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Abstract

A cycle of a matroid is a disjoint union of circuits. A

matroid is supereulerian if it contains a spanning cycle.

To answer an open problem of Bauer in 1985, Catlin

proved in [J. Graph Theory 12 (1988) 29–44] that for

sufficiently large n, every 2‐edge‐connected simple

graph G with   n V G= ( ) and minimum degree

 G( )
n

5
 is supereulerian. In [Eur. J. Combinatorics,

33 (2012), 1765–1776], it is shown that for any

connected simple regular matroid M , if every cocircuit

D of M satisfies   { }D max , 6
r M( )  5

5
 , then M is

supereulerian. We prove the following. (i) Let M be a

connected simple regular matroid. If every cocircuit D

of M satisfies   { }D max , 9
r M( ) + 1

10
 , then M is super-

eulerian. (ii) For any real number c with c0 < < 1,

there exists an integer f c( ) such that if every cocircuit D

of a connected simple cographic matroid M satisfies

  D c r M f cmax{ ( ( ) + 1), ( )} , then M is supereulerian.
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1 | INTRODUCTION

We investigate finite graphs and matroids, with loops and parallel edges or parallel

elements permitted, and generally follow [3] for graphs and [23] for matroids for undefined

terminologies and notations. A circuit in a graph is a nontrivial 2‐regular connected graph

and a cycle is an edge disjoint union of circuits. A connected cycle is a closed trail or an

eulerian graph in [3]. A graph G is supereulerian if it contains a spanning cycle, a cycle

of G that contains a spanning tree of G. Boesch, Suffel, and Tindell in [1] initiated the study

of the supereulerian graph problem, which aims at characterizations of graphs with

spanning cycles. Pulleyblank [24] indicated that the problem of determining if a graph is

supereulerian, even when restricted to planar graphs, is NP‐complete. Catlin's survey [5]

and its updates [8, 17] are resourceful references for further literature on the supereulerian

problem.

Following the notation in [23], r M, ( )M  and M( )! denote the rank function, the

collections of bases and circuits of a matroid M E= ( , )" , respectively. For a subset

X E M X," # and  M X denote the matroid contractions and matroid restrictions,

respectively. We define a cycle of M to be a disjoint union of circuits in M , and use

M( )0! to denote the collection of all cycles of M . If a cycle C M( )0!$ satisfies

r C r E( ) = ( )M M , then C is a spanning cycle of M . A matroid M with a spanning cycle is

called a supereulerian matroid. For a matroid M , the girth of M is

"
#
$

%
$

  
g M

k M C C k M

M
( ) =

min { : has a circuit with = } : if has a circuit

: if has no circuits.%

IfG is a graph, then we define the girth of a graphG to be g G g M G( ) = ( ( )). The cogirth of

a matroid M is g M( *), which is often denote by g M*( ).

Let G be a connected graph and M M G= ( ) be the cycle matroid of G. IfU V V G, ( )" , and

W is a proper nonempty vertex subset of V G( ), then define W V G W= ( )  ,

U V uv E G u U v V W W W( , ) = { ( ) : and }, and ( ) = ( , ) .G G G$ $ $ &

Let N W u W v W uv E G( ) = { : such that ( )}G $ ' $ $ . We set E v v N v( ) = ({ }), ( )G G G& for

N v({ })G , and define N v N v v[ ] = ( ) { }G G ( . As in [3], let " G " G G( ), "( ), #( ) and  G( ) denote the

connectivity, the edge‐connectivity, the maximum degree and the minimum degree of a graph

G. The following is well‐known.

 G " G g M G( ) "( ) = *( ( )). (1)

Settling some open problems raised by Bauer in [2], the following has been proved.

Theorem 1.1. Let G be a 2‐edge‐connected simple graph on   n V G= ( ) vertices.

(i) (Catlin, Theorem 9 of [4]) If n > 16 and  G( ) >  1
n

5
, then G is supereulerian.

(ii) (Theorem 5 of [14]) If n g G31, ( ) > 4 and  G( ) >
n

10
, then G has a spanning cycle.

Jaeger [12] showed that every 4‐edge‐connected graph is supereulerian. It has been

observed in [16] that there exists an infinite family of non‐supereulerian cographic matroids
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which can have arbitrarily large cogirth. Thus in general, large cogirth is not sufficient to assure

that a regular matroid is supereulerian. It is natural (as seen in [11]) to replace the minimum

degree of a graph by the cogirth of a matroid. Efforts extending Theorem 1.1 (i) to regular

matroids have been done in [20].

Theorem 1.2 (Theorem 1.3 of [20]). Let M be a connected simple regular matroid. If every

cocircuit D of M satisfies   { }D max , 6
r M( )  5

5
 , then M is supereulerian.

Theorems 1.1 and 1.2 motivate the current research. We prove the following Theorems 1.3

and 1.4. It is observed that Theorem 1.3 improves Theorem 1.2 when the rank of a matroid is

sufficiently large.

Theorem 1.3. Let M be a simple regular matroid. If

"
#
$

%
$

&
'
$

(
$g M

r M
*( ) max

( ) + 1

10
, 9 , (2)

then M is supereulerian.

Theorem 1.4. Let M be a connected simple cographic matroid. For any real number c

with c0 < < 1, there exists an integer f c( ) such that if every cocircuit D of M satisfies

  D c r M f cmax{ ( ( ) + 1), ( )} , then M is supereulerian.

Preliminaries will be displayed in the next section, including Seymour's decomposition

theorem of regular matroids. Then we show that Theorem 1.3 is equivalent to a version with an

additional girth requirement, which allows us to obtained a better bound in (2). The proof of

the main results will be presented in the last two sections.

2 | PRELIMINARY

This section is a preparation for the mechanisms to be deployed in the arguments in each of

the steps to prove the main results. We will use contraction and Seymour's decomposition

theorem of regular matroids to proceed our inductive proofs. Certain properties of strength and

fractional arboricity of matroids will also be utilized to deal with the cographic case in

the proof.

2.1 | Contractible configurations

We start with contractions of graphs and matroids. Let G be a graph and let X E G( )" be an

edge subset. Throughout this article, we adopt the convention to use X to denote both an edge

subset of G and G X[ ], the subgraph of G induced by the edges in X . Thus V X( ) is the set of

vertices in G that are incident with edges in X . The contraction G X# is the graph obtained

from G by identifying the two ends of each edge in X , and then deleting the edge being

contracted. If J is a subgraph of G, then we use G J# for G E J( )# , and define G G=#) .
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Following [23], for a matroid M with a subset X E M( )" , we use M X to denote the

restriction  M E X(  ).

