Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

On hamiltonian properties of $K_{1,r}$ -free split graphs

Xia Liu^a, Sulin Song^{b,*}, Mingquan Zhan^c, Hong-Jian Lai^d

^a Department of Mathematics, Northwest Normal University, Lanzhou, Gansu 730070, PR China

^b Department of Mathematics, West Texas A&M University, Canyon, TX 79016, USA

^c Department of Mathematics, Millersville University of Pennsylvania, Millersville, PA 17551, USA

^d Department of Mathematics, West Virginia University, Morgantown, WV 26506, USA

ARTICLE INFO

Article history: Received 20 December 2022 Received in revised form 17 February 2023 Accepted 25 February 2023 Available online xxxx

Keywords: $K_{1,r}$ -free graphs Hamiltonian cycles Split graphs Fully cycle extendable

ABSTRACT

Let $r \ge 3$ be an integer. A graph *G* is $K_{1,r}$ -**free** if *G* does not have an induced subgraph isomorphic to $K_{1,r}$. A graph *G* is fully cycle extendable if every vertex in *G* lies on a cycle of length 3 and every non-hamiltonian cycle in *G* is extendable. A connected graph *G* is a split graph if the vertex set of *G* can be partitioned into a clique and a stable set. Dai et al. (2022) [4] conjectured that every (r - 1)-connected $K_{1,r}$ -free split graph is hamiltonian, and they proved this conjecture when r = 4 while Renjith and Sadagopan proved the case when r = 3. In this paper, we introduce a special type of alternating paths in the study of hamiltonian properties of split graphs and prove that a split graph *G* is hamiltonian if and only if *G* is fully cycle extendable. Consequently, for $r \in \{3, 4\}$, every *r*-connected $K_{1,r}$ -free split graph is Hamilton-connected and every (r - 1)-connected $K_{1,r}$ -free split graph is fully cycle extendable.

© 2023 Elsevier B.V. All rights reserved.

1. The problem

In this paper, we consider only finite simple graphs and refer to [2] for notation and terminologies not locally defined here. We call a graph *G* **hamiltonian** if it contains a hamiltonian cycle, i.e., a cycle contains all vertices of *G*. Furthermore, a graph *G* of order $n \ge 3$ is **pancyclic** if *G* contains a cycle of each possible length from 3 to n; *G* is **vertex pancyclic** if each vertex is contained on a cycle of each possible length from 3 to n.

Let $r \ge 3$ be an integer. A graph *G* is $K_{1,r}$ -free if *G* does not have an induced subgraph isomorphic to $K_{1,r}$. A connected graph *G* is called a **split graph** if its vertex set V(G) can be partitioned as the disjoint union of *S* and *J* (either of which may be empty) such that *S* is a maximum clique of *G* whereas *J* is a stable set of *G*. Split graphs were introduced by Foldes and Hammer [6] in 1977, and were studied further in [3], [5], [8], [9], [10], [11].

Theorem 1.1 (Renjith and Sadagopan [10]). Let G be a K_{1,3}-free split graph. Then G is hamiltonian if and only if G is 2-connected.

Very recently, Dai et al. [4] proposed conditions for $K_{1,3}$ -free split graphs to be pancyclic and $K_{1,4}$ -free split graphs to be hamiltonian, respectively.

Theorem 1.2 (Dai, Zhang, Broerama and Zhang [4]). Let G be a K_{1,3}-free split graph. Then G is pancyclic if and only if G is 2-connected.

https://doi.org/10.1016/j.disc.2023.113402 0012-365X/© 2023 Elsevier B.V. All rights reserved.

Note

^{*} Corresponding author.

E-mail addresses: liuxia_90@163.com (X. Liu), ssong@wtamu.edu (S. Song), Mingquan.Zhan@millersville.edu (M. Zhan), hjlai@math.wvu.edu (H.-J. Lai).

Theorem 1.3 (Dai, Zhang, Broerama and Zhang [4]). Let G be a $K_{1,4}$ -free split graph. If G is 3-connected, then G is hamiltonian.

The following conjecture is posed in [4].

Conjecture 1.4 (Dai, Zhang, Broerama and Zhang [4]). Let $r \ge 2$ be an integer. Every r-connected $K_{1,r+1}$ -free split graph is hamiltonian.

Theorems 1.1 and 1.3 indicate that Conjecture 1.4 is valid for $r \in \{2, 3\}$. This motivates this research. In Section 2, we introduce a certain type of alternating paths in split graphs, which will be utilized to study the hamiltonian properties of split graphs. We investigate the fully cycle extendability and Hamilton-connectedness for $K_{1,3}$ -free split graphs in Section 3, and those for $K_{1,4}$ -free split graphs in Section 4. Our results extend Theorems 1.1, 1.2 and 1.3 to vertex pancyclicity and Hamilton-connectedness.

2. Alternating paths

For two graphs G_1 and G_2 , let $G_1 \cup G_2$ be a graph with the vertex set $V(G_1) \cup V(G_2)$ and the edge set $E(G_1) \cup E(G_2)$. We can consider a collection of subgraphs G_1, G_2, \ldots, G_h in G as a subgraph $\bigcup_{i=1}^h G_i$ of G. If S is an edge (or a vertex) subset of G, G[S] is the subgraph induced in G by S. For a subset $A \subseteq V(G)$, we denote G - A = G[V(G) - A]; for a subset $X \subseteq E(G)$ and a subgraph $H \subseteq G$ with $X \cap E(H) = \emptyset$, we denote G - X = G[E(G) - X] and write H + X for $H \cup G[X]$.

Throughout this section, let $r \ge 2$ denote an integer. A path with endpoints u and v is often referred as to a (u, v)-path. Let G be a split graph with $V(G) = S \cup J$, where S is a maximum clique of G, and J is a stable set of G. We shall call such an ordered pair (S, J) a **split partition** of G. Denote s = |S| and j = |J|. Then $G[S] \cong K_s$. Since complete graphs are hamiltonian, we may assume that j > 0. Let $J = \{u_1, u_2, ..., u_j\}$. Then $N_G(u) \subseteq S$ for any $u \in J$. Suppose that $\kappa(G) \ge r$. As j > 0, every vertex $u \in J$ must be adjacent to at least r distinct vertices in S, and so $s \ge r$. By the maximality of $|S|, s \ge r + 1$. We define the **interior** of a path $P = v_1v_2...v_{2t+1}$ to be $P^o = V(P) - \{v_1, v_{2t+1}\}$, and P to be an (S, J)-**alternating path** in G if $v_1 \ne v_{2t+1}$, $\{v_1, v_3, ..., v_{2t+1}\} \subseteq S$ and $\{v_2, v_4, ..., v_{2t}\} \subseteq J$. If we allow $v_1 = v_{2t+1}$ while keeping both $\{v_1, v_3, ..., v_{2t+1}\} \subseteq S$ and $\{v_2, v_4, ..., v_{2t}\} \subseteq J$.

A collection $\mathcal{P} = \{P_1, P_2, \dots, P_h\}$ of (S, J)-alternating paths in *G* is a *J*-cover if both of the following hold:

(A1) for any $\{i, j\} \subseteq \{1, 2, \dots, h\}$, $V(P_i) \cap V(P_j) = \emptyset$, and (A2) $J \subseteq \bigcup_{i=1}^{h} P_i^o$.

For a collection $\mathcal{P} = \{P_1, P_2, \dots, P_h\}$ of (S, J)-alternating paths in G, let $End(\mathcal{P})$ denote the collection of the endpoints of all these alternating paths in \mathcal{P} , and $Inn(\mathcal{P}) = (V(\mathcal{P}) \cap S) - End(\mathcal{P}) = S \cap (\bigcup_{i=1}^{h} P_i^o)$. We also use \mathcal{P} to denote the subgraph $\bigcup_{i=1}^{h} P_i$.

