity κ(G) of a graph G equals the maximum number k such that for 
every pair of distinct vertices u and v , G has a (k; u, v)-path-system. Likewise, the edge-connectivity κ ′(G) of G equals 
the maximum number k such that for every pair of distinct vertices u and v , G has a (k; u, v)-trail-system. It is natural to 
consider the research problem when the (s; u, v)-path-systems (or the (s; u, v)-trail-systems) are required to be spanning 
subgraphs of G , which leads to the following definition. The spanning connectivity κ∗(G) of a graph G is the largest integer 
s such that for any integer k with 0 ≤ k ≤ s and for any u, v ∈ V (G) with u �= v , G has a spanning (k; u, v)-path-system. A 
graph G is s-spanning connected if κ∗(G) ≥ s. It follows from definitions that

κ(G) ≥ κ∗(G), for any graph G . (4)

Hsu in [11] initiated the study of spanning connectivity of a network as a way to evaluate communication performance 
of interconnected networks. Many former studies on spanning connectivity of graphs have been focused on determining 
the spanning connectivity of special graph families, as summarized in the monograph [12] by Hsu and Lin. The study of 
spanning connectivity is also motivated by the classical hamiltonian graph problem. By definition, a graph G is hamiltonian 
(that is, with a spanning cycle) if and only if for any u, v ∈ V (G), G has a spanning (2; u, v)-path-system. As G is Hamilton-
connected if and only if u, v ∈ V (G), G has a spanning (1; u, v)-path-system, it follows by definition that G is Hamilton-
connected if and only if κ∗(G) ≥ 2. As it is well-known that every Hamilton-connected graph must be 3-connected, we 
conclude that

if a graph G satisfies κ∗(G) > 0, then κ∗(G) ≥ 2 and κ(G) ≥ 3. (5)

Let L(G) denote the line graph of a graph G , which is a simple graph with vertex set E(G), and with edge set 
E(L(G)) = {e′e′′ : e′, e′′ ∈ E(G) and e′, e′′ are adjacent in G}. A graph that does not have an induced subgraph isomorphic 
to K1,3 is a claw-free graph. Beineke [1] and Robertson (Page 74 of [10]) showed that line graphs are claw-free graphs. By 
several ingenious closure concepts developed by Ryjáček [26] and by Ryjáček and Vrána [27], the fascinating conjecture on 
hamiltonian line graph posed by Thomassen is shown to be equivalent to each of the following.

Conjecture 1.4. Let G be a graph and let � be a claw-free graph.
(i) (Thomassen [29] and, Kučzel and Xiong [14]) If κ(L(G)) ≥ 4, then κ∗(L(G)) ≥ 2.
(ii) (Matthews and Sumner [24], and Ryjáček and Vrána [27]) If κ(�) ≥ 4, then κ∗(�) ≥ 2.

An edge cut X of a graph G is essential if G − X has at least two nontrivial components. For an integer k > 0, a graph G
is essentially k-edge-connected if G is connected and does not have an essential edge cut X with |X | < k. For a connected 
graph G , let ess′(G) be the largest integer k such that G is essentially k-edge-connected, if at least one such k exists, or 
ess′(G) = |E(G)| − 1 if for any integer k, G does not have an essential edge cut of size k. By the definitions of line graphs 
and essential edge-connectivity and by (5), for a connected graph G ,

κ(L(G)) = ess′(G), and if κ∗(L(G)) ≥ k > 0, then ess′(G) ≥ max{3,k}. (6)

Another purpose of this research is to investigate spanning connectivity of line graphs. By applying Theorem 1.3, we prove 
that for any graph G and any positive integer s, if G satisfies a generalized Ore degree condition lower bounded by an 
arbitrary linear function in the number of vertices, then κ∗(L(G)) ≥ s with only finitely many contraction obstacles. The 
main results of this paper are the following.

Theorem 1.5. Let s be a positive integer and a and b be real numbers with 0 < a < 1. There exists a family of finitely many graphs 
F1(a, b, s) such that if G is a simple graph on n vertices with ess′(G) ≥ max{3, s} and satisfies (3), then one of the following must hold.
(i) κ∗(L(G)) ≥ s.
(ii) G is contractible to a member in F1(a, b, s).

The next example indicates that the graph K3,3 plays an important role in the study of 3-spanning-connected line graphs, 
just like that the Petersen graph is, in some sense, the major obstacle for 2-spanning-connected line graphs.

Example 1.6. Let J be a graph isomorphic to K3,3 with vertex set V ( J ) = {u1, u2, u3, v1, v2, v3} such that each of 
{u1, u2, u3} and {v1, v2, v3} is a stable set of J . For any integer n ≥ 16, let J (n) denote the family of graphs such that 
each J (n) ∈J (n) is obtained from J by blowing up each vertex w ∈ V ( J ) − {v1} into a 3-edge-connected graph K (w) with 
order 
n−1

5 � ≤ |V (K (w))| ≤ �n−1
5  such that K (w) is either a complete graph or a complete graph minus an edge whose 

vertices are incident with edges in J and such that 
∑

w∈V ( J )−{v1} |V (K (w))| = n − 1. It will be shown in Lemma 5.4 of 
Section 5 that for any J (n) ∈J (n), L( J (n)) is not spanning 3-connected.
3
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Theorem 1.7. If G is a simple graph on n ≥ 156 vertices with ess′(G) ≥ 3 and

m2(G) ≥ n − 6

5
, (7)

then one of the following must hold.
(i) κ∗(L(G)) ≥ 3.
(ii) G is contractible to a member in J (n).

As commented above, in a graph G , we have 2m2(G) ≥ dG(u) + dG (v), for any u, v ∈ V (G) with uv /∈ E(G). Theorems 1.5
and 1.7 can be routinely stated in terms of Ore degree conditions, with the corresponding contraction obstacle family being 
subfamilies F ′

1 and J ′(n) of those in Theorems 1.5 and 1.7, respectively.
In the next section, we prove Theorem 1.3, with applications to derive some former results. The rest of the paper will be 

denoted to the application of Theorem 1.3 to spanning connectivity of line graphs. Some useful tools will be displayed and 
developed in Section 3, and Theorems 1.5 and 1.7 will be proved in the last few sections.

2. Proof of Theorem 1.3

The purpose of this section is to obtain a reduction of graphs with respect to a given complete family. Some of the 
properties of graphs, such as graphs with at least s edge-disjoint spanning trees in [3,17,19] can be extended to arbitrary 
complete families of graphs. For a complete graph family C and a graph H , if H ∈ C , then H is also called a C-graph. For a 
graph H and an edge set X with V (X) ⊆ V (H), define H + X to be the graph with vertex set V (H) and edge set E(H) ∪ X . 
When X = {e}, we use H + e for H + {e}.

Proposition 2.1. Let C be a complete family of graphs, and let G be a graph. Each of the following holds.
(i) If a graph H ∈ C and if u, v ∈ V (H) and e = uv, then H + e ∈ C .
(ii) If H1, H2 are C-subgraphs of G with V (H1) ∩ V (H2) �= ∅, then H1 ∪ H2 ∈ C .
(iii) If T is a spanning connected subgraph of G and for any edge e ∈ E(T ), G has a C-subgraph He with e ∈ E(He), then G ∈ C .

Proof. Let u, v ∈ V (H) and e = uv . If e ∈ E(H), then H + e = H ∈ C . Assume that e /∈ E(H), then as H ∈ C and H + e/H =
K1 ∈ C , it follows by Definition 1.1(C3) that H + e ∈ C . This justifies (i).

To prove (ii), let H = H1 ∪ H2. By (i), H[V (H1)] ∈ C . By (C2), H/H2 = H[V (H1)]/H2 ∈ C . As H2 ∈ C , it follows by 
Definition 1.1(C3) that H1 ∪ H2 ∈ C .

Now let T be a spanning connected subgraph of G satisfying the hypothesis of (iii). We argue by induction on |V (G)| =
|V (T )|. As K1 ∈ C and by the assumption of T , we conclude that (iii) holds if |V (G)| ∈ {1, 2}. Now assume that |V (G)| ≥ 3
and Proposition 2.1 holds for smaller values of |V (G)|. Then |V (T )| = |V (G)| ≥ 3. As T is connected, there must be an 
edge e ∈ E(T ), and so G contains a C-subgraph He with e ∈ E(He). Let G ′ = G/He and T ′ = T /(T ∩ He). Then T ′ is also 
a spanning connected subgraph of G ′ . For any edge e′ ∈ E(T ′) ⊆ E(T ), by assumption, G has a C-subgraph He′ . By (C2), 
Le′ := (He′ ∪ He)/He ∈ C . Hence for any edge e′ ∈ E(T ′), G ′ has a C-subgraph Le′ with e′ ∈ E(Le′). It follows by induction 
that G ′ ∈ C . As He ∈ C and G ′ = G/He ∈ C , by Definition 1.1(C3), we conclude that G ∈ C . �

By Proposition 2.1(ii), every graph G has a unique collection of maximal C-subgraphs H1, H2, ..., Hc . Define G/(H1 ∪
H2 ∪ ... ∪ Hc) to be the C-reduction of G . If G equals its own reduction, then G is C-reduced. Lemma 2.2 is implied by a 
classic result of Nash-Williams in [25]. An explicit proof can be found in Theorem 2.4 of [31].

Lemma 2.2. (Nash-Williams [25]) Let s > 0 be an integer. For any graph G with n = |V (G)|, if |E(G)| ≥ s(n − 1), then G contains a 
nontrivial subgraph H with H ∈ Ts .

By definition and by Lemma 2.2, we have the following observations.

Observation 2.3. Let C be a complete family.
(i) A graph G is C-reduced if and only if G does not have a nontrivial C-subgraph.
(ii) If T is also a complete family satisfying T ⊆ C , then any C-reduced graph G is also T -reduced.
(iii) Let s ≥ 2 be an integer. If G is Ts-reduced, then |E(G)| ≤ (s + 1)|V (G)| − s − 1.
(iv) Every nontrivial C-reduced graph is not in C .

Throughout the discussions, we continue using (2) to define Za,b(G). This if G satisfies (3), then G[Za,b] must be a 
complete subgraph of G . The following lemma is also useful.

Lemma 2.4. (Liu et al. Lemma 3.1 of [22]) Let G be a simple graph and W ⊆ V (G) be a subset such that d = min{dG(w) : w ∈ W }. If 
|∂G(W )| < d, then |W | ≥ d + 1.
4
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We will prove a slightly stronger version of Theorem 1.3, stated as Theorem 2.5 below. This indicates that the finite 
obstacle family consists of only nontrivial C-reduced graphs. As Kn ∈ Ts+1 when n ≥ 2s + 2, we have M0 ≤ 2s + 1 for the 
constant M0 in the next theorem.