Let $ denote a collection of matroids. A matroid N is a $ ‐supereulerian contractible

configuration, or simply contractible in $ , if N $$ and for any M $$ containing N as a

restriction,

M M Nis supereulerian if and only if is supereulerian.# (3)

LetO G( ) denote the set of all odd degree vertices inG. A graph H is collapsible if for any

subset R V H( )" with   R 0* (mod 2), H has a connected subgraph $R such that

O R($ ) =R and V V H($ ) = ( )R . Catlin [4] showed that, if % denotes all graphic matroids, then

the cycle matroids of collapsible graphs are contractible in % . For a graph G with H H H, , …, c1 2

being the maximal collapsible subgraphs of G, the contraction G G H H H" = ( )c1 2# ( ( + ( is

the reduction of G. A graph G with G G= " is a reduced graph. The following is a brief

summary of some useful mechanisms.

Theorem 2.1. Let G be a connected graph, and let F G( ) be the minimum number of

additional edges that must be added to G to result in a graph with 2 edge‐disjoint spanning

trees. Each of the following holds.

(i) (Catlin, Theorem 3 of [4]) If H is a collapsible subgraph of G, then G has a spanning

cycle if and only if G H# has a spanning cycle.

(ii) (Catlin, Theorem 5 of [4]) A graph G is reduced if and only if G contains no nontrivial

collapsible subgraphs.

(iii) (Catlin et al., Theorem 1.3 of [7]) If F G( ) 2, , then the reduction of G is in

K K K t{ , } { : 1}t1 2 2,(  .

(iv) (Catlin et al., Lemma 2.3 of [7]) If G K K{ , }1 2- is reduced, then

    F G V G E G( ) = 2 ( )  ( )  2.

Let # M( ) denote the maximum number of disjoint bases of M . If G is a connected graph,

then # G # M G( ) = ( ( )). Characterizations of matroids M with # M k( )  have been obtained by

Edmonds [10], extending the graphical results by Nash‐Williams [22] and Tutte [26]. Catlin in

[4] (also implied by Theorem 2.1(iii)) showed that if # G( ) 2 , then M G( ) is contractible in % .

This has been extended to binary matroids.

Lemma 2.2. Each of the following holds.

(i) (Theorem 5.4 of [16]) Let N be a binary matroid. If # N( ) 2 , then for any binary

matroid M that contains N as a restriction, M N# is supereulerian if and only if M is

supereulerian.

(ii) (Theorem 5.7 of [16]) Let M be a binary matroid and let N M( )!$ with   N 3, . Then

M N# is supereulerian if and only if M is supereulerian.

Proof. An explanation for Lemma 2.2 (ii) might be needed as Theorem 5.7 of [16] only proves

the case when   N = 3. If   N = 2, then # N( ) = 2 and so Lemma 2.2(ii) follows from (i).

If   N = 1, then N consists of a loop e. Thus M e M N = # has a spanning cycle C if and

only if C is a spanning cycle of M . Hence Lemma 2.2(ii) holds for   N = 1 also. .

110 | HUO ET AL.
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Definition 2.3. Let M be a binary matroid. A subset N is eligible in M if

either  # M N( ) 2 , or N M( )!$ with   N 3, . A matroid M is eligible if M is spanned

by an eligible subset. We run the following algorithm to a binary matroid M with

r M( ) > 0.

(i) Set M M0 / .

(ii) For each i = 0, 1, …, do the following.

(ii‐1) If Mi has a subset N that is eligible in Mi with r N r M( ) < ( )i , then set M M Ni i+1 / #

and continue.

(ii‐2) If Mi has no eligible subsets or every eligible subset N in Mi satisfies r M r N( ) = ( )i ,

then stop.

When the algorithm stops, the resulting matroid is a binary reduction of M .

For sets X and Y , the symmetric difference of X and Y is defined as

X Y X Y X Y# = ( )  ( )( 0 . It is known that for a binary matroid M , if C C,1 2 are cycles of

M , then C C1 21 is also a cycle of M .

Corollary 2.4. Every eligible binary matroid is supereulerian.

Proof. Let M be an eligible matroid. Then for some eligible subset

N E M r N r M( ), ( ) = ( )" . If N is spanned by a 3‐circuit C, then C is a spanning

cycle of M , and so M is supereulerian. Assume that  # M N( ) 2 . Since r M r N( ) = ( ),

we have  # M # M N( ) ( ) 2  . Let B B, " be two disjoint bases of M .

For each e E M B( )  $ , let C e B( , )M denote the fundamental circuit of e with

respect to B, and

C C e B= ( , ).e E M B M( ) 1 $

As M is binary, C is a cycle of M . Since B E M B C M" ( )  ," " is

supereulerian. .

Lemma 2.5. Let M be a binary matroid and let M" denote a binary reduction of M . Each

of the following holds.

(i) M is supereulerian if and only if M" is supereulerian.

(ii) Either M" is spanned by a subset N that is eligible in M , or g M( ") 4 .

(iii) g M g M*( ") *( ) .

Proof. Suppose that M is supereulerian. Then it is known (see, e.g., Lemma 5.2 of [16])

that every contraction of M is also supereulerian. Assume that M" is supereulerian. Then

a finite number of repeated applications of Lemma 2.2 would show that M is

supereulerian. This proves (i).

By Definition 2.3, if M" is not spanned by a subset N that is eligible in M , then as M" is

a binary reduction of M M, " does not have a circuit C with   C 3, . It follows that

g M( ") 4 . As by definition, M" is a contraction of M , and so by Proposition 3.1.17 of

[23], we have g M g M*( ") *( ) . This proves (ii) and (iii). .

HUO ET AL. | 111

 1
0
9
7
0
1
1
8
, 2

0
2
3
, 1

, D
o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://o
n
lin

elib
rary

.w
iley

.co
m

/d
o
i/1

0
.1

0
0
2
/jg

t.2
2
8
6
0
 b

y
 U

n
iv

ersity
 O

f A
lab

am
a B

irm
in

g
h
am

, W
iley

 O
n
lin

e L
ib

rary
 o

n
 [1

5
/0

2
/2

0
2
3

]. S
ee th

e T
erm

s an
d
 C

o
n
d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d
itio

n
s) o

n
 W

iley
 O

n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v

ern
ed

 b
y
 th

e ap
p
licab

le C
reativ

e C
o
m

m
o
n
s L

icen
se



2.2 | Seymour's decomposition theorem of regular matroids

We follow [23] to adopt the definition of k‐separations and k‐connectedness of matroids, for an

integer k > 0. Let M1 and M2 be two binary matroids with collections of cycles M( )0 1! and

M( )0 2! , respectively. Seymour ([25]) introduced a binary matroid M M1 21 with ground set

E E M E M= ( ) ( )1 21 whose collection of cycles are X X X M X M{ : ( ) and ( )}1 2 1 0 1 2 0 2! !1 $ $ .

(See Lemma 9.3.1 of [23]). Three special cases of M M1 21 are introduced by Seymour ([25]) as

follows.

Definition 2.6. For i {1, 2}$ , let Mi be a binary matroid with E E M= ( )i i .

