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Let r ≥ 3 be an integer. A graph G is K1,r -free if G does not have an induced subgraph 
isomorphic to K1,r . A graph G is fully cycle extendable if every vertex in G lies on a cycle 
of length 3 and every non-hamiltonian cycle in G is extendable. A connected graph G is a 
split graph if the vertex set of G can be partitioned into a clique and a stable set. Dai et 
al. (2022) [4] conjectured that every (r − 1)-connected K1,r -free split graph is hamiltonian, 
and they proved this conjecture when r = 4 while Renjith and Sadagopan proved the case 
when r = 3. In this paper, we introduce a special type of alternating paths in the study of 
hamiltonian properties of split graphs and prove that a split graph G is hamiltonian if and 
only if G is fully cycle extendable. Consequently, for r ∈ {3, 4}, every r-connected K1,r-free 
split graph is Hamilton-connected and every (r − 1)-connected K1,r-free split graph is fully 
cycle extendable.

© 2023 Elsevier B.V. All rights reserved.

1. The problem

In this paper, we consider only finite simple graphs and refer to [2] for notation and terminologies not locally defined 
here. We call a graph G hamiltonian if it contains a hamiltonian cycle, i.e., a cycle contains all vertices of G . Furthermore, a 
graph G of order n ≥ 3 is pancyclic if G contains a cycle of each possible length from 3 to n; G is vertex pancyclic if each 
vertex is contained on a cycle of each possible length from 3 to n.

Let r ≥ 3 be an integer. A graph G is K1,r -free if G does not have an induced subgraph isomorphic to K1,r . A connected 
graph G is called a split graph if its vertex set V (G) can be partitioned as the disjoint union of S and J (either of which 
may be empty) such that S is a maximum clique of G whereas J is a stable set of G . Split graphs were introduced by Foldes 
and Hammer [6] in 1977, and were studied further in [3], [5], [8], [9], [10], [11].

Theorem 1.1 (Renjith and Sadagopan [10]). Let G be a K1,3-free split graph. Then G is hamiltonian if and only if G is 2-connected.

Very recently, Dai et al. [4] proposed conditions for K1,3-free split graphs to be pancyclic and K1,4-free split graphs to 
be hamiltonian, respectively.

Theorem 1.2 (Dai, Zhang, Broerama and Zhang [4]). Let G be a K1,3-free split graph. Then G is pancyclic if and only if G is 2-connected.
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Theorem 1.3 (Dai, Zhang, Broerama and Zhang [4]). Let G be a K1,4-free split graph. If G is 3-connected, then G is hamiltonian.

The following conjecture is posed in [4].

Conjecture 1.4 (Dai, Zhang, Broerama and Zhang [4]). Let r ≥ 2 be an integer. Every r-connected K1,r+1-free split graph is hamiltonian.

Theorems 1.1 and 1.3 indicate that Conjecture 1.4 is valid for r ∈ {2, 3}. This motivates this research. In Section 2, we 
introduce a certain type of alternating paths in split graphs, which will be utilized to study the hamiltonian properties of 
split graphs. We investigate the fully cycle extendability and Hamilton-connectedness for K1,3-free split graphs in Section 3, 
and those for K1,4-free split graphs in Section 4. Our results extend Theorems 1.1, 1.2 and 1.3 to vertex pancyclicity and 
Hamilton-connectedness.

2. Alternating paths

For two graphs G1 and G2, let G1 ∪ G2 be a graph with the vertex set V (G1) ∪ V (G2) and the edge set E(G1) ∪ E(G2). 
We can consider a collection of subgraphs G1, G2, . . . , Gh in G as a subgraph 

⋃h
i=1 Gi of G . If S is an edge (or a vertex) 

subset of G , G[S] is the subgraph induced in G by S . For a subset A ⊆ V (G), we denote G − A = G[V (G) − A]; for a subset 
X ⊆ E(G) and a subgraph H ⊆ G with X ∩ E(H) = ∅, we denote G − X = G[E(G) − X] and write H + X for H ∪ G[X].

Throughout this section, let r ≥ 2 denote an integer. A path with endpoints u and v is often referred as to a (u, v)-path. 
Let G be a split graph with V (G) = S ∪ J , where S is a maximum clique of G , and J is a stable set of G . We shall call 
such an ordered pair (S, J ) a split partition of G . Denote s = |S| and j = | J |. Then G[S] ∼= Ks . Since complete graphs are 
hamiltonian, we may assume that j > 0. Let J = {u1, u2, ..., u j}. Then NG(u) ⊆ S for any u ∈ J . Suppose that κ(G) ≥ r. 
As j > 0, every vertex u ∈ J must be adjacent to at least r distinct vertices in S , and so s ≥ r. By the maximality of 
|S|, s ≥ r + 1. We define the interior of a path P = v1 v2...v2t+1 to be P o = V (P ) − {v1, v2t+1}, and P to be an (S, J )-
alternating path in G if v1 
= v2t+1, {v1, v3, . . . , v2t+1} ⊆ S and {v2, v4, . . . , v2t} ⊆ J . If we allow v1 = v2t+1 while keeping 
both {v1, v3, . . . , v2t+1} ⊆ S and {v2, v4, . . . , v2t} ⊆ J , then P is an (S, J )-alternating cycle.

A collection P = {P1, P2, . . . , Ph} of (S, J )-alternating paths in G is a J -cover if both of the following hold:

(A1) for any {i, j} ⊆ {1, 2, . . . , h}, V (Pi) ∩ V (P j) = ∅, and

(A2) J ⊆ ⋃h
i=1 P o

i .

For a collection P = {P1, P2, . . . , Ph} of (S, J )-alternating paths in G , let End(P) denote the collection of the endpoints 
of all these alternating paths in P , and Inn(P) = (V (P) ∩ S) − End(P) = S ∩ (

⋃h
i=1 P o

i ). We also use P to denote the 
subgraph 

⋃h
i=1 Pi .

Lemma 2.1. Let G be a split graph with a split partition (S, J ). Then, G is hamiltonian if and only if G has either a J -cover or a spanning 
(S, J )-alternating cycle.