Lemma 2.1. Let *G* be a split graph with a split partition (*S*, *J*). Then, *G* is hamiltonian if and only if *G* has either a *J*-cover or a spanning (*S*, *J*)-alternating cycle.

Proof. Assume that *C* is a hamiltonian cycle of *G*. Then the subgraph C - J consists of nontrivial paths and trivial paths. Let *A* be the set of all degree 2 vertices in C - J, and E' be the collection of edges of all nontrivial paths in C - J. Then (C - A) - E' is either a *J*-cover or a spanning (S, J)-alternating cycle.

Conversely, it suffices to show that *G* is hamiltonian if *G* has a *J*-cover $\{P_1, P_2, \ldots, P_h\}$. Let z'_i, z''_i be the endpoints of each P_i . Since $\bigcup_{i=1}^h \{z'_i, z''_i\} \subseteq S$ is a clique of *G*, $\bigcup_{i=1}^{h-1} \{z''_i z'_{i+1}\} \subseteq E(G)$. Then $P = (\bigcup_{i=1}^h P_i) \cup (\bigcup_{i=1}^{h-1} \{z''_i z'_{i+1}\})$ is a (z'_1, z''_h) -path with $J \subseteq V(P)$ by (A1) and (A2). As $V(G) - P^o$ is a clique of *G*, it follows that $G - P^o$ has a spanning (z''_h, z'_1) -path *P'*. Thus, $P \cup P'$ is a hamiltonian cycle of *G*. \Box

A graph *G* is **Hamilton-connected**, if for every pair of distinct vertices u, v in *G*, there exists a hamiltonian path from u to v.

Lemma 2.2. Let *G* be a split graph with a split partition (S, J) and a *J*-cover \mathcal{P} , and let u, v be any two distinct vertices in $V(G) - Inn(\mathcal{P})$. If u, v are not the endpoints of an (S, J)-alternating path in \mathcal{P} , then *G* has a hamiltonian (u, v)-path.

Proof. Let $S_1 = \bigcup_{P \in \mathcal{P}} V(P) \cap S$, $S_2 = S - S_1$, and let w be a new vertex distinct from V(G). Without loss of generality, we assume first that $u \in J$. If $v \in J$, we assume that $a \in N_G(u) \cap S_1$ and $b \in N_G(v) \cap S_1$ and $a \neq b$. Let $G_1 = G - \{u, v\} + \{aw, bw\}$. Then G_1 is a split graph with a split partition (S, J'), where $J' = J \cup \{w\} - \{u, v\}$, and $\mathcal{P} - \{u, v\} + \{aw, bw\}$ is a J'-cover of G_1 . Thus G_1 is hamiltonian. Let C be a hamiltonian cycle of G_1 . Then $C - \{w\} + \{au, bv\}$ is a hamiltonian (u, v)-path in G. If $v \in S_2 \cup End(\mathcal{P})$, we assume that $a \in N_G(u) \cap S_1$ so that a does not belong to the alternating path in $\mathcal{P} - \{u\}$ that contains v if $v \in End(\mathcal{P})$. Let $G_2 = G - \{u\} + \{aw, vw\}$. Then $\mathcal{P} - \{u\} + \{aw, vw\}$ is a $(J \cup \{w\} - \{u\})$ -cover of the split graph G_2 . Thus G_2 is hamiltonian. Let C be a hamiltonian cycle of G_2 . Then $C - \{w\} + \{au\}$ is a hamiltonian (u, v)-path in G.

We then assume that $u \in S_2$ and $v \in S_2 \cup End(\mathcal{P})$, or u, v are the endpoints of different alternating paths in \mathcal{P} , then we set $G_3 = G + \{uw, vw\}$. Thus $\mathcal{P} + \{uw, vw\}$ is a $(J \cup \{w\})$ -cover of the split graph G_3 . So G_3 is hamiltonian. Let C be a hamiltonian cycle of G_3 . Then $C - \{w\}$ is a hamiltonian (u, v)-path in G. \Box

Lemma 2.3. Let *G* be a split graph with a split partition (*S*, *J*), a *J*-cover \mathcal{P} and $\delta(G) \geq 3$. If the length of each alternating (*S*, *J*)-path in \mathcal{P} is 2, then *G* is Hamilton-connected.

Proof. As the length of each path in \mathcal{P} is 2, $Inn(\mathcal{P}) = \emptyset$. By Lemma 2.2, it suffices to find a hamiltonian (u, v)-path if u, v are the endpoints of an alternating path P_i in \mathcal{P} . Let $P_i = uzv$. As $\delta(G) \ge 3$, let $b \in N_G(z) - \{u, v\}$. Then $\mathcal{P}' = \mathcal{P} - \{zv\} + \{zb\}$ is a *J*-cover of *G* with $u \in End(\mathcal{P}')$ and $v \in S - V(\mathcal{P}')$. By Lemma 2.2, *G* has a hamiltonian (u, v)-path. \Box

For a split graph *G* with a split partition (*S*, *J*), we define a collection $Q = \{P_1, P_2, ..., P_{h_1}, C_1, C_2, ..., C_{h_2}\}$, with $h_1 \ge 0$ and $h_2 \ge 0$, of vertex-disjoint subgraphs of *G* to be a **pseudo** *J*-**cover** if Q satisfies each of the following.

(Q1) Each P_i is an (S, J)-alternating path and each C_j is an (S, J)-alternating cycle. (Q2) $J \subseteq \left(\bigcup_{i=1}^{h_1} P_i^o\right) \cup \left(\bigcup_{j=1}^{h_2} V(C_j)\right)$.

For a pseudo *J*-cover $\mathcal{Q} = \{P_1, P_2, \dots, P_{h_1}, C_1, C_2, \dots, C_{h_2}\}$ of *G*, let $End(\mathcal{Q})$ denote the collection of the endpoints of the alternating paths $\bigcup_{i=1}^{h_1} P_i$, and $Inn(\mathcal{Q}) = S \cap (\bigcup_{i=1}^{h_1} P_i^o)$. If we need to emphasize the values of h_1 and h_2 , we write $\mathcal{Q}(h_1, h_2)$ for \mathcal{Q} . By definitions, every *J*-cover is also a pseudo *J*-cover $\mathcal{Q}(h_1, h_2)$ with $h_2 = 0$. We also use \mathcal{Q} to denote the subgraph $(\bigcup_{i=1}^{h_1} P_i) \cup (\bigcup_{i=1}^{h_2} C_i)$. For a set \mathcal{C} of some vertex-disjoint cycles in a graph *G*, we say that \mathcal{C} is a **2-factor** of *G* if $V(G) = \bigcup_{C \in \mathcal{C}} V(C)$. We shall apply the following theorem to show that a pseudo *J*-cover will exist for an *r*-connected $K_{1,r+1}$ -free split graph.

Theorem 2.4 (Aldred et al. [1]). If G is an r-connected $K_{1,r+1}$ -free graph, then G has a 2-factor.

Lemma 2.5. Let G be an r-connected $K_{1,r+1}$ -free split graph with a split partition (S, J). Then G contains a pseudo J-cover.

Proof. By Theorem 2.4, *G* has a 2-factor *F*. Then the subgraph F - J consists of some cycles, nontrivial paths, and trivial paths. Let *A* be the set of all degree 2 vertices in F - J, and E' be the collection of edges of all nontrivial paths in F - J. Then (F - A) - E' is a pseudo *J*-cover of *G*. \Box

Following Hendry [7], we call a cycle *C* in *G* **extendable** if there is a cycle *C'* in *G* such that |V(C')| = |V(C)| + 1 and $V(C) \subset V(C')$. If such a cycle *C'* exists, we say that *C* can be extended to *C'* or that *C'* is an extension of *C*. A graph *G* is **cycle extendable** if it has at least one cycle and every non-hamiltonian cycle in *G* is extendable. A graph *G* is **fully cycle extendable** if *G* is cycle extendable and every vertex in *G* lies on a cycle of length 3. By definitions, every fully cycle extendable graph is vertex pancyclic.

