Note

# On hamiltonian properties of $K_{1, r}$-free split graphs 

Xia Liu ${ }^{\text {a }}$, Sulin Song ${ }^{\text {b,* }}$, Mingquan Zhan ${ }^{\text {c }}$, Hong-Jian Lai ${ }^{\text {d }}$<br>${ }^{\text {a }}$ Department of Mathematics, Northwest Normal University, Lanzhou, Gansu 730070, PR China<br>${ }^{\mathrm{b}}$ Department of Mathematics, West Texas A\&M University, Canyon, TX 79016, USA<br>${ }^{\text {c }}$ Department of Mathematics, Millersville University of Pennsylvania, Millersville, PA 17551, USA<br>${ }^{\text {d }}$ Department of Mathematics, West Virginia University, Morgantown, WV 26506, USA

## A R T I C L E I N F O

## Article history:

Received 20 December 2022
Received in revised form 17 February 2023
Accepted 25 February 2023
Available online xxxx

## Keywords:

$K_{1, r}$-free graphs
Hamiltonian cycles
Split graphs
Fully cycle extendable


#### Abstract

Let $r \geq 3$ be an integer. A graph $G$ is $K_{1, r}$-free if $G$ does not have an induced subgraph isomorphic to $K_{1, r}$. A graph $G$ is fully cycle extendable if every vertex in $G$ lies on a cycle of length 3 and every non-hamiltonian cycle in $G$ is extendable. A connected graph $G$ is a split graph if the vertex set of $G$ can be partitioned into a clique and a stable set. Dai et al. (2022) [4] conjectured that every $(r-1)$-connected $K_{1, r}$-free split graph is hamiltonian, and they proved this conjecture when $r=4$ while Renjith and Sadagopan proved the case when $r=3$. In this paper, we introduce a special type of alternating paths in the study of hamiltonian properties of split graphs and prove that a split graph $G$ is hamiltonian if and only if $G$ is fully cycle extendable. Consequently, for $r \in\{3,4\}$, every $r$-connected $K_{1, r}$-free split graph is Hamilton-connected and every $(r-1)$-connected $K_{1, r}$-free split graph is fully cycle extendable.


(C) 2023 Elsevier B.V. All rights reserved.

## 1. The problem

In this paper, we consider only finite simple graphs and refer to [2] for notation and terminologies not locally defined here. We call a graph $G$ hamiltonian if it contains a hamiltonian cycle, i.e., a cycle contains all vertices of $G$. Furthermore, a graph $G$ of order $n \geq 3$ is pancyclic if $G$ contains a cycle of each possible length from 3 to $n$; $G$ is vertex pancyclic if each vertex is contained on a cycle of each possible length from 3 to $n$.

Let $r \geq 3$ be an integer. A graph $G$ is $K_{1, r}$-free if $G$ does not have an induced subgraph isomorphic to $K_{1, r}$. A connected graph $G$ is called a split graph if its vertex set $V(G)$ can be partitioned as the disjoint union of $S$ and $J$ (either of which may be empty) such that $S$ is a maximum clique of $G$ whereas $J$ is a stable set of $G$. Split graphs were introduced by Foldes and Hammer [6] in 1977, and were studied further in [3], [5], [8], [9], [10], [11].

Theorem 1.1 (Renjith and Sadagopan [10]). Let $G$ be a $K_{1,3}$-free split graph. Then $G$ is hamiltonian if and only if $G$ is 2-connected.

Very recently, Dai et al. [4] proposed conditions for $K_{1,3}$-free split graphs to be pancyclic and $K_{1,4}$-free split graphs to be hamiltonian, respectively.

Theorem 1.2 (Dai, Zhang, Broerama and Zhang [4]). Let $G$ be a $K_{1,3}$-free split graph. Then $G$ is pancyclic if and only if $G$ is 2-connected.

[^0]Theorem 1.3 (Dai, Zhang, Broerama and Zhang [4]). Let $G$ be a $K_{1,4}$-free split graph. If $G$ is 3 -connected, then $G$ is hamiltonian.
The following conjecture is posed in [4].
Conjecture 1.4 (Dai, Zhang, Broerama and Zhang [4]). Let $r \geq 2$ be an integer. Every $r$-connected $K_{1, r+1}$-free split graph is hamiltonian.
Theorems 1.1 and 1.3 indicate that Conjecture 1.4 is valid for $r \in\{2,3\}$. This motivates this research. In Section 2 , we introduce a certain type of alternating paths in split graphs, which will be utilized to study the hamiltonian properties of split graphs. We investigate the fully cycle extendability and Hamilton-connectedness for $K_{1,3}$-free split graphs in Section 3 , and those for $K_{1,4}$-free split graphs in Section 4. Our results extend Theorems 1.1, 1.2 and 1.3 to vertex pancyclicity and Hamilton-connectedness.

## 2. Alternating paths

For two graphs $G_{1}$ and $G_{2}$, let $G_{1} \cup G_{2}$ be a graph with the vertex set $V\left(G_{1}\right) \cup V\left(G_{2}\right)$ and the edge set $E\left(G_{1}\right) \cup E\left(G_{2}\right)$. We can consider a collection of subgraphs $G_{1}, G_{2}, \ldots, G_{h}$ in $G$ as a subgraph $\bigcup_{i=1}^{h} G_{i}$ of $G$. If $S$ is an edge (or a vertex) subset of $G, G[S]$ is the subgraph induced in $G$ by $S$. For a subset $A \subseteq V(G)$, we denote $G-A=G[V(G)-A]$; for a subset $X \subseteq E(G)$ and a subgraph $H \subseteq G$ with $X \cap E(H)=\emptyset$, we denote $G-X=G[E(G)-X]$ and write $H+X$ for $H \cup G[X]$.

Throughout this section, let $r \geq 2$ denote an integer. A path with endpoints $u$ and $v$ is often referred as to a ( $u, v$ )-path. Let $G$ be a split graph with $V(G)=S \cup J$, where $S$ is a maximum clique of $G$, and $J$ is a stable set of $G$. We shall call such an ordered pair $(S, J)$ a split partition of $G$. Denote $s=|S|$ and $j=|J|$. Then $G[S] \cong K_{s}$. Since complete graphs are hamiltonian, we may assume that $j>0$. Let $J=\left\{u_{1}, u_{2}, \ldots, u_{j}\right\}$. Then $N_{G}(u) \subseteq S$ for any $u \in J$. Suppose that $\kappa(G) \geq r$. As $j>0$, every vertex $u \in J$ must be adjacent to at least $r$ distinct vertices in $S$, and so $s \geq r$. By the maximality of $|S|, s \geq r+1$. We define the interior of a path $P=v_{1} v_{2} \ldots v_{2 t+1}$ to be $P^{o}=V(P)-\left\{v_{1}, v_{2 t+1}\right\}$, and $P$ to be an ( $S, J$ )alternating path in $G$ if $v_{1} \neq v_{2 t+1},\left\{v_{1}, v_{3}, \ldots, v_{2 t+1}\right\} \subseteq S$ and $\left\{v_{2}, v_{4}, \ldots, v_{2 t}\right\} \subseteq J$. If we allow $v_{1}=v_{2 t+1}$ while keeping both $\left\{v_{1}, v_{3}, \ldots, v_{2 t+1}\right\} \subseteq S$ and $\left\{v_{2}, v_{4}, \ldots, v_{2 t}\right\} \subseteq J$, then $P$ is an $(S, J)$-alternating cycle.

A collection $\mathcal{P}=\left\{P_{1}, P_{2}, \ldots, P_{h}\right\}$ of $(S, J)$-alternating paths in $G$ is a $J$-cover if both of the following hold:
(A1) for any $\{i, j\} \subseteq\{1,2, \ldots, h\}, V\left(P_{i}\right) \cap V\left(P_{j}\right)=\emptyset$, and
(A2) $J \subseteq \bigcup_{i=1}^{h} P_{i}^{o}$.
For a collection $\mathcal{P}=\left\{P_{1}, P_{2}, \ldots, P_{h}\right\}$ of $(S, J)$-alternating paths in $G$, let $\operatorname{End}(\mathcal{P})$ denote the collection of the endpoints of all these alternating paths in $\mathcal{P}$, and $\operatorname{Inn}(\mathcal{P})=(V(\mathcal{P}) \cap S)-\operatorname{End}(\mathcal{P})=S \cap\left(\bigcup_{i=1}^{h} P_{i}^{o}\right)$. We also use $\mathcal{P}$ to denote the subgraph $\bigcup_{i=1}^{h} P_{i}$.

Lemma 2.1. Let $G$ be a split graph with a split partition $(S, J)$. Then, $G$ is hamiltonian if and only if $G$ has either a J-cover or a spanning (S, J)-alternating cycle.

Proof. Assume that $C$ is a hamiltonian cycle of $G$. Then the subgraph $C-J$ consists of nontrivial paths and trivial paths. Let $A$ be the set of all degree 2 vertices in $C-J$, and $E^{\prime}$ be the collection of edges of all nontrivial paths in $C-J$. Then $(C-A)-E^{\prime}$ is either a $J$-cover or a spanning $(S, J)$-alternating cycle.

Conversely, it suffices to show that $G$ is hamiltonian if $G$ has a $J$-cover $\left\{P_{1}, P_{2}, \ldots, P_{h}\right\}$. Let $z_{i}^{\prime}, z_{i}^{\prime \prime}$ be the endpoints of each $P_{i}$. Since $\bigcup_{i=1}^{h}\left\{z_{i}^{\prime}, z_{i}^{\prime \prime}\right\} \subseteq S$ is a clique of $G, \bigcup_{i=1}^{h-1}\left\{z_{i}^{\prime \prime} z_{i+1}^{\prime}\right\} \subseteq E(G)$. Then $P=\left(\bigcup_{i=1}^{h} P_{i}\right) \cup\left(\bigcup_{i=1}^{h-1}\left\{z_{i}^{\prime \prime} z_{i+1}^{\prime}\right\}\right)$ is a $\left(z_{1}^{\prime}, z_{h}^{\prime \prime}\right)$ path with $J \subseteq V(P)$ by (A1) and (A2). As $V(G)-P^{o}$ is a clique of $G$, it follows that $G-P^{o}$ has a spanning ( $z_{h}^{\prime \prime}, z_{1}^{\prime}$ )-path $P^{\prime}$. Thus, $P \cup P^{\prime}$ is a hamiltonian cycle of $G$.