Proof. Assume that C is a hamiltonian cycle of G . Then the subgraph C − J consists of nontrivial paths and trivial paths. 
Let A be the set of all degree 2 vertices in C − J , and E ′ be the collection of edges of all nontrivial paths in C − J . Then 
(C − A) − E ′ is either a J -cover or a spanning (S, J )-alternating cycle.

Conversely, it suffices to show that G is hamiltonian if G has a J -cover {P1, P2, . . . , Ph}. Let z′
i, z

′′
i be the endpoints of 

each Pi . Since 
⋃h

i=1{z′
i, z

′′
i } ⊆ S is a clique of G , 

⋃h−1
i=1 {z′′

i z′
i+1} ⊆ E(G). Then P = (

⋃h
i=1 Pi) ∪ (

⋃h−1
i=1 {z′′

i z′
i+1}) is a (z′

1, z
′′
h)-

path with J ⊆ V (P ) by (A1) and (A2). As V (G) − P o is a clique of G , it follows that G − P o has a spanning (z′′
h , z′

1)-path P ′ . 
Thus, P ∪ P ′ is a hamiltonian cycle of G . �

A graph G is Hamilton-connected, if for every pair of distinct vertices u, v in G , there exists a hamiltonian path from u
to v .

Lemma 2.2. Let G be a split graph with a split partition (S, J ) and a J -cover P , and let u, v be any two distinct vertices in V (G) −
Inn(P). If u, v are not the endpoints of an (S, J )-alternating path in P , then G has a hamiltonian (u, v)-path.

Proof. Let S1 = ⋃
P∈P V (P ) ∩ S , S2 = S − S1, and let w be a new vertex distinct from V (G). Without loss of generality, we 

assume first that u ∈ J . If v ∈ J , we assume that a ∈ NG(u) ∩ S1 and b ∈ NG(v) ∩ S1 and a 
= b. Let G1 = G −{u, v} +{aw, bw}. 
Then G1 is a split graph with a split partition (S, J ′), where J ′ = J ∪{w} −{u, v}, and P −{u, v} +{aw, bw} is a J ′-cover of 
G1. Thus G1 is hamiltonian. Let C be a hamiltonian cycle of G1. Then C −{w} +{au, bv} is a hamiltonian (u, v)-path in G . If 
v ∈ S2 ∪ End(P), we assume that a ∈ NG(u) ∩ S1 so that a does not belong to the alternating path in P − {u} that contains 
v if v ∈ End(P). Let G2 = G − {u} + {aw, v w}. Then P − {u} + {aw, v w} is a ( J ∪ {w} − {u})-cover of the split graph G2. 
Thus G2 is hamiltonian. Let C be a hamiltonian cycle of G2. Then C − {w} + {au} is a hamiltonian (u, v)-path in G .
2
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We then assume that u ∈ S2 and v ∈ S2 ∪ End(P), or u, v are the endpoints of different alternating paths in P , then we 
set G3 = G + {uw, v w}. Thus P + {uw, v w} is a ( J ∪ {w})-cover of the split graph G3. So G3 is hamiltonian. Let C be a 
hamiltonian cycle of G3. Then C − {w} is a hamiltonian (u, v)-path in G . �
Lemma 2.3. Let G be a split graph with a split partition (S, J ), a J -cover P and δ(G) ≥ 3. If the length of each alternating (S, J )-path 
in P is 2, then G is Hamilton-connected.

Proof. As the length of each path in P is 2, Inn(P) = ∅. By Lemma 2.2, it suffices to find a hamiltonian (u, v)-path if u, v
are the endpoints of an alternating path Pi in P . Let Pi = uzv . As δ(G) ≥ 3, let b ∈ NG(z) −{u, v}. Then P ′ =P −{zv} +{zb}
is a J -cover of G with u ∈ End(P ′) and v ∈ S − V (P ′). By Lemma 2.2, G has a hamiltonian (u, v)-path. �

For a split graph G with a split partition (S, J ), we define a collection Q = {P1, P2, . . . , Ph1 , C1, C2, . . . , Ch2 }, with h1 ≥ 0
and h2 ≥ 0, of vertex-disjoint subgraphs of G to be a pseudo J -cover if Q satisfies each of the following.

(Q1) Each Pi is an (S, J )-alternating path and each C j is an (S, J )-alternating cycle.

(Q2) J ⊆
(⋃h1

i=1 P o
i

)
∪

(⋃h2
j=1 V (C j)

)
.

For a pseudo J -cover Q = {P1, P2, . . . , Ph1 , C1, C2, . . . , Ch2 } of G , let End(Q) denote the collection of the endpoints of 
the alternating paths 

⋃h1
i=1 Pi , and Inn(Q) = S ∩ (

⋃h1
i=1 P o

i ). If we need to emphasize the values of h1 and h2, we write 
Q(h1, h2) for Q. By definitions, every J -cover is also a pseudo J -cover Q(h1, h2) with h2 = 0. We also use Q to denote the 
subgraph (

⋃h1
i=1 Pi) ∪ (

⋃h2
i=1 Ci). For a set C of some vertex-disjoint cycles in a graph G , we say that C is a 2-factor of G

if V (G) = ⋃
C∈C V (C). We shall apply the following theorem to show that a pseudo J -cover will exist for an r-connected 

K1,r+1-free split graph.

Theorem 2.4 (Aldred et al. [1]). If G is an r-connected K1,r+1-free graph, then G has a 2-factor.

Lemma 2.5. Let G be an r-connected K1,r+1-free split graph with a split partition (S, J ). Then G contains a pseudo J -cover.

