Article

On Critical Unicyclic Graphs with Cutwidth Four

Zhenkun Zhang ${ }^{1, *}$ and Hongjian Lai ${ }^{2}$
1 School of Mathematics and Statistics, Huanghuai University, Zhumadian 463000, China
2 Department of Mathematics, West Virginia University, Morgantown, WV 26506, USA
* Correspondence: zhzhkun-2006@163.com

Citation: Zhang, Z.; Lai, H. On Critical Unicyclic Graphs with Cutwidth Four. AppliedMath 2022, 2, 621-637. https://doi.org/10.3390/ appliedmath2040036

Academic Editor: Claude Chaudet

Received: 17 September 2022
Accepted: 2 November 2022
Published: 17 November 2022
Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

Abstract

The cutwidth minimization problem consists of finding an arrangement of the vertices of a graph G on a line P_{n} with $n=|V(G)|$ vertices in such a way that the maximum number of overlapping edges (i.e., the congestion) is minimized. A graph G with a cutwidth of k is k-cutwidth critical if every proper subgraph of G has a cutwidth less than k and G is homeomorphically minimal. In this paper, we first verified some structural properties of k-cutwidth critical unicyclic graphs with $k>1$. We then mainly investigated the critical unicyclic graph set \mathcal{T} with a cutwidth of four that contains fifty elements, and obtained a forbidden subgraph characterization of 3-cutwidth unicyclic graphs.

Keywords: graph labeling; cutwidth; critical graph; unicyclic graph

MSC: 05C75; 05C78; 90C27

1. Introduction

All graphs in this paper are finite, simple, and connected, with undefined notation following [1]. The cutwidth minimization problem consists of finding an arrangement of the vertices of a graph G on a path P_{n} with $n=|V(G)|$ vertices in such a way that the maximum number of overlapping edges (i.e., the congestion) is minimized. As one of the most well-known optimization problems, it is also known as the minimum cut linear arrangement (or linear layout, optimal embedding, optimal labeling, etc.) problem [2]. Cutwidth has been extensively examined [2]. Computing cutwidth for general graphs is an NP-complete problem except for trees [3-6], and it remains NP-complete even if the input graph G is restricted to planar graphs with a maximum degree of three [7]. Hence, a number of studies have focused on polynomial-time approximation algorithms for general graphs and polynomial-time algorithms for some special graphs to solve their cutwidth [2,8]. Relatively little work has been conducted on detecting special graph classes whose cutwidths can be computed polynomially [2] and critical graph classes with cutwidths of $k \geq 1$. Let $\mathcal{T}_{k}(*)$ be the set of critical graphs with the graph parameter $*=k$. From [9], $\left|\mathcal{T}_{1}(c(G))\right|=1,\left|\mathcal{T}_{2}(c(G))\right|=2,\left|\mathcal{T}_{3}(c(G))\right|=5$ (see Figure 1). For critical graphs with cutwidth $k \geq 4,\left|\mathcal{T}_{k}(c(G))\right|$ has been unknown except that $\left|\mathcal{T}_{4}(c(T))\right|=18$, as reported by [10], where T is a tree (see Figure 2). Similar studies have been conducted for the treewidth, pathwidth, and branchwidth of a graph G (abbreviated by $t w(G), p w(G)$, and $b w(G)$, respectively). A graph G is said to be k-treewidth (pathwidth, branchwidth) critical if $t w(G)(p w(G), b w(G))=k$ but $t w\left(G^{\prime}\right)\left(p w\left(G^{\prime}\right), b w\left(G^{\prime}\right)\right)<k$ for any minor G^{\prime} of G. From [11-13], $\left|\mathcal{T}_{3}(t w(G))\right|=\left|\mathcal{T}_{3}(b w(G))\right|=1,\left|\mathcal{T}_{4}(t w(G))\right|=\left|\mathcal{T}_{4}(b w(G))\right|=4$, $\left|\mathcal{T}_{3}(p w(G))\right|=110$. As shown in [14], the critical graphs for parameters with a similar nature are worthy of further study, and the number of these critical graphs for a given value of the parameter would be finite and have yet to be characterized. The cutwidth problem for graphs and a class of optimal embedding (or layout) problems have significant applications in VLSI layouts [15,16], network reliability [17], automatic graph drawing [18], information retrieval [19], urban drainage network design [20], and other domains. In
particular, the cutwidth is related to a basic parameter, called the congestion, in designing microchip circuits [2,21,22]. Herein, a graph G may be viewed as a model of the wiring diagram of an electronic circuit with the vertices representing components and the edges representing wires connecting them. When a circuit is laid out in a certain architecture (i.e., a path P_{n}), the maximum number of overlap wires is the congestion, which is one of major parameters in the determination of electronic performance. This motivates the enthusiasm for studying the cutwidth problem in graph theory practically. Theoretically, it appears to be closely related with other graph parameters such as pathwidth, treewidth, linear width, bandwidth, and modified bandwidth [2,8,23,24], among others. For instance, for any graph G with vertices of degree bounded by an integer $d \geq 1, p w(G) \leq c(G) \leq d \cdot p w(G)$, where $c(G)$ and $p w(G)$ are cutwidth value and pathwidth value, respectively. In this paper, we mainly study the critical unicyclic graph set \mathcal{T} with a cutwidth of four that contains fifty elements.

For an integer $n>0$, define $\mathcal{S}_{n}=\{1,2, \ldots, n\}$. A labeling of a graph $G=(V(G), E(G))$ with $|V(G)|=n$ is a bijection $f: V(G) \rightarrow \mathcal{S}_{n}$, viewed as an embedding of G into a path P_{n} with vertices in \mathcal{S}_{n}, where consecutive integers are the adjacent vertices. The cutwidth of G with respect to f is

$$
\begin{equation*}
c(G, f)=\max _{1 \leq j<n}|\{u v \in E(G): f(u) \leq j<f(v)\}| \tag{1}
\end{equation*}
$$

which is also the congestion of the labeling. The cutwidth of G is defined by

$$
\begin{equation*}
c(G)=\min _{f} c(G, f) \tag{2}
\end{equation*}
$$

where the minimum is taken over all labelings f. If $k=c(G, f)$, then f, and the embedding induced by f is called a k-cutwidth embedding of G. A labeling f attaining the minimum in (2) is an optimal labeling. For each i with $i \in \mathcal{S}_{n}$, let $u_{i}=f^{-1}(i)$ and $S_{j}=\left\{u_{1}, u_{2}, \ldots, u_{j}\right\}$. Define $\nabla_{f}\left(S_{j}\right)=\left\{u_{i} u_{h} \in E: i \leq j<h\right\}$ is called the (edge) cut at $[j, j+1]$ with respect to f. From (2), we then have

$$
\begin{equation*}
c(G, f)=\max _{1 \leq j<n}\left|\nabla_{f}\left(S_{j}\right)\right| . \tag{3}
\end{equation*}
$$

An f-max cut of G is a $\nabla_{f}\left(S_{j}\right)$, achieving the maximum in (3).
For a graph G and integer $i \geq 0$, let $D_{i}(G)=\left\{v \in V(G): d_{G}(v)=i\right\}$, where $d_{G}(v)$ is the degree of vertex $v \in V(G)$. Any vertex in $D_{1}(G)$ is called a pendent vertex in G. For each $v \in V(G)$, let $N_{G}(v)=\{u \in V(G): u v \in E(G)\}$. For $V^{\prime} \subset V(G)$ and $V^{\prime} \neq \varnothing, G\left[V^{\prime}\right]$ is the subgraph of G induced by V^{\prime}. If H, H^{\prime} are subgraphs of G and $X \subseteq E(G)$, then $G[X]$ is the subgraph of G induced by $X, H \cup H^{\prime}=G\left[E(H) \cup E\left(H^{\prime}\right)\right]$ and $H \cup X=G[E(H) \cup X]$. Specially, if $X=\{e\}$, then we write $G+e$ instead of $G \cup\{e\}$. If G has a vertex $v \in D_{2}(G)$ with $N_{G}(v)=\left\{v_{1}, v_{2}\right\}$ and $v_{1} v_{2} \notin E(G)$, then $G-v+v_{1} v_{2}$, and the graph obtained from $G-v$ by adding a new edge $v_{1} v_{2}$, is called a series reduction of G. A graph G is homeomorphically minimal if G does not have any series reductions. Two graphs G^{\prime} and $G^{\prime \prime}$ are homeomorphic if both of them can be obtained from the same graph G by inserting new vertices of degree two into its edges. A graph G is said to be k-cutwidth critical if G is homeomorphically minimal with $c(G)=k$ such that every proper subgraph G^{\prime} of G satisfies $c\left(G^{\prime}\right)<k$. The basic properties of cutwidth follow immediately from this definition.