(i) If E E =1 20 ) and       E E E E M M, < ,1 2 1 2 1 21 1 is a 1‐sum of M1 and M2,

denoted by M M1 22 .

(ii) If   E E = 11 20 and E E p= { }1 20 , say, and p is not a loop or coloop of M1 or M2, and

      E E E E M M, < ,1 2 1 2 1 21 1 is a 2‐sum of M1 and M2, denoted by M M1 2 22 .

(iii) If   E E = 31 20 and E E Z=1 20 , and Z is a circuit of M1 and M2, and Z includes no

cocircuit of either M1 or M2, and       E E E E M M, < ,1 2 1 2 1 21 1 is a 3‐sum of M1

and M2, denoted by M M1 3 22 .

It follows from Definition 2.6 that for an integer i {2, 3}$ , if M is i‐connected and

M M M= i1 22 , then

r M r M r M i( ) = ( ) + ( )  (  1).1 2 (4)

The following is a summary of some of the useful properties related to the sums of binary

matroids.

Lemma 2.7. Let M1 and M2 be two binary matroids.

(i) (Proposition 7.1.22(i) of [23]) M M M M( )* = * *1 2 2 1 2 22 2

(ii) (Seymour, [25]) M M M M( )* = * *1 3 2 1 22 1 .

(iii) (Proposition 7.1.22(ii) of [23]) M M1 2 22 is connected if and only if both M1 and M2

are connected.

(iv) (Proposition 7.1.22(ii) and Lemma 9.3.3 of [23]) Let M1 and M2 be binary

matroids with

    E M E Mmin{ ( ) , ( ) } 71 2  

and E M E M Z( ) ( ) =1 20 such that   Z = 3 and Z M M( ) ( )1 2! !$ 0 . Then

M M M Z M Z C

C C Z C Z C M D M

( ) = (  ) (  ) {

: = , ( ) and ( )}.

1 3 2 1 2 1

2 1 2 1 2

! ! !

! !

2 ( ( 1

0 0 $ $

(v) (Lemma 9.3.4 of [23]) The 3‐sum M M1 3 22 has E M E M E M E M( ( )  ( ), ( )  ( ))1 2 2 1 as

an exact 3‐separation, with     E M E M E M E Mmin{ ( )  ( ) , ( )  ( ) } > 31 2 2 1 .
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(vi) (Theorem 2 of [27]) If M M M= 1 3 22 is simple and 3‐connected, then M1 and M2 are

connected.

Let R10 denote the vector matroid of the following matrix over GF (2):

By definition, it is observed (Observation 2.6 of [20]) that

R R R e E R R e M Kis supereulerian , * , and ( ),  ( ).10 10 10 10 10 3,33 4 $ 3 (5)

Lemma 2.8 (Lemma 2.8 of [20]). Let i {2, 3}$ be an integer and M be an i‐connected

binary matroid such that M is an i‐sum with one of the summands being isomorphic to

either R10 or a graphic matroid or a cographic matroid. Then there exist binary matroids M1

and M2 with M M M= i1 22 such that M2 is isomorphic to either R10 or a graphic matroid or

a cographic matroid satisfying

r M r M i or equivalently r M r M i( ) ( ( )  + 1) 2, , ( ) 2 ( ) +  1.2 2, #  (6)

The next result is a fundamental theorem of Seymour known as the decomposition theorem

of regular matroids. The original version of Seymour's theorem in [25] is slightly different, and

the version presented here is known (see (3.3) of [15]) to be equivalent to the original version.

Theorem 2.9 (Seymour [25]). For a connected regular matroid M , one of the following

must hold.

(i) M is graphic, cographic, or M R103 .

(ii) M is 2‐connected and M M M= 1 2 22 is a 2‐sum of M1 and M2. Each of Mi (i = 1, 2) is

isomorphic to a proper minor of M , where M2 is either graphic, cographic, or

isomorphic to R10.

(iii) M is 3‐connected and M M M= 1 3 22 is a nontrivial 3‐sum of M1 and M2. Each of Mi

(i = 1, 2) is isomorphic to a proper minor of M , where M2 is either graphic or cographic.

Corollary 2.10. Let M be a connected regular matroid with cogirth g M*( ) at least 5.

Each of the following holds.

(i) M is not isomorphic to R10.

(ii) M can not be expressed as a 2‐sum of M1 and R10.

Proof. As g R( ) = 410 , it follows from (5) that g R g R( * ) = ( ) = 4 < 510 10 . Hence M R105 .

Hence we must have (i). Suppose that M is 2‐connected and M M M= 1 2 22 is a
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2‐sum of M1 and M2, with M R=2 10, and with E M E P p( ) ( ) = { }1 100 . By

Lemma 2.7, M M R* = * *1 2 102 , and so R p M M( *  ) ( *) = * ( )10! ! !6 . However,

by (5), R p M K*  ( )10 3,3 , and so g R p g M4 = ( *  ) ( *) 510 " " , a contradiction.

This proves (ii). #

Proposition 2.11 (Proposition 5.5 of [16]). Let M M, 1 and M2 be binary matroids in which

M M M= 1 2$ with Z E M E M= ( ) ( )1 2% and such that one of the following holds.

(i) Z e= { }0 and M M M= 1 2 2& is a 2‐sum, or

(ii) Z e e e= { , , }1 2 3 and M M M= 1 3 2& is a 3‐sum,

Suppose that M M G= ( )2 is graphic and G Z contains a nontrivial collapsible subgraph

L. Then M E L( )' is supereulerian if and only if M is supereulerian.

2.3 | Fractional arboricity and strength of matroids

Our arguments depend on some of the former results in [6] as our tools, and we bring in some

basics on fractional arboricity and strength of matroids. The notion of matroid strength is

brought in by Cunningham in [9]. Some of the sensitivity discussions on matroid strength can

be found in [18, 19]. Let M be a matroid with r M( ) > 0 and let clM denote the closure operator

of M . For any subset X E M( )( with r X( ) > 0, define

  
d X

X

r X
( ) =

( )
.M

The subscript M is often omitted when it is understood from the context. As in [6], we

define

 M d M X " M d X( ) = min ( ) and ( ) = max ( ),
X E M r X r M X( ), ( )< ( )

'
( )* (7)

respectively. The invariants  M( ) and " M( ) are known as the strength and the fractional

arboricity of a matroid M , respectively. Let X E M( )( be a subset. As r X r cl X( ) = ( ( ))M , it

follows from (7) that

 M X  M cl X( ) = ( ( )).M' ' (8)

A summary of useful properties is displayed in Theorem 2.12 stated in the following.

Theorem 2.12. Let p and q be integers with p q> > 0 and let M be a matroid with

r M( ) > 0. Each of the following holds.

(i) (Edmonds [10], see also Corollary 5 of [6])
  

" M  M( ) ( )
E

r M( )
" " , and

" ## M  M( ) = ( ) .
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(ii) (Corollary 5 of [6]) E M( ) has a nonempty subset X with   M X( )
p

q
" if and only if

" M( )
p

q
" .