Proof. By Theorem 2.4, G has a 2-factor F . Then the subgraph F − J consists of some cycles, nontrivial paths, and trivial 
paths. Let A be the set of all degree 2 vertices in F − J , and E ′ be the collection of edges of all nontrivial paths in F − J . 
Then (F − A) − E ′ is a pseudo J -cover of G . �

Following Hendry [7], we call a cycle C in G extendable if there is a cycle C ′ in G such that |V (C ′)| = |V (C)| + 1 and 
V (C) ⊂ V (C ′). If such a cycle C ′ exists, we say that C can be extended to C ′ or that C ′ is an extension of C . A graph 
G is cycle extendable if it has at least one cycle and every non-hamiltonian cycle in G is extendable. A graph G is fully 
cycle extendable if G is cycle extendable and every vertex in G lies on a cycle of length 3. By definitions, every fully cycle 
extendable graph is vertex pancyclic.

Theorem 2.6. Let G be a split graph. Then, G is hamiltonian if and only if G is fully cycle extendable.

Proof. Suppose G is a hamiltonian split graph with a split partition (S, J ). If |S| = 2, then G ∼= K3. It follows that G is fully 
cycle extendable. Now we assume that |S| ≥ 3. Thus every vertex in G lies on a cycle of length 3 by the definition of split 
graphs.

To show that G is fully cycle extendable, it is enough to prove that G is cycle extendable. Suppose by contrary that G has 
a non-hamiltonian cycle C such that there is no cycle C ′ with V (C) ⊂ V (C ′) and |V (C ′)| = |V (C)| + 1. As G is hamiltonian, 
|V (G)| − |V (C)| ≥ 2.

Claim 1. V (G) − V (C) ⊆ J .

Assume that there is a vertex w ∈ S − V (C). If there exists uv ∈ E(C) such that u, v ∈ S , then C ′ = C − {uv} + {uw, v w}
is a cycle with V (C ′) = V (C) ∪ {w}, a contradiction. We then may assume that C = x1 y1x2 y2 . . . xk ykx1, where x1, . . . , xk ∈ S
and y1, . . . , yk ∈ J . For yi , if there exists z ∈ S − {x1, . . . , xk} such that zyi ∈ E(G), then C ′ = C − {xi yi} + {xi z, zyi} is a cycle 
with C ′ = C ∪ {z}, a contradiction. So, for each yi , we have NG(yi) ⊆ {x1, . . . , yk}. Therefore, the number of components of 
G − {x1, . . . , xk} is at least k + 1, which is contrary to the hamiltonicity of G . Claim 1 holds.

Pick a vertex w ∈ V (G) − V (C) ⊆ J . Let H be the subgraph induced by V (C) ∪{w}. Then H is a split graph with the split 
partition (S, J ′), where J ′ = V (C) ∩ J ∪ {w}. Let J∗ = J − J ′ . Since G is hamiltonian, by Lemma 2.1, G has either a J -cover 
P or a spanning (S, J )-alternating cycle C∗ . Thus P − J∗ or C∗ − J∗ consists of some nontrivial paths and trivial paths. Let 
P ′ be the collection of all those nontrivial paths. Then P ′ is a J ′-cover of H . By Lemma 2.1, H has a hamiltonian cycle C ′
with V (C ′) = V (C) ∪ {w}, contrary to the choice of C . �
3
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Fig. 1. The graph G6.

3. K1,3-free split graphs

Theorem 3.1 (Wu [12]). Let G be a 3-connected K1,3-free graph. If 
∑

v∈X dG (v) ≥ |V (G)| + 1 for any stable set X with |X | = 3, then 
G is Hamilton-connected.

By the structure property of K1,3-free graphs, we have the following lemma.

Lemma 3.2. Let G be a K1,3-free split graph with a split partition (S, J ). Let a, b ∈ J such that NG(a) ∩ NG(b) 
= ∅. Then for any two 
vertices x, y ∈ J − {a, b}, NG(x) ∩ NG(y) = ∅.

Lemma 3.3. Let G be a 2-connected K1,3-free split graph with a split partition (S, J ). Then G has a J -cover if and only if G 
= G6 , 
depicted in Fig. 1.

Proof. By Lemma 2.5, G has a pseudo J -cover Q = {P1, P2, . . . , Ph1 , C1, C2, . . . , Ch2 }. Let S2 = S − V (Q). By Lemma 3.2, 
h2 ≤ 1. If h2 = 0, then Q is a J -cover of G . Next we assume that h2 = 1.

Let C1 = a1b1a2b2 · · ·akbka1, where a1, · · · , ak ∈ J and b1, · · · , bk ∈ S . By Lemma 3.2, 2 ≤ k ≤ 3. If either S2 
= ∅ or h1 ≥ 1, 
we choose x ∈ S2 ∪ End(Q). Since G[{b1, a1, a2, x}] 
= K1,3, we have xa1 ∈ E(G) or xa2 ∈ E(G). Without loss of generality, we 
assume that xa1 ∈ E(G). Thus Q − {a1b1} + {xa1} is a J -cover of G . So we assume that S2 = ∅ and h1 = 0. Then, C1 is a 
spanning (S, J )-alternating cycle of G and |S| ∈ {2, 3}.

Notice that if (S, J ) is a split partition of a split graph G , then S is a maximum clique of G . If |S| = 2, then G = K4 −{e}, 
where e ∈ E(K4). By the definition of a split graph, S = K3 and J = K1, a contradiction. So |S| = 3. Since G is K1,3-free, the 
degree of each vertex in J is 2. Thus G = G6. �
Corollary 3.4. Every 2-connected K1,3-free split graph is fully cycle extendable.

Proof. Corollary 3.4 follows directly from Lemma 2.1, Theorem 2.6, and Lemma 3.3. �
Lemma 3.5. Let G be a 2-connected K1,3-free graph with a split partition (S, J ). If δ(G) ≥ 3 and |V (G)| ≥ 9, then G has a J -cover 
such that the length of each (S, J )-alternating path is 2.