Figure 1. The 3-cutwidth critical graphs.

Figure 2. All elements of the 4-cutwidth critical tree set \mathcal{T}_{4}.
Lemma 1. For graphs G and G^{\prime}, each of the following holds. (1) If G^{\prime} is a subgraph of G, then $c\left(G^{\prime}\right) \leq c(G)$. (2) If G^{\prime} is homeomorphic to G, then $c\left(G^{\prime}\right)=c(G)$.

Lemma 2. The unique 1-cutwidth critical graph is K_{2}. The only 2-cutwidth critical graphs are K_{3} and $K_{1,3}$. All 3-cutwidth critical graphs are $H_{1}, H_{2}, H_{3}, H_{4}$, and H_{5} in Figure 1.

Lemma 3 ([10]). A tree T is 4-cutwidth critical if and only if $G \in \mathcal{T}_{4}$, where $\mathcal{T}_{4}=\left\{\tau_{i}^{\prime}: 1 \leq i \leq\right.$ 18\}, as depicted in Figure 2.

A connected graph G with $|E(G)|=|V(G)|$ is called a unicyclic graph. The purpose of this paper is to characterize critical unicyclic graphs with a cutwidth of four and to present a forbidden subgraph characterization for unicyclic graphs with a cutwidth of three. Let $\mathcal{T}=\left\{\tau_{i}: 1 \leq i \leq 50\right\}$ be the collection of the critical unicyclic graphs depicted in Figure 3. The main results of this paper are the following:

Theorem 1. A unicyclic graph G is 4-cutwidth critical if and only if $G \in \mathcal{T}$.
Corollary 1. A unicyclic graph G has a cutwidth of three if and only if it does not contain any subgraph homeomorphic to any member in \mathcal{T}.

The rest of this paper is as follows. Section 2 presents some preliminary results. The proof of Theorem 1 is given in Section 3 by a series of lemmas. We give a short remark in Section 4.

Figure 3. Cont

Figure 3. Cont.

Figure 3. All 4-cutwidth critical unicyclic graphs with optimal labelings.

2. Preliminary Results

Throughout this section, for any integer $n>1$, we always use P_{n} to denote the path with $V\left(P_{n}\right)=\mathcal{S}_{n}$ such that for all $1 \leq i<n, i$ and $i+1$ are adjacent vertices in P_{n}. In addition, because $K_{1,2 k-1}$ is k-cutwidth critical, as demonstrated by [10], we can let $d_{G}(v) \leq 2 k-2$ for each $v \in V(G)$ in this paper.

The following observation is immediate from Lemma 1:

$$
\begin{equation*}
\text { if } v \in V(G) \text {, then } c(G-v) \leq c(G) \tag{4}
\end{equation*}
$$

Definition 1.

(i) Let $r \geq 0$ be an integer, and v be a vertex of graph G with $d_{G}(v)>r$. For $v_{1}, v_{2}, \ldots, v_{r} \in$ $N_{G}(v)$, define $G\left(v ; v_{1}, v_{2}, \ldots, v_{r}\right)$ as the component of $G-\left\{v v_{1}, v v_{2}, \ldots, v v_{r}\right\}$ that contains v (see an illustration in Figure 4a).
(ii) Let G, H be two disjoint graphs with $u \in V(G)$ and $v \in V(H)$. To identify u and v, denoted as $G \oplus_{u, v} H$, is to replace u, v with a single vertex $z(i . e ., u=v=z)$ incident to all the edges which are incident to u and v, where z is called the identified vertex.
(iii) Let G_{1}, G_{2} and G_{3} be disjoint graphs $D_{3}\left(K_{1,3}\right)=\left\{u_{0}\right\}$ and $D_{1}\left(K_{1,3}\right)=\left\{u_{1}, u_{2}, u_{3}\right\}$. For each $j \in \mathcal{S}_{3}$, pick $v_{j} \in V\left(G_{j}\right)$. Define $K_{1,3} \circ\left(G_{1}, G_{2}, G_{3}\right)$ as the graph obtained from the disjoint union G_{1}, G_{2}, G_{3} and $K_{1,3}$ by identifying u_{j} with v_{j} (again denoted as v_{j}) for each $j \in \mathcal{S}_{3}$ (see Figure 4b).
(iv) If $|V(G)| \geq 2$, then define $\mathcal{M}(G)=\{G-u v: u v \in E(G)$ and $u v$ is not a cut edge $\} \cup$ $\left\{G-v: v \in D_{1}(G)\right\}$ to be the family of all proper maximal subgraphs of G.

Definition 2. For a graph G with $|V(G)|=n$, suppose that $v_{0} \in V(G)$ is a vertex with $N_{G}\left(v_{0}\right)=\left\{v_{1}, v_{2}, \ldots, v_{p}\right\}, v_{0} v_{1}$ and $v_{0} v_{2}$ are two cut edges of $G, H_{1}^{\prime}=G\left(v_{0} ; v_{2}, v_{3}, \ldots, v_{p}\right)-v_{0}$, $H_{2}^{\prime}=G\left(v_{0} ; v_{1}, v_{2}\right)$ and $H_{3}^{\prime}=G\left(v_{0} ; v_{1}, v_{3}, \ldots, v_{p}\right)-v_{0}$. For $1 \leq i \leq 3$, let $f_{i}: V\left(H_{i}^{\prime}\right) \mapsto$ $\mathcal{S}_{\left|V\left(H_{i}^{\prime}\right)\right|}$ be an optimal labeling of H_{i}^{\prime}, and let a labeling $f: V(G) \mapsto \mathcal{S}_{n}$ of G be as follows: for $v \in V(G)$,

$$
f(v)= \begin{cases}f_{1}(v) & \text { if } v \in V\left(H_{1}^{\prime}\right), \tag{5}\\ f_{2}(v)+\left|V\left(H_{1}^{\prime}\right)\right| & \text { if } v \in V\left(H_{2}^{\prime}\right), \\ f_{3}(v)+\left|V\left(H_{1}^{\prime}\right)\right|+\left|V\left(H_{2}^{\prime}\right)\right| & \text { if } v \in V\left(H_{3}^{\prime}\right) .\end{cases}
$$

Then the labeling f is called a labeling by the order $\left(f_{1}, f_{2}, f_{3}\right)$ or $\left(V\left(H_{1}^{\prime}\right), V\left(H_{2}^{\prime}\right), V\left(H_{3}^{\prime}\right)\right)$ of G. For example, let $G=K_{1,3} \circ\left(G_{1}, G_{2}, G_{3}\right)$ with $v_{0}=u_{0}$ in Figure $4 b$; then, $N_{G}\left(u_{0}\right)=$ $\left\{v_{1}, v_{2}, v_{3}\right\}, H_{1}^{\prime}=G\left(u_{0} ; v_{2}, v_{3}\right)-u_{0}=G_{1}, H_{2}^{\prime}=G\left(u_{0} ; v_{1}, v_{3}\right)=G_{2}+u_{0} v_{2}$, and $H_{3}^{\prime}=$ $G\left(u_{0} ; v_{1}, v_{2}\right)-u_{0}=G_{3}$. If f_{i} is an optimal labeling of H_{i}^{\prime} for $1 \leq i \leq 3$, and for $v \in V(G)$, define

$$
f(v)= \begin{cases}f_{1}(v) & \text { if } v \in V\left(G_{1}\right), \\ f_{2}(v)+\left|V\left(G_{1}\right)\right| & \text { if } v \in V\left(G_{2}\right) \cup\left\{v_{0}\right\}, \\ f_{3}(v)+\left|V\left(G_{1}\right)\right|+\left|V\left(G_{2}\right)\right|+1 & \text { if } v \in V\left(G_{3}\right),\end{cases}
$$

then, f is a labeling of the order $\left(f_{1}, f_{2}, f_{3}\right)$ of G.