Theorem 2.6. Let G be a split graph. Then, G is hamiltonian if and only if G is fully cycle extendable.

Proof. Suppose *G* is a hamiltonian split graph with a split partition (S, J). If |S| = 2, then $G \cong K_3$. It follows that *G* is fully cycle extendable. Now we assume that $|S| \ge 3$. Thus every vertex in *G* lies on a cycle of length 3 by the definition of split graphs.

To show that *G* is fully cycle extendable, it is enough to prove that *G* is cycle extendable. Suppose by contrary that *G* has a non-hamiltonian cycle *C* such that there is no cycle *C'* with $V(C) \subset V(C')$ and |V(C')| = |V(C)| + 1. As *G* is hamiltonian, $|V(G)| - |V(C)| \ge 2$.

Claim 1. $V(G) - V(C) \subseteq J$.

Assume that there is a vertex $w \in S - V(C)$. If there exists $uv \in E(C)$ such that $u, v \in S$, then $C' = C - \{uv\} + \{uw, vw\}$ is a cycle with $V(C') = V(C) \cup \{w\}$, a contradiction. We then may assume that $C = x_1y_1x_2y_2...x_ky_kx_1$, where $x_1,...,x_k \in S$ and $y_1,...,y_k \in J$. For y_i , if there exists $z \in S - \{x_1,...,x_k\}$ such that $zy_i \in E(G)$, then $C' = C - \{x_iy_i\} + \{x_iz,zy_i\}$ is a cycle with $C' = C \cup \{z\}$, a contradiction. So, for each y_i , we have $N_G(y_i) \subseteq \{x_1,...,y_k\}$. Therefore, the number of components of $G - \{x_1,...,x_k\}$ is at least k + 1, which is contrary to the hamiltonicity of G. Claim 1 holds.

Pick a vertex $w \in V(G) - V(C) \subseteq J$. Let H be the subgraph induced by $V(C) \cup \{w\}$. Then H is a split graph with the split partition (S, J'), where $J' = V(C) \cap J \cup \{w\}$. Let $J^* = J - J'$. Since G is hamiltonian, by Lemma 2.1, G has either a J-cover \mathcal{P} or a spanning (S, J)-alternating cycle C^* . Thus $\mathcal{P} - J^*$ or $C^* - J^*$ consists of some nontrivial paths and trivial paths. Let \mathcal{P}' be the collection of all those nontrivial paths. Then \mathcal{P}' is a J'-cover of H. By Lemma 2.1, H has a hamiltonian cycle C' with $V(C') = V(C) \cup \{w\}$, contrary to the choice of C. \Box

Fig. 1. The graph *G*₆.

3. *K*_{1,3}-free split graphs

Theorem 3.1 (Wu [12]). Let G be a 3-connected $K_{1,3}$ -free graph. If $\sum_{v \in X} d_G(v) \ge |V(G)| + 1$ for any stable set X with |X| = 3, then G is Hamilton-connected.

By the structure property of $K_{1,3}$ -free graphs, we have the following lemma.

Lemma 3.2. Let *G* be a $K_{1,3}$ -free split graph with a split partition (S, J). Let $a, b \in J$ such that $N_G(a) \cap N_G(b) \neq \emptyset$. Then for any two vertices $x, y \in J - \{a, b\}, N_G(x) \cap N_G(y) = \emptyset$.

Lemma 3.3. Let G be a 2-connected $K_{1,3}$ -free split graph with a split partition (S, J). Then G has a J-cover if and only if $G \neq G_6$, depicted in Fig. 1.

Proof. By Lemma 2.5, *G* has a pseudo *J*-cover $Q = \{P_1, P_2, \dots, P_{h_1}, C_1, C_2, \dots, C_{h_2}\}$. Let $S_2 = S - V(Q)$. By Lemma 3.2, $h_2 \leq 1$. If $h_2 = 0$, then Q is a *J*-cover of *G*. Next we assume that $h_2 = 1$.

Let $C_1 = a_1b_1a_2b_2\cdots a_kb_ka_1$, where $a_1, \cdots, a_k \in J$ and $b_1, \cdots, b_k \in S$. By Lemma 3.2, $2 \leq k \leq 3$. If either $S_2 \neq \emptyset$ or $h_1 \geq 1$, we choose $x \in S_2 \cup End(Q)$. Since $G[\{b_1, a_1, a_2, x\}] \neq K_{1,3}$, we have $xa_1 \in E(G)$ or $xa_2 \in E(G)$. Without loss of generality, we assume that $xa_1 \in E(G)$. Thus $Q - \{a_1b_1\} + \{xa_1\}$ is a *J*-cover of *G*. So we assume that $S_2 = \emptyset$ and $h_1 = 0$. Then, C_1 is a spanning (S, J)-alternating cycle of *G* and $|S| \in \{2, 3\}$.

Notice that if (S, J) is a split partition of a split graph G, then S is a maximum clique of G. If |S| = 2, then $G = K_4 - \{e\}$, where $e \in E(K_4)$. By the definition of a split graph, $S = K_3$ and $J = K_1$, a contradiction. So |S| = 3. Since G is $K_{1,3}$ -free, the degree of each vertex in J is 2. Thus $G = G_6$. \Box

Corollary 3.4. Every 2-connected K_{1,3}-free split graph is fully cycle extendable.

Proof. Corollary 3.4 follows directly from Lemma 2.1, Theorem 2.6, and Lemma 3.3.

Lemma 3.5. Let *G* be a 2-connected $K_{1,3}$ -free graph with a split partition (S, J). If $\delta(G) \ge 3$ and $|V(G)| \ge 9$, then *G* has a *J*-cover such that the length of each (S, J)-alternating path is 2.

Proof. By Lemma 3.3, we may choose a *J*-cover $\mathcal{P} = \{P_1, P_2, \dots, P_h\}$ so that *h* is maximized. Let $S_1 = \bigcup_{i=1}^h V(P_i) \cap S$ and $S_2 = S - S_1$. Assume that the length of P_i is t_i , and $t_1 \ge t_2 \ge \dots \ge t_h$. By Lemma 3.2, $t_2 = \dots = t_h = 2$, and $2 \le t_1 \le 6$. If $t_1 = 2$, then this lemma is true. We then assume that $t_1 \in \{4, 6\}$ and let $P_1 = a_1b_1a_2b_2\cdots b_sa_{s+1}$, where $s \in \{2, 3\}$, $a_1, \dots, a_{s+1} \in S$ and $b_1, \dots, b_s \in J$. Then $S_2 = \emptyset$. Otherwise, pick a vertex $w \in S_2$. Since $G[\{a_2, b_1, b_2, w\}] \ne K_{1,3}$, we have $wb_1 \in E(G)$ or $wb_2 \in E(G)$. Without loss of generality, we assume $wb_1 \in E(G)$. Then $\{a_1b_1w, P_1 - \{a_1, b_1\}, P_2, \dots, P_h\}$ is a *J*-cover, contrary to the choice of \mathcal{P} .