Proof. By Lemma 3.3, we may choose a J -cover P = {P1, P2, · · · , Ph} so that h is maximized. Let S1 = ∪h
i=1 V (Pi) ∩ S

and S2 = S − S1. Assume that the length of Pi is ti , and t1 ≥ t2 ≥ · · · ≥ th . By Lemma 3.2, t2 = · · · = th = 2, and 2 ≤ t1 ≤
6. If t1 = 2, then this lemma is true. We then assume that t1 ∈ {4, 6} and let P1 = a1b1a2b2 · · ·bsas+1, where s ∈ {2, 3}, 
a1, · · · , as+1 ∈ S and b1, · · · , bs ∈ J . Then S2 = ∅. Otherwise, pick a vertex w ∈ S2. Since G[{a2, b1, b2, w}] 
= K1,3, we have 
wb1 ∈ E(G) or wb2 ∈ E(G). Without loss of generality, we assume wb1 ∈ E(G). Then {a1b1 w, P1 − {a1, b1}, P2, · · · , Ph} is a 
J -cover, contrary to the choice of P .

Assume first that t1 = 6. Then s = 3. As |V (G)| ≥ 9, we have h ≥ 2. As t2 = 2, we set P2 = xyz. Consider G[{a3, b2, b3, x}]. 
By Lemma 3.2, xb3 /∈ E(G). Thus xb2 ∈ E(G). By Lemma 3.2, a4 y /∈ E(G). Since G[{x, a4, y, b2}] 
= K1,3, we have b2a4 ∈ E(G). 
Similarly, a1b2 ∈ E(G). By Lemma 3.2, NG(b1) = {a1, a2}, contrary to δ(G) ≥ 3.

Assume then that t1 = 4 and s = 2. As |V (G)| ≥ 9, h ≥ 3. Let Pi = xi yi zi(i = 2, · · · , h). Since G[{a2, b1, b2, x2}] 
= K1,3, 
without loss of generality, we assume that b2x2 ∈ E(G). By Lemma 3.2, for any i ∈ {3, · · · , h}, b2xi, b2zi ∈ E(G). As G is 
K1,3-free and δ(G) ≥ 3, by Lemma 3.2, b1a3 ∈ E(G). Thus NG (y2) = {x2, z2}, a contradiction. �
Theorem 3.6. Let G be a 3-connected K1,3-free split graph. Then G is Hamilton-connected.

Proof. By Theorem 3.1, we assume that |V (G)| ≥ 9. Thus Theorem 3.6 follows directly from Lemma 2.3 and Lemma 3.5. �
4. K1,4-free split graphs

By the structure property of K1,4-free graphs, we have the following lemma.

Lemma 4.1. Let G be a K1,4-free split graph with a split partition (S, J ). Let a, b, c ∈ J such that NG(a) ∩ NG(b) ∩ NG(c) 
= ∅. Then 
for any three vertices x, y, z ∈ J − {a, b, c}, NG(x) ∩ NG(y) ∩ NG(z) = ∅.
4
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Lemma 4.2. Let G be a 3-connected K1,4-free split graph with a split partition (S, J ). Then G has either a J -cover or a spanning 
(S, J )-alternating cycle.

Proof. By Lemma 2.5, G has a pseudo J -cover. Let Q = {P1, . . . , Ph1 , C1, . . . , Ch2} be a pseudo J -cover such that
(i) h2 is minimized;
(ii) subject to (i), h1 is minimized.
We assume that h2 ≥ 1. Let S1 = V (Q) ∩ S and S2 = S − S1. Let C1 = a1b1a2b2 · · ·akbka1, where a1, · · · , ak ∈ S and 
b1, · · · , bk ∈ J . By the choice of Q, we have

Claim 1. For any x ∈ J ∩ V (Ci), NG(x) ∩ (S2 ∪ End(Q)) = ∅. Thus NG(x) ⊆ S1 − End(Q).

Claim 2. S2 = ∅.

Assume that w ∈ S2. Consider b1. Since δ(G) ≥ 3, there is a vertex y ∈ S1 −{a1, a2} such that yb1 ∈ E(G). As y /∈ End(Q), 
we assume that NQ(y) = {v1, v2}. As G[{y, b1, v1, v2, w}] 
= K1,4 and b1 w /∈ E(G), we have {v1 w, v2 w} ∩ E(G) 
= ∅. Without 
loss of generality, we assume that v2 w ∈ E(G). By Claim 1, y ∈ Pi0 . Thus (Pi0 ∪ C1) − {a1b1, yv2} + {b1 y, v2 w} are two 
alternating paths, contradicting the hypothesis that h2 is smallest. Claim 2 holds.

Claim 3. NG(bi) ⊆ {a1, · · · , ak}. Therefore, h2 = 1.

Assume that x ∈ NG(b1) −{a1, · · · , ak}. By Claims 1 and 2, x ∈ V (Ci) ∪ Inn(Q) for some i 
= 1. Let y1 y2xy3 y4 be a section 
in Q that contains x. Consider b2 and bk . As G is K1,4-free, x /∈ NG(b2) ∪ NG(bk). As dG(b2) ≥ 3, NG(b2) ∩ (S1 − End(Q)) 
= ∅. 
By Lemma 4.1, NG (b2) ∩ {y1, y4} 
= ∅ and NG (bk) ∩ {y1, y4} 
= ∅. Without loss of generality, we assume that b2 y4 ∈ E(G). By 
Claim 1, y4 /∈ End(Q). If b2 
= bk , then, as G is K1,4-free, we have bk y4 /∈ E(G) and so bk y1 ∈ E(G). By Claim 1, y1 /∈ End(Q), 
contrary to Lemma 4.1. So b2 = bk and C1 is a 4-cycle.

Assume that y1 y2xy3 y4 y5 is a section of some Pi0 = y · · · y1 y2xy3 y4 y5 · · · ys . Then yy3 /∈ E(G), otherwise, Pi0 ∪ C1 −
{a1b1, xy3} +{yy3, xb1} is an alternating path, contradicting to the choice of Q with h2 being minimized. Similarly, we have 
yy5 /∈ E(G) as b2 y4 ∈ E(G). Thus G[{y4, y3, y5, y, b2}] = K1,4, a contradiction. So y1 y2xy3 y4 (probably y1 = y4) is a section 
of some C j0 . Thus h1 = 0 (otherwise, let w be an endpoint of P1. By Claim 1, G[{x, y2, y3, b1, w}] = K1,4, a contradiction.)