Figure 4. (a,b) Illustrations of Definitions 1 (i) and (iii).
Theorem 2. For any $v \in D_{\geq 3}(G)$, if there always are two vertices v_{1}, v_{2} in $N_{G}(v)$ such that $v v_{1}, v v_{2}$ are cut edges in G, then $c(G) \leq k$ if and only if $c\left(G\left(v ; v_{1}, v_{2}\right)\right) \leq k-1$.

Proof. We first provide a claim.
Claim 1. Let $v_{1}^{\prime} v_{2}^{\prime}$ be a cut edge in G and V_{1}, V_{2} the vertex sets of two components of $G-v_{1}^{\prime} v_{2}^{\prime}$. Then, there exists an optimal labeling f^{*} such that the vertices in each of V_{1} and V_{2} are labeled consecutively.

In fact, if f is an optimal labeling of G with $f\left(v_{1}^{\prime}\right)<f\left(v_{2}^{\prime}\right)$, then we can construct a labeling f^{*} as follows. First, label the vertices of V_{1} in the same order as f, and then label the vertices of V_{2} in the same order as f. Because the edges in $G\left[V_{1}\right]$ and those in $G\left[V_{2}\right]$ are not overlapped, it follows that $c\left(G, f^{*}\right) \leq c(G, f)$. Thus, f^{*} is also an optimal labeling of G.

Now, by using this observation, we proceed to prove Theorem 2. From the assumption that $v v_{1}, v v_{2}$ are cut edges of G, let V_{0}, V_{1}, V_{2} be the vertex sets of three components of $G-\left\{v v_{1}, v v_{2}\right\}$, where $v_{0} \in V_{0}, v_{1} \in V_{1}, v_{2} \in V_{2}$. Then, there exists an optimal labeling f^{*} such that each of the vertices of V_{0}, V_{1}, V_{2} are labeled consecutively. If $c\left(G, f^{*}\right) \leq k$, then, because the edges $v v_{1}$ and $v v_{2}$ give a congestion of one to $G\left[V_{0}\right]$, we have $c\left(G\left[V_{0}\right], f^{*}\right) \leq$ $k-1$. Thus, $c(G) \leq k$ implies $c\left(G\left(v ; v_{1}, v_{2}\right)\right) \leq k-1$. Conversely, if $c\left(G\left[V_{0}\right], f^{*}\right) \leq k-1$ and V_{1}, V_{2} contain no vertices in $D_{\geq 3}(G)$, then $G\left[V_{1}\right]$ and $G\left[V_{2}\right]$ are two paths and so have a congestion of one. It follows that $c\left(G, f^{*}\right) \leq k$. If V_{1} (or V_{2}) contains a vertex $v^{\prime} \in D_{\geq 3}(G)$,
then there must be two cut edges $v^{\prime} v_{1}^{\prime}, v^{\prime} v_{2}^{\prime}$ in G by assumption. In this way, $V(G)$ can be further decomposed into a sequence $V_{1}, V_{2}, \ldots, V_{r}$ such that $G\left[V_{i}\right]$ and $G\left[V_{i+1}\right]$ are connected by a cut edge $(1 \leq i<r)$. From $c\left(G\left(v ; v_{1}, v_{2}\right)\right) \leq k-1, c\left(G\left[V_{i}\right], f^{*}\right) \leq k-1$ for $1 \leq i \leq r$. Hence, $c\left(G, f^{*}\right) \leq k$, resulting in $c(G) \leq k$.

Corollary 2. With the notation in Theorem 2, for graph G, if there exists a vertex $v \in D_{\geq 3}(G)$ such that $c\left(G\left(v ; v_{i}, v_{j}\right)\right) \geq k-1$ holds for any $v_{i}, v_{j} \in N_{G}(v)$, then $c(G) \geq k$, where $v v_{i}, v v_{j}$ are cut edges in G.

Lemma 4. Let graph G be k-cutwidth critical with $D_{1}(G) \neq \varnothing$, and $P_{l}=u_{0} u_{1} \ldots u_{l}$ be a path with length l. Then, $c\left(G \oplus_{v_{0}}, u_{0} P_{l}\right)=k$ for $v_{0} \in V(G)$.

Proof. Let $v_{0} z$ be a pendant edge of G, where z is a pendant vertex. We subdivide the edge $v_{0} z$ into a path P with length l and denote the resulting graph with G^{\prime}. Then, by Lemma 1, $c\left(G \oplus_{v_{0}, u_{0}} P_{l}\right)=c\left(G^{\prime}\right)=c(G)=k$.

Theorem 3. With the notation of Definition 1 (iii), let at least one of $\left\{G_{1}, G_{2}, G_{3}\right\}$, say G_{2}, be $(k-1)$-cutwidth critical with $D_{1}\left(G_{2}\right) \neq \varnothing$. Then $c\left(K_{1,3} \circ\left(G_{1}, G_{2}, G_{3}\right)\right)=k$.
Proof. Let $G=K_{1,3} \circ\left(G_{1}, G_{2}, G_{3}\right)$. If $d_{G}\left(v_{j}\right)=2$ for $j \in \mathcal{S}_{3}$; then, the series reduction can be implemented without affecting $c(G)=k$. Because $u_{0} v_{2}$ is a pendent edge of the subgraph $G_{2} \oplus_{u_{2}, v_{2}} u_{0} v_{2}$ and G_{2} is $(k-1)$-cutwidth critical with $D_{1}\left(G_{2}\right) \neq \varnothing, c\left(G_{2} \oplus_{u_{2}, v_{2}} u_{0} v_{2}\right)=$ $k-1$ by Lemma 4 .

As $G-\left\{u_{0} v_{1}, u_{0} v_{3}\right\}$ has components $G_{1}, G_{2} \oplus_{u_{2}, v_{2}} u_{0} v_{2}$ and G_{3} with cutwidth $k-$ 1, similar to that of (5), an optimal labeling $f: V(G) \mapsto \mathcal{S}_{n}$ obtained by the order $\left(V\left(G_{1}\right), V\left(G_{2} \oplus_{u_{2}, v_{2}} u_{0} v_{2}\right), V\left(G_{3}\right)\right)$ satisfies $c(G, f) \leq(k-1)+1=k$. So, $c(G) \leq k$ by (2). On the other hand, it is routine to verify that $c(G) \geq k$ using Corollary 2 because $c\left(G\left(u_{0} ; v_{i}, v_{j}\right)\right)=k-1$ for any $v_{i}, v_{j} \in N_{G}\left(u_{0}\right)$. Thus, $c(G)=k$, and the proof is complete.

Corollary 3. With the notation of Definition 1 (iii), for each $j \in \mathcal{S}_{3}$, if G_{j} is $(k-1)$-cutwidth critical with $v_{j} \in D_{1}\left(G_{j}\right)$, then $K_{1,3} \circ\left(G_{1}, G_{2}, G_{3}\right)$ is k-cutwidth critical.