Theorem 2.5. Let s ≥ 1 be an integer, a and b be real numbers with 0 < a < 1, C be a complete family such that Ts+1 ⊆ C , and let 
G be a simple graph of order n satisfying (3). If for some integer M0, we have |Za,b(G)| ≤ M0 , then there exists a finite graph family 
F =F(a, b, s, C) consisting of nontrivial C-reduced graphs such that exactly one of the following holds.
(i) G ∈ C .
(ii) G is contractible to a member in F .

Proof. Let c and N be integers satisfying

c = max {2 − |b|,2s + 2} ,

N > max

{
2|b|

a
,

c + 1 − |b|
a

,
(1 + a + aM0)(c + 1) − 2as

a(c − 2s − 1)

}
(8)

We shall argue by contradiction to prove the theorem with F being the family of all C-reduced graphs with order at least 
2 and at most N . As Ts+1 ⊆ C , by Observation 2.3, graphs in F are also Ts+1-reduced. Hence every graph in F does not 
contain an (s + 1)K2 as a subgraph, which implies that F is a graph family of finitely many graphs. Assume that there 
exists a graph G with n vertices satisfying (3) and G /∈ C . Let G ′ denote the C-reduction of G with n′ = |V (G ′)|. We have the 
following claims.

Claim 1. Each of the following holds.
(i) G ′ /∈F , n ≥ n′ > N and an + b > 0.
(ii) |E(G ′)| ≤ (s + 1)|V (G ′)| − s.

Since G ′ is C-reduced and Ts+1 ⊆ C , it follows by Observation 2.3 that Claim 1(ii) must hold. It remains to prove 
Claim 1(i). Since G is a counterexample, G ′ /∈F . If n′ = 1, then as K1 ∈ C , it follows by the assumption that C is a complete 
family and Definition 1.1(C3) that G ∈ C , whence G is not a counterexample. Hence n′ > 1. If n′ ≤ N , then G ′ ∈ F . Thus 
n ≥ n′ > N . By (8), n > N ≥ |b|

a , and so an + b > 0. This completes the proof for Claim 1(i).
For the value of c as defined above, we define

Xc = ∪i≤c Di(G ′) and X ′
c = {v ′ ∈ Xc : P IG(v ′) ∩ Za,b �= ∅}. (9)

Claim 2. Each of the following holds.
(i) |X ′

c| ≤ M0 .
(ii) |Xc − X ′

c| ≤ 1
a + 1.

(iii) n′ − |Xc| ≤ 2(s+1)n′−2s
c+1 .

As Claim 2(i) follows from the fact that |X ′
c | ≤ |Za,b| ≤ M0, it remains to prove Claim 2(ii) and (iii). For any vertex x ∈ Xc , 

let Hx = P IG (x) denote the preimage of x in G . As x /∈ X ′
c , every vertex v ∈ V (Hx) is not in Za,b , and so by (3) and by (8), 

we have dG (v) ≥ an + b > c. By Lemma 2.4, |V (Hx)| ≥ an + b + 1, and so

n = |V (G)| ≥
∑

x∈Xc−X ′
c

|V (Hx)| ≥ (an + b + 1)|Xc − X ′
c|.

By (8), we have n > 2|b|
a ≥ |b|−b

a , and so |b|+1
an+b+1 < 1. It follows by algebraic manipulations that

|Xc − X ′
c| ≤

n

an + b + 1
= an + b + 1 − (b + 1)

a(an + b + 1)
≤ 1

a
+ |b| + 1

an + b + 1
≤ 1

a
+ 1.

This justifies Claim 2(ii).
By (9), for any z ∈ V (G ′) − Xc , we have dG ′ (z) ≥ c + 1. It follows by Claim 1(ii) that

(c + 1)|V (G ′) − Xc| ≤
∑

z∈V (G ′)
dG ′(z) = 2|E(G ′)| ≤ 2(s + 1)n′ − 2s,

which implies that Claim 2(iii).
We are going to find a contradiction. By Claim 2(i) and (ii), we have |Xc| ≤ 1

a + 1 + M0. This, together with Claim 2(iii), 
implies that
5
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1 + aM0 + a

a
≥ |Xc| = n′ − 2(s + 1)n′ − 2s

c + 1
= n′

(
1 − 2(s + 1)

c + 1

)
+ 2s

c + 1
.

With algebraic manipulations, and by (8), we conclude that

n′ ≤
(

1 + aM0 + a

a
− 2s

c + 1

)(
1 − 2(s + 1)

c + 1

)−1

= (1 + a + aM0)(c + 1) − 2as

a(c − 2s − 1)
≤ N,

leading to a contradiction that n > N . This completes the proof of Theorem 2.5. �
Theorem 2.5 can be applied to obtain a former result on strongly Z2p+1-connected graphs. As this paper is not focused 

on the study of group connectivity of graphs, we refer to [18] for the related definitions of strongly Z2p+1-connected graphs. 
Other applications of Theorem 2.5 will be discussed in Subsection 3.4 as well as in the last two sections of this paper.

Theorem 2.6. (Theorem 1.6 of [18]) Let G be a simple graph on n vertices. For any integer p > 0 and for any real numbers a and b with 
0 < a < 1, there exist an integer N = N(a, p) and a finite family F1(a, p) of graphs that are not strongly Z2p+1-connected such that if 
n ≥ N and if for every pair of nonadjacent vertices u and v in G, dG(u) + dG(v) ≥ an + b, then either G is strongly Z2p+1-connected 
or G can be contracted to a member in F1(a, p).

Proof. Let C denote the family of all graphs that are strongly Z2p+1-connected. By Theorem 1.12 of [23], Ts+1 ⊆ C with 
s = 6p − 1. In Proposition 2.1 and Lemma 2.2 of [18], it is known that C is a complete family and no C-reduced graph 
contains a complete graph of order at least 4p + 1. Therefore, Theorem 2.6 can be obtained by applying Theorem 2.5 with 
M0 = 4p + 1. �
3. Mechanisms for spanning connectivity of line graphs

3.1. Trail systems in G and spanning connectivity of L(G)

Harary and Nash-William [10] characterized graphs whose line graphs are hamiltonian. Chen et al. in [9] extended this 
characterization by displaying a relationship between spanning connectivity in L(G) and certain type of dominating trail 
systems in G . For an edge subset X ⊆ E(G) of a graph G , we also use X to denote the subgraph G[X] induced by X . Thus 
V (X) is a subset of V (G) consisting of all vertices incident with at least one edge in X . In particular, if e = uv ∈ E(G), we 
define V (e) = {u, v}. Let

T = v0, e1, v1, e2, · · · , ek, vk (10)

denote a trail such that for each i with 1 ≤ i ≤ k, V (ei) = {vi−1, vi}, and such that if 1 ≤ i < j ≤ k, then ei �= e j . A trial T
(with the notation in (10)) is open (or closed, respectively) if v0 �= vk (or v0 = vk , respectively). We define the internal 
vertices of the trail in (10) to be the multiset T o = {v1, v2, · · · , vk−1} if T is open, and to be V (T ) if T is closed. As in an 
open trail, vertices may occur more than once, it is also possible for the end vertices v0 or vk in (10) to be internal. A trail 
T of G is dominating if T o is a vertex cover of G . That is, G − T o is edgeless.

Let e′, e′′ ∈ E(G) be two edges of G . A trail T of G is an (e′, e′′)-trail of G if the two end edges of T are e′ and e′′ , 
respectively. As an example, the trail in (10) is an (e1, ek)-trail. Two (e′, e′′)-trails T1 and T2 are internally edge-disjoint if 
E(T1) ∩ E(T2) = {e′, e′′}. For a given integer s ≥ 0, an (s; e′, e′′)-trail system in G is a subgraph J consisting of s internally 
edge-disjoint (e′, e′′)-trails (T1, T2, · · · , Ts). A vertex v is an internal vertex of J if for some i with 1 ≤ i ≤ s, v is an internal 
vertex of Ti . For an (s; e′, e′′)-trail system J , define

∂G( J ) = {e ∈ E(G) − E( J ) : e is incident with an internal vertex of J }.
An (s; e′, e′′)-trail system J is dominating if E(G) − E( J ) = ∂G( J ), and is spanning if it is dominating with V (G) = V ( J ). 
Let u′, u′′ ∈ V (G) and e′, e′′ ∈ E(G). By definition, every spanning (k; u′, u′′)-trail system is also a dominating (k, u′, u′′)-trail 
system; and every spanning (k; e′, e′′)-trail system is also a dominating (k; e′, e′′)-trail system.

Theorem 3.1. (Chen et al., Theorem 2.1 of [9]) Let G be a graph with |E(G)| ≥ 3 and let s ≥ 3 be an integer. Then κ∗(L(G)) ≥ s if and 
only if for any edge e′ , e′′ ∈ E(G), and for each integer k with 1 ≤ k ≤ s, G has a dominating (k; e′, e′′)-trail-system.

To facilitate the discussions, we often use a vertex sequence T = v0 v1...vi ...v j ...vk to denote a trail with the under-
standing that every edge may occur at most once in the trail. To emphasize the end vertices, we also use T [v0, vk] to 
denote this (v0, vk)-trail T together with its orientation, and use T [vk, v0] = vk vk−1...v j ...vi ...v2 v1 v0 to denote the trail 
with the same edge set but with reversed orientation. For indices 1 ≤ i < j ≤ k, we define T [vi, v j] := vi vi+1...v j to be the 
subtrail of T , and so T [v j, vi] := v j v j−1...vi denotes that trail formed by reversing the orientation of T [vi, v j]. Thus when 
vi = v j , as subgraphs, T [vi, v j] and T [v j, vi] represent the same closed trail but with opposite orientations. If T1 = T1[u, v], 
6
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T2 = T2[v, w] are edge-disjoint trails, we adopt the amalgamation notation T1[u, v]T2[v, w] to denote an (u, w)-trail that 
traverses along T1 to reach v , then traverses along T2 to stop at w . If T1 consists of only one edge uv , then we use 
uvT2[v, w] for T1[u, v]T2[v, w]. The trail T1[u, v]v w is defined similarly. A trail T that starts from a vertex v with e being 
its last edge is often denoted by a (v, e)-trail. Likewise, a (e, v)-trail is one whose first edge is e and the last vertex is v .

3.2. Supereulerian width of a graph

A graph G is spanning trailable if for each pair of edges e1 and e2, G has a spanning (e1, e2)-trail.