A graph $G$ is Hamilton-connected, if for every pair of distinct vertices $u, v$ in $G$, there exists a hamiltonian path from $u$ to $v$.

Lemma 2.2. Let $G$ be a split graph with a split partition $(S, J)$ and a $J$-cover $\mathcal{P}$, and let $u, v$ be any two distinct vertices in $V(G)-$ $\operatorname{Inn}(\mathcal{P})$. If $u, v$ are not the endpoints of an $(S, J)$-alternating path in $\mathcal{P}$, then $G$ has a hamiltonian $(u, v)$-path.

Proof. Let $S_{1}=\bigcup_{P \in \mathcal{P}} V(P) \cap S, S_{2}=S-S_{1}$, and let $w$ be a new vertex distinct from $V(G)$. Without loss of generality, we assume first that $u \in J$. If $v \in J$, we assume that $a \in N_{G}(u) \cap S_{1}$ and $b \in N_{G}(v) \cap S_{1}$ and $a \neq b$. Let $G_{1}=G-\{u, v\}+\{a w, b w\}$. Then $G_{1}$ is a split graph with a split partition $\left(S, J^{\prime}\right)$, where $J^{\prime}=J \cup\{w\}-\{u, v\}$, and $\mathcal{P}-\{u, v\}+\{a w, b w\}$ is a $J^{\prime}$-cover of $G_{1}$. Thus $G_{1}$ is hamiltonian. Let $C$ be a hamiltonian cycle of $G_{1}$. Then $C-\{w\}+\{a u, b v\}$ is a hamiltonian $(u, v)$-path in $G$. If $v \in S_{2} \cup \operatorname{End}(\mathcal{P})$, we assume that $a \in N_{G}(u) \cap S_{1}$ so that $a$ does not belong to the alternating path in $\mathcal{P}-\{u\}$ that contains $v$ if $v \in \operatorname{End}(\mathcal{P})$. Let $G_{2}=G-\{u\}+\{a w, v w\}$. Then $\mathcal{P}-\{u\}+\{a w, v w\}$ is a $(J \cup\{w\}-\{u\})$-cover of the split graph $G_{2}$. Thus $G_{2}$ is hamiltonian. Let $C$ be a hamiltonian cycle of $G_{2}$. Then $C-\{w\}+\{a u\}$ is a hamiltonian $(u, v)$-path in $G$.

We then assume that $u \in S_{2}$ and $v \in S_{2} \cup \operatorname{End}(\mathcal{P})$, or $u, v$ are the endpoints of different alternating paths in $\mathcal{P}$, then we set $G_{3}=G+\{u w, v w\}$. Thus $\mathcal{P}+\{u w, v w\}$ is a $(J \cup\{w\})$-cover of the split graph $G_{3}$. So $G_{3}$ is hamiltonian. Let $C$ be a hamiltonian cycle of $G_{3}$. Then $C-\{w\}$ is a hamiltonian $(u, v)$-path in $G$.

Lemma 2.3. Let $G$ be a split graph with a split partition ( $S, J$ ), a $J$-cover $\mathcal{P}$ and $\delta(G) \geq 3$. If the length of each alternating ( $S, J$ )-path in $\mathcal{P}$ is 2 , then $G$ is Hamilton-connected.

Proof. As the length of each path in $\mathcal{P}$ is $2, \operatorname{Inn}(\mathcal{P})=\emptyset$. By Lemma 2.2, it suffices to find a hamiltonian $(u, v)$-path if $u, v$ are the endpoints of an alternating path $P_{i}$ in $\mathcal{P}$. Let $P_{i}=u z v$. As $\delta(G) \geq 3$, let $b \in N_{G}(z)-\{u, v\}$. Then $\mathcal{P}^{\prime}=\mathcal{P}-\{z v\}+\{z b\}$ is a $J$-cover of $G$ with $u \in \operatorname{End}\left(\mathcal{P}^{\prime}\right)$ and $v \in S-V\left(\mathcal{P}^{\prime}\right)$. By Lemma 2.2, $G$ has a hamiltonian $(u, v)$-path.

For a split graph $G$ with a split partition $(S, J)$, we define a collection $\mathcal{Q}=\left\{P_{1}, P_{2}, \ldots, P_{h_{1}}, C_{1}, C_{2}, \ldots, C_{h_{2}}\right\}$, with $h_{1} \geq 0$ and $h_{2} \geq 0$, of vertex-disjoint subgraphs of $G$ to be a pseudo $J$-cover if $\mathcal{Q}$ satisfies each of the following.
(Q1) Each $P_{i}$ is an $(S, J)$-alternating path and each $C_{j}$ is an $(S, J)$-alternating cycle.
(Q2) $J \subseteq\left(\bigcup_{i=1}^{h_{1}} P_{i}^{o}\right) \cup\left(\bigcup_{j=1}^{h_{2}} V\left(C_{j}\right)\right)$.
For a pseudo $J$-cover $\mathcal{Q}=\left\{P_{1}, P_{2}, \ldots, P_{h_{1}}, C_{1}, C_{2}, \ldots, C_{h_{2}}\right\}$ of $G$, let $\operatorname{End}(\mathcal{Q})$ denote the collection of the endpoints of the alternating paths $\bigcup_{i=1}^{h_{1}} P_{i}$, and $\operatorname{Inn}(\mathcal{Q})=S \cap\left(\bigcup_{i=1}^{h_{1}} P_{i}^{o}\right)$. If we need to emphasize the values of $h_{1}$ and $h_{2}$, we write $\mathcal{Q}\left(h_{1}, h_{2}\right)$ for $\mathcal{Q}$. By definitions, every $J$-cover is also a pseudo $J$-cover $\mathcal{Q}\left(h_{1}, h_{2}\right)$ with $h_{2}=0$. We also use $\mathcal{Q}$ to denote the subgraph $\left(\bigcup_{i=1}^{h_{1}} P_{i}\right) \cup\left(\bigcup_{i=1}^{h_{2}} C_{i}\right)$. For a set $\mathcal{C}$ of some vertex-disjoint cycles in a graph $G$, we say that $\mathcal{C}$ is a 2-factor of $G$ if $V(G)=\bigcup_{C \in \mathcal{C}} V(C)$. We shall apply the following theorem to show that a pseudo $J$-cover will exist for an $r$-connected $K_{1, r+1}$-free split graph.

Theorem 2.4 (Aldred et al. [1]). If $G$ is an $r$-connected $K_{1, r+1}$-free graph, then $G$ has a 2-factor.
Lemma 2.5. Let $G$ be an $r$-connected $K_{1, r+1}$-free split graph with a split partition $(S, J)$. Then $G$ contains a pseudo $J$-cover.
Proof. By Theorem 2.4, G has a 2-factor $F$. Then the subgraph $F-J$ consists of some cycles, nontrivial paths, and trivial paths. Let $A$ be the set of all degree 2 vertices in $F-J$, and $E^{\prime}$ be the collection of edges of all nontrivial paths in $F-J$. Then $(F-A)-E^{\prime}$ is a pseudo $J$-cover of $G$.

Following Hendry [7], we call a cycle $C$ in $G$ extendable if there is a cycle $C^{\prime}$ in $G$ such that $\left|V\left(C^{\prime}\right)\right|=|V(C)|+1$ and $V(C) \subset V\left(C^{\prime}\right)$. If such a cycle $C^{\prime}$ exists, we say that $C$ can be extended to $C^{\prime}$ or that $C^{\prime}$ is an extension of $C$. A graph $G$ is cycle extendable if it has at least one cycle and every non-hamiltonian cycle in $G$ is extendable. A graph $G$ is fully cycle extendable if $G$ is cycle extendable and every vertex in $G$ lies on a cycle of length 3 . By definitions, every fully cycle extendable graph is vertex pancyclic.

Theorem 2.6. Let $G$ be a split graph. Then, $G$ is hamiltonian if and only if $G$ is fully cycle extendable.
Proof. Suppose $G$ is a hamiltonian split graph with a split partition $(S, J)$. If $|S|=2$, then $G \cong K_{3}$. It follows that $G$ is fully cycle extendable. Now we assume that $|S| \geq 3$. Thus every vertex in $G$ lies on a cycle of length 3 by the definition of split graphs.

To show that $G$ is fully cycle extendable, it is enough to prove that $G$ is cycle extendable. Suppose by contrary that $G$ has a non-hamiltonian cycle $C$ such that there is no cycle $C^{\prime}$ with $V(C) \subset V\left(C^{\prime}\right)$ and $\left|V\left(C^{\prime}\right)\right|=|V(C)|+1$. As $G$ is hamiltonian, $|V(G)|-|V(C)| \geq 2$.