Proof. Let $G=K_{1,3} \circ\left(G_{1}, G_{2}, G_{3}\right)$. Because $d_{G}\left(v_{j}\right)=2$ for each $j \in \mathcal{S}_{3}$, three series reductions are carried out first. Furthermore, we still let $N_{G}\left(u_{0}\right)=\left\{v_{1}, v_{2}, v_{3}\right\}$ for convenience. Thus, $G\left(u_{0} ; v_{1}, v_{2}\right)=G_{3}, G\left(u_{0} ; v_{2}, v_{3}\right)=G_{1}$ and $G\left(u_{0} ; v_{1}, v_{3}\right)=G_{2}$.

First, by assumption and Theorem 3, $c(G)=k$.
Second, we prove that G is k-cutwidth critical. It remains to be shown that, for any $G^{\prime} \in \mathcal{M}(G), c\left(G^{\prime}\right) \leq k-1$. Because any G^{\prime} is obtained by deleting a pendent edge $x y$ or an nonpendent edge $x y \in E\left(C_{t}\right)$ in $G, x y \notin\left\{u_{0} v_{1}, u_{0} v_{2}, u_{0} v_{3}\right\}$. Without loss of generality, let $x y \in E\left(G_{2}\right)$. By assumption that G_{j} is $(k-1)$-cutwidth critical for each $j \in \mathcal{S}_{3}$, we have $c\left(G_{1}-u_{0} v_{1}\right) \leq k-2, c\left(G_{2}-x y\right) \leq k-2$ and $c\left(G_{3}-u_{0} v_{3}\right) \leq k-2$. Thus, similar to (5), a labeling $f^{\prime}: V\left(G^{\prime}\right) \mapsto \mathcal{S}_{\left|V\left(G^{\prime}\right)\right|}$ by the order $\left(V\left(G_{1}-u_{0} v_{1}\right), V\left(G_{2}-x y\right), V\left(G_{3}-u_{0} v_{3}\right)\right)$ is obtained and $c\left(G^{\prime}, f^{\prime}\right)=k-1$. So, $c\left(G^{\prime}\right) \leq k-1$ by (2), and G is k-cutwidth critical.

3. Proof of Theorem 1

We verify our main results by using a series of lemmas. Throughout this section, G denotes an unicyclic graph and $C_{t}=v_{1} v_{2} \ldots v_{t} v_{1}$ denotes the unique cycle of G with $t \geq 3$. Furthermore, we have a convention that a graph H is designated to be homeomorphic to a subgraph of G if H can be obtained by deleting vertices or edges and some series reductions of G and $c(H)=c(G)$. Because a cutwidth critical graph is homeomorphically minimal, if G is k-cutwidth critical then

$$
\begin{equation*}
d_{G}\left(v_{i}\right) \geq 3 \text { for } v_{i} \in V\left(C_{t}\right) \tag{6}
\end{equation*}
$$

unless v_{i} is a special vertex.

Let $x_{0}, w_{0} \in D_{3}\left(H_{2}\right), y_{0}, z_{0} \in D_{1}\left(H_{2}\right), u_{0} \in D_{1}\left(K_{1,5}\right)$ (see H_{2} in Figure 1). Furthermore, let $F_{1}=H_{2}-y_{0}-z_{0}, F_{2}=H_{2}-\left\{x_{0}, y_{0}, z_{0}\right\}, \mathcal{F}_{1}=\left\{K_{2}, K_{1,3}, K_{1,5}, F_{1}, F_{2}\right\}$ (see F_{1}, F_{2} in Figure 5a), and $\mathcal{F}_{2}=\left\{K_{1,5} \oplus_{u_{0}, u_{0}^{\prime}} K_{1,5}^{\prime}, K_{1,5} \oplus_{u_{0}, x_{0}} F_{1}, F_{1} \oplus_{x_{0}, x_{0}^{\prime}} F_{1}^{\prime}\right\}$ (see Figure 5b), where $K_{1,5}^{\prime}, F_{1}^{\prime}$ are copies of $K_{1,5}$ and $F_{1}, u_{0}^{\prime} \in D_{1}\left(K_{1,5}^{\prime}\right), x_{0}^{\prime} \in D_{3}\left(F_{1}^{\prime}\right)$ are copies of u_{0} and x_{0}, respectively. For an integer $p>1$, we call a star $K_{1, p}$ centered at vertex x if $d_{K_{1, p}}(x)=p$.