(iii) (Theorem 1 of [6])  M " M " M( *)( ( )  1) = ( ) and " M  M  M( *)( ( )  1) = ( ).

(iv) (Lemma 9 of [6]) For any closed set X E M( )+ with " X " M  M  M X( ) < ( ), ( ) ( ), ' .

(v) If for some subset (possibly empty) X E M( )( , we have  M X( * )
p

q
' , , then there exists

a subset N E M( )+ such that   M N( )
p

p q 
" .

Proof. We only need to prove (v). As M X M X* = (  )*' , it follows by Theorem 2.12(iii) that

" M X  M X " M X  M X " M X
p

q
" M X

(  ) = ((  )*)( (  )  1) = ( * )( (  )  1)

( (  )  1).

'

,

By algebraic manipulation, we have p q " M X p(  ) (  ) " and so " M X(  )
p

p q 
" . By

Theorem 2.12(ii), we conclude that there exists a nonempty subset N E M X E M(  ) ( )+ (

such that    M N  M X N( ) = ((  ) )
p

p q 
" . #

3 | REDUCED TO REGULAR MATROIDS WITH GIRTH
AT LEAST 4

The main purpose of this section is to show that Theorem 1.3 is equivalent to a seemingly

weaker version that an additional girth condition is imposed, as stated in the following.

Theorem 3.1. Let M be a simple regular matroid with g M( ) 4" . If M satisfies (2), then

M is supereulerian.

The following Lemma 3.2 indicates that Theorem 1.3 and Theorem 3.1 are indeed

equivalent to each other. Once we justify Lemma 3.2, the main goal of the article will be to

prove Theorem 3.1.

Lemma 3.2. Let M be a simple regular matroid that satisfies (2). The following are

equivalent.

(i) M is supereulerian.

(ii) If, in addition, we have g M( ) 4" , then M is supereulerian.

Proof. It suffices to assume that (ii) holds to prove (i). LetM be a simple regular matroid

that satisfies (2), and let M" be a binary reduction of M . If # M( ") 2" or if M" is spanned

by a circuit, then by Lemma 2.2 or by definition, M" is supereulerian. It follows from

Lemma 2.5(i) that M is supereulerian. Now assume that both # M( ") < 2 and M" is not

spanning by a circuit of size at most 3. By Lemma 2.5(ii), we have g M( ") 4" .

By Lemma 2.5(iii) and (2), we have
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$
%
&

'
&

(
)
&

*
&

$
%
&

'
&

(
)
&

*
&g M g M

r M r M
*( ") *( ) max

( ) + 1

10
, 9 max

( ") + 1

10
, 9 ." " "

Since Lemma 3.2(ii) holds, and since M" satisfies the hypothesis of Lemma 3.2(ii), we

conclude that M" is supereulerian. It follows now by Lemma 2.5(i) that M is

supereulerian. #

4 | SUPEREULERIAN GRAPHIC AND COGRAPHIC
MATROIDS

In this section, we shall justify Theorem 1.4 and show that Theorem 3.1 holds for graphic and

cographic matroids. Let G be a graph. For an integer i 0" , define

  D G v V G d v i d D G( ) = { ( ) : ( ) = }, and = ( ) .i G i i- (9)

By Theorem 2.1(i), collapsible graphs are supereulerian, and so Theorem 4.1(ii) implies

Theorem 4.1(i).

Theorem 4.1. Let G be a 4‐edge‐connected graph, and let M M G= ( ) be the cycle

matroid of G.

(i) (Jaeger [12] and Catlin [4]) The matroid M G( ) is supereulerian.

(ii) (Catlin [4]) The graph G is collapsible, and so M is contractible in  .

By (1), if M is a graphic matroid satisfying (2), then Theorem 4.1 indicates that M must be

supereulerian. Hence

MTheorem#3.1 holds if is graphic. (10)

To discuss cographic matroids, we modify the idea presented in Section 3 of [20] to show a

useful relationship involving the girth and the order of the graph. For vertices u v, in a graph H ,

we use dist u v( , )H to denote the length of a shortest path with u and v being the termini in the

path, which is also known as the distance between u and v in H .

Lemma 4.2. Let d d g h, , ,1 2 be integers with d d g2, 31 2" " " and
+

,
+++++

-

.
-----

h =
g  1

2
. If G is a

simple graph on n vertices with girth g G g G d( ) , $( ) = 1" and $ G d( ) = 2, then

$

%

&&&&&&&

'

&&&&&&&

n

d d
g h

d d
g h

1 +
((  1)  1)

2
= 2 + 1,

2 +
( + 2)((  1)  1)

2
= 2 .

h

h

1 2

1 2

"

Proof. Let v V G( )0 - be a vertex with d v d( ) =G 0 1. For each integer i 0" , let

V v V G dist v v i= { ( ) : ( , ) = }i G 0- . Suppose first that g h= 2 + 1 is odd. As d $ G= ( )1

and g G g( ) " ,
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/ /  n V d d
d d

1 + (  1) = 1 +
((  1)  1)

2
.

i

h

i

i

h
i

h

=0

1

=0

 1

2
1 2" "

Now assume that g h= 2 is even. Let v N v" ( )G0 0- and define, W v v= { , "}0 0 0 and for each

i W v V G dist v v dist i1, = { ( ) : min{ ( , ), } = }i G G v v0 ( , ")0
" - . As d $ G= ( )1 and g G g( ) " ,

/ /  n W d d
d d

2 + ( + 2) (  1) = 2 +
( + 2)((  1)  1)

2
.

i

t

i

i

h
i

h

=0

1

=0

 1

2
1 2" "

This proves the lemma. #

Definition 4.3 (Liu et al. [21]). Let c $, and g be integers with $ gmin{ , } 3" and

c $2  1, , , and let
+

,
+++++

-

.
-----

h =
g  1

2
Define

/

/

$

%

&&&&&&&&

'

&&&&&&&&

% $ g c

$ c $ g h

$ c $ g h

( , , ) =

1 + (  ) (  1) if = 2 + 1,

2 + (2  2  ) (  1) if = 2 .

i

h
i

i

h
i

=0

 1

=0

 1 (11)

Lemma 4.4 (Lemma 3.2 of [21]). Let G be a simple connected graph and let X be a

vertex cut of G and H be a connected component of G X . If $ d vmin{ ( ):G.

  v V H X( )} 4, 3- " , , and the girth of H satisfies g g H( ) 4. " , then

/

/

  

$

%

&&&&&&&&

'

&&&&&&&&

V H % $ g

$ $ g h

$ $ g h

( ) ( , , 3) =

1 + (  3) (  1) if = 2 + 1,

2 + (2  5) (  1) if = 2 .

i

h
i

i

h
i

=0

 1

=0

 1
"

Proof. In the proof of Lemma 3.2 in [21] with   A V H= ( ) , only the facts that X is a

vertex cut of G with   X $< and that every vertex v A- satisfies d v $( )G " are used.