Notation 3.2. Suppose that e = u1 v1 and e′ = u2 v2 are two edges of G. If e �= e′ , then the graph G(e, e′) is obtained from G by 
replacing e = u1 v1 with a path u1ve v1 and by replacing e′ = u2 v2 with a path u2ve′ v2 , where ve, ve′ are two new vertices not in 
V (G). If e = e′ , then G(e, e′), also denoted by G(e), is obtained from G by replacing e = u1 v1 with a path u1 ve v1 .

As defined in [20], a graph G is strongly spanning trailable (SST in short) if for any e, e′ ∈ E(G), G(e, e′) has a (ve, ve′)-
trail T with V (G) = V (T ) − {ve, ve′ }. Since e = e′ is possible, SST graphs are both spanning trailable and supereulerian.

As a generalization of supereulerian graphs, the notion of the supereulerian width of a graph is introduced by Li et al. 
in [19]. Let s ≥ 0 be an integer. A graph G is supereulerian with width s if for any u, v ∈ V (G), G contains a spanning 
(s; u, v)-trail-system. The supereulerian width μ′(G) of a graph G is the largest integer s such that G is supereulerian with 
width k for any integer k with 1 ≤ k ≤ s. The following former results are useful.

Lemma 3.3. (Proposition 2.2 of [16]) For a nontrivial graph G, κ∗(L(G)) ≥ 2 if and only if for any pair of edges e, e′ ∈ E(G), G has a 
dominating (e, e′)-trail. In particular, if G is spanning trailable, then κ∗(L(G)) ≥ 2.

Lemma 3.4. Let e′ = u′v ′, e′′ = u′′v ′′ ∈ E(G) be two edges, and let Q 1, Q 2 be two edge-disjoint (u′, u′′)-trails of G. Each of the 
following holds.
(i) If e′′ ∈ E(Q 1), then either Q 1 can be viewed as an (u′, e′′)-trail, or G has an (u′, e′′)-trail Q ′

1 and a nontrivial closed trail Q ′′
1 [u′′, u′′]

such that E(Q 1) = E(Q ′
1) ∪ E(Q ′′

1 ) and E(Q ′
1) ∩ E(Q ′′

1 ) = ∅.
(ii) If Q 1 is an (u′, e′′)-trail and e′ ∈ E(Q 1), then either Q 1 is an (e′, e′′)-trail, or G has an (e′, e′′)-trail Q ′

1 and a nontrivial closed 
trail Q ′′

1 [u′, u′] such that E(Q 1) = E(Q ′
1) ∪ E(Q ′′

1 ) and E(Q ′
1) ∩ E(Q ′′

1 ) = ∅.
(iii) If e′ ∈ E(Q 1) and e′′ ∈ E(Q 2), then G has internally-edge-disjoint (e′, e′′)-trails T1 and T2 with E(T1) ∪ E(T2) = E(Q 1) ∪ E(Q 2).

Proof. Assume that Q 1 is not an (u′, e′′)-trail. Denote Q 1 = v1 v2...vi vi+1...vt with v1 = u′ , vt = u′′ and e′′ = vi vi+1 for 
some i + 1 < t . Hence vt ∈ {u′′, v ′′} = {vi, vi+1}. If vi = u′′ = vt , then Q 1[v1, vi]Q 1[vt , vi+1]vi+1 vi is an (u′, e′′)-trail. Hence 
we assume that vi+1 = u′′ = vt . In this case, let Q ′

1 = Q 1[v1, vi+1] and Q ′′
1 = Q 1[vi+1, vt]. Then Q ′

1 is an (u′, e′′)-trail and 
Q ′′

1 is a nontrivial closed trail satisfying the expected properties stated in (i). This justifies Lemma 3.4(i).
Now let Q 1 be an (u′, e′′)-trail and e′ ∈ E(Q 1). We may assume that Q 1 = v1 v2...vi vi+1...vt with v1 = u′ , e′ = vi vi+1

and e′′ = vt−1 vt . If i = 1, then Q 1 is an (e′, e′′)-trail. Hence we assume that 1 < i, and so v1 ∈ {u′, v ′} = {vi, vi+1}. If 
v1 = vi+1, then vi+1 vi Q 1[vi, v1]Q 1[vi+1, vt ] is an (e′, e′′)-trail. Hence we may assume that v1 = vi . In this case, we let 
Q ′

1 = Q 1[vi, vt] and Q ′′
1 = Q 1[v1, vi]. Then Q ′

1 is an (e′, e′′)-trail and Q ′′
1 is a nontrivial closed trail satisfying the expected 

properties stated in (ii). This justifies Lemma 3.4(ii).
Finally, we assume that e′ ∈ E(Q 1) and e′′ ∈ E(Q 2). Applying Lemma 3.4(i) to both Q 1 and Q 2, there are edge-

disjoint trails Q ′
1, Q ′′

1 , Q ′
2, Q ′′

2 , such that Q ′
1 = Q ′

1[u′, u′′] is an (e′, u′′)-trail, Q ′
2 = Q ′

2[u′, u′′] is an (u′, e′′)-trail, Q ′′
1 =

Q ′′
1 [u′, u′] and Q ′′

2 = Q ′′
2 [u′′, u′′] are (possibly edgeless) closed trails. Define T1 = Q ′

1[v ′
1, u

′′]Q ′′
2 [u′′, u′′]u′′v ′′ , and T2 =

v ′u′ Q ′′
1 [u′, u′]Q ′

2[u′, u′′]. Then T1 and T2 are internally edge-disjoint (e′, e′′)-trails in G with E(T1) ∪ E(T2) ⊆ E(Q 1) ∪ E(Q 2). 
This validates Lemma 3.4(iii). �
Theorem 3.5. Let G be a connected graph with |E(G)| ≥ 3.
(i) Let k be an integer with k ≥ 3, and let e′ = u′v ′ and e′′ = u′′v ′′ be two edges in G. If G has a (k; u′, u′′)-trail-system Q , then G has 
a (k; e′, e′′)-trail-system Q ′ with E(Q ) ⊆ E(Q ′) and ∂G(Q ) ⊆ ∂G(Q ′).
(ii) If G is spanning trailable, then κ∗(L(G)) ≥ μ′(G).

Proof. To prove (i), we let e′ = u′v ′ and e′′ = u′′v ′′ be two edges in G . As G is loopless, we may assume that u′ �= u′′ . 
Suppose that G contains a (k; u′, u′′)-trail-system Q consisting of k mutually edge-disjoint (u′, u′′)-trails {Q 1, Q 2, ..., Q k}. 
If {e′, e′′} ∩ (∪k

i=1 E(Q i)) = ∅, then for each i with 1 ≤ i ≤ k, letting Q 1
i = v ′u′ Q i[u′, u′′]u′′v ′′ , we have found a spanning 

(k; e′, e′′)-trail-system Q 1 consisting of the trials in {Q 1
1 , Q 1

2 , ..., Q 1
k } such that E(Q ) ⊆ E(Q 1) and ∂G(Q ) ⊆ ∂G(Q 1).

Next we assume that |{e′, e′′} ∩ (∪k
i=1 E(Q i))| = 1, and by symmetry, that {e′, e′′} ∩ (∪k

i=1 E(Q i)) = {e′′}. As e′′ ∈ ∪k
i=1 E(Q i))

and as the Q i ’s are mutually edge-disjoint, we may assume that e′′ ∈ E(Q 1), and so e′′ /∈ E(Q i) for all i ≥ 2. By Lemma 3.4(i), 
G has an (u′, e′′)-trail Q ′

1 and a (possibly trivial) closed trail Q ′′
1 [u′′, u′′] such that E(Q 1) = E(Q ′

1) ∪ E(Q ′′
1 ) and E(Q ′

1) ∩
E(Q ′′) = ∅. Define Q 2 = v ′u′ Q ′ , Q 2 = v ′u′ Q 2[u′, u′′]Q ′′[u′′, u′′]u′′v ′′ , and for 3 ≤ i ≤ k, Q 2 = v ′u′ Q i[u′, u′′]u′′v ′′ . Thus we 
1 1 1 2 1 i
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have found a spanning (k; e′, e′′)-trail-system Q 2 consisting of the trials in {Q 2
1 , Q 2

2 , ..., Q 2
k } and satisfying E(Q ) ⊆ E(Q 2)

and ∂G(Q ) ⊆ ∂G(Q 2).
Finally we assume that {e′, e′′} ⊂ ∪k

i=1 E(Q i). If e′, e′′ are both in the same trail, then by symmetry, we may assume that 
e′, e′′ ∈ E(Q 1). By Lemma 3.4(i) and (ii), G has an (e′, e′′)-trail Q ′

1, and (possibly trivial) closed trails Q ′′
1 [u′, u′] Q ′′′

1 [u′′, u′′]
such that E(Q 1) = E(Q ′

1) ∪ E(Q ′′
1 ) ∪ E(Q ′′′

1 ), and Q ′
1, Q

′′
1 , Q ′′′

1 are mutually edge-disjoint. In this case, we define Q 3
1 = Q ′

1, 
Q 3

2 = v ′u′ Q ′′
1 [u′, u′′]Q 2[u′, u′′]Q ′′

1 [u′′, u′′]u′′v ′′ , and for 3 ≤ i ≤ k, Q 3
i = v ′u′ Q i[u′, u′′]u′′v ′′ . Thus we have found a spanning 

(k; e′, e′′)-trail-system Q 3 consisting of the trials in {Q 3
1 , Q 3

2 , ..., Q 3
k } and satisfying E(Q ) ⊆ E(Q 3) and ∂G (Q ) ⊆ ∂G(Q 3). 

Hence we may assume that e′, e′′ are not in the same trail. By symmetry, we may assume that e′ ∈ E(Q 1) and e′′ ∈ E(Q 2). 
By Lemma 3.4(iii), then G has internally edge-disjoint (e′, e′′)-trails T1 and T2 with E(T1) ∪ E(T2) = E(Q 1) ∪ E(Q 2). In this 
case, we define Q 4

1 = T1, Q 4
2 = T2, and for 3 ≤ i ≤ k, Q 4

i = v ′u′ Q i[u′, u′′]u′′v ′′ . Thus we have found a spanning (k; e′, e′′)-
trail-system Q 4 consisting of the trials in {Q 4

1 , Q 4
2 , ..., Q 4

k } and satisfying E(Q ) ⊆ E(Q 4) and ∂G (Q ) ⊆ ∂G(Q 4). Therefore, 
in any case, a (k; e′, e′′)-trail-system Q ′ of G satisfying E(Q ) ⊆ E(Q ′) and ∂G(Q ) ⊆ ∂G(Q ′) can always be found, and so 
Theorem 3.5(i) is proved.