Figure 5. Two elements of \mathcal{F}_{1} and set \mathcal{F}_{2}.
Lemma 5. Each member of set \mathcal{T} is 4-cutwidth critical in Figure 3.
Proof. For a unicyclic graph G, let $C_{t}=v_{1} v_{2} \ldots v_{t}$ be the unique cycle of G. Then, $G-E\left(C_{t}\right)$ is a forest of t subtrees $T_{1}, T_{2}, \ldots, T_{t}$ where T_{i} is called the v_{i}-branch leading from v_{i}. We first consider the case of $t=3$ in which $G-E\left(C_{3}\right)$ has three subtrees T_{1}, T_{2}, T_{3}. For an optimal labeling f of G, suppose that $f\left(v_{1}\right)<f\left(v_{2}\right)<f\left(v_{3}\right)$; then, the number set \mathcal{S}_{n} is divided into three intervals $I_{1}=\left[1, f\left(v_{1}\right)\right], I_{2}=\left(f\left(v_{1}\right), f\left(v_{3}\right)\right), I_{3}=\left[f\left(v_{3}\right), n\right]$. Subtrees T_{1}, T_{2}, T_{3} are then embedded into I_{1}, I_{2}, I_{3} in different manners. We have the following classifications of 4-cutwidth critical unicyclic graphs.
(1) Type 3A (including τ_{1} to τ_{4}): T_{1} is embedded in I_{1} with a congestion of three, T_{2} is embedded in I_{2} with a congestion of four, and T_{3} is embedded in I_{3} with a congestion of three. Herein, T_{1} and T_{3} are the star $K_{1,3}$ with center v_{i} or the two stars $K_{1,3}$ with an identifying leaf at $v_{i}(\mathrm{i}=1,3)$ (see F_{2} in Figure 5a). Let \tilde{T}_{i} denote T_{i} combining with the two edges in C_{3} incident with v_{i}. Then, \tilde{T}_{1} and \tilde{T}_{3} are the 3-cutwidth critical tree $H_{1}=K_{1,5}$ or the 3-cutwidth critical tree H_{2} with a central edge (i.e., similar to $w_{0} x_{0}$ in H_{2}) contracted. As to T_{2} embedded in I_{2} with a congestion of four, the cycle C_{3} yields a congestion of two in this interval, and we have to choose T_{2} as a 2-cutwidth critical tree, namely, a $K_{1,3}$ such that either $d_{G}\left(v_{2}\right)=3$ or $d_{G}\left(v_{2}\right)=5$. For this type of construction, the maximum congestion is four, that is, $c(G)=4$. Furthermore, for any edge $e \in E(G)$, if $e \in E\left(C_{3}\right)$, then the deletion of e reduces the congestion two of cycle-edge in I_{2} by one. Hence, T_{2} embedded in I_{2} has a congestion of three, and so $c(G-e)<4$. If $e \notin E\left(C_{3}\right)$, for τ_{1} with $T_{j}=K_{1,3}$ and $d_{G}\left(v_{j}\right)=5$ for each $1 \leq j \leq 3$, we can let $e \in E\left(T_{2}\right)$. Because $T_{2}-e=K_{1,3}-e$ has a congestion of one, we can embed T_{1} in $I_{1}, T_{2}-e$ in $\left(f\left(v_{1}\right), f\left(v_{3}\right)-1\right)$ and T_{3} in $\left[f\left(v_{3}\right)-1, n-1\right]$. Thus, $c\left(\tau_{1}-e\right)=3$. For τ_{2}, τ_{3}, and τ_{4}, because $d_{G}\left(v_{2}\right)=3$, we can let $e \in E\left(T_{1}\right)$; then, $T_{1}-e$ in I_{1} has a congestion of two. Thus, we embed $T_{2}-v_{2}$ in I_{1} such that I_{1} has a congestion of three (for example, T_{1} is an F_{2} at v_{1} for τ_{4}), and the same is true for the case of $e \in E\left(T_{3}\right)$. Hence, $c(G-e)<4$. Thus, G is 4 -cutwidth critical.
(2) Type 3B (including τ_{5} to τ_{13}): $f\left(v_{1}\right), f\left(v_{2}\right), f\left(v_{3}\right)$ are consecutive and $I_{2}=\left\{f\left(v_{2}\right)\right\}$, T_{1} is embedded in I_{1} with a congestion of three, T_{2} is embedded in $I_{2} \cup I_{3}$ with a congestion of four, T_{3} is embedded in I_{3} with a congestion of three. Herein, we denote the subtree of H_{2} obtained by deleting two leaves in the same branch (say y_{0}, z_{0} in Figure 1) with F_{1}, and denote the subtree of H_{2} obtained by deleting three vertices in the same branch (say x_{0}, y_{0}, z_{0} in Figure 1) with F_{2} (see F_{1}, F_{2} in Figure 5a). Then, T_{1} is a star $K_{1,3}, K_{1,5}, F_{1}, F_{2}$, or T_{2} and T_{3} is a star $K_{1,5}$ or F_{1}. Note that if $T_{i}=K_{1,3}$ then $\tilde{T}_{i}=H_{1}$; if $T_{i}=F_{1}$ then $\tilde{T}_{i}=H_{2}$, where H_{1} and H_{2} are 3-cutwidth critical. Because T_{2} and T_{3} are embedded in I_{3} consecutively and an edge of T_{2} incident with v_{2} strides over all edges of T_{3}, we see that the overlapped edges of T_{2} and T_{3} give rise to a congestion of four in the embedding. Hence, $c(G)=4$. Furthermore, for any edge $e \in E(G)$, if $e \in E\left(C_{3}\right)$, then $G-e$ is a tree made up with H_{1} and H_{2}, which has a cutwidth of three. Thus, $c(G-e)<4$. Otherwise, we may assume $e \in E\left(T_{2}\right)$ (we
may change the order of T_{1}, T_{2}, T_{3} if necessary). Then, $c\left(T_{2}-e\right)=2$, and so the embedding of T_{2} and T_{3} in I_{3} gives a congestion of three by making $\min \left\{f(v): v \in V\left(T_{2}-e-v_{2}\right)\right\}=$ $f\left(v_{3}\right)+1$ and $\max \left\{f(v): v \in V\left(T_{2}-e-v_{2}\right)\right\}=\min \left\{f(v): v \in V\left(T_{3}-v_{3}\right)\right\}-1$. Thus, we have $c(G-e)<4$. Hence, G is 4 -cutwidth critical.
(3) Type 3C (including τ_{14}, τ_{15} and τ_{38} to τ_{40}): T_{2} and T_{3} are K_{2}, T_{1} is decomposed and embedded into different intervals. For τ_{14} and τ_{15}, T_{1} is an H_{2}, and it is decomposed into two stars $K_{1,3}$ embedded in I_{1} and one star $K_{1,3}$ embedded in I_{2}. The star $K_{1,3}$ in I_{2} and the two cycle edges give rise to the congestion of four in I_{2}. For τ_{38}, T_{1} is decomposed into two stars $K_{1,5}$ and K_{2}, where a star $K_{1,5}$ and a K_{2} are embedded in I_{1}, and a star $K_{1,5}$ is embedded in I_{3}. Additionally, τ_{39} and τ_{40} are similar. Similar to the previous cases, it can be shown that G is 4-cutwidth critical.
(4) Type 3D (including τ_{16} to τ_{37}): This type of unicyclic graphs are obtained from 4-cutwidth critical trees by making the following local transformations: the star $K_{1,3}$ is transformed into a triangle K_{3} (for example, H_{2} is transformed into H_{3}, see Figure 1) and the star $H_{1}=K_{1,5}$ is transformed into a 'sun' H_{4}. Because these local transformations do not change the congestion of two of $K_{1,3}$ or the congestion of three of $K_{1,5}$, this part of the proof is based on Lemma 3. Let $\tau_{1}^{\prime}-\tau_{18}^{\prime}$ denote the 4-cutwidth critical trees in Lemma 3 (see Figure 2). Then, for τ_{16} to τ_{37} in Figure 3, we have the following correspondences: τ_{16} is from $\tau_{2}^{\prime}, \tau_{17}$ is from $\tau_{3}^{\prime}, \tau_{18}$ is from $\tau_{3}^{\prime}, \tau_{19}$ is from $\tau_{16}^{\prime}, \tau_{20}$ is from $\tau_{6}^{\prime}, \tau_{21}$ is from $\tau_{18}^{\prime}, \tau_{22}$ is from $\tau_{14}^{\prime}, \tau_{23}$ is from $\tau_{5}^{\prime}, \tau_{24}$ is from $\tau_{4}^{\prime}, \tau_{25}$ is from $\tau_{15}^{\prime}, \tau_{26}$ is from $\tau_{18}^{\prime}, \tau_{27}$ is from $\tau_{17}^{\prime}, \tau_{28}$ is from $\tau_{6}^{\prime}, \tau_{29}$ is from $\tau_{8}^{\prime}, \tau_{30}$ is from $\tau_{9}^{\prime}, \tau_{31}$ is from $\tau_{7}^{\prime}, \tau_{32}$ is from τ_{5}^{\prime} (or τ_{11}^{\prime}), τ_{33} is from $\tau_{12}^{\prime}, \tau_{34}$ is from $\tau_{10}^{\prime}, \tau_{35}$ is from $\tau_{11}^{\prime}, \tau_{36}$ is from τ_{10}^{\prime}, and τ_{37} is from τ_{12}^{\prime}. Thus, each of $\left\{\tau_{16}, \tau_{17}, \ldots, \tau_{37}\right\}$ is 4-cutwidth critical.

For $t \geq 4$, we have the similar arguments as follows.
(5) Type 4A (including τ_{41} to τ_{43}): Similar to above, for each $G \in\left\{\tau_{41}, \tau_{42}, \tau_{43}\right\}$, $c(G)=4$. To show that G is 4-cutwidth critical, we take $e \in E(G)$. If $e \in E\left(C_{4}\right)$, then $G-e$ is a tree made up with T_{1} in \mathcal{F}_{2} and $T_{i}=K_{2}$ for $2 \leq i \leq 4$, which has a cutwidth of three. Thus, $c(G-e)<4$. If $e \in E\left(T_{1}\right)$, then $T_{1}-e$ has a congestion of three, and so $c(G-e)<4$. If $e \in E\left(T_{i}\right)$ with $T_{i}=K_{2}$ for $2 \leq i \leq 4$, then $G-e$ is a proper subgraph of one of τ_{38} to τ_{40}, and so, $c(G-e)<4$.
(6) Type 4B (including τ_{44} to τ_{45}): Similar to the previous cases, the cutwidth of $G \in\left\{\tau_{44}, \tau_{45}\right\}$ is four. Now let $e \in E(G)$. If $e \in E\left(C_{4}\right)$ then $G-e$ is a tree made up with $T_{i} \in\left\{K_{2}, K_{1,3}, F_{2}\right\}$ for $1 \leq i \leq 4$, which has a cutwidth of three. Thus, $c(G-e)<4$. For $e \in E\left(T_{i}\right)$ with any $1 \leq i \leq 4$, we can always find a labeling f^{\prime} of $G-e$ such that $c\left(G-e, f^{\prime}\right) \leq 3$. So, $c(G-e) \leq 3$ leading to that G is 4-cutwidth critical.
(7) Type 5A (including τ_{46} to τ_{48}): Similar to that of Type 4A, omitted here.
(8) Type 5B (including τ_{49} only): The labeling f of τ_{49} in Figure 3 implies that $c\left(\tau_{49}\right) \leq 4$. $\tau_{49}-E\left(C_{5}\right)$ has five subtrees $T_{1}, T_{2}, T_{3}, T_{4}, T_{5}$ each of which is a star $K_{1,3}$, and each $v_{i} \in$ $V\left(C_{5}\right)(1 \leq i \leq 5)$ is a pendent vertex of T_{i} correspondingly. Without loss of generality, for an optimal labeling f of τ_{49}, let $f\left(v_{i}\right)=j_{i}$ and $j_{1}<j_{2}<j_{3}<j_{4}<j_{5}$. Clearly, $\left|\nabla_{f}\left(S_{j_{i}}\right)\right| \geq 2$ for $1 \leq i \leq 4$. Because T_{i} has a congestion of two for each $1 \leq i \leq 5$ and $t=5$, there is at least a vertex $x \in V\left(T_{2}\right) \cup V\left(T_{3}\right)$ (or $x \in V\left(T_{3}\right) \cup V\left(T_{4}\right)$) with $f(x)=j$ such that $\left|\nabla_{f}\left(S_{j}\right)\right|=4$. From (3), $c\left(\tau_{49}, f\right)=4$, resulting in $c\left(\tau_{49}\right)=4$ by (2). On the other hand, τ_{49} has two maximal proper subgraphs where one is obtained by deleting a pendent edge $e \notin V\left(C_{5}\right)$, the other is obtained by deleting any cycle edge $e \in V\left(C_{5}\right)$. For each maximal proper subgraph $G-e$, we can always find a labeling f^{\prime} such that $c\left(G-e, f^{\prime}\right) \leq 3$ easily. Thus, $c(G-e) \leq 3$, leading to the finding that G is 4 -cutwidth critical.
(9) Type 6A (including τ_{50} only): Similar to that of Type 5B, omitted here. This completes the proof.