Claim 1. $V(G)-V(C) \subseteq J$.
Assume that there is a vertex $w \in S-V(C)$. If there exists $u v \in E(C)$ such that $u, v \in S$, then $C^{\prime}=C-\{u v\}+\{u w, v w\}$ is a cycle with $V\left(C^{\prime}\right)=V(C) \cup\{w\}$, a contradiction. We then may assume that $C=x_{1} y_{1} x_{2} y_{2} \ldots x_{k} y_{k} x_{1}$, where $x_{1}, \ldots, x_{k} \in S$ and $y_{1}, \ldots, y_{k} \in J$. For $y_{i}$, if there exists $z \in S-\left\{x_{1}, \ldots, x_{k}\right\}$ such that $z y_{i} \in E(G)$, then $C^{\prime}=C-\left\{x_{i} y_{i}\right\}+\left\{x_{i} z, z y_{i}\right\}$ is a cycle with $C^{\prime}=C \cup\{z\}$, a contradiction. So, for each $y_{i}$, we have $N_{G}\left(y_{i}\right) \subseteq\left\{x_{1}, \ldots, y_{k}\right\}$. Therefore, the number of components of $G-\left\{x_{1}, \ldots, x_{k}\right\}$ is at least $k+1$, which is contrary to the hamiltonicity of $G$. Claim 1 holds.

Pick a vertex $w \in V(G)-V(C) \subseteq J$. Let $H$ be the subgraph induced by $V(C) \cup\{w\}$. Then $H$ is a split graph with the split partition $\left(S, J^{\prime}\right)$, where $J^{\prime}=V(C) \cap J \cup\{w\}$. Let $J^{*}=J-J^{\prime}$. Since $G$ is hamiltonian, by Lemma 2.1, $G$ has either a $J$-cover $\mathcal{P}$ or a spanning $(S, J)$-alternating cycle $C^{*}$. Thus $\mathcal{P}-J^{*}$ or $C^{*}-J^{*}$ consists of some nontrivial paths and trivial paths. Let $\mathcal{P}^{\prime}$ be the collection of all those nontrivial paths. Then $\mathcal{P}^{\prime}$ is a $J^{\prime}$-cover of $H$. By Lemma $2.1, H$ has a hamiltonian cycle $C^{\prime}$ with $V\left(C^{\prime}\right)=V(C) \cup\{w\}$, contrary to the choice of $C$.


Fig. 1. The graph $G_{6}$.

## 3. $K_{1,3}$-free split graphs

Theorem 3.1 (Wu [12]). Let $G$ be a 3-connected $K_{1,3}$-free graph. If $\sum_{v \in X} d_{G}(v) \geq|V(G)|+1$ for any stable set $X$ with $|X|=3$, then $G$ is Hamilton-connected.

By the structure property of $K_{1,3}$-free graphs, we have the following lemma.
Lemma 3.2. Let $G$ be a $K_{1,3}$-free split graph with a split partition $(S, J)$. Let $a, b \in J$ such that $N_{G}(a) \cap N_{G}(b) \neq \emptyset$. Then for any two vertices $x, y \in J-\{a, b\}, N_{G}(x) \cap N_{G}(y)=\emptyset$.

Lemma 3.3. Let $G$ be a 2-connected $K_{1,3}$-free split graph with a split partition ( $S, J$ ). Then $G$ has a $J$-cover if and only if $G \neq G_{6}$, depicted in Fig. 1.

Proof. By Lemma 2.5, $G$ has a pseudo $J$-cover $\mathcal{Q}=\left\{P_{1}, P_{2}, \ldots, P_{h_{1}}, C_{1}, C_{2}, \ldots, C_{h_{2}}\right\}$. Let $S_{2}=S-V(\mathcal{Q})$. By Lemma 3.2, $h_{2} \leq 1$. If $h_{2}=0$, then $\mathcal{Q}$ is a $J$-cover of $G$. Next we assume that $h_{2}=1$.

Let $C_{1}=a_{1} b_{1} a_{2} b_{2} \cdots a_{k} b_{k} a_{1}$, where $a_{1}, \cdots, a_{k} \in J$ and $b_{1}, \cdots, b_{k} \in S$. By Lemma $3.2,2 \leq k \leq 3$. If either $S_{2} \neq \emptyset$ or $h_{1} \geq 1$, we choose $x \in S_{2} \cup \operatorname{End}(\mathcal{Q})$. Since $G\left[\left\{b_{1}, a_{1}, a_{2}, x\right\}\right] \neq K_{1,3}$, we have $x a_{1} \in E(G)$ or $x a_{2} \in E(G)$. Without loss of generality, we assume that $x a_{1} \in E(G)$. Thus $\mathcal{Q}-\left\{a_{1} b_{1}\right\}+\left\{x a_{1}\right\}$ is a $J$-cover of $G$. So we assume that $S_{2}=\emptyset$ and $h_{1}=0$. Then, $C_{1}$ is a spanning ( $S, J$ )-alternating cycle of $G$ and $|S| \in\{2,3\}$.

Notice that if $(S, J)$ is a split partition of a split graph $G$, then $S$ is a maximum clique of $G$. If $|S|=2$, then $G=K_{4}-\{e\}$, where $e \in E\left(K_{4}\right)$. By the definition of a split graph, $S=K_{3}$ and $J=K_{1}$, a contradiction. So $|S|=3$. Since $G$ is $K_{1,3}$-free, the degree of each vertex in $J$ is 2 . Thus $G=G_{6}$.

Corollary 3.4. Every 2 -connected $K_{1,3}-$ free split graph is fully cycle extendable.
Proof. Corollary 3.4 follows directly from Lemma 2.1, Theorem 2.6, and Lemma 3.3.
Lemma 3.5. Let $G$ be a 2 -connected $K_{1,3}$-free graph with a split partition $(S, J)$. If $\delta(G) \geq 3$ and $|V(G)| \geq 9$, then $G$ has a J-cover such that the length of each $(S, J)$-alternating path is 2 .

Proof. By Lemma 3.3, we may choose a $J$-cover $\mathcal{P}=\left\{P_{1}, P_{2}, \cdots, P_{h}\right\}$ so that $h$ is maximized. Let $S_{1}=\cup_{i=1}^{h} V\left(P_{i}\right) \cap S$ and $S_{2}=S-S_{1}$. Assume that the length of $P_{i}$ is $t_{i}$, and $t_{1} \geq t_{2} \geq \cdots \geq t_{h}$. By Lemma 3.2, $t_{2}=\cdots=t_{h}=2$, and $2 \leq t_{1} \leq$ 6. If $t_{1}=2$, then this lemma is true. We then assume that $t_{1} \in\{4,6\}$ and let $P_{1}=a_{1} b_{1} a_{2} b_{2} \cdots b_{s} a_{s+1}$, where $s \in\{2,3\}$, $a_{1}, \cdots, a_{s+1} \in S$ and $b_{1}, \cdots, b_{s} \in J$. Then $S_{2}=\emptyset$. Otherwise, pick a vertex $w \in S_{2}$. Since $G\left[\left\{a_{2}, b_{1}, b_{2}, w\right\}\right] \neq K_{1,3}$, we have $w b_{1} \in E(G)$ or $w b_{2} \in E(G)$. Without loss of generality, we assume $w b_{1} \in E(G)$. Then $\left\{a_{1} b_{1} w, P_{1}-\left\{a_{1}, b_{1}\right\}, P_{2}, \cdots, P_{h}\right\}$ is a $J$-cover, contrary to the choice of $\mathcal{P}$.

Assume first that $t_{1}=6$. Then $s=3$. As $|V(G)| \geq 9$, we have $h \geq 2$. As $t_{2}=2$, we set $P_{2}=x y z$. Consider $G\left[\left\{a_{3}, b_{2}, b_{3}, x\right\}\right]$. By Lemma 3.2, $x b_{3} \notin E(G)$. Thus $x b_{2} \in E(G)$. By Lemma 3.2, $a_{4} y \notin E(G)$. Since $G\left[\left\{x, a_{4}, y, b_{2}\right\}\right] \neq K_{1,3}$, we have $b_{2} a_{4} \in E(G)$. Similarly, $a_{1} b_{2} \in E(G)$. By Lemma 3.2, $N_{G}\left(b_{1}\right)=\left\{a_{1}, a_{2}\right\}$, contrary to $\delta(G) \geq 3$.

Assume then that $t_{1}=4$ and $s=2$. As $|V(G)| \geq 9, h \geq 3$. Let $P_{i}=x_{i} y_{i} z_{i}(i=2, \cdots, h)$. Since $G\left[\left\{a_{2}, b_{1}, b_{2}, x_{2}\right\}\right] \neq K_{1,3}$, without loss of generality, we assume that $b_{2} x_{2} \in E(G)$. By Lemma 3.2, for any $i \in\{3, \cdots, h\}, b_{2} x_{i}, b_{2} z_{i} \in E(G)$. As $G$ is $K_{1,3}$-free and $\delta(G) \geq 3$, by Lemma 3.2, $b_{1} a_{3} \in E(G)$. Thus $N_{G}\left(y_{2}\right)=\left\{x_{2}, z_{2}\right\}$, a contradiction.

Theorem 3.6. Let $G$ be a 3 -connected $K_{1,3}-$ free split graph. Then $G$ is Hamilton-connected.
Proof. By Theorem 3.1, we assume that $|V(G)| \geq 9$. Thus Theorem 3.6 follows directly from Lemma 2.3 and Lemma 3.5.

## 4. $K_{1,4}$-free split graphs

By the structure property of $K_{1,4}$-free graphs, we have the following lemma.
Lemma 4.1. Let $G$ be a $K_{1,4}$-free split graph with a split partition $(S, J)$. Let $a, b, c \in J$ such that $N_{G}(a) \cap N_{G}(b) \cap N_{G}(c) \neq \emptyset$. Then for any three vertices $x, y, z \in J-\{a, b, c\}, N_{G}(x) \cap N_{G}(y) \cap N_{G}(z)=\emptyset$.

Lemma 4.2. Let $G$ be a 3 -connected $K_{1,4}$-free split graph with a split partition ( $S, J$ ). Then $G$ has either a J-cover or a spanning (S, J)-alternating cycle.

Proof. By Lemma 2.5, $G$ has a pseudo $J$-cover. Let $\mathcal{Q}=\left\{P_{1}, \ldots, P_{h_{1}}, C_{1}, \ldots, C_{h_{2}}\right\}$ be a pseudo $J$-cover such that
(i) $h_{2}$ is minimized;
(ii) subject to (i), $h_{1}$ is minimized.