Assume first that $t_1 = 6$. Then s = 3. As $|V(G)| \ge 9$, we have $h \ge 2$. As $t_2 = 2$, we set $P_2 = xyz$. Consider $G[\{a_3, b_2, b_3, x\}]$. By Lemma 3.2, $xb_3 \notin E(G)$. Thus $xb_2 \in E(G)$. By Lemma 3.2, $a_4y \notin E(G)$. Since $G[\{x, a_4, y, b_2\}] \neq K_{1,3}$, we have $b_2a_4 \in E(G)$. Similarly, $a_1b_2 \in E(G)$. By Lemma 3.2, $N_G(b_1) = \{a_1, a_2\}$, contrary to $\delta(G) \ge 3$.

Assume then that $t_1 = 4$ and s = 2. As $|V(G)| \ge 9$, $h \ge 3$. Let $P_i = x_i y_i z_i (i = 2, \dots, h)$. Since $G[\{a_2, b_1, b_2, x_2\}] \ne K_{1,3}$, without loss of generality, we assume that $b_2 x_2 \in E(G)$. By Lemma 3.2, for any $i \in \{3, \dots, h\}$, $b_2 x_i, b_2 z_i \in E(G)$. As G is $K_{1,3}$ -free and $\delta(G) \ge 3$, by Lemma 3.2, $b_1 a_3 \in E(G)$. Thus $N_G(y_2) = \{x_2, z_2\}$, a contradiction. \Box

Theorem 3.6. Let *G* be a 3-connected *K*_{1,3}-free split graph. Then *G* is Hamilton-connected.

Proof. By Theorem 3.1, we assume that $|V(G)| \ge 9$. Thus Theorem 3.6 follows directly from Lemma 2.3 and Lemma 3.5.

4. *K*_{1,4}-free split graphs

By the structure property of $K_{1,4}$ -free graphs, we have the following lemma.

Lemma 4.1. Let *G* be a $K_{1,4}$ -free split graph with a split partition (S, J). Let $a, b, c \in J$ such that $N_G(a) \cap N_G(b) \cap N_G(c) \neq \emptyset$. Then for any three vertices $x, y, z \in J - \{a, b, c\}, N_G(x) \cap N_G(y) \cap N_G(z) = \emptyset$.

Lemma 4.2. Let *G* be a 3-connected $K_{1,4}$ -free split graph with a split partition (S, J). Then G has either a J-cover or a spanning (S, J)-alternating cycle.

Proof. By Lemma 2.5, *G* has a pseudo *J*-cover. Let $Q = \{P_1, \dots, P_{h_1}, C_1, \dots, C_{h_2}\}$ be a pseudo *J*-cover such that (i) h_2 is minimized;

(ii) subject to (i), h_1 is minimized.

We assume that $h_2 \ge 1$. Let $S_1 = V(Q) \cap S$ and $S_2 = S - S_1$. Let $C_1 = a_1b_1a_2b_2\cdots a_kb_ka_1$, where $a_1, \cdots, a_k \in S$ and $b_1, \cdots, b_k \in J$. By the choice of Q, we have

Claim 1. For any $x \in J \cap V(C_i)$, $N_G(x) \cap (S_2 \cup End(\mathcal{Q})) = \emptyset$. Thus $N_G(x) \subseteq S_1 - End(\mathcal{Q})$.

Claim 2. $S_2 = \emptyset$.

Assume that $w \in S_2$. Consider b_1 . Since $\delta(G) \ge 3$, there is a vertex $y \in S_1 - \{a_1, a_2\}$ such that $yb_1 \in E(G)$. As $y \notin End(\mathcal{Q})$, we assume that $N_{\mathcal{Q}}(y) = \{v_1, v_2\}$. As $G[\{y, b_1, v_1, v_2, w\}] \ne K_{1,4}$ and $b_1 w \notin E(G)$, we have $\{v_1 w, v_2 w\} \cap E(G) \ne \emptyset$. Without loss of generality, we assume that $v_2 w \in E(G)$. By Claim 1, $y \in P_{i_0}$. Thus $(P_{i_0} \cup C_1) - \{a_1b_1, yv_2\} + \{b_1y, v_2w\}$ are two alternating paths, contradicting the hypothesis that h_2 is smallest. Claim 2 holds.

Claim 3. $N_G(b_i) \subseteq \{a_1, \dots, a_k\}$. Therefore, $h_2 = 1$.

Assume that $x \in N_G(b_1) - \{a_1, \dots, a_k\}$. By Claims 1 and 2, $x \in V(C_i) \cup Inn(\mathcal{Q})$ for some $i \neq 1$. Let $y_1y_2xy_3y_4$ be a section in \mathcal{Q} that contains x. Consider b_2 and b_k . As G is $K_{1,4}$ -free, $x \notin N_G(b_2) \cup N_G(b_k)$. As $d_G(b_2) \ge 3$, $N_G(b_2) \cap (S_1 - End(\mathcal{Q})) \neq \emptyset$. By Lemma 4.1, $N_G(b_2) \cap \{y_1, y_4\} \neq \emptyset$ and $N_G(b_k) \cap \{y_1, y_4\} \neq \emptyset$. Without loss of generality, we assume that $b_2y_4 \in E(G)$. By Claim 1, $y_4 \notin End(\mathcal{Q})$. If $b_2 \neq b_k$, then, as G is $K_{1,4}$ -free, we have $b_ky_4 \notin E(G)$ and so $b_ky_1 \in E(G)$. By Claim 1, $y_1 \notin End(\mathcal{Q})$, contrary to Lemma 4.1. So $b_2 = b_k$ and C_1 is a 4-cycle.

Assume that $y_1y_2xy_3y_4y_5$ is a section of some $P_{i_0} = y \cdots y_1y_2xy_3y_4y_5 \cdots y_5$. Then $yy_3 \notin E(G)$, otherwise, $P_{i_0} \cup C_1 - \{a_1b_1, xy_3\} + \{yy_3, xb_1\}$ is an alternating path, contradicting to the choice of Q with h_2 being minimized. Similarly, we have $yy_5 \notin E(G)$ as $b_2y_4 \in E(G)$. Thus $G[\{y_4, y_3, y_5, y, b_2\}] = K_{1,4}$, a contradiction. So $y_1y_2xy_3y_4$ (probably $y_1 = y_4$) is a section of some C_{i_0} . Thus $h_1 = 0$ (otherwise, let w be an endpoint of P_1 . By Claim 1, $G[\{x, y_2, y_3, b_1, w\}] = K_{1,4}$, a contradiction.)

If $y_1 \neq y_4$, then $|C_{j_0}| \ge 6$. Let $C_{j_0} = y_1y_2xy_3y_4y_5 \cdots y_sy_1$ (probably $y_5 = y_s$). Then $\{b_2, y_3, y_5\} \subseteq N_G(y_4)$. As h_2 is smallest and $xb_1, y_4b_2 \in E(G)$, $N_G(w) \cap \{a_1, a_2\} = \emptyset$ for $w \in \{y_2, y_3, y_5\}$. As *G* is $K_{1,4}$ -free, $y_5x \notin E(G)$. As $d_G(y_5) \ge 3$, by Lemma 4.1, $N_G(y_5) = \{y_4, y_6, y_1\}$. So $y_5 \neq y_1$ and $|C_{j_0}| \ge 8$. Since $G[\{y_1, y_2, y_5, y_5, a_1\}] \neq K_{1,4}$, we have $y_sa_1 \in E(G)$. Thus $C_1 \cup C_{j_0} - \{y_1y_5, y_4y_5, a_1b_2\} + \{y_4b_2, a_1y_5, y_5y_1\}$ is an alternating cycle, contrary to the hypothesis that h_2 is the smallest. So $y_1 = y_4$ and $C_{j_0} = y_1y_2xy_3y_1$ is a 4-cycle and $b_2y_1 \in E(G)$.