Lemma 6. Let G be a 4-cutwidth critical graph with unique cycle C_{t} and $t \geq 4$. Then each of the following holds.
(i) If, for each $v_{i} \in V\left(C_{t}\right)(1 \leq i \leq t)$, each member in \mathcal{F}_{2} is not an induced subgraph of T_{i}, then $T_{i} \in \mathcal{F}_{1}$.
(ii) If there is at least a vertex $v_{i} \in V\left(C_{t}\right)$ such that one of \mathcal{F}_{2} is an induced subgraph of T_{i}, then $T_{i} \in \mathcal{F}_{2}$.

Proof. (i) From (6), $d_{G}\left(v_{i}\right) \geq 3$. First, from the assumption that G is 4 -cutwidth critical, it follows that $c(G-x y)=3$ for any $x y \in E(G)$ and $c\left(T_{i}\right) \leq 3$ for each $v_{i} \in V\left(C_{t}\right)$. For the edge $x y$, there are three cases to consider.

Case $1 x \in V\left(C_{t}\right), y \notin V\left(C_{t}\right)$. In this case, $C_{t} \subset G-x y$. So, by the minimality of H_{3} and H_{4} (see H_{3}, H_{4} in Figure 1), either H_{3} or H_{4} is a subgraph of $G-x y$ resulting in that either F_{2} or K_{2} is contained in some T_{i}, say T_{1}.

Case $2 x \notin V\left(C_{t}\right), y \notin V\left(C_{t}\right)$. Similar to that of Case 1, we can conclude that F_{2} or K_{2} is also contained in some T_{i}, say T_{1}.

Case $3 x \in V\left(C_{t}\right), y \in V\left(C_{t}\right)$. Clearly, $G-x y$ is a 3-cutwidth tree. So, by the minimality of H_{1} and H_{2} in Figure 1, either H_{1} or H_{2} is a subgraph of $G-x y$ leading to the conclusion that either $K_{1,5}$ or F_{1} is contained in some T_{i} with $v_{i} \neq v_{1}$.

In addition, because $K_{1,3}$ is a proper subgraph of any of $\left\{K_{1,5}, F_{1}, F_{2}\right\}$ and $t \geq 4$, we can conclude that there is at least a vertex $v_{i} \in V\left(C_{t}\right)$ such that $T_{i}=K_{1,3}$ with $d_{G}\left(v_{i}\right)=3$. Otherwise, $T_{i} \in \mathcal{F}_{1} \backslash\left\{K_{1,3}\right\}$ for every $i \in \mathcal{S}_{t}$. In this case, we can verify that either $c(G)=3$ (contradicting $c(G)=4$) or one of $\left\{\tau_{44}, \ldots, \tau_{50}\right\}$ is homeomorphic to a subgraph of G contradicting the minimality of G. Thus, $T_{i} \in \mathcal{F}_{1}$ for $i \in \mathcal{S}_{t}$.
(ii) Assume that one member of \mathcal{F}_{2} is a subgraph of some $T_{i_{0}}$ and $v_{i_{0}}=u_{0}$ (or x_{0}) by homeomorphism. Because $t \geq 4$ and $d_{G}\left(v_{i}\right) \geq 3$ for each $i \neq i_{0}$ by (6), one of $\left\{\tau_{41}, \tau_{42}, \tau_{43}\right\}$ must be either a subgraph of G or homeomorphic to a subgraph of G, contrary to the minimality of G. Hence, $T_{i_{0}} \in \mathcal{F}_{2}$. Thus, by Lemma $5, G$ is 4 -cutwidth critical with $T_{i_{0}} \in \mathcal{F}_{2}$ for $v_{i_{0}} \in V\left(C_{t}\right)$ if and only if $G \in\left\{\tau_{41}, \tau_{42}, \tau_{43}\right\}$. This completes the proof.

Lemma 7. Let G be a 4-cutwidth critical graph with cycle C_{t}. Then, $t \leq 6$.
Proof. This is a proof by contradiction. Assume that $t \geq 7$; then, $T_{i} \notin \mathcal{F}_{2}$ for each $i \in \mathcal{S}_{t}$. This is because, otherwise, one of $\left\{\tau_{41}, \tau_{42}, \tau_{43}\right\}$ is homeomorphic to a subgraph G^{\prime} of G in which the cycle C_{4} is subdivided into C_{t}. So, $c\left(G^{\prime}\right)=4$, contradicting the conclusion that G is 4 -cutwidth critical. Thus, $T_{i} \in \mathcal{F}_{1}$ by Lemma 6.

For each $i \in \mathcal{S}_{t}$, if $T_{i}=K_{2}$, then direct computation yields that $c(G)=3$. This implies that at least a $T_{i} \in \mathcal{F}_{1} \backslash\left\{K_{2}\right\}$. In addition, because $c\left(\tau_{1}\right)=4$, there are at most two vertices $v_{i_{1}}, v_{i_{2}} \in V\left(C_{t}\right)$ such that $T_{i_{1}}=K_{1,3}$ centered at $v_{i_{1}}$ and $T_{i_{2}}=K_{1,3}$ centered at $v_{i_{2}}$. In the sequel, let $f: V(G) \rightarrow \mathcal{S}_{n}$ be an optimal 4-cutwidth labeling with $f\left(v_{1}\right)=\min \left\{f\left(v_{i}\right)\right.$: $\left.v_{i} \in V\left(C_{t}\right)\right\}$ and $f\left(v_{h}\right)=\max \left\{f\left(v_{i}\right): v_{i} \in V\left(C_{t}\right)\right\}$ for some $2 \leq h \leq t$, and embed T_{1} into the interval $\left[1, f\left(v_{1}\right)\right], T_{i}(i \neq 1, h)$ into the interval $\left(f\left(v_{1}\right), f\left(v_{h}\right)\right)$ and T_{h} into the interval [$\left.f\left(v_{h}\right), n\right]$.