Therefore, by Lemma 3.2 of [21], we have     V H % $ g X( ) ( , , )" . By Definition 4.3, we

observe that if c c1 2, , then % $ g c % $ g c( , , ) ( , , )1 2" . Hence as   X {2, 3}- , we have

    V H % $ g X % $ g( ) ( , , ) ( , , 3)" " . This completes the proof of the lemma. #

By definition, a matroid M has a spanning cycle if and only if every component of M has a

spanning cycle. Thus to prove Theorems 1.3 and 3.1 for all simple regular matroids, it suffices

to prove Theorems 1.3 and 3.1 for all connected simple regular matroids. We now assume that

M is connected cographic matroid, and so there exists a connected graph G such that

M M G= *( ). As M is connected, M* is also connected and so G is a 2‐connected simple graph.

By (1) and (2), g G g M G g M( ) = *( *( )) = *( ) 4" . By the assumption of Theorem 3.1, we have

g M( ) 4" , and so $ G & G g M( ) "( ) = ( ) 4" " .

Lemma 4.5. Let G be a connected simple graph with     $ G m E G n V G( ) 4, = ( ) , = ( )"

and g g G= ( ).
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(i) Suppose that g 4" . For any real number c with c0 < < 1, there exists a positive

integer f c( ) such that if g c m n f cmax{ (  + 2), ( )}" , then G is 4‐regular.

(ii) If { }g max , 9
m n + 2

10
" , then G is 4‐regular.

Proof. Let d G= $( )1 , and v V G( )0 - such that d v d( ) =G 0 1. With the definition of

D G( )i in (9), we define 0R D G= ( )i i5 and   r R= . Thus as  G( ) 4 , we have

" " "      m E G d v i D G n i D G n r2 = 2 ( ) = ( ) = ( ) = 4 + (  4) ( ) 4 + .
v V G

G

i

i

i

i

( ) 4 5

 
"   

This, together with the assumption that g c m n(  + 2) , implies that

n
g

c
r2

2
  4.# (12)

For a fixed real number c with c0 < < 1, define a function " x( ) = 3   + 5c
x x

c c

4 2
. As

" x"( ) = 3 ln(3)  > 0c
x

c

4
for any values of x , it follows that " x( )c is an increasing function

on the interval ( )( )log ,
c3

4

ln(3)
$ with " xlim ( ) =x c $%$ , and so there exists a smallest

positive integer x0 such that for any x x0 ,

x

c c
3

4
+

2
 5.x  (13)

With a similar argument, we conclude that there exists also a smallest positive integer x "0
such that for any x x "0 ,

x

c
3

2
 7.x+1  (14)

Now let f c x x g f c( ) = max{2 + 1, 2 "}, ( )0 0  , and
#

$
#####

%

&
%%%%%

h =
g  1

2
. Then h x0 . Suppose

g h= 2 + 1. If G is not 4‐regular, then d G= #( ) 51  and r > 0. By Lemma 4.2, G has at

least ( )d1 + 1 + (3  1)
 

 

d h
1

(  1)  1

 2 2

h
1 vertices of distance at most h from v0. Thus by

(12), d n h r2 + (3  1) 2 (2 + 1)   4h
c1
2

# # . Since d 51  and r > 0, we have

3 < +  h h

c c

4

5

2

5

1

5
. On the other hand, as h x0 , it follows by (13) that

3 +  h h

c c

4

5

2

5

1

5
 , a contradiction. Hence G must be 4‐regular in this case.

Assume next that g h= 2 + 2. IfG is not 4‐regular, then we have d 51  and r > 0. By

4.2, G has at least ( )d2 + ( + 2) 2 + (3  1)
 

 

d h
1

(  1)  1

 2

+ 2

2
 1

h 1
1 vertices of distance at

most h from v0. Thus by (12), d n r4 + ( + 2)(3  1) 2   4h h

c1
 1 4

# # . It follows from

d 51  and r > 0 that h3 <  h
c

 1 4

7

1

7
. As h x "0 , it follows by (14) that h3  h

c
 1 4

7

1

7
 , a

contradiction. Hence G must be 4‐regular in any case. This proves (i).

We choose c =0
1

10
in the arguments above. As " (4) = 3  32  4 + > 0c

4 1

50
,

we have x 40 # . With a similar argument, we also have x " 40 # . Hence
f c x x( ) = max{2 + 1, 2 "} 90 0 0 # . This completes the proof for (ii). &
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An acyclic k‐partition of a graph G is a collection of mutually disjoint nonempty subsets

V V V, , …, k1 2 of V G( ) with 'V G V( ) = i
k

i=1 such that for each i with i k G V1 , [ ]i# # is acyclic.

Define the vertex arboricity of a graph G to be

a G k V G k( ) = min{ : ( ) has an acyclic $partition}.

Kronk and Mitchem in [13] proved a useful relationship between a G( ) and the maximum

degree G#( ) of a graph G. It is also known that a G( ) can be used to study if M G*( ) is

supereulerian.

Theorem 4.6 (Kronk and Mitchem [13]). If G is connected, not complete and

a G k( ) = 3 , then G k#( ) 2  1 .

Lemma 4.7 (Lemma 3.2 of [20]). Let G be a graph and M M G= ( ). The following are

equivalent.

(i) M G*( ) is supereulerian.

(ii) There eixsts a 2‐partition V V{ , }1 2 of V G( ) such that each of G V[ ]1 and G V[ ]2 is a forest.

(iii) a G( ) 2# .

Theorem 4.6 and Lemma 4.7 are now applied to prove the Theorem 4.8, another main result

in this subsection.

Theorem 4.8. Let G be a 2‐connected graph with     m E G n V G= ( ) , = ( ) and

g G( ) 4 , and M M G= * ( ) be the cocycle matroid of G. Each of the following holds.

(i) For any real number c with c0 < < 1, there exists a positive integer f c( ) such that if

g M c r M f c*( ) max{ ( ( ) + 1), ( )} , then M is supereulerian.

(ii) If { }g M*( ) max , 9
m n + 2

10
 , then M is supereulerian.

Proof. As M M G= * ( ), we have g G g M g M( ) = ( *) = * ( ). By Lemma 4.7, we only need

to show that a G( ) 2# . By (1), # G g M"( ) = ( ) 4 , and so  G( ) 4 . By Lemma 4.5(i),

there exists a positive integer f c( ) such that if

g G g M c r M f c c m n f c( ) = * ( ) max{ ( ( ) + 1), ( )} = max{ (  + 2), ( )}, 

then G is 4‐regular. Therefore, we assume that G is simple 2‐connected 4‐regular graph

with girth g 4 . This implies that   V G( ) 5 . As g G G( ) 4, is not a complete graph. If

a G( ) 3 , then by Theorem 4.6, we must have G#( ) 5 , contrary to the assumption that

G is 4‐regular. Hence a G( ) 2# and so Theorem 4.8 (i) follows from Lemma 4.7.