If y1 
= y4, then |C j0 | ≥ 6. Let C j0 = y1 y2xy3 y4 y5 · · · ys y1 (probably y5 = ys). Then {b2, y3, y5} ⊆ NG(y4). As h2 is 
smallest and xb1, y4b2 ∈ E(G), NG(w) ∩ {a1, a2} = ∅ for w ∈ {y2, y3, y5}. As G is K1,4-free, y5x /∈ E(G). As dG(y5) ≥ 3, by 
Lemma 4.1, NG(y5) = {y4, y6, y1}. So y5 
= y1 and |C j0 | ≥ 8. Since G[{y1, y2, ys, y5, a1}] 
= K1,4, we have ysa1 ∈ E(G). Thus 
C1 ∪ C j0 − {y1 ys, y4 y5, a1b2} + {y4b2, a1 ys, y5 y1} is an alternating cycle, contrary to the hypothesis that h2 is the smallest. 
So y1 = y4 and C j0 = y1 y2xy3 y1 is a 4-cycle and b2 y1 ∈ E(G).

As h2 is smallest, NG (y2) ∩ {a1, a2} = ∅ and NG(y3) ∩ {a1, a2} = ∅. Consider y1. Using the above discussion, there is a 
4-cycle C j1 = z1z2z3z4z1 with z1, z3 ∈ S , z2, z4 ∈ J such that y2z1, y3z3 ∈ E(G). As h2 is smallest, NG (z2) ∩{a1, a2, x, y1} = ∅
and NG (z4) ∩{a1, a2, x, y1} = ∅. Consider z4. Using the above discussion, there is a 4-cycle C j2 = u1u2u3u4u1 with u1, u3 ∈ S , 
u2, u4 ∈ J such that z2u1, z4u3 ∈ E(G). Thus {b1, y2, y3} ⊆ NG(x) and {u2, u4, z4} ⊆ NG(u3), contrary to Lemma 4.1. Claim 3 
holds.

As G is K1,4-free, by Claims 1 and 3, we have h1 = 0, and so V (G) = V (C1). �
Corollary 4.3. Every 3-connected K1,4-free split graph is fully cycle extendable.

Proof. Corollary 4.3 follows directly from Lemma 2.1, Theorem 2.6, and Lemma 4.2. �
Theorem 4.4. Let G be a 4-connected K1,4-free split graph. Then G is Hamilton-connected.

Proof. Assume that (S, J ) is the split partition of G . As G is 4-connected, the number of edges between J and S is at 
least 4| J |. As G is K1,4-free, the number of edges between S and J is at most 3|S|. So 4| J | ≤ 3|S|, and hence | J | < |S|. 
By Lemma 4.2, we may assume that P = {P1, P2, · · · , Ph} is a J -cover of G . Let S1 = V (P) ∩ S and S2 = S − S1. Let 
Pi = xi

1 yi
1xi

2 yi
2 · · · xi

ki
yi

ki
xi

ki+1, where yi
1, · · · , yi

ki
∈ J , xi

1, · · · , xi
ki+1 ∈ S1. Assume that G is not Hamilton-connected. Then 

there exist u, v ∈ V (G) such that G does not have a hamiltonian (u, v)-path. Thus uv /∈ E(P). By Lemma 2.2, either {u, v} ∩
Inn(P) 
= ∅ or u, v are the endpoints of some Pi ∈ P .

Claim 1. If S2 = ∅, then h ≥ 2.

As S2 = ∅, we have S = S1 and so |S| = | J | + h. Then 4| J | ≤ 3|S| = 3(| J | + h), i.e., | J | ≤ 3h. If h = 1, then | J | ≤ 3 and 
so n ≤ 3 + 4 = 7. Then the subgraph of G induced by the edge set between S and J is isomorphic to K3,4, and so G is 
Hamilton-connected, a contradiction. Claim 1 holds.
5
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Claim 2. u, v cannot be the endpoints of some alternating path Pi .

Assume that u, v are the endpoints of P1 and u = x1
1 and v = x1

k1+1. Then NG(y1
i ) ∩ (End(P) ∪ S2 − {u, v}) = ∅ for each 

i ∈ {1, · · · , k1} (otherwise, assume that wy1
i ∈ E(G) for some w ∈ End(P) ∪ S2 − {u, v}. Then P ′ = P − {x1

i y1
i } + {wy1

i } is 
a J -cover of G with u, v /∈ Inn(P ′) and u, v are not endpoints of some path of P ′ . By Lemma 2.2, G has a hamiltonian 
(u, v)-path.)

Consider y1
1. Since dG (y1

1) ≥ 4, there is z ∈ Inn(P) − {x1
2} such that zy1

1 ∈ E(G). If z ∈ V (P1), then h = 1 and S2 = ∅
(otherwise, there are three vertices y1

1, z
′, z′′ ∈ N P1 (z) ∩ J such that G[{z, y1

1, z
′, z′′, w}] = K1,4 for some w ∈ S2 ∪ {x2

1}, 
a contradiction). If z /∈ V (P1), then h = 2 and S2 = ∅ (otherwise, assume without loss of generality that z = x2

i . As 
G[{y1

1, x
2
i , y

2
i−1, y

2
i , w}] 
= K1,4 for any w ∈ S2 ∪ {x3

1}, we have wy2
i−1 ∈ E(G) or wy2

i ∈ E(G). We may assume that 
wy2

i ∈ E(G). Then P ′ = P − {x1
1 y1

1, x
2
i y2

i } + {y1
1z, wy2

i } is a J -cover with v ∈ End(P ′) and u /∈ V (P ′). By Lemma 2.2, G
has a hamiltonian (u, v)-path, contrary to our assumption that G has no hamiltonian (u, v)-path). By Claim 1, h ≥ 2. Thus 
h = 2 and z ∈ V (P2). Assume that z = x2

i . Similarly, consider y1
k1

, we have there is some z′ ∈ V (P2) such that y1
k1

z′ ∈ E(G).