As h_2 is smallest, $N_G(y_2) \cap \{a_1, a_2\} = \emptyset$ and $N_G(y_3) \cap \{a_1, a_2\} = \emptyset$. Consider y_1 . Using the above discussion, there is a 4-cycle $C_{j_1} = z_1 z_2 z_3 z_4 z_1$ with $z_1, z_3 \in S$, $z_2, z_4 \in J$ such that $y_2 z_1, y_3 z_3 \in E(G)$. As h_2 is smallest, $N_G(z_2) \cap \{a_1, a_2, x, y_1\} = \emptyset$ and $N_G(z_4) \cap \{a_1, a_2, x, y_1\} = \emptyset$. Consider z_4 . Using the above discussion, there is a 4-cycle $C_{j_2} = u_1 u_2 u_3 u_4 u_1$ with $u_1, u_3 \in S$, $u_2, u_4 \in J$ such that $z_2 u_1, z_4 u_3 \in E(G)$. Thus $\{b_1, y_2, y_3\} \subseteq N_G(x)$ and $\{u_2, u_4, z_4\} \subseteq N_G(u_3)$, contrary to Lemma 4.1. Claim 3 holds.

As *G* is $K_{1,4}$ -free, by Claims 1 and 3, we have $h_1 = 0$, and so $V(G) = V(C_1)$. \Box

Corollary 4.3. *Every* 3-*connected* K_{1,4}-*free split graph is fully cycle extendable.*

Proof. Corollary 4.3 follows directly from Lemma 2.1, Theorem 2.6, and Lemma 4.2.

Theorem 4.4. Let *G* be a 4-connected *K*_{1,4}-free split graph. Then *G* is Hamilton-connected.

Proof. Assume that (S, J) is the split partition of *G*. As *G* is 4-connected, the number of edges between *J* and *S* is at least 4|J|. As *G* is $K_{1,4}$ -free, the number of edges between *S* and *J* is at most 3|S|. So $4|J| \le 3|S|$, and hence |J| < |S|. By Lemma 4.2, we may assume that $\mathcal{P} = \{P_1, P_2, \dots, P_h\}$ is a *J*-cover of *G*. Let $S_1 = V(\mathcal{P}) \cap S$ and $S_2 = S - S_1$. Let $P_i = x_1^i y_1^i x_2^i y_2^i \cdots x_{k_i}^i y_{k_i}^i x_{k_{i+1}}^i$, where $y_1^i, \dots, y_{k_i}^i \in J$, $x_1^i, \dots, x_{k_i+1}^i \in S_1$. Assume that *G* is not Hamilton-connected. Then there exist $u, v \in V(G)$ such that *G* does not have a hamiltonian (u, v)-path. Thus $uv \notin E(\mathcal{P})$. By Lemma 2.2, either $\{u, v\} \cap Inn(\mathcal{P}) \neq \emptyset$ or u, v are the endpoints of some $P_i \in \mathcal{P}$.

Claim 1. If $S_2 = \emptyset$, then $h \ge 2$.

As $S_2 = \emptyset$, we have $S = S_1$ and so |S| = |J| + h. Then $4|J| \le 3|S| = 3(|J| + h)$, i.e., $|J| \le 3h$. If h = 1, then $|J| \le 3$ and so $n \le 3 + 4 = 7$. Then the subgraph of *G* induced by the edge set between *S* and *J* is isomorphic to $K_{3,4}$, and so *G* is Hamilton-connected, a contradiction. Claim 1 holds.

Claim 2. u, v cannot be the endpoints of some alternating path P_i .

Assume that u, v are the endpoints of P_1 and $u = x_1^1$ and $v = x_{k_1+1}^1$. Then $N_G(y_i^1) \cap (End(\mathcal{P}) \cup S_2 - \{u, v\}) = \emptyset$ for each $i \in \{1, \dots, k_1\}$ (otherwise, assume that $wy_i^1 \in E(G)$ for some $w \in End(\mathcal{P}) \cup S_2 - \{u, v\}$. Then $\mathcal{P}' = \mathcal{P} - \{x_i^1y_i^1\} + \{wy_i^1\}$ is a *J*-cover of *G* with $u, v \notin Inn(\mathcal{P}')$ and u, v are not endpoints of some path of \mathcal{P}' . By Lemma 2.2, *G* has a hamiltonian (u, v)-path.)

Consider y_1^1 . Since $d_G(y_1^1) \ge 4$, there is $z \in Inn(\mathcal{P}) - \{x_2^1\}$ such that $zy_1^1 \in E(G)$. If $z \in V(P_1)$, then h = 1 and $S_2 = \emptyset$ (otherwise, there are three vertices $y_1^1, z', z'' \in N_{P_1}(z) \cap J$ such that $G[\{z, y_1^1, z', z'', w\}] = K_{1,4}$ for some $w \in S_2 \cup \{x_1^2\}$, a contradiction). If $z \notin V(P_1)$, then h = 2 and $S_2 = \emptyset$ (otherwise, assume without loss of generality that $z = x_i^2$. As $G[\{y_1^1, x_i^2, y_{i-1}^2, y_i^2, w\}] \neq K_{1,4}$ for any $w \in S_2 \cup \{x_1^3\}$, we have $wy_{i-1}^2 \in E(G)$ or $wy_i^2 \in E(G)$. We may assume that $wy_i^2 \in E(G)$. Then $\mathcal{P}' = \mathcal{P} - \{x_1^1y_1^1, x_i^2y_i^2\} + \{y_1^1z, wy_i^2\}$ is a *J*-cover with $v \in End(\mathcal{P}')$ and $u \notin V(\mathcal{P}')$. By Lemma 2.2, *G* has a hamiltonian (u, v)-path, contrary to our assumption that *G* has no hamiltonian (u, v)-path). By Claim 1, $h \ge 2$. Thus h = 2 and $z \in V(P_2)$. Assume that $z = x_i^2$. Similarly, consider v_i^1 , we have there is some $z' \in V(P_2)$ such that $v_i^1 z' \in E(G)$.

h = 2 and $z \in V(P_2)$. Assume that $z = x_i^2$. Similarly, consider $y_{k_1}^1$, we have there is some $z' \in V(P_2)$ such that $y_{k_1}^1 z' \in E(G)$. If $y_1^1 \neq y_{k_1}^1$, then, by Lemma 4.1, $z' \in \{x_{i-1}^2, x_{i+1}^2\}$. Without loss of generality, we assume that $z' = x_{i+1}^2$. Then $x_1^2 y_i^2 \notin E(G)$ (otherwise, $\mathcal{P}' = \mathcal{P} - \{x_i^2 y_i^2, x_1^1 y_1^1\} + \{x_1^2 y_i^2, x_i^2 y_1^1\}$ is a *J*-cover of *G* with $v \in End(\mathcal{P}')$ and $u \in S_2(\mathcal{P}')$. By Lemma 2.2, *G* has a hamiltonian (u, v)-path, a contradiction.) Similarly, $x_1^2 y_{i+1}^2 \notin E(G)$. Therefore, $G[\{x_{i+1}^2, y_i^2, y_{i+1}^1, x_1^2\}] = K_{1,4}$, a contradiction. So $y_1^1 = y_{k_1}^1$, and the length of P_1 is 2.