To prove (ii), we observe that since G is spanning trailable, it follows from Lemma 3.3 that κ∗(L(G)) ≥ 2. Thus The-
orem 3.5(ii) holds if μ′(G) ≤ 2. Hence we may assume that s := μ′(G) ≥ 3. By Theorem 3.1, for each integer k with 
3 ≤ k ≤ s, and for any edge e′ , e′′ ∈ E(G), we are to find a dominating (k; e′, e′′)-trail-system of G . Again denote e′ = u′v ′ and 
e′′ = u′′v ′′ . Since s ≥ k, G contains a spanning (k; u′, u′′)-trail-system Q consisting of k mutually edge-disjoint (u′, u′′)-trails. 
By Theorem 3.5(i), G contains a (k; e′, e′′)-trail-system Q ′ with E(Q ) ⊆ E(Q ′) and ∂G(Q ) ⊆ ∂G(Q ′). As Q is spanning, Q ′
is also spanning, and so dominating. Hence by Theorem 3.1 and by definition, κ∗(L(G)) ≥ μ′(G). �

It is a natural question whether there exist graphs G with μ′(G) < κ∗(L(G)). Further preparations would be needed to 
address this question. In Example 5.9, we shall present 3-edge-connected graphs G with μ′(G) < 3 but κ∗(L(G)) ≥ 3.

3.3. Basics in s-collapsible reductions

In this subsection, we will introduce a reduction method that associates with the study in spanning connectivity of line 
graphs. For a graph G and an integer i, define

Di(G) = {v ∈ V (G) : dG(v) = i}, and O (G) = ∪ j≥0 D2 j+1(G).

Let s ≥ 1 be an integer. Following Proposition 2.2 of [19], we define a nonempty graph G to be s-collapsible if for any 
vertex subset X ⊆ V (G) with |X | ≡ 0 (mod 2), G contains a spanning connected subgraph L X satisfying O (L X ) = X and 
κ ′(G − E(L X )) ≥ s − 1. Let Cs denote the family of all s-collapsible graphs. An s-collapsible graph is often referred as to a
Cs-graph. As indicated in Section 2 of [19], C1 consists of precisely the collapsible graphs defined by Caltin in [3].

Let H1, H2, ..., Hc denote the maximal s-collapsible subgraph of G . Then G/(∪c
i=1 Hi) is the Cs-reduction of G . A graph 

G is Cs-reduced if G equals to its own Cs-reduction. The follow result collects some useful facts on Cs-reductions.

Theorem 3.6. Let s ≥ 1 be an integer, G be a nontrivial connected graph and let H be a Cs-subgraph of G. Each of the following holds.
(i) (Corollary 2.9 of [19]) G is s-collapsible if and only if G/H is s-collapsible. Moreover, μ′(G) ≥ s + 1 if and only if μ′(G/H) ≥ s + 1. 
In particular, every Cs graph G satisfies μ′(G) ≥ s + 1.
(ii) (Theorem 2.11 of [19]) Let F (G, s) be the minimum number of new edges that must be added to G to result in a graph with s
edge-disjoint spanning trees. If F (G, s + 1) ≤ 1, then G ∈ Cs if and only if κ ′(G) ≥ s + 1.
(iii) (Corollary 2.13 of [19]) If κ ′(G) ≥ s + 1 and G is Cs-reduced, then

F (G, s + 1) = (s + 1)(|V (G)| − 1) − |E(G)| ≥ 2.

(iv) (Theorem 1.3 of [6]) If F (G, 2) ≤ 2 and the C1-reduction of G is not a K2 not a member in {K2,t : t ≥ 1}, then G ∈ C1 .
(v) (Theorem 4 of [5]) Suppose that F (G, 2) = 0. Then G is spanning trailable if and only if ess′(G) ≥ 3. Moreover, if in addition, 
κ ′(G) ≥ 3, then G is strongly spanning trailable.

Proof. We only need to justify the second half of (v). To do that, we follow Notation 3.2. Assume that F (G, 2) = 0 and 
κ ′(G) ≥ 3. Then for any e, e′ ∈ E(G), we observe that F (G(e′, e′′), 2) ≤ 2. As κ ′(G) ≥ 3, G(e′, e′′) cannot be contracted to K2
nor to a member in {K2,t : t ≥ 1}. Hence G(e, e′) ∈ C1, and so by (i) with s = 1, G(e, e′) has a spanning (ve, ve′)-trail, and so 
G is strongly spanning trailable. �
Corollary 3.7. Let k ≥ 2 be an integer and G be a graph.
(i) (P. Huang and L. Hsu [13], Chen et al., Theorem 1.4 of [9]) Suppose that F (G, k) = 0. Then κ∗(L(G)) ≥ k if and only if κ(L(G)) ≥
max{k, 3}.
(ii) Suppose that F (G, 2) = 0 and ess′(G) ≥ 3. Let G ′ denote the Ck−1-reduction of G. Then κ∗(L(G)) ≥ 2. Moreover, if k ≥ 3, then 
κ∗(L(G)) ≥ min{k, μ′(G ′)}.
8
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Proof. By (4), it suffices to assume κ(L(G)) ≥ k to prove that κ∗(L(G)) ≥ k. By (6), G is essentially k-edge-connected. If 
k = 2, then by Theorem 3.6(v) and by Lemma 3.3, L(G) is Hamilton-connected and so κ∗(L(G)) ≥ 2. Thus we assume that 
k ≥ 3. By Theorem 3.6(ii) with s = k − 1, we have μ′(G) ≥ k ≥ 3. It follows by Theorem 3.5 that κ∗(L(G)) ≥ k. This proves 
(i).

Assume now that F (G, 2) = 0 and ess′(G) ≥ 3. By Theorem 3.6(v) and by Lemma 3.3, we have κ∗(L(G)) ≥ 2. Let k′ =
min{k, μ′(G ′)} and assume that k′ ≥ 3. By Theorem 3.6(i), μ′(G) ≥ μ′(G ′) ≥ k′ . It follows from Theorem 3.5 that κ∗(L(G)) ≥
μ′(G) ≥ min{k, μ′(G ′)}. �
Lemma 3.8. Let G be a graph and m ≥ 1 be an integer. Define mG to be the graph obtained from G be replacing each edge e of G by a 
set of m parallel edges joining the two vertices in V (e). Each of the following holds.
(i) (Corollary 3.1 of [19]) Let � ≥ 2, s ≥ 1 be integers. Then �K2 ∈ Cs if and only if � ≥ s + 1.
(ii) (Theorem 3.3 of [19]) Let n ≥ 2, s ≥ 2 be integers. Then Kn ∈ Cs if and only if � ≥ s + 3.

We now can comment a bit more on the complete families that will be used in our arguments.

Lemma 3.9. Let s ≥ 0 be an integer.
(i) (Corollary 2.4 of [19]) Let Cs denote the family of all s-collapsible graphs. Then Cs is a complete family.
(ii) (Theorem 2.10 of [19]) Ts+1 ⊆ Cs .

3.4. An application of Theorem 2.5

Theorem 2.5 can be applied to prove a former result on supereulerian width, using this strengthened Ore type condition 
m2 to study the supereulerian width of graphs.

Theorem 3.10. (Xiong et al., Theorem 1.2 of [30]) For any real numbers a, b with 0 < a < 1 and any integer s > 1, there exists a 
finite family F = F(a, b, s) such that for any simple graph G with n = |V (G)|, if m2(G) ≥ an + b, then either μ′(G) ≥ s, or G is not 
contractible to a member in F .

Proof. Let C = Cs−1. By Lemma 3.9, C is a complete family. By Theorem 3.6(iii), Ts+1 ⊆ C . By Lemma 3.8(ii), and as Za,b
induces a complete subgraph in any graph satisfying (3), we conclude that the C-reduction of any graph satisfying (3) does 
not contain a complete subgraph of order s + 2, and so we set M0 = s + 2. It follows by Theorem 2.5 that for any real values 
a, b, and for this complete family C = Cs−1, there exists a finite graph family F such that either G is in Cs−1, whence by 
Theorem 3.6(i) that μ′(G) ≥ s, or G is contracted to a member in F . �
4. Proof of Theorem 1.5

By Theorem 3.5, it is natural to consider applying Theorem 3.10 to prove Theorem 1.5. To do that, we need to demonstrate 
that graphs satisfying the conditions of Theorem 1.5 must be strongly spanning trailable. Theorem 2.5 will be applied for 
this purpose.

Proof of Theorem 1.5. By Example 1.2, T2 is a complete family. As every complete graph of order at least 4 is in T2, a 
T2-reduced graph does not have any complete subgraph of order at least 4. It follows that if a graph G satisfies (3), then 
|Za,b(G)| ≤ 3. By Theorem 2.5 with C = T2 and M0 = 3, we have the following conclusion stated as the claim below.

Claim 3. There exists a finite family F11 such that any graph G satisfying (3) is either in T2 or is contractible to a member in F11.

Let F12 be the finite obstacle family whose existence is warranted by Theorem 3.10, and let F1 = F11 ∪ F12. Then 
F1 is also a finite family of graphs. Let G be a graph satisfying (3) with ess′(G) ≥ max{3, s}. We are to show that either 
κ∗(L(G)) ≥ s or G is contractible to a member in F1. To do that, we assume that G is not contractible to a member in F1

to prove that we must have κ∗(L(G)) ≥ s. Since G is not contractible to a member in F11 ⊆ F1, we conclude by Claim 3
that G ∈ T2, and so as ess′(G) ≥ max{3, s} and by Theorem 3.6(v) and Corollary 3.7,

G is spanning trailable and κ∗(L(G)) ≥ 2. (11)

Let s ≥ 3. Since G is not contractible to a member in F12 ⊆ F1, it follows by Theorem 3.10 that μ′(G) ≥ s. This, together 
with (11), implies that G is a spanning trailable graph with μ′(G) ≥ s. By Theorem 3.5, we conclude that κ∗(L(G)) ≥ s, and 
complete the proof of the theorem. �
9
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5. The core of a graph and a K3,3-family

Symmetric difference of sets will be used in this section. For two sets X and Y , define

X�Y = (X ∪ Y ) − (X ∩ Y ).

A related degree condition for a 3-edge-connected graph to be of supereulerian width at least 3 is obtained in [30].

Theorem 5.1. (Xiong et al., Theorem 1.3 of [30]) For a simple graph G with |V (G)| = n ≥ 141 and κ ′(G) ≥ 3, if for any pair of 
nonadjacent vertices u and v, max{dG(u), dG(v)} ≥ n

4 − 3
2 , then μ′(G) ≥ 3 if and only if G is not contractible to K3,3.