If y1
1 
= y1

k1
, then, by Lemma 4.1, z′ ∈ {x2

i−1, x
2
i+1}. Without loss of generality, we assume that z′ = x2

i+1. Then x2
1 y2

i /∈
E(G) (otherwise, P ′ = P − {x2

i y2
i , x

1
1 y1

1} + {x2
1 y2

i , x
2
i y1

1} is a J -cover of G with v ∈ End(P ′) and u ∈ S2(P ′). By Lemma 2.2, 
G has a hamiltonian (u, v)-path, a contradiction.) Similarly, x2

1 y2
i+1 /∈ E(G). Therefore, G[{x2

i+1, y
2
i , y

2
i+1, y

1
k1

, x2
1}] = K1,4, a 

contradiction. So y1
1 = y1

k1
, and the length of P1 is 2.

As dG (y1
1) ≥ 4, there is a vertex x2

j ∈ V (P2) such that y1
1x2

j ∈ E(G). We assume that j > i. By Lemma 2.2, 
{x2

1 y2
i , x

2
1 y2

j , x
2
k2+1 y2

i−1, x
2
k2+1 y2

j−1} ∩ E(G) = ∅. As y1
1x2

1 /∈ E(G) and G[{x2
j , y

1
1, y

2
j , y

2
j−1, x

2
1}] 
= K1,4, we have x2

1 y2
j−1 ∈ E(G). 

Similarly, y2
i x2

k2+1 ∈ E(G). Let P ′ =P − {x1
1 y1

1, x
2
i y2

i , x
2
j y2

j−1} + {y1
1x2

i , x
2
1 y2

j−1, y
2
j x2

k2+1}. Then P ′ is a J -cover with u /∈ V (P ′)
and v ∈ End(P ′). By Lemma 2.2, G has a hamiltonian (u, v)-path, contrary to our assumption. This completes the proof of 
Claim 2.

By Claim 2, {u, v} ∩ Inn(P) 
= ∅. Now we may assume that P = {P1, P2, . . . , Ph} is a J -cover such that
(i) |{u, v} ∩ Inn(P)| > 1 is minimized, and
(ii) subject to (i), h is maximized.
Assume that u = x1

i0
, where 1 < i0 < k1 + 1. Thus we have the following.

Claim 3. (i) For any w ∈ J , NG(w) ∩ S2 = ∅.
(ii) If there is z ∈ S1 such that |NG(z) ∩ J | = 3, then S2 = ∅ and h ≥ 2.

Claim 4. If v 
= x1
1, then NG(y1

i0
) ⊆ {v, x1

i0
, x1

i0+1, · · · , x1
k1+1}; if v 
= x1

k1+1, then NG(y1
i0−1) ⊆ {v, x1

1, x
1
2, . . . , x

1
i0
}.

By symmetry, we only prove NG (y1
i0
) ⊆ {v, x1

i0
, x1

i0+1, · · · , x1
k1+1} if v 
= x1

1. Assume that z ∈ NG(y1
i0
) − {v, x1

i0
, x1

i0+1, · · · ,

x1
k1+1}. By the choice of P , x1

1 y1
i0

/∈ E(G). By Claim 3(i), z /∈ S2. Furthermore, z /∈ End(P) −{v} (otherwise, P ′ =P −{x1
i0

y1
i0
} +

{zy1
i0
} is a J -cover with |{u, v} ∩ Inn(P ′)| < |{u, v} ∩ Inn(P)|, contrary to the choice of P). Thus z ∈ Inn(P) − {x1

i0
, x1

i0+1}. By 
Claim 3(ii), S2 = ∅ and h ≥ 2. Without loss of generality, assume that v 
= x2

1. Thus, y1
i0

x2
1 /∈ E(G).

Assume that z = x2
j ∈ V (P2). Consider G[{x2

j , x
1
1, y

1
i0
, y2

j−1, y
2
j }]. We have either y2

j−1x1
1 ∈ E(G) or y2

j x1
1 ∈ E(G). Without 

loss of generality, we assume that x1
1 y2

j−1 ∈ E(G). Then P ′ =P−{x1
i0

y1
i0
, x2

j y2
j−1} +{x1

1 y2
j−1, y

1
i0

x2
j } is a J -cover with |{u, v} ∩

Inn(P ′)| < |{u, v} ∩ Inn(P)|, contrary to the choice of P . So NG(y1
i0
) ⊆ V (P1) and z = x1

j0
for some j0 ∈ {2, · · · , i0 − 1}.

As G[{x1
j0
, y1

j0−1, y
1
j0
, y1

i0
, x2

1} 
= K1,4, we have either y1
j0−1x2

1 ∈ E(G) or y1
j0

x2
1 ∈ E(G). If y1

j0−1x2
1 ∈ E(G), we set P ′ =

P − {y1
j0−1x1

j0
, x1

i0
y1

i0
} + {x2

1 y1
j0−1, x

1
j0

y1
i0
}; if y1

j0
x2

1 ∈ E(G), we set P ′ = P − {x1
j0

y1
j0
, x1

i0
y1

i0
} + {x2

1 y1
j0
, x1

j0
y1

i0
}. Then P ′ is a 

J -cover with |{u, v} ∩ Inn(P ′)| < |{u, v} ∩ Inn(P)|, contrary to the choice of P . Claim 4 holds.

Claim 5. v ∈ S1.

Assume that v /∈ S1. Then v ∈ J ∪ S2. By Claims 3 and 4, NG(y1
i0
) ⊆ {x1

i0
, x1

i0+1, · · · , x1
k1+1} and NG(y1

i0−1) ⊆
{x1

1, x
1
2, · · · , x1

i0
}. As δ(G) ≥ 4, there exist z1 ∈ {x1

i0+2, x
1
i0+3, · · · , x1

k1
} and z2 ∈ {x1

2, x
1
3, · · · , x1

i0−2} such that z1 y1
i0
, z2 y1

i0−1 ∈
E(G). This contradicts Lemma 4.1. So Claim 5 holds.

Claim 6. v ∈ Inn(P).