Case $1 \min \left\{d_{G}\left(v_{1}\right), d_{G}\left(v_{h}\right)\right\} \geq 4$,i.e., $T_{1}=K_{1,3}$ is centered at v_{1} or F_{2} with $d_{G}\left(v_{1}\right)=4$, and $T_{h}=K_{1,3}$ is centered at v_{h} or F_{2} with $d_{G}\left(v_{h}\right)=4$ because $T_{i} \in \mathcal{F}_{1}$ for each $i \in \mathcal{S}_{t}$. Thus, the congestions of T_{1} and T_{h} are at most three under f. Because G is 4-cutwidth critical and each cycle edge $v_{i} v_{i+1}$ of C_{t} has a congestion of two, the subtree T_{i} for $i \neq 1, h$ must be 1- or 2-cutwidth critical, namely, $T_{i}=K_{2}$ or $K_{1,3}$. If each $T_{i}=K_{2}$, then $c(G)=3$ by direct computation. So, there are at least a vertex $v_{i_{0}}\left(i_{0} \neq 1, h\right)$ such that $T_{i_{0}}=K_{1,3}$ in G, which results in the conclusion that one of $\left\{\tau_{2}, \tau_{3}, \tau_{4}\right\}$ is homeomorphic to a subgraph of G; this is a contradiction. Hence, this case is not possible.

Case $2 \max \left\{d_{G}\left(v_{1}\right), d_{G}\left(v_{h}\right)\right\} \geq 4$ and $\min \left\{d_{G}\left(v_{1}\right), d_{G}\left(v_{h}\right)\right\}=3$, say $d_{G}\left(v_{1}\right) \geq 4$, $d_{G}\left(v_{h}\right)=3$.

From the minimality of G, in this case, T_{1} is either a $K_{1,3}$ centered at v_{1} or $F_{2}, T_{h}=K_{1,3}$ not centered at v_{h}. For each $i \neq 1, h$, if $T_{i}=K_{2}$ then $c(G)=3$ by the direct computation, contrary to $c(G)=4$. So, there is at least a T_{i} except T_{1} and T_{h} such that $T_{i} \in\left\{K_{1,3}, K_{1,5}, F_{1}\right\}$. This results in the conclusion that one of $\left\{\tau_{44}, \tau_{45}\right\}$ must be homeomorphic to a subgraph of G, contrary to the minimality of G. For example, if $t=7$ and $h=4, \tau_{44}$ must be
homeomorphic to Figure 6a (or Figure 6b), while τ_{45} is homeomorphic to Figure 6c. So, this case is impossible.

Case $3 \max \left\{d_{G}\left(v_{1}\right), d_{G}\left(v_{h}\right)\right\}=\min \left\{d_{G}\left(v_{1}\right), d_{G}\left(v_{h}\right)\right\}=3$, i.e., $d_{G}\left(v_{i}\right)=3$ for each $1 \leq i \leq t$. By Lemma 6 and the minimality of $G, T_{i} \in \mathcal{F}_{1} \backslash\left\{F_{2}\right\}$ for each $1 \leq i \leq t$. Because τ_{11}, τ_{12}, and τ_{13} are 4-cutwidth critical, at most two subtrees of $G-E\left(C_{t}\right)$, say T_{1} and T_{h}, are in $\left\{K_{1,5}, F_{1}\right\}$. So, similar to Cases 1 and 2 , either one of $\left\{\tau_{46}, \ldots, \tau_{50}\right\}$ is homeomorphic to a subgraph of G or $c(G)<4$ (see seven typical cases in Figure 7 each of whose cutwidth is three by homemorphism), contradicting the conclusion that G is 4 -cutwidth critical. So, this case is also impossible.

To sum up, we have $t \leq 6$. This completes the proof.

Figure 6. (a-c) Three examples of Case 2 with the proof of Lemma 7.

Lemma 10. Suppose that $C_{3}=v_{1} v_{2} v_{3} v_{1}$ is a unique cycle with $d_{G}\left(v_{i}\right)=3$ and $T_{i} \neq K_{2}$ for each $i \in \mathcal{S}_{3}$ in G; then, G is 4-cutwidth critical if and only if $G \in\left\{\tau_{11}, \tau_{12}, \tau_{13}\right\}$.

Lemma 11. Suppose that $C_{3}=v_{1} v_{2} v_{3} v_{1}$ is a unique cycle with $d_{G}\left(v_{1}\right) \geq 5, T_{2}=K_{2}$, and $T_{3}=K_{2}$ in G; then, G is 4-cutwidth critical if and only if $G \in\left\{\tau_{14}, \tau_{15}, \tau_{38}, \tau_{39}, \tau_{40}\right\}$.

Proof. By Lemma 5, we only show its necessity. By $c\left(K_{1,7}\right)=4$ (see τ_{1}^{\prime} in Figure 2), $d_{G}(v) \leq 6$ for each $v \in V(G)$. So, $d_{G}\left(v_{1}\right)=5$ or 6 . We first consider the case of $d_{G}\left(v_{1}\right)=5$, and let the three subtree components of $T_{1}-v_{1}$ be $T_{1}^{(1)}, T_{1}^{(2)}$ and $T_{1}^{(3)}, T_{1}^{\prime}=T_{1}^{(1)}+x_{1} v_{1}$, $T_{1}^{\prime \prime}=T_{1}^{(2)}+x_{2} v_{1}$ and $T_{1}^{\prime \prime \prime}=T_{1}^{(3)}+x_{3} v_{1}$, respectively, where $x_{1}, x_{2}, x_{3} \in N_{G}\left(v_{1}\right)$ and $x_{1} \in V\left(T_{1}^{(1)}\right), x_{2} \in V\left(T_{1}^{(2)}\right), x_{3} \in V\left(T_{1}^{(3)}\right)$.

Claim 2. At most one subtree, say $T_{1}^{\prime \prime \prime}$, among $T_{1}^{\prime}, T_{1}^{\prime \prime}$ and $T_{1}^{\prime \prime \prime}$ is K_{2}.
In fact, if $T_{1}^{\prime}=K_{2}$ and $T_{1}^{\prime \prime}=K_{2}$, then $c(G)=3$ by direct computation, contrary to $c(G)=4$. Now, let $T_{1}^{\prime}=K_{2}$ but $T_{1}^{\prime \prime} \neq K_{2}$. In this case, we have $c\left(T_{1}\right)=4$. Otherwise, $c\left(T_{1}\right)=3$, and by the minimality of $G, T_{1}=H_{2}$ in Figure 1 (note that $T_{1} \neq H_{1}$ because of $T_{1}^{\prime \prime} \neq K_{2}$). For a labeling f of G with $f\left(v_{1}\right)<f\left(v_{2}\right)<f\left(v_{3}\right)$, we embed T_{1} into the interval $\left[1, f\left(v_{1}\right)\right]$ with a congestion of three and $G-T_{1}$ into the interval $\left(f\left(v_{1}\right), n\right)$ with a congestion of three. In this way, $c(G, f)=3$ resulting in $c(G) \leq 3$ by (2), a contradiction. Thus, by $T_{1} \subset G$ and $c\left(T_{1}\right)=4$, a contradiction to the minimality of G is obtained. Claim 2 holds.