We assume that $h_{2} \geq 1$. Let $S_{1}=V(\mathcal{Q}) \cap S$ and $S_{2}=S-S_{1}$. Let $C_{1}=a_{1} b_{1} a_{2} b_{2} \cdots a_{k} b_{k} a_{1}$, where $a_{1}, \cdots, a_{k} \in S$ and $b_{1}, \cdots, b_{k} \in J$. By the choice of $\mathcal{Q}$, we have

Claim 1. For any $x \in J \cap V\left(C_{i}\right), N_{G}(x) \cap\left(S_{2} \cup \operatorname{End}(\mathcal{Q})\right)=\emptyset$. Thus $N_{G}(x) \subseteq S_{1}-\operatorname{End}(\mathcal{Q})$.
Claim 2. $S_{2}=\emptyset$.
Assume that $w \in S_{2}$. Consider $b_{1}$. Since $\delta(G) \geq 3$, there is a vertex $y \in S_{1}-\left\{a_{1}, a_{2}\right\}$ such that $y b_{1} \in E(G)$. As $y \notin \operatorname{End}(\mathcal{Q})$, we assume that $N_{\mathcal{Q}}(y)=\left\{v_{1}, v_{2}\right\}$. As $G\left[\left\{y, b_{1}, v_{1}, v_{2}, w\right\}\right] \neq K_{1,4}$ and $b_{1} w \notin E(G)$, we have $\left\{v_{1} w, v_{2} w\right\} \cap E(G) \neq \emptyset$. Without loss of generality, we assume that $v_{2} w \in E(G)$. By Claim $1, y \in P_{i_{0}}$. Thus $\left(P_{i_{0}} \cup C_{1}\right)-\left\{a_{1} b_{1}, y v_{2}\right\}+\left\{b_{1} y, v_{2} w\right\}$ are two alternating paths, contradicting the hypothesis that $h_{2}$ is smallest. Claim 2 holds.

Claim 3. $N_{G}\left(b_{i}\right) \subseteq\left\{a_{1}, \cdots, a_{k}\right\}$. Therefore, $h_{2}=1$.
Assume that $x \in N_{G}\left(b_{1}\right)-\left\{a_{1}, \cdots, a_{k}\right\}$. By Claims 1 and $2, x \in V\left(C_{i}\right) \cup \operatorname{Inn}(\mathcal{Q})$ for some $i \neq 1$. Let $y_{1} y_{2} x y_{3} y_{4}$ be a section in $\mathcal{Q}$ that contains $x$. Consider $b_{2}$ and $b_{k}$. As $G$ is $K_{1,4}$-free, $x \notin N_{G}\left(b_{2}\right) \cup N_{G}\left(b_{k}\right)$. As $d_{G}\left(b_{2}\right) \geq 3, N_{G}\left(b_{2}\right) \cap\left(S_{1}-\operatorname{End}(\mathcal{Q})\right) \neq \emptyset$. By Lemma 4.1, $N_{G}\left(b_{2}\right) \cap\left\{y_{1}, y_{4}\right\} \neq \emptyset$ and $N_{G}\left(b_{k}\right) \cap\left\{y_{1}, y_{4}\right\} \neq \emptyset$. Without loss of generality, we assume that $b_{2} y_{4} \in E(G)$. By Claim 1, $y_{4} \notin \operatorname{End}(\mathcal{Q})$. If $b_{2} \neq b_{k}$, then, as $G$ is $K_{1,4}$-free, we have $b_{k} y_{4} \notin E(G)$ and so $b_{k} y_{1} \in E(G)$. By Claim $1, y_{1} \notin \operatorname{End}(\mathcal{Q})$, contrary to Lemma 4.1. So $b_{2}=b_{k}$ and $C_{1}$ is a 4-cycle.

Assume that $y_{1} y_{2} x y_{3} y_{4} y_{5}$ is a section of some $P_{i_{0}}=y \cdots y_{1} y_{2} x y_{3} y_{4} y_{5} \cdots y_{s}$. Then $y y_{3} \notin E(G)$, otherwise, $P_{i_{0}} \cup C_{1}-$ $\left\{a_{1} b_{1}, x y_{3}\right\}+\left\{y y_{3}, x b_{1}\right\}$ is an alternating path, contradicting to the choice of $\mathcal{Q}$ with $h_{2}$ being minimized. Similarly, we have $y y_{5} \notin E(G)$ as $b_{2} y_{4} \in E(G)$. Thus $G\left[\left\{y_{4}, y_{3}, y_{5}, y, b_{2}\right\}\right]=K_{1,4}$, a contradiction. So $y_{1} y_{2} x y_{3} y_{4}$ (probably $y_{1}=y_{4}$ ) is a section of some $C_{j_{0}}$. Thus $h_{1}=0$ (otherwise, let $w$ be an endpoint of $P_{1}$. By Claim $1, G\left[\left\{x, y_{2}, y_{3}, b_{1}, w\right\}\right]=K_{1,4}$, a contradiction.)

If $y_{1} \neq y_{4}$, then $\left|C_{j_{0}}\right| \geq 6$. Let $C_{j_{0}}=y_{1} y_{2} x y_{3} y_{4} y_{5} \cdots y_{s} y_{1}$ (probably $y_{5}=y_{s}$ ). Then $\left\{b_{2}, y_{3}, y_{5}\right\} \subseteq N_{G}\left(y_{4}\right)$. As $h_{2}$ is smallest and $x b_{1}, y_{4} b_{2} \in E(G), N_{G}(w) \cap\left\{a_{1}, a_{2}\right\}=\emptyset$ for $w \in\left\{y_{2}, y_{3}, y_{5}\right\}$. As $G$ is $K_{1,4}$-free, $y_{5} x \notin E(G)$. As $d_{G}\left(y_{5}\right) \geq 3$, by Lemma 4.1, $N_{G}\left(y_{5}\right)=\left\{y_{4}, y_{6}, y_{1}\right\}$. So $y_{5} \neq y_{1}$ and $\left|C_{j_{0}}\right| \geq 8$. Since $G\left[\left\{y_{1}, y_{2}, y_{s}, y_{5}, a_{1}\right\}\right] \neq K_{1,4}$, we have $y_{s} a_{1} \in E(G)$. Thus $C_{1} \cup C_{j_{0}}-\left\{y_{1} y_{s}, y_{4} y_{5}, a_{1} b_{2}\right\}+\left\{y_{4} b_{2}, a_{1} y_{s}, y_{5} y_{1}\right\}$ is an alternating cycle, contrary to the hypothesis that $h_{2}$ is the smallest. So $y_{1}=y_{4}$ and $C_{j_{0}}=y_{1} y_{2} x y_{3} y_{1}$ is a 4-cycle and $b_{2} y_{1} \in E(G)$.

As $h_{2}$ is smallest, $N_{G}\left(y_{2}\right) \cap\left\{a_{1}, a_{2}\right\}=\emptyset$ and $N_{G}\left(y_{3}\right) \cap\left\{a_{1}, a_{2}\right\}=\emptyset$. Consider $y_{1}$. Using the above discussion, there is a 4-cycle $C_{j_{1}}=z_{1} z_{2} z_{3} z_{4} z_{1}$ with $z_{1}, z_{3} \in S, z_{2}, z_{4} \in J$ such that $y_{2} z_{1}, y_{3} z_{3} \in E(G)$. As $h_{2}$ is smallest, $N_{G}\left(z_{2}\right) \cap\left\{a_{1}, a_{2}, x, y_{1}\right\}=\emptyset$ and $N_{G}\left(z_{4}\right) \cap\left\{a_{1}, a_{2}, x, y_{1}\right\}=\emptyset$. Consider $z_{4}$. Using the above discussion, there is a 4-cycle $C_{j_{2}}=u_{1} u_{2} u_{3} u_{4} u_{1}$ with $u_{1}, u_{3} \in S$, $u_{2}, u_{4} \in J$ such that $z_{2} u_{1}, z_{4} u_{3} \in E(G)$. Thus $\left\{b_{1}, y_{2}, y_{3}\right\} \subseteq N_{G}(x)$ and $\left\{u_{2}, u_{4}, z_{4}\right\} \subseteq N_{G}\left(u_{3}\right)$, contrary to Lemma 4.1. Claim 3 holds.

As $G$ is $K_{1,4}$-free, by Claims 1 and 3 , we have $h_{1}=0$, and so $V(G)=V\left(C_{1}\right)$.
Corollary 4.3. Every 3 -connected $K_{1,4}-$ free split graph is fully cycle extendable.
Proof. Corollary 4.3 follows directly from Lemma 2.1, Theorem 2.6, and Lemma 4.2.
Theorem 4.4. Let $G$ be a 4 -connected $K_{1,4}$-free split graph. Then $G$ is Hamilton-connected.
Proof. Assume that $(S, J)$ is the split partition of $G$. As $G$ is 4-connected, the number of edges between $J$ and $S$ is at least $4|J|$. As $G$ is $K_{1,4}$-free, the number of edges between $S$ and $J$ is at most $3|S|$. So $4|J| \leq 3|S|$, and hence $|J|<|S|$. By Lemma 4.2, we may assume that $\mathcal{P}=\left\{P_{1}, P_{2}, \cdots, P_{h}\right\}$ is a $J$-cover of $G$. Let $S_{1}=V(\mathcal{P}) \cap S$ and $S_{2}=S-S_{1}$. Let $P_{i}=x_{1}^{i} y_{1}^{i} x_{2}^{i} y_{2}^{i} \cdots x_{k_{i}}^{i} y_{k_{i}}^{i} x_{k_{i}+1}^{i}$, where $y_{1}^{i}, \cdots, y_{k_{i}}^{i} \in J, x_{1}^{i}, \cdots, x_{k_{i}+1}^{i} \in S_{1}$. Assume that $G$ is not Hamilton-connected. Then there exist $u, v \in V(G)$ such that $G$ does not have a hamiltonian $(u, v)$-path. Thus $u v \notin E(\mathcal{P})$. By Lemma 2.2, either $\{u, v\} \cap$ $\operatorname{Inn}(\mathcal{P}) \neq \emptyset$ or $u, v$ are the endpoints of some $P_{i} \in \mathcal{P}$.