Assume that v /∈ Inn(P). Then v ∈ End(P). Without loss of generality, we assume that v 
= x1
1. By Claim 4, NG(y1

i0
) ⊆

{v, x1
i0
, x1

i0+1, · · · , x1
k1+1}.

Claim 6.1. NG(y1 ) = {v, x1 , x1 , x1 }.
i0 i0 i0+1 k1+1

6
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Otherwise, there is a vertex x1
j ∈ {x1

i0+2, · · · , x1
k1

} such that y1
i0

x1
j ∈ E(G). By Claim 3(ii), S2 = ∅ and h ≥ 2. By sym-

metry, we assume that v 
= xt
1, where t ∈ {1, 2 · · · , h}. If xt

1 y1
i0−1 ∈ E(G), we let P ′ = P − {x1

i0
y1

i0−1} + {xt
1 y1

i0−1}. Then 
P ′ is a J -cover with |{u, v} ∩ Inn(P ′)| < |{u, v} ∩ Inn(P)|, contrary to the choice of P . So xt

1 y1
i0−1 ∈ E(G). Similarly, 

xt
1 y1

i0
, xt

1 y1
j−1, x

1
1 y1

i0
, x1

1 y1
j−1 /∈ E(G). As G[{x1

j , y
1
i0
, y1

j−1, y
1
j , x

t
1}] 
= K1,4, we have xt

1 y1
j ∈ E(G) for each t ∈ {1, · · · , h}.

We first claim that v = x1
k1+1. Otherwise, we assume that v = xt

kt+1 for some t 
= 1. By Claim 4, NG(y1
i0−1) ⊆

{xt
kt+1, x

1
1, x

1
2, · · · , x1

i0
}. By Lemma 4.1, NG(y1

i0−1) = {x1
1, x

1
i0−1, x

1
i0
, xt

kt+1}. Consider P ′ =P−{y1
i0−1x1

i0
} +{y1

i0−1xt
kt+1}. Then P ′

is a J -cover with |{u, v} ∩ Inn(P ′)| = |{u, v} ∩ Inn(P)| = 1, u = x1
i0

∈ End(P ′) and v ∈ Inn(P ′). Consider yt
kt

in P ′ . By Claim 
4 and Lemma 4.1, we have NG (yt

kt
) = {xt

kt
, xt

kt+1, x
t
1, x

1
i0
}. Let P ′′ =P −{y1

i0−1x1
i0
, x1

i0
y1

i0
, yt

kt
xt

kt+1} +{x1
i0

yt
kt

, y1
i0−1xt

kt+1, y
1
i0

xt
1}. 

Then P ′′ is a J -cover with |{u, v} ∩ Inn(P ′′)| < |{u, v} ∩ Inn(P)| = 1, contrary to the choice of P . So v = x1
k1+1.

We next claim that NG(y1
i0−1) = {x1

1, x
1
i0−1, x

1
i0
, x1

k1+1}. By Lemma 2.2 and Claim 2, NG(y1
i0−1) ∩ (End(P) − {x1

1, v}) =
∅. By Lemma 4.1, we have NG(y1

i0−1) ⊆ {x1
1, x

1
i0−1, x

1
i0
, x1

i0+1, x1
j−1, x

1
j+1, x

1
k1+1}. If y1

i0−1x1
i0+1 ∈ E(G), let P ′ = P −

{x1
i0

y1
i0−1, x

1
i0+1 y1

i0
, x1

j y1
j } + {y1

i0
x1

j , y1
i0−1x1

i0+1, x
1
1 y1

j }; if y1
i0−1x1

j−1 ∈ E(G), then y1
j−2x2

1 ∈ E(G) as G[{x1
j−1, y

1
i0−1, y

1
j−1, y

1
j−2,

x2
1}] 
= K1,4, let P ′ = P − {x1

i0
y1

i0−1, x
1
j−1 y1

j−2} + {y1
i0−1x1

j−1, y
1
j−2x2

1}; if y1
i0−1x1

j+1 ∈ E(G), let P ′ = P − {x1
i0

y1
i0−1, x

1
j+1 y1

j } +
{x2

1 y1
j , x

1
j+1 y1

i0−1}. Then u, v ∈ End(P ′). By Claim 2 and Lemma 2.2, G has a hamiltonian (u, v)-path, a contradiction. There-

fore, NG(y1
i0−1) = {x1

1, x
1
i0−1, x

1
i0
, x1

k1+1}.

Notice that if y1
i0

x1
k1+1 ∈ E(G), then x2

1 y1
k1

∈ E(G) since G[{x1
k1+1, y

1
k1

, y1
i0−1, y

1
i0
, x2

1}] 
= K1,4. Thus P ′ = P − {y1
i0−1x1

i0
,

y1
k1

x1
k1+1} + {y1

k1
x2

1, y
1
i0−1x1

k1+1} is a J -cover with u, v ∈ End(P ′). Then G has a hamiltonian (u, v)-path, a contradiction. It 
implies that NG (y1

i0
) ⊆ {x1

i0
, x1

i0+1, · · · , x1
k1

}. As δ(G) ≥ 4, by Lemma 4.1, y1
j0

x1
j+1 ∈ E(G). Thus P ′ = P − {x1

i0
y1

i0
, y1

j x1
j+1} +

{y1
i0

x1
j+1, y

1
j x2

1} is a J -cover of G with u, v ∈ End(P ′). So G has a hamiltonian (u, v)-path, a contradiction. Hence, NG (y1
i0
) =

{v, x1
i0
, x1

i0+1, x
1
k1+1}. Claim 6.1 holds.

As dG(y1
i0
) ≥ 4 and v ∈ End(P) − {x1

1}, we have h ≥ 2. Without loss of generality, we assume that v = x2
1. 

Thus v 
= x1
k1+1. By applying the discussion in Claim 6.1 on y1

i0−1, we have NG(y1
i0−1) = {x1

1, x
1
i0
, x1

i0−1, x
2
1}. Since 

G[{x2
1, y

1
i0−1, y

1
i0
, y2

1, x
2
k2+1}] 
= K1,4, we have y2

1x2
k2+1 ∈ E(G).