As $d_G(y_1^1) \ge 4$, there is a vertex $x_j^2 \in V(P_2)$ such that $y_1^1 x_j^2 \in E(G)$. We assume that j > i. By Lemma 2.2, $\{x_1^2 y_i^2, x_1^2 y_j^2, x_{k_2+1}^2 y_{i-1}^2, x_{k_2+1}^2 y_{j-1}^2, x_{k_2+1}^2 y_{j-1}^2, x_{k_2+1}^2 y_{j-1}^2 \} \cap E(G) = \emptyset$. As $y_1^1 x_1^2 \notin E(G)$ and $G[\{x_j^2, y_1^1, y_j^2, y_{j-1}^2, x_1^2\}] \neq K_{1,4}$, we have $x_1^2 y_{j-1}^2 \in E(G)$. Similarly, $y_i^2 x_{k_2+1}^2 \in E(G)$. Let $\mathcal{P}' = \mathcal{P} - \{x_1^1 y_1^1, x_i^2 y_i^2, x_j^2 y_{j-1}^2\} + \{y_1^1 x_i^2, x_1^2 y_{j-1}^2, y_j^2 x_{k_2+1}^2\}$. Then \mathcal{P}' is a *J*-cover with $u \notin V(\mathcal{P}')$ and $v \in End(\mathcal{P}')$. By Lemma 2.2, *G* has a hamiltonian (u, v)-path, contrary to our assumption. This completes the proof of Claim 2.

By Claim 2, $\{u, v\} \cap Inn(\mathcal{P}) \neq \emptyset$. Now we may assume that $\mathcal{P} = \{P_1, P_2, \dots, P_h\}$ is a *J*-cover such that

(i) $|\{u, v\} \cap Inn(\mathcal{P})| > 1$ is minimized, and

(ii) subject to (i), *h* is maximized.

Assume that $u = x_{i_0}^1$, where $1 < i_0 < k_1 + 1$. Thus we have the following.

Claim 3. (i) For any $w \in J$, $N_G(w) \cap S_2 = \emptyset$. (ii) If there is $z \in S_1$ such that $|N_G(z) \cap J| = 3$, then $S_2 = \emptyset$ and $h \ge 2$.

Claim 4. If $v \neq x_1^1$, then $N_G(y_{i_0}^1) \subseteq \{v, x_{i_0}^1, x_{i_0+1}^1, \cdots, x_{k_1+1}^1\}$; if $v \neq x_{k_1+1}^1$, then $N_G(y_{i_0-1}^1) \subseteq \{v, x_1^1, x_2^1, \dots, x_{i_0}^1\}$.

By symmetry, we only prove $N_G(y_{i_0}^1) \subseteq \{v, x_{i_0}^1, x_{i_0+1}^1, \dots, x_{k_1+1}^k\}$ if $v \neq x_1^1$. Assume that $z \in N_G(y_{i_0}^1) - \{v, x_{i_0}^1, x_{i_0+1}^1, \dots, x_{k_1+1}^1\}$. By the choice of \mathcal{P} , $x_1^1y_{i_0}^1 \notin E(G)$. By Claim 3(i), $z \notin S_2$. Furthermore, $z \notin End(\mathcal{P}) - \{v\}$ (otherwise, $\mathcal{P}' = \mathcal{P} - \{x_{i_0}^1, y_{i_0}^1\} + \{zy_{i_0}^1\}$ is a *J*-cover with $|\{u, v\} \cap Inn(\mathcal{P}')| < |\{u, v\} \cap Inn(\mathcal{P})|$, contrary to the choice of \mathcal{P}). Thus $z \in Inn(\mathcal{P}) - \{x_{i_0}^1, x_{i_0+1}^1\}$. By Claim 3(ii), $S_2 = \emptyset$ and $h \ge 2$. Without loss of generality, assume that $v \neq x_1^2$. Thus, $y_{i_0}^1x_1^2 \notin E(G)$.

Assume that $z = x_j^2 \in V(P_2)$. Consider $G[\{x_j^2, x_1^1, y_{i_0}^1, y_{j-1}^2, y_j^2\}]$. We have either $y_{j-1}^2 x_1^1 \in E(G)$ or $y_j^2 x_1^1 \in E(G)$. Without loss of generality, we assume that $x_1^1 y_{j-1}^2 \in E(G)$. Then $\mathcal{P}' = \mathcal{P} - \{x_{i_0}^1 y_{i_0}^1, x_j^2 y_{j-1}^2\} + \{x_1^1 y_{j-1}^2, y_{i_0}^1 x_j^2\}$ is a *J*-cover with $|\{u, v\} \cap Inn(\mathcal{P}')| < |\{u, v\} \cap Inn(\mathcal{P})|$, contrary to the choice of \mathcal{P} . So $N_G(v_1^1) \subseteq V(P_1)$ and $z = x_1^1$ for some $i_0 \in \{2, \dots, i_0 - 1\}$.

 $Inn(\mathcal{P}')| < |\{u, v\} \cap Inn(\mathcal{P})|, \text{ contrary to the choice of } \mathcal{P}. \text{ So } N_G(y_{i_0}^1) \subseteq V(P_1) \text{ and } z = x_{j_0}^1 \text{ for some } j_0 \in \{2, \dots, i_0 - 1\}.$ As $G[\{x_{j_0}^1, y_{j_0-1}^1, y_{j_0}^1, x_{1}^2] \neq K_{1,4}$, we have either $y_{j_0-1}^1 x_1^2 \in E(G)$ or $y_{j_0}^1 x_1^2 \in E(G)$. If $y_{j_0-1}^1 x_1^2 \in E(G)$, we set $\mathcal{P}' = \mathcal{P} - \{y_{j_0-1}^1 x_{j_0}^1, x_{i_0}^1 y_{j_0}^1\} + \{x_1^2 y_{j_0-1}^1, x_{j_0}^1 y_{j_0}^1\}; \text{ if } y_{j_0}^1 x_1^2 \in E(G), \text{ we set } \mathcal{P}' = \mathcal{P} - \{x_{j_0}^1 y_{j_0}^1, x_{j_0}^1 y_{j_0}^1\} + \{x_1^2 y_{j_0-1}^1, x_{j_0}^1 y_{j_0}^1\}; \text{ if } y_{j_0}^1 x_1^2 \in E(G), \text{ we set } \mathcal{P}' = \mathcal{P} - \{x_{j_0}^1 y_{j_0}^1, x_{j_0}^1 y_{j_0}^1\} + \{x_1^2 y_{j_0}^1, x_{j_0}^1 y_{j_0}^1\}.$ Then \mathcal{P}' is a J-cover with $|\{u, v\} \cap Inn(\mathcal{P}')| < |\{u, v\} \cap Inn(\mathcal{P})|$, contrary to the choice of \mathcal{P} . Claim 4 holds.

Claim 5. $v \in S_1$.

Assume that $v \notin S_1$. Then $v \in J \cup S_2$. By Claims 3 and 4, $N_G(y_{i_0}^1) \subseteq \{x_{i_0}^1, x_{i_0+1}^1, \dots, x_{k_1+1}^1\}$ and $N_G(y_{i_0-1}^1) \subseteq \{x_{i_1}^1, x_{i_2}^1, \dots, x_{i_0}^1\}$. As $\delta(G) \ge 4$, there exist $z_1 \in \{x_{i_0+2}^1, x_{i_0+3}^1, \dots, x_{k_1}^1\}$ and $z_2 \in \{x_2^1, x_3^1, \dots, x_{i_0-2}^1\}$ such that $z_1y_{i_0}^1, z_2y_{i_0-1}^1 \in E(G)$. This contradicts Lemma 4.1. So Claim 5 holds.

Claim 6. $v \in Inn(\mathcal{P})$.

Assume that $v \notin Inn(\mathcal{P})$. Then $v \in End(\mathcal{P})$. Without loss of generality, we assume that $v \neq x_1^1$. By Claim 4, $N_G(y_{i_0}^1) \subseteq \{v, x_{i_0}^1, x_{i_0+1}^1, \dots, x_{k_1+1}^1\}$.