Claim 1. If $S_{2}=\emptyset$, then $h \geq 2$.
As $S_{2}=\emptyset$, we have $S=S_{1}$ and so $|S|=|J|+h$. Then $4|J| \leq 3|S|=3(|J|+h)$, i.e., $|J| \leq 3 h$. If $h=1$, then $|J| \leq 3$ and so $n \leq 3+4=7$. Then the subgraph of $G$ induced by the edge set between $S$ and $J$ is isomorphic to $K_{3,4}$, and so $G$ is Hamilton-connected, a contradiction. Claim 1 holds.

Claim 2. $u, v$ cannot be the endpoints of some alternating path $P_{i}$.
Assume that $u, v$ are the endpoints of $P_{1}$ and $u=x_{1}^{1}$ and $v=x_{k_{1}+1}^{1}$. Then $N_{G}\left(y_{i}^{1}\right) \cap\left(\operatorname{End}(\mathcal{P}) \cup S_{2}-\{u, v\}\right)=\emptyset$ for each $i \in\left\{1, \cdots, k_{1}\right\}$ (otherwise, assume that $w y_{i}^{1} \in E(G)$ for some $w \in \operatorname{End}(\mathcal{P}) \cup S_{2}-\{u, v\}$. Then $\mathcal{P}^{\prime}=\mathcal{P}-\left\{x_{i}^{1} y_{i}^{1}\right\}+\left\{w y_{i}^{1}\right\}$ is a $J$-cover of $G$ with $u, v \notin \operatorname{Inn}\left(\mathcal{P}^{\prime}\right)$ and $u, v$ are not endpoints of some path of $\mathcal{P}^{\prime}$. By Lemma 2.2, $G$ has a hamiltonian (u,v)-path.)

Consider $y_{1}^{1}$. Since $d_{G}\left(y_{1}^{1}\right) \geq 4$, there is $z \in \operatorname{Inn}(\mathcal{P})-\left\{x_{2}^{1}\right\}$ such that $z y_{1}^{1} \in E(G)$. If $z \in V\left(P_{1}\right)$, then $h=1$ and $S_{2}=\emptyset$ (otherwise, there are three vertices $y_{1}^{1}, z^{\prime}, z^{\prime \prime} \in N_{P_{1}}(z) \cap J$ such that $G\left[\left\{z, y_{1}^{1}, z^{\prime}, z^{\prime \prime}, w\right\}\right]=K_{1,4}$ for some $w \in S_{2} \cup\left\{x_{1}^{2}\right\}$, a contradiction). If $z \notin V\left(P_{1}\right)$, then $h=2$ and $S_{2}=\emptyset$ (otherwise, assume without loss of generality that $z=x_{i}^{2}$. As $G\left[\left\{y_{1}^{1}, x_{i}^{2}, y_{i-1}^{2}, y_{i}^{2}, w\right\}\right] \neq K_{1,4}$ for any $w \in S_{2} \cup\left\{x_{1}^{3}\right\}$, we have $w y_{i-1}^{2} \in E(G)$ or $w y_{i}^{2} \in E(G)$. We may assume that $w y_{i}^{2} \in E(G)$. Then $\mathcal{P}^{\prime}=\mathcal{P}-\left\{x_{1}^{1} y_{1}^{1}, x_{i}^{2} y_{i}^{2}\right\}+\left\{y_{1}^{1} z, w y_{i}^{2}\right\}$ is a $J$-cover with $v \in \operatorname{End}\left(\mathcal{P}^{\prime}\right)$ and $u \notin V\left(\mathcal{P}^{\prime}\right)$. By Lemma 2.2, $G$ has a hamiltonian $(u, v)$-path, contrary to our assumption that $G$ has no hamiltonian ( $u, v$ )-path). By Claim $1, h \geq 2$. Thus $h=2$ and $z \in V\left(P_{2}\right)$. Assume that $z=x_{i}^{2}$. Similarly, consider $y_{k_{1}}^{1}$, we have there is some $z^{\prime} \in V\left(P_{2}\right)$ such that $y_{k_{1}}^{1} z^{\prime} \in E(G)$.

If $y_{1}^{1} \neq y_{k_{1}}^{1}$, then, by Lemma 4.1, $z^{\prime} \in\left\{x_{i-1}^{2}, x_{i+1}^{2}\right\}$. Without loss of generality, we assume that $z^{\prime}=x_{i+1}^{2}$. Then $x_{1}^{2} y_{i}^{2} \notin$ $E(G)$ (otherwise, $\mathcal{P}^{\prime}=\mathcal{P}-\left\{x_{i}^{2} y_{i}^{2}, x_{1}^{1} y_{1}^{1}\right\}+\left\{x_{1}^{2} y_{i}^{2}, x_{i}^{2} y_{1}^{1}\right\}$ is a $J$-cover of $G$ with $v \in \operatorname{End}\left(\mathcal{P}^{\prime}\right)$ and $u \in S_{2}\left(\mathcal{P}^{\prime}\right)$. By Lemma 2.2, $G$ has a hamiltonian ( $u, v$ )-path, a contradiction.) Similarly, $x_{1}^{2} y_{i+1}^{2} \notin E(G)$. Therefore, $G\left[\left\{x_{i+1}^{2}, y_{i}^{2}, y_{i+1}^{2}, y_{k_{1}}^{1}, x_{1}^{2}\right\}\right]=K_{1,4}$, a contradiction. So $y_{1}^{1}=y_{k_{1}}^{1}$, and the length of $P_{1}$ is 2 .

As $d_{G}\left(y_{1}^{1}\right) \geq 4$, there is a vertex $x_{j}^{2} \in V\left(P_{2}\right)$ such that $y_{1}^{1} x_{j}^{2} \in E(G)$. We assume that $j>i$. By Lemma 2.2, $\left\{x_{1}^{2} y_{i}^{2}, x_{1}^{2} y_{j}^{2}, x_{k_{2}+1}^{2} y_{i-1}^{2}, x_{k_{2}+1}^{2} y_{j-1}^{2}\right\} \cap E(G)=\emptyset$. As $y_{1}^{1} x_{1}^{2} \notin E(G)$ and $G\left[\left\{x_{j}^{2}, y_{1}^{1}, y_{j}^{2}, y_{j-1}^{2}, x_{1}^{2}\right\}\right] \neq K_{1,4}$, we have $x_{1}^{2} y_{j-1}^{2} \in E(G)$. Similarly, $y_{i}^{2} x_{k_{2}+1}^{2} \in E(G)$. Let $\mathcal{P}^{\prime}=\mathcal{P}-\left\{x_{1}^{1} y_{1}^{1}, x_{i}^{2} y_{i}^{2}, x_{j}^{2} y_{j-1}^{2}\right\}+\left\{y_{1}^{1} x_{i}^{2}, x_{1}^{2} y_{j-1}^{2}, y_{j}^{2} x_{k_{2}+1}^{2}\right\}$. Then $\mathcal{P}^{\prime}$ is a $J$-cover with $u \notin V\left(\mathcal{P}^{\prime}\right)$ and $v \in \operatorname{End}\left(\mathcal{P}^{\prime}\right)$. By Lemma 2.2, $G$ has a hamiltonian $(u, v)$-path, contrary to our assumption. This completes the proof of Claim 2.

By Claim 2, $\{u, v\} \cap \operatorname{Inn}(\mathcal{P}) \neq \emptyset$. Now we may assume that $\mathcal{P}=\left\{P_{1}, P_{2}, \ldots, P_{h}\right\}$ is a $J$-cover such that
(i) $|\{u, v\} \cap \operatorname{Inn}(\mathcal{P})|>1$ is minimized, and
(ii) subject to (i), $h$ is maximized.

Assume that $u=x_{i_{0}}^{1}$, where $1<i_{0}<k_{1}+1$. Thus we have the following.
Claim 3. (i) For any $w \in J, N_{G}(w) \cap S_{2}=\emptyset$.
(ii) If there is $z \in S_{1}$ such that $\left|N_{G}(z) \cap J\right|=3$, then $S_{2}=\emptyset$ and $h \geq 2$.

Claim 4. If $v \neq x_{1}^{1}$, then $N_{G}\left(y_{i_{0}}^{1}\right) \subseteq\left\{v, x_{i_{0}}^{1}, x_{i_{0}+1}^{1}, \cdots, x_{k_{1}+1}^{1}\right\}$; if $v \neq x_{k_{1}+1}^{1}$, then $N_{G}\left(y_{i_{0}-1}^{1}\right) \subseteq\left\{v, x_{1}^{1}, x_{2}^{1}, \ldots, x_{i_{0}}^{1}\right\}$.
By symmetry, we only prove $N_{G}\left(y_{i_{0}}^{1}\right) \subseteq\left\{v, x_{i_{0}}^{1}, x_{i_{0}+1}^{1}, \cdots, x_{k_{1}+1}^{1}\right\}$ if $v \neq x_{1}^{1}$. Assume that $z \in N_{G}\left(y_{i_{0}}^{1}\right)-\left\{v, x_{i_{0}}^{1}, x_{i_{0}+1}^{1}, \cdots\right.$, $\left.x_{k_{1}+1}^{1}\right\}$. By the choice of $\mathcal{P}, x_{1}^{1} y_{i_{0}}^{1} \notin E(G)$. By Claim $3(\mathrm{i}), z \notin S_{2}$. Furthermore, $z \notin \operatorname{End}(\mathcal{P})-\{v\}$ (otherwise, $\mathcal{P}^{\prime}=\mathcal{P}-\left\{x_{i_{0}}^{1} y_{i_{0}}^{1}\right\}+$ $\left\{z y_{i_{0}}^{1}\right\}$ is a $J$-cover with $\left|\{u, v\} \cap \operatorname{Inn}\left(\mathcal{P}^{\prime}\right)\right|<|\{u, v\} \cap \operatorname{Inn}(\mathcal{P})|$, contrary to the choice of $\left.\mathcal{P}\right)$. Thus $z \in \operatorname{Inn}(\mathcal{P})-\left\{x_{i_{0}}^{1}, x_{i_{0}+1}^{1}\right\}$. By Claim 3(ii), $S_{2}=\emptyset$ and $h \geq 2$. Without loss of generality, assume that $v \neq x_{1}^{2}$. Thus, $y_{i_{0}}^{1} x_{1}^{2} \notin E(G)$.