It is natural to consider applying Theorem 5.1 in conjunction of Theorem 2.5 to prove Theorem 1.7. However, Theorem 1.7
does not assume that graphs under considerations are 3-edge-connected. Therefore, we turn to the assistance of some 
former results on the core of an essentially 3-edge-connected graph to prove Theorem 1.7, instead of taking the approach 
of applying Theorem 5.1.

Given a graph G , and a vertex v ∈ V (G), define EG(v) to be the set of edges incident with v in G . Suppose that G is an 
essentially 3-edge-connected graph. For every vertex v ∈ D2(G), denote EG(v) = {e′

v , e′′
v}, and

X2(G) = {e′′
v : v ∈ D2(G)}.

Following [28], we define the core of G as follows:

G0 = (G − D1(G))/X2(G).

As G − D1(G) can also be viewed as contracting the edges incident with vertices in D1(G), we use φ1 to denote the mapping 
arisen in the contraction process from G to G0, which maps a subgraph of G to a subgraph of G0. In the rest of this paper, 
we often let G ′

0 denote the T3-reduction of G0, let H ′
z = P IG0 (z), and let Hz = φ−1

1 (H ′
z) denote the pull-back image of H ′

z
in G , which will be called the restoration of z in G . The restoration of subgraphs of G ′

0 in G can be similarly defined. The 
following lemmas are useful.

Lemma 5.2. (Shao, [28]) Let G be a connected nontrivial graph such that ess′(G) ≥ 3, and let G0 denote the core of G.
(i) G0 is uniquely determined by G with κ ′(G0) ≥ 3.
(ii) (see also Lemma 2.9 of [16]) If for any e, e′ ∈ E(G0), G0(e, e′) has a spanning (ve, ve′)-trail, then κ∗(L(G)) ≥ 2.

Lemma 5.3. Let G be a simple graph on n vertices with κ ′(G) ≥ 2.
(i) (Li et al., Lemma 2.1 of [21]) If n ≤ 8, D1(G) = ∅ and |D2(G)| ≤ 2, then either G ∈ C1 , or G is contractible to a K2,3 .
(ii) (Chen and Chen [8]) If n ≤ 9 and |D2(G)| ≤ 2, then either G ∈ C1 , or G is contractible to a K2,3.

Lemma 5.4. Let G be a graph on n vertices.
(i) (Chen et al., Theorem 1.4 of [9]) Suppose that k ≥ 2 is an integer, ess′(G) ≥ 3 and G0 is the core of G. If G0 has k-edge-disjoint 
spanning trees, then κ∗(L(G)) ≥ k if and only if κ(L(G)) ≥ k.
(ii) (Li et al., Lemma 4.2 of [19]) Denote V (K3,3) = {u1, u2, u3, v1, v2, v3} such that each of {u1, u2, u3} and {v1, v2, v3} is a stable 
set of K3,3 . Then K3,3 does not have a (3; u1, u2)-trail system that contains u3.
(iii) Let J (n) be the family of graphs defined in Example 1.6. For any J (n) ∈J (n), both κ(L( J (n))) ≥ 3 and κ∗(L( J (n))) < 3.
(iv) Define P2 to be the family of graphs such that a graph G is in P2 if and only if G ∈ T2 , and for any u, v ∈ V (G)), G contains a 
(u, v)-path P such that (G − E(P )) − D1(G − E(P )) ∈ C1 . Then every graph G ∈P2 satisfies μ′(G) ≥ 3.
(v) Suppose that κ ′(G) ≥ 3. If n ≤ 6, then G is strongly spanning trailable.
(vi) (Li et al., Theorem 4.4 of [19]) If |V (G)| ≤ 6 and κ ′(G) ≥ 3, then μ′(G) < 3 if and only if G ∼= K3,3 .

Proof. It suffices to prove (iii), (iv) and (v). By Example 1.6, every J (n) ∈ J (n) is 3-edge-connected, and so κ(L( J (n))) ≥ 3. 
We shall use the notation in Example 1.6 in the arguments and let J ∼= K3,3. For each w ∈ V ( J ) − {v1}, H(w) is a complete 
graph |E(H(w))| > 0. Choose edges e′ ∈ E(H(u1)) and e′′ ∈ E(H(u2)). Then J (n) does not have a dominating (3; e′, e′′)-
trail system Q . If it does, then since H(u3) is nontrivial, Q must use at least one vertex in V (H(u3)). It follows that by 
contracting edges in E(Q ) ∩ E(H(w)) for each vertex w ∈ V ( J ), we would obtain a (3; u1, u2)-trail system in K3,3 that 
contains u3, which is a violation to Lemma 5.4(ii). Thus by Theorem 3.1, κ∗(L( J (n))) < 3. This validates (iii).

To prove (iv), we assume that G ∈ P2. To avoid triviality, we assume that |V (G)| ≥ 2. As G ∈ T2 ⊆ C1, by Theorem 3.6(i), 
μ′(G) ≥ 2. Randomly pick two vertices u, v ∈ V (G). As G ∈ P2, G contains a (u, v)-path P such that (G − E(P )) − D1(G −
E(P )) ∈ C1. Thus by Theorem 3.6(i) again, (G − E(P )) − D1(G − E(P )) has a spanning (2; u, v)-trail system consisting of two 
edge-disjoint (u, v)-trails T1 and T2. It follows that the collection {P , T1, T2} forms a spanning (3; u, v)-trail system of G . 
As u and v are arbitrary, we conclude that μ′(G) ≥ 3, and so (iv) holds.

Assume that |V (G)| ≤ 6 and κ ′(G) ≥ 3. Let e′, e′′ ∈ E(G). Then |V (G(e′, e′′)| ≤ 8 without vertices of degree one and with 
at most two vertices of degree 2. As κ ′(G) ≥ 3, G(e′, e′′) cannot be contracted to a K2,3, and so by Lemma 5.3(i), G(e′, e′′) is a 
C1-graph, and so it has a spanning connected subgraph H with O (H) = {ve′ , ve′′ }. Hence G is strongly spanning trailable. �
10
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Lemma 5.5. (Li et al., Lemma 2.8 of [19]) Let s ≥ 1 be an integer. Suppose that H is a connected subgraph of a given graph G, and let 
v H denote the vertex in G/H onto which H is contracted. For any x ∈ V (G), define x′ = x if x ∈ V (G) − V (H) and x′ = v H if x ∈ V (H). 
If H ∈ Cs , then for any u, v ∈ V (G) with u �= v, the following are equivalent.
(i) G has a spanning (s + 1; u, v)-trail-system.
(ii) If u′ �= v ′ , then G/H has a spanning (s + 1; u′, v ′)-trail-system; and if u′ = v ′ = v H , then G/H is supereulerian.

Lemma 5.6. Let G be an essentially 3-edge-connected graph, G0 the core of G and let G ′
0 be the T3-reduction of G0 .

(i) If G ′
0 ∈P2 , then κ∗(L(G)) ≥ 3.

(ii) If G ′
0 is strongly spanning trailable, then G0 is also strongly spanning trailable, and κ∗(L(G)) ≥ μ′(G0).

Proof. Since G ′
0 is the T3-reduction of G0 and since G ′

0 is a T2-graph, it follows by T3 ⊂ T2 and by Definition 1.1(C3) that 
G0 is also a T2-graph. Applying Lemma 5.4(i) with k = 2, we conclude that κ∗(L(G)) ≥ 2. To show that κ∗(L(G)) ≥ 3, by 
Theorem 3.1, it suffices to show that for any e′, e′′ ∈ E(G), G has a dominating (3; e′, e′′)-trail system.

Let e′ = u′v ′ and e′′ = u′′v ′′ be two edges in G . Without lost of generality, we assume that dG (u′) ≥ dG(v ′) and dG (u′′) ≥
dG (v ′′). As ess′(G) ≥ 3, we conclude that dG (u′) ≥ 3 and dG (u′′) ≥ 3, and so we can view u′, u′′ as vertices in G0. Further, if 
e′ (or e′′ , respectively) is incident with a vertex of degree 2 in G , then we take the convention that e′ (or e′′ , respectively) 
is an edge in G0, as a spanning trail in G0 starting with an edge incident with a vertex v of degree 2 in G can always be 
restored into a dominating trail in G that starts with either edge incident with v .

Since G ′
0 ∈P2, by Lemma 5.4(iv), μ′(G ′

0) ≥ 3. As G ′
0 is a T3-reduction of G0 and so every subgraph of G0 being contracted 

to get G ′
0 is a T3-graph. By Example 1.2, every T3 graph is a C2-graph. It follows by Lemma 5.5 with s = 2 that μ′(G0) ≥ 3

as well. Hence G0 has a spanning (3; u′, u′′)-trail system Q ′′ . Let Q denote the restoration of Q ′′ . Then, as Q ′′ is spanning 
in G0, Q is a (3; u′, u′′)-trail system of G containing all vertices of degree 3 in G . By Theorem 3.5(i), G has a (3; e′, e′′)-trail-
system Q ′ with E(Q ) ⊆ E(Q ′) and ∂G(Q ) ⊆ ∂G(Q ′). It follows that Q ′ is a dominating (3; e′, e′′)-trail-system of G . This 
completes the proof of Lemma 5.6 (i).

To prove (ii), we shall apply Lemma 5.5 with s = 1. We first justify the following claim.

Claim 4. If a connected graph � is strongly spanning trailable, then μ′(�) ≥ 2.

Proof. For any u, v ∈ V (�), let eu, ev ∈ E(�) such that u ∈ V (eu) and v ∈ V (ev). We allow the possibility of eu = ev , and 
when eu = ev , we set �(eu, ev) = �(eu). Since � is strongly spanning trailable, �(eu, ev) has a spanning (veu , vev )-trail J ′ . 
Replacing the end edges of J ′ containing veu (vev , respectively) by eu (by ev , respectively), we obtain a spanning (u, v)-trail 
of �. If we choose eu = ev = uv , then we obtain a spanning closed trail, which is a spanning (2; u, v)-trail system. Hence 
μ′(�) ≥ 2, and the claim is verified. �

As G ′
0 is strongly spanning trailable, by Claim 4, μ′(G ′

0) ≥ 2 and for any e′, e′′ ∈ E(G ′
0), we also have μ′(G ′

0(e′, e′′)) ≥ 2. 
Applying Lemma 5.5, we conclude that μ′(G0) ≥ 2 and for any e′, e′′ ∈ E(G0), μ′(G0(e′, e′′)) ≥ 2. Thus G0 is also strongly 
spanning trailable. By Lemma 3.3, κ∗(L(G)) ≥ 2. Let k be an integer with 3 ≤ k ≤ μ′(G0). As every spanning (k; u, v)-trail 
system of G0 can be restored as a dominating (k; u, v)-trail system in G , it follows that for any e′, e′′ ∈ E(G), G has a 
dominating (k; e′, e′′)-trail system. By Theorem 3.1, κ∗(L(G)) ≥ μ′(G0). �
Lemma 5.7. Let G be a graph and let H be a C1-subgraph of G. If there exist vertices v1, v2, ..., v� ∈ V (G) − V (H) such that |NG(v1) ∩
V (H)| ≥ 2 and for any i with 2 ≤ i ≤ �, |NG(vi) ∩ (V (H) ∪ {v1, ..., vi−1})| ≥ 2, then G[V (H) ∪ {v1, v2, ..., v�}] is a C1-subgraph of 
G.