Claim 6.1.
$$N_G(y_{i_0}^1) = \{v, x_{i_0}^1, x_{i_0+1}^1, x_{k_1+1}^1\}.$$

Otherwise, there is a vertex $x_j^1 \in \{x_{i_0+2}^1, \dots, x_{k_1}^1\}$ such that $y_{i_0}^1 x_j^1 \in E(G)$. By Claim 3(ii), $S_2 = \emptyset$ and $h \ge 2$. By symmetry, we assume that $v \ne x_1^t$, where $t \in \{1, 2 \dots, h\}$. If $x_1^t y_{i_0-1}^1 \in E(G)$, we let $\mathcal{P}' = \mathcal{P} - \{x_{i_0}^1 y_{i_0-1}^1\} + \{x_1^t y_{i_0-1}^1\}$. Then \mathcal{P}' is a *J*-cover with $|\{u, v\} \cap Inn(\mathcal{P}')| < |\{u, v\} \cap Inn(\mathcal{P})|$, contrary to the choice of \mathcal{P} . So $x_1^t y_{i_0-1}^1 \in E(G)$. Similarly, $x_1^t y_{i_0}^1, x_1^t y_{i_0-1}^1 \notin E(G)$. As $G[\{x_j^1, y_{i_0}^1, y_{j-1}^1, y_j^1, x_1^t\}] \ne K_{1,4}$, we have $x_1^t y_j^1 \in E(G)$ for each $t \in \{1, \dots, h\}$. We first claim that $v = x_{k_1+1}^1$. Otherwise, we assume that $v = x_{k_t+1}^t$ for some $t \ne 1$. By Claim 4, $N_G(y_{i_0-1}^1) \subseteq V$.

We first claim that $v = x_{k_1+1}^1$. Otherwise, we assume that $v = x_{k_t+1}^t$ for some $t \neq 1$. By Claim 4, $N_G(y_{i_0-1}^1) \subseteq \{x_{k_t+1}^t, x_1^1, x_2^1, \dots, x_{i_0}^1\}$. By Lemma 4.1, $N_G(y_{i_0-1}^1) = \{x_{i_1}^1, x_{i_0-1}^1, x_{i_0}^1, x_{k_t+1}^t\}$. Consider $\mathcal{P}' = \mathcal{P} - \{y_{i_0-1}^1, x_{i_0}^1\} + \{y_{i_0-1}^1, x_{k_t+1}^1\}$. Then \mathcal{P}' is a *J*-cover with $|\{u, v\} \cap Inn(\mathcal{P}')| = |\{u, v\} \cap Inn(\mathcal{P})| = 1$, $u = x_{i_0}^1 \in End(\mathcal{P}')$ and $v \in Inn(\mathcal{P}')$. Consider $y_{k_t}^t$ in \mathcal{P}' . By Claim 4 and Lemma 4.1, we have $N_G(y_{k_t}^t) = \{x_{k_t}^t, x_{k_t+1}^t, x_{i_0}^1\}$. Let $\mathcal{P}'' = \mathcal{P} - \{y_{i_0-1}^1, x_{i_0}^1, y_{i_0}^1, y_{k_t}^t, x_{k_t+1}^t\} + \{x_{i_0}^1, y_{k_t}^t, y_{i_0-1}^1, x_{k_t+1}^t, y_{i_0}^1, x_{k_t+1}^t\}$. Then \mathcal{P}'' is a *J*-cover with $|\{u, v\} \cap Inn(\mathcal{P}')| < |\{u, v\} \cap Inn(\mathcal{P})| = 1$, contrary to the choice of \mathcal{P} . So $v = x_{k_1+1}^1$.

We next claim that $N_G(y_{i_0-1}^1) = \{x_1^1, x_{i_0-1}^1, x_{i_0}^1, x_{k_{1+1}}^1\}$. By Lemma 2.2 and Claim 2, $N_G(y_{i_0-1}^1) \cap (End(\mathcal{P}) - \{x_1^1, v\}) = \emptyset$. By Lemma 4.1, we have $N_G(y_{i_0-1}^1) \subseteq \{x_1^1, x_{i_0-1}^1, x_{i_0}^1, x_{i_0+1}^1, x_{i_0-1}^1, x_{i_0+1}^1, x_{i_0-1}^1, x_{i_0+1}^1, x_{i_0+1}^1, x_{i_0+1}^1, x_{i_0+1}^1, x_{i_0+1}^1, x_{i_0+1}^1, x_{i_0+1}^1, x_{i_0+1}^1 \in E(G)$, let $\mathcal{P}' = \mathcal{P} - \{x_{i_0}^1, y_{i_0-1}^1, x_{i_0}^1, x_{i_0+1}^1, x_{i_0-1}^1, x_{i_0-1}^1,$

fore, $N_G(y_{i_0-1}^1) = \{x_1^1, x_{i_0-1}^1, x_{i_0}^1, x_{k_1+1}^1\}$. Notice that if $y_{i_0}^1 x_{k_1+1}^1 \in E(G)$, then $x_1^2 y_{k_1}^1 \in E(G)$ since $G[\{x_{k_1+1}^1, y_{k_1}^1, y_{i_0-1}^1, y_{i_0}^1, x_1^2\}] \neq K_{1,4}$. Thus $\mathcal{P}' = \mathcal{P} - \{y_{i_0-1}^1 x_{i_0}^1, y_{k_1}^1, y_{k_1+1}^1\} + \{y_{k_1}^1 x_1^2, y_{i_0-1}^1 x_{k_1+1}^1\}$ is a *J*-cover with $u, v \in End(\mathcal{P}')$. Then *G* has a hamiltonian (u, v)-path, a contradiction. It implies that $N_G(y_{i_0}^1) \subseteq \{x_{i_0}^1, x_{i_0+1}^1, \cdots, x_{k_1}^1\}$. As $\delta(G) \ge 4$, by Lemma 4.1, $y_{j_0}^1 x_{j+1}^1 \in E(G)$. Thus $\mathcal{P}' = \mathcal{P} - \{x_{i_0}^1 y_{i_0}^1, y_{j_1}^1 x_{j+1}^1\} + \{y_{i_0}^1 x_{j+1}^1, y_{j_0}^1 x_{j+1}^1, y_{j_0}^1 x_{j+1}^1\}$ is a *J*-cover of *G* with $u, v \in End(\mathcal{P}')$. So *G* has a hamiltonian (u, v)-path, a contradiction. Hence, $N_G(y_{i_0}^1) = \{v, x_{i_0}^1, x_{i_0+1}^1, x_{i_1+1}^1\}$. Claim 6.1 holds.

As $d_G(y_{i_0}^1) \ge 4$ and $v \in End(\mathcal{P}) - \{x_1^1\}$, we have $h \ge 2$. Without loss of generality, we assume that $v = x_1^2$. Thus $v \ne x_{k_1+1}^1$. By applying the discussion in Claim 6.1 on $y_{i_0-1}^1$, we have $N_G(y_{i_0-1}^1) = \{x_1^1, x_{i_0}^1, x_{i_0-1}^1, x_1^2\}$. Since $G[\{x_1^2, y_{i_0-1}^1, y_{i_0}^1, y_{i_0}^2, x_{k_2+1}^2\}] \ne K_{1,4}$, we have $y_1^2 x_{k_2+1}^2 \in E(G)$.