If h ≥ 3, then y2
1x3

1 ∈ E(G) since G[{x2
1, y

1
i0−1, y

1
i0
, y2

1, x
3
1}] 
= K1,4. Consider P ′ = P − {y1

i0−1x1
i0
} + {y1

i0−1x2
1}. Then P ′ is a 

J -cover of G with x2
1 ∈ Inn(P ′) and x1

i ∈ End(P ′). By applying the discussion in Claim 6.1 on y2
1 in P ′ , we have NG (y2

1) =
{x2

1, x
2
2, x

2
k2+1, x

1
i0
}. So x1

i0
y2

1 ∈ E(G). Thus P ′ = P − {x1
i0

y1
i0
, x2

1 y2
1} + {x2

1 y1
i0
, y2

1x3
1} is a J -cover of G with u, v ∈ End(P ′). So G

has a hamiltonian (u, v)-path, a contradiction. So h = 2.
Consider y1

1. By Lemma 4.1, NG(y1
1) ⊆ {x1

1, x
1
2, x

1
i0−1, x

1
i0+1, x

1
k1+1, x

2
2, x

2
k2+1}. If y1

1x1
k1+1 ∈ E(G), let P ′ = P − {y1

i0−1x1
i0
,

x1
1 y1

1} + {x1
k1+1 y1

1, y
1
i0−1x1

1}; if y1
1x1

i0+1 ∈ E(G), let P ′ = P − {x1
i0+1 y1

i0
, x1

1 y1
1, y

1
i0−1x1

i0
} + {y1

i0
x1

k1+1, x
1
i0+1 y1

1, y
1
i0−1x1

1}; if 
y1

1x2
k2+1 ∈ E(G), let P ′ = P − {x1

1 y1
1, y

1
i0−1x1

i0
} + {y1

1x2
k2+1, y

1
i0−1x1

1}; if y1
1x2

2 ∈ E(G), let P ′ = P − {y2
1x2

2, x
1
1 y1

1, y
1
i0−1x1

i0
} +

{y2
1x2

k2+1, x
2
2 y1

1, y
1
i0−1x1

1}. Then P ′ is a J -cover of G with u, v ∈ End(P ′). Thus G has a hamiltonian (u, v)-path, a contra-

diction. Therefore, NG(y1
1) = {x1

1, x
1
2, x

1
i0−1}, contrary to the hypothesis that δ(G) ≥ 4. This completes the proof of Claim 

6.
By Claim 6, v ∈ Inn(P). Consider y1

i0
. Then NG(y1

i0
) ∩ (End(P) − {x1

k1+1}) = ∅. As dG (y1
i0
) ≥ 4, there is z ∈ Inn(P) −

{x1
i0
, x1

i0+1} such that zy1
i0

∈ E(G). By Claim 3(ii), S2 = ∅ and h ≥ 2. If z /∈ V (P1), we assume that z = x2
j ∈ V (P2), where 

1 < j < k2 +1. Since G[{x2
j , y

2
j−1, y

2
j , y

1
i0
, x1

1} 
= K1,4, we have either x1
1 y2

j−1 ∈ E(G) or x1
1 y2

j ∈ E(G). Without loss of generality, 
we assume that x1

1 y2
j ∈ E(G). Then P ′ = P − {x1

i0
y1

i0
, x2

j y2
j } + {y1

i0
x2

j , x
1
1 y2

j } is a J -cover of G such that u ∈ End(P ′) and 
v ∈ Inn(P ′), contrary to the choice of P . So z ∈ V (P1). If z = x1

j , where 1 < j < i0, then either x2
1 y1

j ∈ E(G) or x2
1 y1

j−1 ∈ E(G)

since G[{x1
j , y

1
j , y

1
j−1, y

1
i0
, x2

1}] 
= K1,4. If x2
1 v1

j−1 ∈ E(G), let P ′ = P − {x1
j y1

j−1, x
1
j0

y1
j0
} + {x2

1 y1
j−1, x j y1

j0
}; if x2

1 y1
j ∈ E(G), let 

P ′ = P − {x1
j y1

j , x
1
j0

y1
j0
} + {x2

1 y1
j , x j y1

j0
}. Then u ∈ End(P ′) and v ∈ Inn(P ′), contrary to the choice of P . So NG(y1

j0
) ⊆

{x1
i0
, x1

i0+1, · · · , x1
k1+1}. Similarly, NG(y1

j0−1) ⊆ {x1
1, x

1
2, · · · , x1

i0−1}. As δ(G) ≥ 4, there exist z1 ∈ {x1
i0+2, x

1
i0+3, · · · , x1

k1
} and z2 ∈

{x1
2, x

1
3, · · · , x1

i0−2} such that z1 y1
i0
, z2 y1

i0−1 ∈ E(G). This contradicts Lemma 4.1. The proof of Theorem 4.4 is done. �
5. Concluding remarks

In view of Theorem 2.6, we may restate Conjecture 1.4 in the following seemingly stronger version.

Conjecture 5.1. Let r ≥ 2 be an integer. Every r-connected K1,r+1-free split graph is fully cycle extendable.

It is natural to consider the Hamilton-connected version of the conjecture above. We consider the following example. 
Let H be a copy of the complete bipartite graph Kr−1,r(r ≥ 3) with the bipartition (X, Y ), where X = {x1, x2, · · · , xr−1}
7
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x1 xr−1

y1 yrw

Fig. 2. r-connected K1,r+1-free non-Hamilton-connected graph G .

and Y = {y1, y2, · · · , yr}. Let K be a copy of Kr+1 with V (K ) = {y1, y2, · · · , yr, w}. Then G = H ∪ K (see Fig. 2) is an r-
connected K1,r+1-free graph, but G is not Hamilton-connected (there is no hamiltonian (y1, yr)-path). This, together with 
Theorems 3.6 and 4.4, motivates the following conjecture.

Conjecture 5.2. Let r ≥ 3 be an integer. Every r-connected K1,r -free split graph is Hamilton-connected.
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