Proof. Let H0 = H , and for each i ≥ 1, define Hi = G[V (Hi−1) ∪ {v1, ..., vi−1}]. We argue by induction on i to show that 
Hi ∈ C1. As H0 = H is assumed to be a C1-graph, as assume that i ≥ 1 and that Hi−1 ∈ C1. Since |NG(vi) ∩ (V (H) ∪
{v1, ..., vi−1})| ≥ 2, it follows that Hi/Hi−1 has two vertices and there are at least two (parallel) edges joining these two 
vertices. Hence Hi/Hi−1 ∈ T2 ⊆ C1. By Example 1.2, C1 is a complete family and so as Hi−1 ∈ C1 and by Definition 1.1 (C3), 
we conclude that Hi ∈ C1, and the lemma is justified by induction. �

As we remarked earlier, there exist 3-edge-connected graphs G with μ′(G) < κ∗(L(G)). We close this subsection with 
such examples.

Lemma 5.8. Let H be a maximal C2-subgraph of a graph G, G ′ = G/H, v H be the vertex in G ′ whose preimage is H, and let e′, e′′ ∈
E(G) be two edges.
(i) If e′, e′′ ∈ E(G ′) and G ′ has a (3; e′, e′′)-trail system Q ′ with v H being an internal vertex of Q ′ , then G has a (3; e′, e′′)-trail system 
Q with V (H) ⊆ V (Q ) and E(Q ′) ⊆ E(Q ).
(ii) If e′, e′′ ∈ E(H) and G ′ has a closed trail J ′ containing v H , then G has a (3; e′, e′′)-trail system Q with V (H) ⊆ V (Q ) and 
E( J ′) ⊆ E(Q ).
11



W. Xiong, F. Liu, Y. Wu et al. Discrete Mathematics 346 (2023) 113210
(iii) If e′ ∈ E(G ′) and e′′ ∈ E(H), and G ′ has a (3; e′, v H )-trail system Q ′ , then G has a (3; e′, e′′)-trail system Q with V (H) ⊆ V (Q )

and E(Q ′) ⊆ E(Q ).

Proof. Throughout the proof of this lemma, we assume that e′ = u′v ′ and e′′ = u′′v ′′ are edges in G . For notational conve-
nience in the proof of this lemma, we also view any z ∈ {u′, v ′, u′′, v ′′} as the vertex in G ′ such that P IG(z) contains the 
vertex z in G .

To prove (i), choose a (3; e′, e′′)-trail system containing v H and consisting of internally edge-disjoint (e′, e′′)-trails 
T ′

1, T
′
2, T

′
3 such that dT ′

1
(v H ) ≥ dT ′

2
(v H ) ≥ dT ′

3
(v H ) with dT ′

1
(v H ) maximized. Thus dT ′

1
(v H ) > 0. If dT ′

2
(v H ) > 2, then T ′

2

contains a closed subtrail T ′′
2 with v H ∈ V (T ′′

2 ). Hence moving T ′′
2 from T ′

2 to T ′
1 will increase the degree of v H in the result-

ing trail, contrary to the maximality of dT ′
1
(v H ). Therefore the maximality of dT ′

1
(v H ) implies that dT ′

3
(v H ) ≤ dT ′

2
(v H ) ≤ 2. 

As each T ′
i is a (e′, e′′)-trail, there exist some vertices xi ∈ {u′, v ′} and yi ∈ {u′′, v ′′} such that each T ′

i is an (xi, yi)-trail 
in G ′ . Since T ′

1 and T ′
2 are edge-disjoint (e′, e′′)-trails, depending on whether each of x1 = x2 and y1 = y2 holds or not, 

G ′[E(T ′
1) ∪ E(T ′

2)] consists of a closed trail J ′ which possibly does not contain e′ or e′′ , or both e′ and e′′ in J ′ . As 
v H is an internal vertex of Q ′ , we conclude that v H ∈ V ( J ′). As J ′ is a closed trail in G ′ , G[E( J ′)] is a subgraph of 
G with O (G[E( J ′)]) ⊆ V (H). By the assumption that H ∈ T3 ⊂ C2, H has a spanning connected subgraph J ′′ such that 
O ( J ′′) = O (G[E( J ′)]) such that G − E( J ′′) is connected. It follows that G[E( J ′) ∪ E( J ′′)] is a closed trail of G containing 
all vertices of H and at least a vertex in V (e′) and a vertex in V (e′′). Hence G[E( J ′) ∪ E( J ′′) ∪ {e′, e′′}] is an internally 
edge-disjoint union of two (e′, e′′)-trails T1 and T2. If v H /∈ V (T ′

3), then set T3 = T ′
3. Suppose that v H ∈ V (T ′

3). Then there 
exist vertices u3, v3 ∈ V (H) (possibly x3 = u3 or y3 = v3) such that G[E(T ′

3)] contains a (x3, u3)-trail J3 and a (v3, y3)-
trail J ′

3 with E( J3) ∩ E( J ′
3) = ∅. As G − E( J ′′) is connected, there exists a (u3, v3)-path T ′′

3 in G − E( J ′′). It follows that 
T3 = G[E( J3) ∪ E(T ′′

3 ) ∪ E( J ′
3) ∪{e′, e′′}] is an (e′, e′′)-trail internally edge-disjoint from each of T1 and T2. Thus the collection 

{T1, T2, T3} forms a (3; e′, e′′)-trail system Q with V (H) ⊆ V (Q ) and E(Q ′) ⊆ E(Q ). This proves (i).
The proof for Lemma 5.8(ii) is similar to that for (i) with minor modifications. Form a graph H3(e′, e′′) from H(e′, e′′)

by adding a new edge parallel to the edge ve′ v ′ , and by adding another new edge parallel to the edge ve′′ v ′′ . Thus the 
newly inserted vertices ve′ , ve′′ ∈ V (H(e′, e′′)) − V (H) are of degree 3 in H3(e′, e′′). Since H ∈ T2, it is routing to verify 
that H3(e′, e′′) ∈ T3. By replacing H by H3(e′, e′′) in G , we form G3(e′, e′′). Thus H3(e′, e′′) is a subgraph of G3(e′, e′′)
and G3(e′, e′′)/H3(e′, e′′) = G/H = G ′ . As J ′ is a closed trail in G ′ , G3(e′, e′′)[E( J ′)] is a subgraph of G3(e′, e′′) with 
O (G3(e′, e′′)[E( J ′)]) ⊆ V (H3(e′, e′′)). Since H3(e′, e′′) ∈ T3 ⊂ C2, H3(e′, e′′) has a spanning connected subgraph J ′′ such 
that O ( J ′′) = O (G3(e′, e′′)[E( J ′)]) and G3(e′, e′′) − E( J ′′) is connected. It follows that G3(e′, e′′)[E( J ′) ∪ E( J ′′)] is a closed 
trail of G3(e′, e′′) containing all vertices of H3(e′, e′′), which consists of two edge-disjoint (ve′ , ve′′)-trials F ′

1, F
′
2. Since 

G3(e′, e′′) − E( J ′′) is connected, it has a (ve′ , ve′′)-trial F ′
3. Replacing the terminal edge containing ve′ (or ve′′ , respectively) 

of the trails F ′
1, F

′
2, F

′
3 by e′ (or by e′′ , respectively), we form a collection of internally edge-disjoint trials {T1, T2, T3}, which 

is a (3; e′, e′′)-trail system Q with V (H) ⊆ V (Q ) and E( J ′) ⊆ E(Q ). This justifies (ii).
It remains to prove (iii). Suppose that G ′ has a (3; e′, v H )-trail system Q ′ , consisting of internally edge-disjoint T ′

1, T ′
2, T

′
3. 

Hence for each i ∈ {1, 2, 3}, there exists a vertex xi ∈ V (e′) such that T ′
i is an (xi, v H )-trail. As in the proof for (i), we choose 

these trails so that dT ′
1
(v H ) ≥ dT ′

2
(v H ) ≥ dT ′

3
(v H ) with dT ′

1
(v H ) maximized, which implies that dT ′

3
(v H ) = 1. As in the proof 

for (i), G ′[E(T ′
1) ∪ E(T ′

2)] consists of a closed trail J ′ with possibly e′ or e′′ or both not included in J ′ . Form a graph G3(e′′)
(H3(e′′), respectively) from G(e′′) (H(e′′), respectively) by adding a new edge parallel to the edge ve′′ v ′′ . Thus H3(e′′) is 
a subgraph of G3(e′′) and G3(e′′)/H3(e′′) = G/H = G ′ . Moreover, as H ∈ T3, we also have H3(e′′) ∈ T3. As J ′ is a closed 
trail in G ′ , G3(e′′)[E( J ′)] is a subgraph of G3(e′′) with O (G3(e′′)[E( J ′)]) ⊆ V (H3(e′′)). By the fact that H3(e′′) ∈ T3 ⊂ C2, 
H3(e′′) has a spanning connected subgraph J ′′ such that O ( J ′′) = O (G3(e′′)[E( J ′)]) such that H3(e′′) − E( J ′′) is connected. 
It follows that G3(e′′)[E( J ′) ∪ E( J ′′)] is a closed trail of G containing all vertices of H3(e′′) and at least a vertex in V (e′). 
Hence G[E( J ′) ∪ E( J ′′) ∪ {e′}] is an internally edge-disjoint union of two (e′, ve′′)-trails F ′

1 and F ′
2. As T ′

3 is a (e′, v H )-trail 
with dT ′

3
(v H ) = 1, there exists a vertex u3 ∈ V (H) (possibly x3 = u3) such that G[E(T ′

3)] contains a (x3, u3)-trail J3. Since 
H3(e′′) − E( J ′′) is connected, H3(e′′) − E( J ′′) has a (u3, ve′′)-path T ′′

3 , and so F ′
3 = G3(e′′)[E( J ′

3) ∪ E(T ′′
3 )] is an (e′, ve′′)-

trail internally edge-disjoint from F ′
1 and F ′

2. Replacing the terminal edge containing ve′′ of the trails F ′
1, F

′
2, F

′
3 by e′′ , we 

form a collection of internally edge-disjoint trials {T1, T2, T3}, which is a (3; e′, e′′)-trail system Q with V (H) ⊆ V (Q ) and 
E( J ′) ⊆ E(Q ). This completes the proof of (iii), as well as the lemma. �
Example 5.9. Let J be a graph isomorphic to K3,3 with vertex set V ( J ) = {u1, u2, u3, v1, v2, v3} such that each of 
{u1, u2, u3} and {v1, v2, v3} is a stable set of J . For any integer n ≥ 16, let J ′(n) denote the family of graphs such that 
every graph G in J ′(n) is obtained from J by replacing each vertex w ∈ V ( J ) − {u1, v1} by a nontrivial trivial T3-graph 
H(w) in such a way that κ ′(G) ≥ 3 and 

∑
w∈V ( J ) |V (H(w))| = n. We shall show, using Lemma 5.10, that for any G ∈ J ′(n), 

both μ′(G) ≤ 2 and κ∗(L(G)) ≥ 3.