Now assume that { }g M*( ) max , 9
m n + 2

10
 . We adopt the same arguments above but

quoting Lemma 4.5(ii) instead of Lemma 4.5(i). This leads to the conclusion that

a G( ) 2# , and so by Lemma 4.7, M is supereulerian. &

Proof of Theorem 1.4. Let M be a connected simple cographic matroid. For a fixed real

number c with c0 < < 1, let f c( ) be the integer as determined by Theorem 4.8(i).
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Assume that g M c r M f c*( ) max{ ( ( ) + 1), ( )} .

Let M" be a binary reduction of M . If M" is spanned by an eligible subset, then by

Corollary 2.4, M" is supereulerian, and so by Lemma 2.5(i), M is supereulerian. Hence we

assume that M" is not spanned by an eligible subset. By Lemma 2.5, g M( ") 4 and

g M g M c r M f c c r M f c*( ) *( ) max{ ( ( ) + 1), ( )} max{ ( ( ") + 1), ( )}   . It follows by

Theorem 4.8(i) that M" is supereulerian. By Lemma 2.5(i), M is supereulerian. This

completes the proof of Theorem 1.4. &

5 | PROOF OF THEOREM 3.1

We argue by contradiction and assume that there exists a counterexample to Theorem 3.1.

Among all the counterexamples, we choose a regular matroid M that satisfies (2) but violates

the conclusion of Theorem 3.1 so that

  M E Mis not supereulerian with ( ) is minimized. (15)

Thus by (15), (5), (10) and by Theorem 4.8, we may assume that M is connected, and M is

neither graphic nor cographic, and M R10' . This, together with Lemma 2.8, Theorem 2.9 and

Corollary 2.10, leads to the conclusion that for some i {2, 3}" , and some proper minors M1 and

M2 of M , we have

M M M M= , such that is either graphic or cographic satisfying (6).i1 2 2( (16)

Therefore, we will proceed our proof arguments according to the cases when M2 is graphic

and when M2 is cographic.

5.1 | Proof of Theorem 3.1 when M2 is graphic

Let G be a connected graph with M M G= ( )2 as the cycle matroid of G, and

Z E M E M= ( ) ( )1 2) such that either Z p= { } for some element p that is neither a loop nor a

coloop in each of M1 and M2, or   Z = 3 and Z M M( ) ( )1 2  " ) . Then Z E M E G( ) = ( )2* .

Define V Z( ) to be the set of vertices in G that are incident with edges in Z . Note that we have
M Z M Z M M*( ) = ( *  ) ( *) = *( )2 2    + , . As M2 is graphic with M M G= ( )2 , we have

 G Z # G Z g G Z g M Z g M( ) "( ) = * ( ) * ( ) * ( ).2+  + +  +  (17)

If M satisfies (2), then it follows from (17) and (1) that, for any v V G( )  "

V Z d v  G # G g M( ), ( ) ( ) "( ) = * ( ) 9G    . To prove Theorem 3.1 when M2 is graphic, we

need the following lemmas.

Lemma 5.1. Let G be a 2‐connected graph with an edge subset Z E G( )* such that for

any v V G V Z d v( )  ( ), ( ) 9G"  . Each of the following holds.

(i) If Z e= { }, then G e contains a nontrivial collapsible subgraph.
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(ii) If Z e e e= { , , }1 2 3 is a circuit of G, then G Z contains a nontrivial collapsible

subgraph.

Proof. Let H G Z=  and   n V H= ( ) . As Z is either an edge or a 3‐circuit, we have

  V Z( ) 3# . For integers i 1 , define D H( )i and   d D H= ( )i i as in (9), with H replacing

G in (9). We start arguing by contradiction to assume that H has no nontrivial collapsible

subgraphs. By Theorem 2.1(ii), H is reduced. Since for any v V H V G V Z( ) = ( )  ( )" ,

we have   d v d v V Z( ) ( )  ( ) 9  3 = 6H G  , and so n 7 , implying that H K K{ , }1 2 .

By Theorem 2.1(iii), we have F H( ) 2" . By Theorem 2.1(iv),

    n E H F H E H n4  2 ( )  4 = 2 ( ) 4, and so 2 ( ) 4  8." #

Suppose first that Z e= { }, and so   V Z( ) 2# . Then "n E H d v4  8 2 ( ) = ( )v V H H( )" "$

" d v n( ( )  2) = 7(  2)v V H G( )$ , implying n 2# , a contradiction. Now assume

that Z is a 3‐circuit in G, and so   V Z( ) = 3. In this case, we have

" "n E H d v d v n4  8 2 ( ) = ( ) ( ( )  3) = 6(  3)v V H H v V H G( ) ( )" "$ $ . Once again we

are led to n 5# , contrary to the fact that n 7" . These contradictions indicate that

the assumption that H does not have a nontrivial collapsible subgraph is false.

This proves the lemma. %

Lemma 5.2. Let i {2, 3}$ be an integer, M be a binary matroid such that for some

binary matroids M1 and M2, we have M M M= i1 2& with Z E M E M= ( ) ( )1 2' . Suppose

that for some connected graph G M M G, = ( )2 is the graphic matroid of G. Let H G Z=  

and J J J, , …, s1 2 be the maximal nontrivial collapsible subgraphs of #H J E J, = ( )i
s

i=1 .

If M J( is supereulerian, then M is supereulerian.

Proof. We argue by induction on s. If s 1# , then Lemma 5.2 follows from Proposition

2.11. Inductively, we assume t hat s 2" and Lemma 5.2 holds for smaller values of s. Let

#N M E J= ( ( ))i
s

i=1
 1( . Then N is supereulerian. By Proposition 2.11, N E J M J( ) =s( ( is

supereulerian, and so by Proposition 2.11 again, N is supereulerian. Now by the

inductive assumption, that N is supereulerian implies that M is supereulerian. This

proves Lemma 5.2. %

The next result is the main conclusion of this subsection. It implies that, under the

assumptions of (15) and (16),

MTheorem 3.1 holds if is a graphic matroid.2 (18)

Theorem 5.3. Let i {2, 3}$ be an integer and let M be an i‐connected regular matroid

with g M g( ) = 4" such that for some proper minors M1 and M2, we have M M M= i1 2& ,

and such that M2 is graphic. Then M is supereulerian if both of the following hold.

(i) M satisfies (2).

(ii) Every simple regular matroid M" satisfying (2) with     E M E M( ") < ( ) is supereulerian.
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Proof. Let M be a regular matroid satisfying the hypotheses of Theorem 5.3. By

Lemma 2.7 (iii) and (vi), M2 is connected. Since M2 is graphic and connected, by

Proposition 4.1.7 of [23], there is a 2‐connected graph G with M M G= ( )2 . Set

Z E M E M= ( ) ( )1 2' and let H G Z=  .