Assume that $z=x_{j}^{2} \in V\left(P_{2}\right)$. Consider $G\left[\left\{x_{j}^{2}, x_{1}^{1}, y_{i_{0}}^{1}, y_{j-1}^{2}, y_{j}^{2}\right\}\right]$. We have either $y_{j-1}^{2} x_{1}^{1} \in E(G)$ or $y_{j}^{2} x_{1}^{1} \in E(G)$. Without loss of generality, we assume that $x_{1}^{1} y_{j-1}^{2} \in E(G)$. Then $\mathcal{P}^{\prime}=\mathcal{P}-\left\{x_{i_{0}}^{1} y_{i_{0}}^{1}, x_{j}^{2} y_{j-1}^{2}\right\}+\left\{x_{1}^{1} y_{j-1}^{2}, y_{i_{0}}^{1} x_{j}^{2}\right\}$ is a $J$-cover with $\mid\{u, v\} \cap$ $\operatorname{Inn}\left(\mathcal{P}^{\prime}\right)\left|<|\{u, v\} \cap \operatorname{Inn}(\mathcal{P})|\right.$, contrary to the choice of $\mathcal{P}$. So $N_{G}\left(y_{i_{0}}^{1}\right) \subseteq V\left(P_{1}\right)$ and $z=x_{j_{0}}^{1}$ for some $j_{0} \in\left\{2, \cdots, i_{0}-1\right\}$.

As $G\left[\left\{x_{j_{0}}^{1}, y_{j_{0}-1}^{1}, y_{j_{0}}^{1}, y_{i_{0}}^{1}, x_{1}^{2}\right\} \neq K_{1,4}\right.$, we have either $y_{j_{0}-1}^{1} x_{1}^{2} \in E(G)$ or $y_{j_{0}}^{1} x_{1}^{2} \in E(G)$. If $y_{j_{0}-1}^{1} x_{1}^{2} \in E(G)$, we set $\mathcal{P}^{\prime}=$ $\mathcal{P}-\left\{y_{j_{0}-1}^{1} x_{j_{0}}^{1}, x_{i_{0}}^{1} y_{i_{0}}^{1}\right\}+\left\{x_{1}^{2} y_{j_{0}-1}^{1}, x_{j_{0}}^{1} y_{i_{0}}^{1}\right\}$; if $y_{j_{0}}^{1} x_{1}^{2} \in E(G)$, we set $\mathcal{P}^{\prime}=\mathcal{P}-\left\{x_{j_{0}}^{1} y_{j_{0}}^{1}, x_{i_{0}}^{1} y_{i_{0}}^{1}\right\}+\left\{x_{1}^{2} y_{j_{0}}^{1}, x_{j_{0}}^{1} y_{i_{0}}^{1}\right\}$. Then $\mathcal{P}^{\prime}$ is a $J$-cover with $\left|\{u, v\} \cap \operatorname{Inn}\left(\mathcal{P}^{\prime}\right)\right|<|\{u, v\} \cap \operatorname{Inn}(\mathcal{P})|$, contrary to the choice of $\mathcal{P}$. Claim 4 holds.

Claim 5. $v \in S_{1}$.
Assume that $v \notin S_{1}$. Then $v \in J \cup S_{2}$. By Claims 3 and $4, N_{G}\left(y_{i_{0}}^{1}\right) \subseteq\left\{x_{i_{0}}^{1}, x_{i_{0}+1}^{1}, \cdots, x_{k_{1}+1}^{1}\right\}$ and $N_{G}\left(y_{i_{0}-1}^{1}\right) \subseteq$ $\left\{x_{1}^{1}, x_{2}^{1}, \cdots, x_{i_{0}}^{1}\right\}$. As $\delta(G) \geq 4$, there exist $z_{1} \in\left\{x_{i_{0}+2}^{1}, x_{i_{0}+3}^{1}, \cdots, x_{k_{1}}^{1}\right\}$ and $z_{2} \in\left\{x_{2}^{1}, x_{3}^{1}, \cdots, x_{i_{0}-2}^{1}\right\}$ such that $z_{1} y_{i_{0}}^{1}, z_{2} y_{i_{0}-1}^{1} \in$ $E(G)$. This contradicts Lemma 4.1. So Claim 5 holds.

Claim 6. $v \in \operatorname{Inn}(\mathcal{P})$.
Assume that $v \notin \operatorname{Inn}(\mathcal{P})$. Then $v \in \operatorname{End}(\mathcal{P})$. Without loss of generality, we assume that $v \neq x_{1}^{1}$. By Claim $4, N_{G}\left(y_{i_{0}}^{1}\right) \subseteq$ $\left\{v, x_{i_{0}}^{1}, x_{i_{0}+1}^{1}, \cdots, x_{k_{1}+1}^{1}\right\}$.

Claim 6.1. $N_{G}\left(y_{i_{0}}^{1}\right)=\left\{v, x_{i_{0}}^{1}, x_{i_{0}+1}^{1}, x_{k_{1}+1}^{1}\right\}$.

Otherwise, there is a vertex $x_{j}^{1} \in\left\{x_{i_{0}+2}^{1}, \cdots, x_{k_{1}}^{1}\right\}$ such that $y_{i_{0}}^{1} x_{j}^{1} \in E(G)$. By Claim 3(ii), $S_{2}=\emptyset$ and $h \geq 2$. By symmetry, we assume that $v \neq x_{1}^{t}$, where $t \in\{1,2 \cdots, h\}$. If $x_{1}^{t} y_{i_{0}-1}^{1} \in E(G)$, we let $\mathcal{P}^{\prime}=\mathcal{P}-\left\{x_{i_{0}}^{1} y_{i_{0}-1}^{1}\right\}+\left\{x_{1}^{t} y_{i_{0}-1}^{1}\right\}$. Then $\mathcal{P}^{\prime}$ is a $J$-cover with $\left|\{u, v\} \cap \operatorname{Inn}\left(\mathcal{P}^{\prime}\right)\right|<|\{u, v\} \cap \operatorname{Inn}(\mathcal{P})|$, contrary to the choice of $\mathcal{P}$. So $x_{1}^{t} y_{i_{0}-1}^{1} \in E(G)$. Similarly, $x_{1}^{t} y_{i_{0}}^{1}, x_{1}^{t} y_{j-1}^{1}, x_{1}^{1} y_{i_{0}}^{1}, x_{1}^{1} y_{j-1}^{1} \notin E(G)$. As $G\left[\left\{x_{j}^{1}, y_{i_{0}}^{1}, y_{j-1}^{1}, y_{j}^{1}, x_{1}^{t}\right\}\right] \neq K_{1,4}$, we have $x_{1}^{t} y_{j}^{1} \in E(G)$ for each $t \in\{1, \cdots, h\}$.

We first claim that $v=x_{k_{1}+1}^{1}$. Otherwise, we assume that $v=x_{k_{t}+1}^{t}$ for some $t \neq 1$. By Claim $4, N_{G}\left(y_{i_{0}-1}^{1}\right) \subseteq$ $\left\{x_{k_{t}+1}^{t}, x_{1}^{1}, x_{2}^{1}, \cdots, x_{i_{0}}^{1}\right\}$. By Lemma 4.1, $N_{G}\left(y_{i_{0}-1}^{1}\right)=\left\{x_{1}^{1}, x_{i_{0}-1}^{1}, x_{i_{0}}^{1}, x_{k_{t}+1}^{t}\right\}$. Consider $\mathcal{P}^{\prime}=\mathcal{P}-\left\{y_{i_{0}-1}^{1} x_{i_{0}}^{1}\right\}+\left\{y_{i_{0}-1}^{1} x_{k_{t}+1}^{t}\right\}$. Then $\mathcal{P}^{\prime}$ is a $J$-cover with $\left|\{u, v\} \cap \operatorname{Inn}\left(\mathcal{P}^{\prime}\right)\right|=|\{u, v\} \cap \operatorname{Inn}(\mathcal{P})|=1, u=x_{i_{0}}^{1} \in \operatorname{End}\left(\mathcal{P}^{\prime}\right)$ and $v \in \operatorname{Inn}\left(\mathcal{P}^{\prime}\right)$. Consider $y_{k_{t}}^{t}$ in $\mathcal{P}^{\prime}$. By Claim 4 and Lemma 4.1, we have $N_{G}\left(y_{k_{t}}^{t}\right)=\left\{x_{k_{t}}^{t}, x_{k_{t}+1}^{t}, x_{1}^{t}, x_{i_{0}}^{1}\right\}$. Let $\mathcal{P}^{\prime \prime}=\mathcal{P}-\left\{y_{i_{0}-1}^{1} x_{i_{0}}^{1}, x_{i_{0}}^{1} y_{i_{0}}^{1}, y_{k_{t}}^{t} x_{k_{t}+1}^{t}\right\}+\left\{x_{i_{0}}^{1} y_{k_{t}}^{t}, y_{i_{0}-1}^{1} x_{k_{t}+1}^{t}, y_{i_{0}}^{1} x_{1}^{t}\right\}$. Then $\mathcal{P}^{\prime \prime}$ is a $J$-cover with $\left|\{u, v\} \cap \operatorname{Inn}\left(\mathcal{P}^{\prime \prime}\right)\right|<|\{u, v\} \cap \operatorname{Inn}(\mathcal{P})|=1$, contrary to the choice of $\mathcal{P}$. So $v=x_{k_{1}+1}^{1}$.