Lemma 5.10. let J ′(n) be the graph family defined in Example 5.9 and let G ∈J ′(n). Each of the following holds.
(i) μ′(G) ≤ 2.
(ii) G is C1 , and for any e′, e′′ ∈ E(G), G(e′, e′′) is a C1-graph.
(iii) For any e′, e′′ ∈ E(G), G has a dominating (3; e′, e′′)-trail system.
(iv) κ∗(L(G)) ≥ 3.
12
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Proof. As G is contractible to K3,3, we have μ′(G) ≤ μ′(K3,3) (see for example, Corollary 2.9 of [19]). By Lemma 5.4(ii), 
μ′(K3,3) ≤ 2, and so μ′(G) ≤ 2, justifying (i).

To prove (ii), we first observe that by Lemma 5.3, for any edge e1, e2 ∈ E(K3,3), both K3,3(e1) and K3,3(e1, e2) are C1-
graphs as they cannot be contracted to K2,3. Now we fix two randomly chosen edges e′, e′′ ∈ E(G), and observe that G
is a contraction image of G(e′, e′′). As C1 is a complete family, which is closed under contraction, it suffices to show that 
G(e′, e′′) is a C1-graph.

By the definition of J ′(n), the T3-reduction of G is K3,3, and by Theorem 3.6(iv), K3,3 ∈ C1. If e′, e′′ ∈ E(K3,3), then 
by contracting the T3-subgraphs H(w)’s, we obtained K3,3(e′, e′′) as the T3-reduction of G(e′, e′′). As K3,3(e′, e′′) ∈ C1, we 
conclude that G(e′, e′′) ∈ C1, by the facts that C1 is a complete family and H(w) ∈ T3 ⊆ C1. Thus we assume that at least 
one of e′, e′′ is in one of the T3-subgraphs H(w)’s. For any w ∈ V (K3,3), if e′ or e′′ is in E(H(w)), then since H(w) ∈ T3, 
H(w)(e′) or H(w)(e′, e′′) (if both e′, e′′ ∈ E(H(w))) cannot be contracted to a K2,t , and so by Theorem 3.6(iv), H(w)(e′, e′′) is 
a C1-graph. As C1 is a complete family, and as all T3-graphs are C1-graphs, we conclude that we always have G(e′, e′′) ∈ C1. 
This proves (ii).

By Theorem 3.1, Lemma 5.10(iv) follows from (ii) and (iii), and so it suffices to prove (iii). We shall adopt the vertex 
notation of K3,3 in Example 5.9 in the arguments to prove (iii). Let e′, e′′ denote two randomly chosen edges in G . As 
indicated in Example 5.9, K3,3 = G/(H(u2) ∪ H(u3) ∪ H(v2) ∪ H(v3)). We take the convention that an edge e ∈ E(K3,3) if 
and only if e /∈ E(H(u2) ∪ H(u3) ∪ H(v2) ∪ H(v3)).

Case 1. |{e′, e′′} ∩ E(K3,3)| ≥ 1.

If both e′, e′′ ∈ E(K3,3), then depending on whether {e′, e′′} is a matching of K3,3 or not, we observe, by inspection, 
that K3,3 always have a spanning (3; e′, e′′)-trail system Q ′

1. By Lemma 5.8(i), G has a spanning (3; e′, e′′)-trail system Q 1. 
Hence we may assume that {e′, e′′} ∩ E(K3,3) = {e′}, and so for some vertex w ∈ V (K3,3), e′′ ∈ E(H(w)). In this case, it is 
also routine by inspection to verify that K3,3 has a spanning (3; e′, w)-trail system Q ′

2. By Lemma 5.8(iii), G has a spanning 
(3; e′, e′′)-trail system Q 2. Hence Lemma 5.10(iii) holds when Case 2 occurs.

Case 2. {e′, e′′} ∩ E(K3,3)| = 0.

If there exists a vertex w ∈ V (K3,3) such that e′, e′′ ∈ E(H(w)), then as K3,3 has a spanning closed trail, it follows 
by Lemma 5.10(iii) holds. Hence we assume that there exist distinct vertices w ′, w ′′ ∈ V (K3,3 − {u1, v1} such that e′ ∈
E(H(w ′))) and e′′ ∈ E(H(w ′′))). If w ′w ′′ /∈ E(K3,3), then we may assume by symmetry that w ′ = u2 and w ′′ = u3. It follows 
that K3,3 has a (3; u2, u3)-trail system Q ′

3 with V (K3,3) − {u1} ⊆ V (Q ′
3). If w ′w ′′ ∈ E(K3,3), then we may assume by 

symmetry that w ′ = u2 and w ′′ = v2. It follows that K3,3 has a spanning (3; u2, u3)-trail system Q ′
4.

Form a graph H3(w ′)(e′) from H(w ′)(e′) by adding a new edge parallel to the edge ve′ v ′ , and a graph H3(w ′′)(e′′) from 
H(w ′′)(e′′) by adding a new edge parallel to the edge ve′′ v ′′ . Let G3(e′, e′′) be the graph obtained from G(e′, e′′) by replacing 
H(w ′)(e′) and H(w ′′)(e′′) by H3(w ′)(e′) and H3(w ′′)(e′′), respectively. Then H3(w ′)(e′) and H3(w ′′)(e′′) are subgraphs of 
G3(e′, e′′) and G3(e′, e′′)/(H3(w ′)(e′) ∪ H3(w ′′)(e′′) ∪ H(v2) ∪ H(v3)) = G/H ∼= K3,3. Moreover, as H(u2), H(u3) ∈ T3, we 
also have H3(w ′)(e′), H3(w ′′)(e′′) ∈ T3. Viewing G3(e′, e′′)/(H3(w ′)(e′) = K3,3, it is routine to lift the (3; u2, u3)-trail system 
Q ′

3 with V (K3,3) − {u1} ⊆ V (Q ′
3) to a (3; ve′ , ve′′)-trail system Q ′′

3 with V (G) − {u1} ⊆ V (Q ′′
3 ); and to lift the spanning 

(3; u2, u3)-trail system Q ′
4 to a spanning (3; ve′ , ve′′)-trail system Q ′′

4 . For i ∈ {3, 4}, replacing the terminal edges containing 
ve′ by e′ and replace the terminal edges containing ve′′ by e′′ , we have formed a dominating (3; e′, e′′)-trail system Q i of 
G . This proves this case, as well as the lemma. �
6. Proof of Theorem 1.7

In Example 1.6 and Lemma 5.4, the graph families J (n) and P2 are defined respectively. The validity of the next lemma 
will imply Theorem 1.7.

Lemma 6.1. Let G be a connected simple graph on n vertices with ess′(G) ≥ 3, G0 the core of G and G ′
0 the T3-reduction of G0 . If 

n ≥ 156 and G satisfies (7), then one of the following holds.
(i) G0 ∈ T3 .
(ii) G ′

0 /∈ T3 and κ∗(L(G)) ≥ 3.
(iii) G0 ∈J (n).

For a graph G satisfying the hypothesis of Theorem 1.7, by Lemma 6.1, one of the conclusions of Lemma 6.1 must hold. 
As Lemma 6.1 (i) and (ii) implies Theorem 1.7(i) and Lemma 6.1 (iii) implies Theorem 1.7(ii), we conclude that Theorem 1.7
follows from Lemma 6.1. Thus it remains to justify Lemma 6.1.

Proof of Lemma 6.1. It is known that G0 is 3-edge-connected. We assume that G0 /∈ T3 to prove either (ii) or (iii) must 
hold. As in (2), we define Z = Z 1 6 (G) = {v ∈ V (G) : dG(v) < n−6 }. Since G satisfies (7), G[Z ] induces a complete graph.
5 ,− 5 5
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Since G0 /∈ T3, we observe that G ′
0 /∈ T3 and in particular, G ′

0 �= K1. Thus G ′
0 is a 3-edge-connected nontrivial graph. 

Throughout the rest of the arguments, for each vertex z ∈ V (G ′
0), we always use Hz to denote the restoration of z in G . Let 

Z ′ = {z ∈ V (G ′
0) : V (Hz) ∩ Z �= ∅}. As K6 ∈ T3, we conclude that |Z ′| ≤ 5.

By Observation 2.3(iii) with s = 3, we have 2|E(G ′
0)| ≤ 6|V (G ′

0)| − 4. Let n′ = |V (G ′
0)| and for i ≥ 0, di = |Di(G ′

0)|. Since 
κ ′(G ′

0) ≥ 3, we have∑
i≥3

idi = 2|E(G ′
0)| ≤ 6di − 4 and so 3d3 + 2d4 + d5 ≥ 4 +

∑
i≥7

(i − 6)di . (12)

Claim 5. �(G ′
0) ≤ 29.

Proof. Suppose that �(G ′
0) ≥ 30. Then by (12), we have

3(d3 + d4 + d5) ≥ 3d3 + 2d4 + d5 ≥ 4 + (30 − 6) = 28, and so d3 + d4 + d5 ≥ 10. (13)

Since |Z ′| ≤ 5, there exist at least 10 − |Z ′| ≥ 5 vertices z1, z2, ..., z5 in G ′
0 − Z ′ of degree at most 5 in G ′

0. For each 
i ∈ {1, 2, ..., 5}, pick a vertex vi ∈ V (Hzi ). By symmetry, we assume that

|V (Hz1)| ≤ |V (Hz2)| ≤ ... ≤ |V (Hz5)|.
Since z5 ∈ G ′

0 − Z ′ , every vertex v ∈ V (Hz5 ) is not in Z , and so as n ≥ 36, we have dG(v) ≥ n−6
5 ≥ 6 > 5 ≥ dG ′

0
(z5) =

|∂G(V (Hz5))|. Thus by Lemma 2.4, for any i with 1 ≤ i ≤ 5, we have |V (Hzi )| ≥ |V (Hz5)| ≥ n−1
5 . It follows that

n = |V (G)| ≥
5∑

i=1

|V (Hzi )| + (|V (G ′
0)| − 5) ≥ (n − 1) + 5 > n,

a contradiction. This proves Claim 5. �
Claim 6. Each of the following holds.
(i) |V (G ′

0) − Z ′| ≤ 5 and n′ ≤ 9.
(ii) |V (G ′

0) − Z ′| = 5 if and only if |Z ′| ≤ 1.