Then by Lemma 5.1, H has a nontrivial collapsible subgraph. Let J be the disjoint

union of all nontrivial collapsible subgraphs of H , and let N M E J= ( )( . If g N( ) 4" ,

then define M N" = . If N has a circuit of size at most 3, then let M" be a binary reduction

of N . Thus M" is always defined.

If M" is eligible, then by Corollary 2.4, M" is supereulerian. By Lemma 2.5(i), M is

supereulerian, and we are done. Hence we assume that M" is not an eligible matroid, and

so by Lemma 2.5(ii), g M( ") 4" . By Lemma 2.5(iii) and (2), M" satisfies (2) as well:

$
%
&

'
&

(
)
&

*
&

$
%
&

'
&

(
)
&

*
&g M g M

r M r M
* ( ") * ( ) max

( ) + 1

10
, 9 max

( ") + 1

10
, 9 ." " "

Since J contains a nontrivial collapsible subgraph of   H E J, ( ) > 0 and so

        E M E M E J E N E M( ) > ( ( )) = ( ) ( ")( " . It follows by the assumption in

Theorem 5.3(ii) that M" is supereulerian. Thus whether M N" = or M" is a binary

reduction of N , by Lemma 2.5 (i), N is supereulerian, it follows by Lemma 5.2 that M is

supereulerian. This proves the theorem. %

5.2 | Proof of Theorem 3.1 when M2 is cographic

By Theorem 5.3, we conclude that Theorem 3.1 holds if M2 is graphic. Hence we assume that

M2 is cographic, and so there exists a connected graph G such that M M G= * ( )2 is the

cographic matroid ofG. Throughout this subsection, we let   n V G= ( ) and   m E G= ( ) . To deal

with this case, we modify an idea used in [20] to investigate the structural properties of graphs

with large girth and with some specific 3‐edge‐cuts.

5.2.1 | The graph family g( ) 

We will introduce a family of graphs which plays an important role in the proof arguments to

deal with the case when M2 is cographic. Throughout this subsection, let g 4" be an integer

and
+

,
+++++

-

.
-----

h =
g

2
.

Definition 5.4. Let g( ) be the family of all 2‐connected simple graphs such that

G g( ) $ if and only if each of the following holds.

(F1) There exists a 3‐edge‐cut Z of G (called a special‐cocircuit of G) such that

  E G Z(  ) > 3.

(F2) If G has an edge cut X with   X 3# , then X Z' ) *,

(F3) g G Z g(  ) " .
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Suppose that G g( ) $ with a special‐cocircuit Z . For any v V G V Z E v( )  ( ), ( )G$ is an

edge cut of G disjoint from Z . It follows by Definition 5.4(F2) that   E v( ) 4G " . Hence we have

the following.

  G g D G V Z DIf ( ), then for any cocircuit of  ( ), we have 4. $ " (19)

Lemma 5.5. Let G g( ) $ with   m E G= ( ) and   n V G= ( ) 7" , and with Z being the

special‐cocircuit of G. If g max { , 9}
m n + 2

5
" , then each of the following holds.

(i)  G Z( ) 2( # .

(ii) M G Z* ( )  contains a nonempty eligible subset.

Proof. Assume that (i) holds. Then  G Z( )) 2( # . By Theorem 2.12(v) with p = 2 and

q = 1, there exists a subset N E M G Z( * ( )  )+ such that   M G Z N(( * ( )  ) ) 2" . It

follows by Theorem 2.12(i) that  /  0" M G Z N  M G Z N( ( * ( )  ) ) = ( ( * ( )  ) ) 2" . By

Definition 2.3, M G Z* ( )  has a nonempty eligible subset N and so (ii) holds.

It remains to prove (i). LetG1 andG2 denote the two connected components ofG Z .

For each i {1, 2}$ , let   n V G= ( )i i and U V Z V G= ( ) ( )i i' . By symmetry, we assume

that n n2 1" . If   n U=2 2 , then   n n n V Z+ ( ) 61 2# # # , contrary to the assumption that

n 7" . Hence   n U>2 2 and soU2 is a vertex cut ofG with   U 32 # . SinceG is 2‐connected,

we have     U U, {2, 3}1 2 $ .

Let M M G= ( ) be the cycle matroid of M and let Z cl Z" = ( )M . By contradiction and

by (8), we assume

 G Z  G Z( ") = ( ) > 2.( ( (20)

Let     t Z Z= " = 3" . By (20) and Theorem 2.12(i),

  

  
 G Z

E G Z

V G Z

m t

n
2 < ( ")

( ")

( ")  1

 

(  3)  1
.( #

(

(
#

Algebraic manipulations lead to

m n n t n  (7  )  4." "

Let d d v v V G= min{ ( ) : ( )}G 2$ . By (19), d 4" . By Definition 4.3, if d d"" , then

# d g c # d g c( , , ) ( ", , )" . Hence applying Lemma 4.4 to the graphG with vertex cutU2 ofG

and component G2 of G U 2, we conclude that   V G # g( ) (4, , 3)2 " . It follows that

      

$

%

&&&&&&&

'

&&&&&&&

n n U U V G # g

g h

g h

 4  ( + ) ( ) (4, , 3) =

3 + 1

2
if = 2 + 1,

3 + 1

2
if = 2 .

h

h1 2 2 +1
" " "

(21)

As g 9" , by (21), we have n  4 = 41
3 + 1

2

4

" . Since
+

,
+++++

-

.
-----

+

,
+++++

-

.
-----

h =
g m n

2

 + 2

5
" , we have
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/ 0

m n n  4 >
3 + 1

2
.

m n +2
5

"

Solving the inequality
/ 0

m n >
3 + 1

2

m n +2
5

, we havem n 12# . As n12  4" , we have

n 16# , contrary to the fact that n 45" . This contradiction implies that the assumption

(20) must be false, and so the lemma is proved. %

Lemma 5.6. Let G g( )  with   m E G= ( ) and   n V G= ( ) , and with Z being the

special‐cocircuit of G. If g 4" and m 7" , then n 9" .

Proof. As   Z = 3 and G is simple, Z must be acyclic, and so     Z V Z4 = + 1 ( ) 6# # .

Thus by m 7" , there must be a vertex v V G V Z( )  ( ) . Let G1 and G2 be the two

components of G Z such that v V G( )1 . By (19), d v( ) 4G " . Since

    V Z V G Z( ) ( ) = 31$ # and since Z is a cocircuit of G, we have d v d v( ) = ( ) 4G G1
"

and so there must be a vertex w N v V Z[ ]  ( )G . Since g G g G g( ) ( ) 4,2 " " "

N v N w( ) ( ) =G G1 1
$ % and so         n V G V G V Z V G N v= ( ) ( ) + ( ) ( ) ( ) +G1 2 1

" $ "

  N w( ) + 1 9G1
" . This justifies the lemma. &

5.2.2 | Proof of Theorem 3.1 when M2 is cographic

We start by validating two lemmas.