We next claim that $N_{G}\left(y_{i_{0}-1}^{1}\right)=\left\{x_{1}^{1}, x_{i_{0}-1}^{1}, x_{i_{0}}^{1}, x_{k_{1}+1}^{1}\right\}$. By Lemma 2.2 and Claim 2, $N_{G}\left(y_{i_{0}-1}^{1}\right) \cap\left(E n d(\mathcal{P})-\left\{x_{1}^{1}, v\right\}\right)=$ Ø. By Lemma 4.1, we have $N_{G}\left(y_{i_{0}-1}^{1}\right) \subseteq\left\{x_{1}^{1}, x_{i_{0}-1}^{1}, x_{i_{0}}^{1}, x_{i_{0}+1}^{1}, x_{j-1}^{1}, x_{j+1}^{1}, x_{k_{1}+1}^{1}\right\}$. If $y_{i_{0}-1}^{1} x_{i_{0}+1}^{1} \in E(G)$, let $\mathcal{P}^{\prime}=\mathcal{P}-$ $\left\{x_{i_{0}}^{1} y_{i_{0}-1}^{1}, x_{i_{0}+1}^{1} y_{i_{0}}^{1}, x_{j}^{1} y_{j}^{1}\right\}+\left\{y_{i_{0}}^{1} x_{j}^{1}, y_{i_{0}-1}^{1} x_{i_{0}+1}^{1}, x_{1}^{1} y_{j}^{1}\right\}$; if $y_{i_{0}-1}^{1} x_{j-1}^{1} \in E(G)$, then $y_{j-2}^{1} x_{1}^{2} \in E(G)$ as $G\left[\left\{x_{j-1}^{1}, y_{i_{0}-1}^{1}, y_{j-1}^{1}, y_{j-2}^{1}\right.\right.$, $\left.\left.x_{1}^{2}\right\}\right] \neq K_{1,4}$, let $\mathcal{P}^{\prime}=\mathcal{P}-\left\{x_{i_{0}}^{1} y_{i_{0}-1}^{1}, x_{j-1}^{1} y_{j-2}^{1}\right\}+\left\{y_{i_{0}-1}^{1} x_{j-1}^{1}, y_{j-2}^{1} x_{1}^{2}\right\}$; if $y_{i_{0}-1}^{1} x_{j+1}^{1} \in E(G)$, let $\mathcal{P}^{\prime}=\mathcal{P}-\left\{x_{i_{0}}^{1} y_{i_{0}-1}^{1}, x_{j+1}^{1} y_{j}^{1}\right\}+$ $\left\{x_{1}^{2} y_{j}^{1}, x_{j+1}^{1} y_{i_{0}-1}^{1}\right\}$. Then $u, v \in \operatorname{End}\left(\mathcal{P}^{\prime}\right)$. By Claim 2 and Lemma 2.2, $G$ has a hamiltonian $(u, v)$-path, a contradiction. Therefore, $N_{G}\left(y_{i_{0}-1}^{1}\right)=\left\{x_{1}^{1}, x_{i_{0}-1}^{1}, x_{i_{0}}^{1}, x_{k_{1}+1}^{1}\right\}$.

Notice that if $y_{i_{0}}^{1} x_{k_{1}+1}^{1} \in E(G)$, then $x_{1}^{2} y_{k_{1}}^{1} \in E(G)$ since $G\left[\left\{x_{k_{1}+1}^{1}, y_{k_{1}}^{1}, y_{i_{0}-1}^{1}, y_{i_{0}}^{1}, x_{1}^{2}\right\}\right] \neq K_{1,4}$. Thus $\mathcal{P}^{\prime}=\mathcal{P}-\left\{y_{i_{0}-1}^{1} x_{i_{0}}^{1}\right.$, $\left.y_{k_{1}}^{1} x_{k_{1}+1}^{1}\right\}+\left\{y_{k_{1}}^{1} x_{1}^{2}, y_{i_{0}-1}^{1} x_{k_{1}+1}^{1}\right\}$ is a $J$-cover with $u, v \in \operatorname{End}\left(\mathcal{P}^{\prime}\right)$. Then $G$ has a hamiltonian ( $u, v$ )-path, a contradiction. It implies that $N_{G}\left(y_{i_{0}}^{1}\right) \subseteq\left\{x_{i_{0}}^{1}, x_{i_{0}+1}^{1}, \cdots, x_{k_{1}}^{1}\right\}$. As $\delta(G) \geq 4$, by Lemma 4.1, $y_{j_{0}}^{1} x_{j+1}^{1} \in E(G)$. Thus $\mathcal{P}^{\prime}=\mathcal{P}-\left\{x_{i_{0}}^{1} y_{i_{0}}^{1}, y_{j}^{1} x_{j+1}^{1}\right\}+$ $\left\{y_{i_{0}}^{1} x_{j+1}^{1}, y_{j}^{1} x_{1}^{2}\right\}$ is a $J$-cover of $G$ with $u, v \in \operatorname{End}\left(\mathcal{P}^{\prime}\right)$. So $G$ has a hamiltonian $(u, v)$-path, a contradiction. Hence, $N_{G}\left(y_{i_{0}}^{1}\right)=$ $\left\{v, x_{i_{0}}^{1}, x_{i_{0}+1}^{1}, x_{k_{1}+1}^{1}\right\}$. Claim 6.1 holds.

As $d_{G}\left(y_{i_{0}}^{1}\right) \geq 4$ and $v \in \operatorname{End}(\mathcal{P})-\left\{x_{1}^{1}\right\}$, we have $h \geq 2$. Without loss of generality, we assume that $v=x_{1}^{2}$. Thus $v \neq x_{k_{1}+1}^{1}$. By applying the discussion in Claim 6.1 on $y_{i_{0}-1}^{1}$, we have $N_{G}\left(y_{i_{0}-1}^{1}\right)=\left\{x_{1}^{1}, x_{i_{0}}^{1}, x_{i_{0}-1}^{1}\right.$, $\left.x_{1}^{2}\right\}$. Since $G\left[\left\{x_{1}^{2}, y_{i_{0}-1}^{1}, y_{i_{0}}^{1}, y_{1}^{2}, x_{k_{2}+1}^{2}\right\}\right] \neq K_{1,4}$, we have $y_{1}^{2} x_{k_{2}+1}^{2} \in E(G)$.

If $h \geq 3$, then $y_{1}^{2} x_{1}^{3} \in E(G)$ since $G\left[\left\{x_{1}^{2}, y_{i_{0}-1}^{1}, y_{i_{0}}^{1}, y_{1}^{2}, x_{1}^{3}\right\}\right] \neq K_{1,4}$. Consider $\mathcal{P}^{\prime}=\mathcal{P}-\left\{y_{i_{0}-1}^{1} x_{i_{0}}^{1}\right\}+\left\{y_{i_{0}-1}^{1} x_{1}^{2}\right\}$. Then $\mathcal{P}^{\prime}$ is a $J$-cover of $G$ with $x_{1}^{2} \in \operatorname{Inn}\left(\mathcal{P}^{\prime}\right)$ and $x_{i}^{1} \in \operatorname{End}\left(\mathcal{P}^{\prime}\right)$. By applying the discussion in Claim 6.1 on $y_{1}^{2}$ in $\mathcal{P}^{\prime}$, we have $N_{G}\left(y_{1}^{2}\right)=$ $\left\{x_{1}^{2}, x_{2}^{2}, x_{k_{2}+1}^{2}, x_{i_{0}}^{1}\right\}$. So $x_{i_{0}}^{1} y_{1}^{2} \in E(G)$. Thus $\mathcal{P}^{\prime}=\mathcal{P}-\left\{x_{i_{0}}^{1} y_{i_{0}}^{1}, x_{1}^{2} y_{1}^{2}\right\}+\left\{x_{1}^{2} y_{i_{0}}^{1}, y_{1}^{2} x_{1}^{3}\right\}$ is a $J$-cover of $G$ with $u, v \in \operatorname{End}\left(\mathcal{P}^{\prime}\right)$. So $G$ has a hamiltonian $(u, v)$-path, a contradiction. So $h=2$.