Proof. By Claim 5, �(G ′
0) ≤ 29. As n ≥ 156, for each z ∈ V (G ′

0) − Z ′ , |∂G(V (Hz))| ≤ �(G ′
0) ≤ 29 < n−6

5 . Thus by Lemma 2.4, 
we have |V (Hz)| ≥ n−1

5 . If |V (G ′
0) − Z ′| ≥ 6, then by n ≥ 156, n = |V (G)| ≥ ∑

z∈V (G ′
0)−Z ′ |V (Hz)| ≥ 6(n−1)

5 ≥ (n −1) + n−1
5 > n, 

a contradiction. Hence we must have |V (G ′
0) − Z ′| ≤ 5. Suppose further that |V (G ′

0) − Z ′| = 5. Then the same argument leads 
to n = |V (G)| ≥ ∑

z∈V (G ′
0)−Z ′ |V (Hz)| ≥ n − 1 + |Z ′|, implying |Z ′| ≤ 1. It follows that either |V (G ′

0) − Z ′| = 5 and |Z ′| ≤ 1, 
whence n′ ≤ 6; or |V (G ′

0) − Z ′| ≤ 4 and |Z ′| ≤ 5, whence n′ ≤ 9. This proves Claim 6. �
Claim 7. Each of the following holds.
(i) If |V (G ′

0) − Z ′| = 5, then either Lemma 6.1(ii) or Lemma 6.1(iii) holds.
(ii) If |V (G ′

0)| ≤ 6, then either Lemma 6.1(ii) or Lemma 6.1(iii) holds.

Proof. By Claim 6(ii), we have |Z ′| ≤ 1, and so G ′
0 is a 3-edge-connected graph on at most 6 vertices. By Lemma 5.4(vi), 

either μ′(G ′
0) ≥ 3, whence by Lemma 5.6(ii), we have κ∗(L(G)) ≥ μ′(G0) ≥ 3; or |Z ′| = 1 and G ′

0
∼= K3,3. It follows by (7)

that G ∈J (n), and so Lemma 6.1(iii) holds.
Assume that |V (G ′

0)| ≤ 6. Since κ ′(G ′
0) ≥ κ ′(G0) ≥ 3, it follows by Lemma 5.4(vi) that μ′(G ′

0) ≥ 3 unless G ′
0

∼= K3,3. 
If μ′(G ′

0) ≥ 3, then as |V (G ′
0)| ≤ 6 and by Lemma 5.4(v), G ′

0 is strongly spanning trailable. Thus if G ′
0 � K3,3, then by 

Lemma 5.6(ii), we have κ∗(L(G)) ≥ μ′(G0) ≥ 3. Assume that G ′
0

∼= K3,3. If |Z ′| ≥ 2, then by Lemma 5.10, we also have 
κ∗(L(G)) ≥ μ′(G0) ≥ 3. If |Z ′| ≤ 1, then by Claim 6, we must have |V (G ′

0) − Z ′| = 5 and so Lemma 6.1(iii) holds. �
By the fact that G ′

0 is T3-reduced, by Claims 6 and 7, we may assume that |V (G ′
0)| ≥ 7, |V (G ′

0) − Z ′| ≤ 4, |Z ′| ≤ 5 and 
so G ′

0 has a subgraph G ′
0[Z ′] spanned by a complete subgraph of order in {3, 4, 5}. Let K denote a maximum clique of G ′

0. 
Then |V (K )| ≥ |Z ′|. For any vertex z ∈ V (G ′

0) − V (K ), let �(z) denote the shortest length from z to V (K ) in G ′
0, and let 

Zi = {z ∈ V (G ′
0) − V (K ) : �(z) = i}, for each i ≥ 0.

Claim 8. Each of the following holds. Let �0 = max{�(w) : w ∈ V (G ′
0) − V (K )}.

(i) �0 ≤ 3.
(ii) If w0 ∈ V (G ′

0) − V (K ) satisfies �(w0) = 3, then Z3 = {w0}, |V (G ′
0) − V (K )| = 4, |NG ′

0
(w0)| = 2 and NG ′

0
(NG ′

0
(w0)) consists of 

only one vertex, which is a cut vertex of G ′ ; and G ′ − V (K ) is spanned by a 4-cycle.
0 0
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(iii) If �0 = 2, then either |Z2| = 1, or in G ′
0[Z2 ∪ NG ′

0
(Z2)], every vertex in Z2 has degree at least 3 and lies in a cycle of length at most 

3.

Proof. Assume by contradiction that there exists a vertex w1 ∈ V (G ′
0) − V (K ) with �(w1) ≥ 4. Then let w1 w2...wh z be a 

shortest (w1, z)-path for some vertex z ∈ Z ′ with w1, ..., wh ∈ V (G ′
0) − Z ′ , with h = |V (G ′

0) − Z ′| ≤ 4. Hence h = �(w1) ≥ 4. 
As κ ′(G ′

0) ≥ 3, there must be at least three parallel edges joining w1 and w2, contrary to the fact that G ′
0 is T3-reduced. 

Hence we must have �0 ≤ 3.
Suppose that there exists a vertex w0 ∈ V (G ′

0) − V (K ) satisfies �(w0) = 3. As G ′
0 does not have three parallel edges, we 

conclude that |NG ′
0
(w0)| ≥ 2. If NG ′

0
(w0) has three distinct vertices, then by |V (G ′

0) − V (K )| ≤ |V (G ′
0) − Z ′| ≤ 4 and by the 

fact that G ′
0 is connected, one of the vertices in NG ′

0
(w0) must be adjacent to a vertex in K , resulting in �(w0) ≤ 2. Thus 

|NG ′
0
(w0)| = 2 and |V (G ′

0) − V (K )| = 4 with the only vertex in V (G ′
0) − V (K ) having distance one to V (K ) serving as a cut 

vertex of G ′
0. If |Z3| ≥ 2, then by |V (G ′

0) − V (K )| = 4, we must have |Z2| = 1 and there are three parallel edges joining the 
vertex in Z2 and the vertex in Z1, contrary to the fact that G ′

0 is T3-reduced. As |Z3| = |Z1| = 1 and |Z2| = 2 and as G ′
0 is 

T3-reduced, G ′
0 − V (K ) is spanned by a 4-cycle. Hence we must have Claim 8(ii).

To show (iii), we assume that �0 = 2 and |Z2| > 1. Then |Z2| + |NG ′
0
(Z2)| = |V (G ′

0) − V (K )| ≤ 4. As G ′
0 is connected, 

2 ≥ |NG ′
0
(Z2)| > 0. If |NG ′

0
(Z2)| = 1, then NG ′

0
(Z2) consists of a single cut vertex of G ′

0. As κ ′(G ′
0) ≥ 3, it follows that every 

vertex in G ′
0[Z2 ∪ NG ′

0
(Z2)] lies in a cycle of length at most 3, and so the conclusions of Claim 8(iii) must hold. Now assume 

that |NG ′
0
(Z2)| = 2. Then |Z2| = 2. By κ ′(G ′

0) ≥ 3 and the fact that G ′
0 does not have an edge parallel class of size at least 3, 

we conclude that every vertex in Z2 has degree at least 3 and is adjacent to both vertices in Z2. Hence the conclusions of 
Claim 8(iii) must hold also. �

By Claims 6 and 7, we have 9 ≥ |V (G ′
0)| ≥ 7 and |V (G ′

0) − Z ′| ≤ 4. By Lemma 5.6, if G ′
0 ∈P2, then κ∗(L(G)) ≥ μ′(G ′

0) ≥ 3, 
and so Lemma 6.1(ii) holds. To complete the proof of the lemma, we shall show that G ′

0 ∈ P2. Recall that K is a maximum 
clique of G ′

0. By Claim 8, every vertex in V (G ′
0) − Z ′ has distance at most 3 to a vertex in K . For any vertices u, v ∈ V (G ′

0), 
if uv ∈ E(G ′

0), then as κ ′(G ′
0) ≥ 3, G ′

0 − uv cannot be contracted to K2,3, it follows by Lemma 5.3 that G ′
0 − uv is a C1 graph. 

Therefore, we assume that uv /∈ E(G ′
0), and so we may assume that v ∈ V (G ′

0) − V (K ). Let P be a shortest (u, v)-path in 
G ′

0 and let J = (G ′
0 − E(P )) − D1(G ′

0 − E(P )). It suffices to show that J is a C1-graph to complete the proof.
If �0 = 1, then as v /∈ V (K ), either u /∈ V (K ) and P = uz1z2 v with z1, z2 ∈ V (K ), or u ∈ V (K ) and P = uz1 v with 

z1, u ∈ V (K ). In any case, as κ ′(G ′
0) ≥ 3, J cannot be contracted to a K2,3 and so by Lemma 5.3, J is a C1-graph.

Next, we assume that �0 = 2. If u /∈ V (K ), then |E(P )| = 2; and if u ∈ V (K ), then 2 ≤ |E(P )| ≤ 3. By Claim 8(iii), in any 
case, κ ′( J ) ≥ 2, using either Lemma 5.3 or Lemma 5.7, we conclude that J is a C1-graph.

Assume now �0 = 3. Thus there exists a vertex w0 ∈ V (G ′
0) − V (K ) satisfies �(w0) = 3. By Claim 8(ii), either u ∈ V (G ′

0) −
V (K ) and so |E(P )| = 2; or u ∈ V (K ) with either E(P ) ∩ E(K ) = ∅ or w0 �= v , and so |E(P )| ≤ 3; or u ∈ V (K ) with 
|V (K )| ≥ 4, E(P ) ∩ E(K ) �= ∅ and w0 = v , and so |E(P )| = 4. In any case, by the structure of G ′

0 as described in Claim 8(ii), 
κ ′( J ) ≥ 2, and J contains a cycle of length at most 3. It follows by Lemma 5.7 that J is a C1-graph. Thus by definition, 
G ′

0 ∈P2. As remarked above, the proof of the lemma is complete. �
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