Lemma 5.7. Let g be an integer and G be a graph with     m E G n V G= ( ) , = ( ) and

with a distinguished edge e u v=0 0 0 such that M G( ) is a connected matroid. Let Z e= { }0
and suppose that G Z is simple with   E G Z(  ) 2" , and for any circuit C of

  G Z E C g , ( ) " . If for any v V G V Z d v( )  ( ), ( ) 4G " , and { }g max , 9
m n + 2

5
" ,

then each of the following holds.

(i)  M G e( ( ) ) 20' # .

(ii) M G e* ( )  0 contains a nonempty eligible subset.

Proof. Suppose (i) holds. By Theorem 2.12 (v) with p = 2 and q = 1, and by

Theorem 2.12 (i), there exists a nonempty subset N E M e( *  )0( with

 "  #" M G Z N  M G Z N(( * ( )  ) ) = (( * ( )  ) ) 2" . By Definition 2.3, N is a nonempty

eligible subset of M G Z* ( )  , and so (ii) holds.

We argue by contradiction to prove (i) and assume that  M G e( ( ) ) > 20' . Let

Z E G V Z" = ( [ ( )]). By Theorem 2.12(i) and (8),

  

  
 M G e  G Z

E G Z

V G Z

m

n

m n n

2 < ( ( ) ) = ( ")
( ")

( ")  1

 1

(  1)  1
,

so   2.

0' ' #
'

'
#

"

Let J be the graph obtained fromG by replacing e0 by a path u z v0 0 0 with a new vertex z0.

Then u v{ , }0 0 is a vertex cut of J , with G" being a component of J u v { , }0 0 . Applying
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Lemma 4.4 to J with vertex cut u v{ , }0 0 and G" being a component of

J u v G u v { , } =  { , }0 0 0 0 , we have

  

$

%

&&&&&&&

'

&&&&&&&

n V G # g

g h

g h

> ( ") (4, , 3) =

3 + 1

2
if = 2 + 1,

3 + 1

2
if = 2 + 2.

h

h+1
" (22)

As g 10" , by (22), we have n > = 122
3 + 1

2

5

. By (22) and by " # " #h =
g m n

2

 + 2

10
" , we have

" #

m n n  2 >
3 + 1

2
.

m n +2
10

"

Hence m n 37# and n 39# , contrary to the fact that n > 122. Hence we must have

 M G e( ( ) ) 20' # . This justifies (i). &

Lemma 5.8. Let M be a binary matroid such that for some binary matorids M1 and M2,

we have M M M= 1 2) . Then for any X E M E M M X M M X( )  ( ), = ( )2 1 1 2( ' ) ' .

Proof. As the cycles of a binary matroid uniquely determine the matroid, it suffices to

show that M X M M X( ) = ( ( ))0 0 1 2! !' ) ' . It is known (see, e.g., Lemma 5.3 of [16]) that

M X C X C M( ) = {  : ( )}.0 0! !'  (23)

By the definition of M M1 2) , by (23) (with M replaced by M2), and by the fact that

X E M E M( )  ( )2 1( , we have

{ }M M X C C C M C M X

C C X C M C M

C C X C M C M

M X

( ( )) = " : ( ) and " ( )

= { (  ) : ( ) and ( )}

= {( )  : ( ) and ( )}

= ( ).

0 1 2 1 2 1 0 1 2 0 2

1 2 1 0 1 2 0 2

1 2 1 0 1 2 0 2

0

! ! !

! !

! !

!

) ' )   '

)   

)   

'

This proves the lemma. &

The next theorem is the main result of this subsection. This theorem, together with (5), (10),

Theorem 4.8, and (18), implies the validity of Theorem 3.1. By Lemma 3.2, Theorem 1.3 is

established.

Theorem 5.9. Let i {2, 3} be an integer and M be an i‐connected simple regular

matroid with g M g( ) = 4" , and M1 and M2 be proper minors of M such that

M M M= i1 2* and such that M2 is cographic. Then M is supereulerian if both of the

following hold.

(i) M satisfies (2).

(ii) If M" is a regular simple matroid M" satisfying (2) with     E M E M( ") < ( ) , then M" is

supereulerian.
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Proof. As M is i‐connected, by Lemma 2.7(iii) and (vi), M2, as well as M*2 , is also

connected. As M*2 is cographic and connected, there exists a 2‐connected graph G such

that M M G* = ( )2 is the cycle matroid ofG. Let Z E M E M= ( ) ( )1 2$ . By Definition 2.6, for

each i {2, 3} , either   i Z= 2, = 1 and the only element in Z is not a loop nor a coloop

of M1 and M2 with     E M E Mmin{ ( ) , ( ) } 11 2 " ; or   i Z= 3, = 3 and Z M M( ) ( )1 2! ! $

with     E M E Mmin{ ( ) , ( ) } 71 2 " . By Lemma 5.6,   V G( ) 7" . &

Claim 5.10. M Z M G Z = *( )  2 contains a nonempty eligible subset.

Since ( )M Z M Z M M* ( ) = *  ( *) = * ( )2 2! ! ! !' + , it follows that

$
%
&

'
&

(
)
&

*
&g M Z g M

r M
* ( ) * ( ) max

( ) + 1

10
, 9 .2' " "

By (16) and Lemma 2.8, for each i {2, 3} , we have r M r M i( ) 2 ( ) +  12" . Let

    m E G n V G= ( ) , = ( ) . Then

$
%
&

'
&

(
)
&

*
&

$
%
&

'
&

(
)
&

*
&

{ }

g G Z
r M m n i

m n

(  ) max
( ) + 1

10
, 9 max

2(  ) + + 2

10
, 9

max
 + 2

5
, 9 .

" "

"
(24)

If i = 3, then as g M Z g M g(  ) ( ) = 42 " " , it follows that G g( )  with Z being the

special‐cocircuit of G. Hence (19) holds and so for any v V G V Z d v( )  ( ), ( ) 4G " . By (24),

by the fact that   V G( ) 7" and by Lemma 5.5(ii), M Z M G Z = *( )  2 contains a nonempty

eligible subset. Assume that i = 2, and so there exists an edge e u v E G= ( )0 0 0  such that

Z e= { }0 . By (24) and Lemma 5.7(ii), M Z M G Z = *( )  2 also contains a nonempty eligible

subset. This justifies Claim 5.10.

Let M" be a binary reduction of M . By Claim 5.10,     E M E M( ") < ( ) . If M" is spanned by an

eligible subset, then by Corollary 2.4, M" is supereulerian, and so by Lemma 2.5, M is supereulerian.

Hence we may assume that M" is not spanned by an eligible subset, and so by Lemma 2.5,

g M( ") 4" and M" satisfies (2). It follows by the assumption in Theorem 5.9(ii) that M" is

supereulerian. Then by Lemma 2.5, M is supereulerian. This completes the proof of the theorem.
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