Consider $y_{1}^{1}$. By Lemma 4.1, $N_{G}\left(y_{1}^{1}\right) \subseteq\left\{x_{1}^{1}, x_{2}^{1}, x_{i_{0}-1}^{1}, x_{i_{0}+1}^{1}, x_{k_{1}+1}^{1}, x_{2}^{2}, x_{k_{2}+1}^{2}\right\}$. If $y_{1}^{1} x_{k_{1}+1}^{1} \in E(G)$, let $\mathcal{P}^{\prime}=\mathcal{P}-\left\{y_{i_{0}-1}^{1} x_{i_{0}}^{1}\right.$, $\left.x_{1}^{1} y_{1}^{1}\right\}+\left\{x_{k_{1}+1}^{1} y_{1}^{1}, y_{i_{0}-1}^{1} x_{1}^{1}\right\}$; if $y_{1}^{1} x_{i_{0}+1}^{1} \in E(G)$, let $\mathcal{P}^{\prime}=\mathcal{P}-\left\{x_{i_{0}+1}^{1} y_{i_{0}}^{1}, x_{1}^{1} y_{1}^{1}, y_{i_{0}-1}^{1} x_{i_{0}}^{1}\right\}+\left\{y_{i_{0}}^{1} x_{k_{1}+1}^{1}, x_{i_{0}+1}^{1} y_{1}^{1}, y_{i_{0}-1}^{1} x_{1}^{1}\right\}$; if $y_{1}^{1} x_{k_{2}+1}^{2} \in E(G)$, let $\mathcal{P}^{\prime}=\mathcal{P}-\left\{x_{1}^{1} y_{1}^{1}, y_{i_{0}-1}^{1} x_{i_{0}}^{1}\right\}+\left\{y_{1}^{1} x_{k_{2}+1}^{2}, y_{i_{0}-1}^{1} x_{1}^{1}\right\}$; if $y_{1}^{1} x_{2}^{2} \in E(G)$, let $\mathcal{P}^{\prime}=\mathcal{P}-\left\{y_{1}^{2} x_{2}^{2}, x_{1}^{1} y_{1}^{1}, y_{i_{0}-1}^{1} x_{i_{0}}^{1}\right\}+$ $\left\{y_{1}^{2} x_{k_{2}+1}^{2}, x_{2}^{2} y_{1}^{1}, y_{i_{0}-1}^{1} x_{1}^{1}\right\}$. Then $\mathcal{P}^{\prime}$ is a $J$-cover of $G$ with $u, v \in \operatorname{End}\left(\mathcal{P}^{\prime}\right)$. Thus $G$ has a hamiltonian ( $u, v$ )-path, a contradiction. Therefore, $N_{G}\left(y_{1}^{1}\right)=\left\{x_{1}^{1}, x_{2}^{1}, x_{i_{0}-1}^{1}\right\}$, contrary to the hypothesis that $\delta(G) \geq 4$. This completes the proof of Claim 6.

By Claim 6, $v \in \operatorname{Inn}(\mathcal{P})$. Consider $y_{i_{0}}^{1}$. Then $N_{G}\left(y_{i_{0}}^{1}\right) \cap\left(E n d(\mathcal{P})-\left\{x_{k_{1}+1}^{1}\right\}\right)=\emptyset$. As $d_{G}\left(y_{i_{0}}^{1}\right) \geq 4$, there is $z \in \operatorname{Inn}(\mathcal{P})-$ $\left\{x_{i_{0}}^{1}, x_{i_{0}+1}^{1}\right\}$ such that $z y_{i_{0}}^{1} \in E(G)$. By Claim 3(ii), $S_{2}=\emptyset$ and $h \geq 2$. If $z \notin V\left(P_{1}\right)$, we assume that $z=x_{j}^{2} \in V\left(P_{2}\right)$, where $1<j<k_{2}+1$. Since $G\left[\left\{x_{j}^{2}, y_{j-1}^{2}, y_{j}^{2}, y_{i_{0}}^{1}, x_{1}^{1}\right\} \neq K_{1,4}\right.$, we have either $x_{1}^{1} y_{j-1}^{2} \in E(G)$ or $x_{1}^{1} y_{j}^{2} \in E(G)$. Without loss of generality, we assume that $x_{1}^{1} y_{j}^{2} \in E(G)$. Then $\mathcal{P}^{\prime}=\mathcal{P}-\left\{x_{i_{0}}^{1} y_{i_{0}}^{1}, x_{j}^{2} y_{j}^{2}\right\}+\left\{y_{i_{0}}^{1} x_{j}^{2}, x_{1}^{1} y_{j}^{2}\right\}$ is a $J$-cover of $G$ such that $u \in \operatorname{End}\left(\mathcal{P}^{\prime}\right)$ and $v \in \operatorname{Inn}\left(\mathcal{P}^{\prime}\right)$, contrary to the choice of $\mathcal{P}$. So $z \in V\left(P_{1}\right)$. If $z=x_{j}^{1}$, where $1<j<i_{0}$, then either $x_{1}^{2} y_{j}^{1} \in E(G)$ or $x_{1}^{2} y_{j-1}^{1} \in E(G)$ since $G\left[\left\{x_{j}^{1}, y_{j}^{1}, y_{j-1}^{1}, y_{i_{0}}^{1}, x_{1}^{2}\right\}\right] \neq K_{1,4}$. If $x_{1}^{2} v_{j-1}^{1} \in E(G)$, let $\mathcal{P}^{\prime}=\mathcal{P}-\left\{x_{j}^{1} y_{j-1}^{1}, x_{j_{0}}^{1} y_{j_{0}}^{1}\right\}+\left\{x_{1}^{2} y_{j-1}^{1}, x_{j} y_{j_{0}}^{1}\right\}$; if $x_{1}^{2} y_{j}^{1} \in E(G)$, let $\mathcal{P}^{\prime}=\mathcal{P}-\left\{x_{j}^{1} y_{j}^{1}, x_{j_{0}}^{1} y_{j_{0}}^{1}\right\}+\left\{x_{1}^{2} y_{j}^{1}, x_{j} y_{j_{0}}^{1}\right\}$. Then $u \in \operatorname{End}\left(\mathcal{P}^{\prime}\right)$ and $v \in \operatorname{Inn}\left(\mathcal{P}^{\prime}\right)$, contrary to the choice of $\mathcal{P}$. So $N_{G}\left(y_{j_{0}}^{1}\right) \subseteq$ $\left\{x_{i_{0}}^{1}, x_{i_{0}+1}^{1}, \cdots, x_{k_{1}+1}^{1}\right\}$. Similarly, $N_{G}\left(y_{j_{0}-1}^{1}\right) \subseteq\left\{x_{1}^{1}, x_{2}^{1}, \cdots, x_{i_{0}-1}^{1}\right\}$. As $\delta(G) \geq 4$, there exist $z_{1} \in\left\{x_{i_{0}+2}^{1}, x_{i_{0}+3}^{1}, \cdots, x_{k_{1}}^{1}\right\}$ and $z_{2} \in$ $\left\{x_{2}^{1}, x_{3}^{1}, \cdots, x_{i_{0}-2}^{1}\right\}$ such that $z_{1} y_{i_{0}}^{1}, z_{2} y_{i_{0}-1}^{1} \in E(G)$. This contradicts Lemma 4.1. The proof of Theorem 4.4 is done.

## 5. Concluding remarks

In view of Theorem 2.6, we may restate Conjecture 1.4 in the following seemingly stronger version.
Conjecture 5.1. Let $r \geq 2$ be an integer. Every $r$-connected $K_{1, r+1}-$ free split graph is fully cycle extendable.
It is natural to consider the Hamilton-connected version of the conjecture above. We consider the following example. Let $H$ be a copy of the complete bipartite graph $K_{r-1, r}(r \geq 3)$ with the bipartition ( $X, Y$ ), where $X=\left\{x_{1}, x_{2}, \cdots, x_{r-1}\right\}$


Fig. 2. $r$-connected $K_{1, r+1}$-free non-Hamilton-connected graph $G$.
and $Y=\left\{y_{1}, y_{2}, \cdots, y_{r}\right\}$. Let $K$ be a copy of $K_{r+1}$ with $V(K)=\left\{y_{1}, y_{2}, \cdots, y_{r}, w\right\}$. Then $G=H \cup K$ (see Fig. 2) is an $r$ connected $K_{1, r+1}$-free graph, but $G$ is not Hamilton-connected (there is no hamiltonian ( $y_{1}, y_{r}$ )-path). This, together with Theorems 3.6 and 4.4, motivates the following conjecture.

Conjecture 5.2. Let $r \geq 3$ be an integer. Every $r$-connected $K_{1, r}$-free split graph is Hamilton-connected.

## Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

## Data availability

No data was used for the research described in the article.

## References

[1] R.E.L. Aldred, J. Fujisawa, Y. Egawa, K. Ota, A. Saito, The existence of a 2-factor in $K_{1, n}$-free graphs with large connectivity and large edge-connectivity, J. Graph Theory 68 (2011) 77-89.
[2] J.A. Bondy, U.S.R. Murty, Graph Theory, Springer, New York, 2008.
[3] R.E. Burkazd, P.L. Hammer, A note on Hamiltonian split graphs, J. Comb. Theory, Ser. B 28 (2) (1980) 245-248.
[4] G. Dai, Z. Zhang, H. Broersma, X. Zhang, The Hamiltonian properties in $K_{1, r}$-free split graphs, Discrete Math. 345 (2022) 112826.
[5] S. Foldes, P.L. Hammer, Split graphs having Dilworth number two, Can. J. Math. 24 (3) (1977) 666-672.
[6] S. Foldes, P.L. Hammer, Split graphs, in: Proceedings of the 8th 320 South-Eastern Conference on Combinatorics, Graph Theory and Computing, 1977, pp. 311-315.
[7] G.R.T. Hendry, Extending cycles in graphs, Discrete Math. 85 (1990) 59-72.
[8] D. Kratsch, J. Lehel, H. Muller, Toughness, hamiltonicity and split graphs, Discrete Math. 150 (1) (1996) 231-245.
[9] R. Merris, Split graphs, Eur. J. Comb. 24 (2003) 413-430.
[10] P. Renjith, N. Sadagopan, The Hamiltonian cycle in $K_{1, r}$-free split graphs - a dichotomy, Int. J. Found. Comput. Sci. 33 (2022) 1-32.
[11] N.D. Tan, L.X. Hung, On the Burkard-Hammer condition for Hamiltonian split graphs, Discrete Math. 296 (1) (2005) 59-72.
[12] Z.S. Wu, Hamilton connectivity of $K_{1,3}$-free graphs, J. Math. Res. Exposition 9 (1989) 447-451.


[^0]:    * Corresponding author.

    E-mail addresses: liuxia_90@163.com (X. Liu), ssong@wtamu.edu (S. Song), Mingquan.Zhan@millersville.edu (M. Zhan), hjlai@math.wvu.edu (H.-J. Lai).
    https://doi.org/10.1016/j.disc.2023.113402
    0012-365X/C 2023 Elsevier B.V. All rights reserved.