If $h \ge 3$, then $y_1^2 x_1^3 \in E(G)$ since $G[\{x_1^2, y_{i_0-1}^1, y_{i_0}^1, y_1^2, x_1^3\}] \neq K_{1,4}$. Consider $\mathcal{P}' = \mathcal{P} - \{y_{i_0-1}^1 x_{i_0}^1\} + \{y_{i_0-1}^1 x_1^2\}$. Then \mathcal{P}' is a *J*-cover of *G* with $x_1^2 \in Inn(\mathcal{P}')$ and $x_1^1 \in End(\mathcal{P}')$. By applying the discussion in Claim 6.1 on y_1^2 in \mathcal{P}' , we have $N_G(y_1^2) = \{x_1^2, x_2^2, x_{k_2+1}^2, x_{i_0}^1\}$. So $x_{i_0}^1 y_1^2 \in E(G)$. Thus $\mathcal{P}' = \mathcal{P} - \{x_{i_0}^1 y_{i_0}^1, x_1^2 y_1^2\} + \{x_1^2 y_{i_0}^1, y_1^2 x_1^3\}$ is a *J*-cover of *G* with $u, v \in End(\mathcal{P}')$. So *G* has a hamiltonian (u, v)-path, a contradiction. So h = 2.

Consider y_1^1 . By Lemma 4.1, $N_G(y_1^1) \subseteq \{x_1^1, x_2^1, x_{i_0-1}^1, x_{i_1+1}^1, x_{k_1+1}^1, x_2^2, x_{k_2+1}^2\}$. If $y_1^1 x_{k_1+1}^1 \in E(G)$, let $\mathcal{P}' = \mathcal{P} - \{y_{i_0-1}^1 x_{i_0}^1, x_1^1 + x_{k_1+1}^1, x_{k_1+$

By Claim 6, $v \in Inn(\mathcal{P})$. Consider $y_{i_0}^1$. Then $N_G(y_{i_0}^1) \cap (End(\mathcal{P}) - \{x_{k_1+1}^1\}) = \emptyset$. As $d_G(y_{i_0}^1) \ge 4$, there is $z \in Inn(\mathcal{P}) - \{x_{i_0}^1, x_{i_0+1}^1\}$ such that $zy_{i_0}^1 \in E(G)$. By Claim 3(ii), $S_2 = \emptyset$ and $h \ge 2$. If $z \notin V(P_1)$, we assume that $z = x_j^2 \in V(P_2)$, where $1 < j < k_2 + 1$. Since $G[\{x_j^2, y_{j-1}^2, y_j^2, y_{i_0}^1, x_1^1\} \neq K_{1,4}$, we have either $x_1^1y_{j-1}^2 \in E(G)$ or $x_1^1y_j^2 \in E(G)$. Without loss of generality, we assume that $x_1^1y_j^2 \in E(G)$. Then $\mathcal{P}' = \mathcal{P} - \{x_{i_0}^1y_{i_0}^1, x_j^2y_j^2\} + \{y_{i_0}^1x_j^2, x_1^1y_j^2\}$ is a *J*-cover of *G* such that $u \in End(\mathcal{P}')$ and $v \in Inn(\mathcal{P}')$, contrary to the choice of \mathcal{P} . So $z \in V(P_1)$. If $z = x_j^1$, where $1 < j < i_0$, then either $x_1^2y_j^1 \in E(G)$ or $x_1^2y_{j-1}^1 \in E(G)$ since $G[\{x_1^1, y_j^1, y_{j-1}^1, x_{i_0}^1, x_{i_1}^2\} \neq K_{1,4}$. If $x_1^2v_{j-1}^1 \in E(G)$, let $\mathcal{P}' = \mathcal{P} - \{x_j^1y_{j-1}^1, x_{j_0}^1y_{j_0}^1\} + \{x_1^2y_{j-1}^1, x_{j_0}y_{j_0}^1\}$; if $x_1^2y_j^1 \in E(G)$, let $\mathcal{P}' = \mathcal{P} - \{x_j^1y_j^1, x_{j_0}^1y_{j_0}^1\} + \{x_1^2y_j^1, x_{j_0}^1y_{j_0}^1\} + \{x_1^2y_j^1, x_{j_0}y_{j_0}^1\}$. Then $u \in End(\mathcal{P}')$ and $v \in Inn(\mathcal{P}')$, contrary to the choice of \mathcal{P} . So $N_G(y_{j_0}^1) \subseteq \{x_{i_0}^1, x_{i_0+1}^1, \cdots, x_{i_{n-1}}^1\}$. As $\delta(G) \ge 4$, there exist $z_1 \in \{x_{i_0+2}^1, x_{i_0+3}^1, \cdots, x_{k_1}^1\}$ and $z_2 \in \{x_2^1, x_3^1, \cdots, x_{i_{n-2}}^1\}$ such that $z_1y_{i_0}^1, z_2y_{i_0-1}^1 \in E(G)$. This contradicts Lemma 4.1. The proof of Theorem 4.4 is done. \Box

5. Concluding remarks

In view of Theorem 2.6, we may restate Conjecture 1.4 in the following seemingly stronger version.

Conjecture 5.1. Let $r \ge 2$ be an integer. Every r-connected $K_{1,r+1}$ -free split graph is fully cycle extendable.

It is natural to consider the Hamilton-connected version of the conjecture above. We consider the following example. Let *H* be a copy of the complete bipartite graph $K_{r-1,r}$ ($r \ge 3$) with the bipartition (*X*, *Y*), where $X = \{x_1, x_2, \dots, x_{r-1}\}$

Fig. 2. *r*-connected $K_{1,r+1}$ -free non-Hamilton-connected graph *G*.

and $Y = \{y_1, y_2, \dots, y_r\}$. Let *K* be a copy of K_{r+1} with $V(K) = \{y_1, y_2, \dots, y_r, w\}$. Then $G = H \cup K$ (see Fig. 2) is an *r*-connected $K_{1,r+1}$ -free graph, but *G* is not Hamilton-connected (there is no hamiltonian (y_1, y_r) -path). This, together with Theorems 3.6 and 4.4, motivates the following conjecture.

Conjecture 5.2. Let $r \ge 3$ be an integer. Every r-connected $K_{1,r}$ -free split graph is Hamilton-connected.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Data availability

No data was used for the research described in the article.

References

- [1] R.E.L. Aldred, J. Fujisawa, Y. Egawa, K. Ota, A. Saito, The existence of a 2-factor in K_{1,n}-free graphs with large connectivity and large edge-connectivity, J. Graph Theory 68 (2011) 77–89.
- [2] J.A. Bondy, U.S.R. Murty, Graph Theory, Springer, New York, 2008.
- [3] R.E. Burkazd, P.L. Hammer, A note on Hamiltonian split graphs, J. Comb. Theory, Ser. B 28 (2) (1980) 245–248.
- [4] G. Dai, Z. Zhang, H. Broersma, X. Zhang, The Hamiltonian properties in $K_{1,r}$ -free split graphs, Discrete Math. 345 (2022) 112826.
- [5] S. Foldes, P.L. Hammer, Split graphs having Dilworth number two, Can. J. Math. 24 (3) (1977) 666–672.
- [6] S. Foldes, P.L. Hammer, Split graphs, in: Proceedings of the 8th 320 South-Eastern Conference on Combinatorics, Graph Theory and Computing, 1977,
- pp. 311–315.
- [7] G.R.T. Hendry, Extending cycles in graphs, Discrete Math. 85 (1990) 59–72.
- [8] D. Kratsch, J. Lehel, H. Muller, Toughness, hamiltonicity and split graphs, Discrete Math. 150 (1) (1996) 231-245.
- [9] R. Merris, Split graphs, Eur. J. Comb. 24 (2003) 413-430.
- [10] P. Renjith, N. Sadagopan, The Hamiltonian cycle in $K_{1,r}$ -free split graphs a dichotomy, Int. J. Found. Comput. Sci. 33 (2022) 1–32.
- [11] N.D. Tan, L.X. Hung, On the Burkard-Hammer condition for Hamiltonian split graphs, Discrete Math. 296 (1) (2005) 59-72.
- [12] Z.S. Wu, Hamilton connectivity of K_{1,3}-free graphs, J. Math. Res. Exposition 9 (1989) 447–451.