From Claim 2, there are only two subcases considered: (1) $T_{1}^{\prime \prime \prime} \neq K_{2}$. From the minimality of $G, T_{1}=H_{2}$ and $G=\tau_{14}$ or τ_{15}. (2) $T_{1}^{\prime \prime \prime}=K_{2}$. In this subcase, for an optimal labeling f of G with $f\left(x_{1}\right)=\max \left\{f(v): v \in V\left(T_{1}^{(1)}\right)\right\}, f\left(x_{2}\right)=\max \{f(v): v \in$ $\left.V\left(T_{1}^{(2)}\right)\right\}$ and $f\left(x_{1}\right)<f\left(x_{2}\right)$, because $x_{1} v_{1}$ and $x_{2} v_{1}$ are cut edges in G, under $f, T_{1}^{(1)}$ is embedded into the interval $\left[1, f\left(x_{1}\right)\right]$ with a congestion of three, $T_{1}^{(2)}+x_{2} v_{1}$ into the interval $\left(f\left(x_{1}\right), f\left(x_{2}\right)\right]$ with a congestion of four and $G-T_{1}^{(1)}-T_{1}^{(2)}\left(=H_{4}\right.$ in Figure 1) into the interval $\left[f\left(x_{2}\right)+1, n\right]$ with a congestion of three, which leads to the conclusion that $c(G)=c(G, f)=4$. Thus, by the minimality of $G, T_{1}^{\prime} \cup T_{1}^{\prime \prime} \in \mathcal{F}_{2}$ leading to the conclusion that $G \in\left\{\tau_{38}, \tau_{39}, \tau_{40}\right\}$. Likewise, for the case of $d_{G}\left(v_{1}\right)=6$, using an argument similar to the case of $d_{G}\left(v_{1}\right)=5$, we can verify that at least one of $\left\{\tau_{14}, \tau_{15}, \tau_{38}, \tau_{39}, \tau_{40}\right\}$ is a proper subgraph of G, contrary to the minimality of G. So, $d_{G}\left(v_{1}\right) \neq 6$. This completes the proof.

Lemma 12. Suppose that $C_{3}=v_{1} v_{2} v_{3} v_{1}$ is a unique cycle in G, and there are three disjoint graphs G_{1}, G_{2}, G_{3} such that $G=K_{1,3} \circ\left(G_{1}^{\prime}, G_{2}^{\prime}, G_{3}^{\prime}\right)$. Then, G is 4 -cutwidth critical if and only if $G \in\left\{\tau_{17}, \tau_{18}, \ldots, \tau_{28}\right\}$, where, for $j \in \mathcal{S}_{3}$,

$$
G_{j}^{\prime}= \begin{cases}G_{j} & \text { if } v_{j} \notin V_{p}^{(j)} \text { for } v_{j} \in V\left(G_{j}\right) \\ G_{j}-p_{j} & \text { otherwise }\end{cases}
$$

in which $V_{p}^{(j)} \subset V\left(G_{j}\right)$ and there always are at least a pendent vertex $p_{j} \in D_{1}\left(G_{j}\right)$ such that $v p_{j} \in E\left(G_{j}\right)$ for each $v \in V_{p}^{(j)}$.

Proof. By Lemma 5, we only show its necessity and adopt the notation of Definition 1 (iii). As G is unicyclic and vertex p_{i} is pendent, C_{3} is contained in one of $\left\{G_{1}, G_{2}, G_{3}\right\}$, say G_{2}. Thus, G_{1}, G_{3} are subtrees in G. From the hypothesis that G is 4-cutwidth critical, for $j \in \mathcal{S}_{3}$ and $v_{j} \in V\left(G_{j}^{\prime}\right), G_{j}^{\prime}$ and $G_{j}^{\prime}+u_{0} v_{j}$ are 3-cutwidth critical in the cases of $v_{j} \notin V_{p}^{(j)}$ or $v_{j} \in V_{p}^{(j)}$ respectively after that the series reduction is implemented. Because, otherwise, it is not hard to obtain a noncritical graph with a cutwidth of four, a contradiction. Hence,
$G_{j}^{\prime} \in\left\{H_{1}, H_{2}, H_{3}, H_{4}\right\}$ if $v_{j} \notin V_{p}^{(j)}$ and $G_{j}^{\prime}+u_{0} v_{j} \in\left\{H_{1}, H_{2}, H_{3}, H_{4}\right\}$ if $v_{j} \in V_{p}^{(j)}$. So, $G \in\left\{\tau_{17}, \tau_{18}, \ldots, \tau_{28}\right\}$ by the minimality of G.

Similar to Lemma 12, a class of critical unicyclic graphs with a cutwidth of four has an interesting structure (see Definition 3 below). This structure together with that of Lemma 12 is called the decomposability of the critical unicyclic graphs with a cutwidth of four. From Corollary 3, $K_{1,3} \circ\left(K_{1,5}, K_{1,5}, K_{1,5}\right)$ with $v_{j} \in D_{1}\left(K_{1,5}\right)(1 \leq j \leq 3)$ is 4-cutwidth critical after that the series reductions are carried out, so we may assume that $G-v$ has at most two $K_{1,4}$'s for any $v \in V(G)$ in the sequel.

Definition 3. Let C_{3} be a unique cycle with a length of three in graph $G, v_{0} \in V(G)$ with $\left|N_{G}\left(v_{0}\right)\right| \geq 4, G_{i}=\left(V_{i}, E_{i}\right)$ be a component of $G-v_{0}\left(1 \leq i \leq j_{0}, 3 \leq j_{0} \leq\left|N_{G}\left(v_{0}\right)\right|\right)$, $v_{0} v_{1}, v_{0} v_{2}$ be cut edges with $v_{1} \in V_{1}$ and $v_{2} \in V_{2}, \min \left\{c\left(G\left[V_{j} \cup\left\{v_{0}\right\}\right]\right): j=1,2,3\right\} \geq$ $\max \left\{c\left(G\left[V_{h} \cup\left\{v_{0}\right\}\right]\right): 4 \leq h \leq j_{0}\right\}$, and $\bar{G}_{3}=\bigcup_{i=3}^{j_{0}} G\left[V_{i} \cup\left\{v_{0}\right\}\right]$. Then,
(i) if $G_{i} \neq K_{1,4}$ for each $1 \leq i \leq j_{0}$, then define $\bar{G}_{j}=G\left[V_{j} \cup\left\{v_{0}\right\}\right] \cup G\left[E_{0}\right]$ for $j=1,2$;
(ii) if $G_{1}=K_{1,4}$, then define $\bar{G}_{1}=G\left[V_{1} \cup\left\{v_{0}\right\}\right]=K_{1,5}, \bar{G}_{2}=G\left[V_{2} \cup\left\{v_{0}\right\}\right] \cup G\left[E_{0}\right]$;
(iii) if $G_{1}=K_{1,4}, G_{2}=K_{1,4}$, then define $\bar{G}_{j}=G\left[V_{j} \cup\left\{v_{0}\right\}\right]=K_{1,5}$ for $j=1,2$,
where $E_{0} \neq \varnothing$ is an edge subset of $E\left(\bar{G}_{3}\right)$ but $E_{0} \cap E\left(G_{3}\right)=\varnothing$.
In Definition 3, if $d_{\bar{G}_{j}}(v)=2$ for some vertex $v \in V\left(\bar{G}_{j}\right)$, and $\bar{G}_{j}-v+x_{1}^{j} x_{2}^{j}$ is 3cutwidth critical, then we also say that \bar{G}_{j} is 3-cutwidth critical below, where $x_{1}^{j}, x_{2}^{j} \in$ $N_{\bar{G}_{j}}(v)$. For examples, for Case (i), let $G=\tau_{31}$ with $C_{3}=v_{15} v_{16} v_{17} v_{15}$ and $v_{0}=v_{14}$ in Figure $3, G_{j}=\left(V_{j}, E_{j}\right)$ be a component of $G-v_{14}$ and $G_{j} \neq K_{1,4}(1 \leq j \leq 4)$, where $V_{1}=\left\{v_{i}: 1 \leq i \leq 7\right\}, V_{2}=\left\{v_{i}: 18 \leq i \leq 24\right\}, V_{3}=\left\{v_{11}, v_{12}, v_{13}, v_{15}, v_{16}, v_{17}\right\}, V_{4}=$ $\left\{v_{8}, v_{9}, v_{10}\right\}$ and $\bar{G}_{3}=G\left[V_{3} \cup\left\{v_{14}\right\}\right] \cup G\left[V_{4} \cup\left\{v_{14}\right\}\right]=G\left[\left\{v_{i}: 8 \leq i \leq 17\right\}\right]$ with an edge subset $E_{0}=\left\{v_{9} v_{8}, v_{9} v_{10}\right\}$. Thus, $\bar{G}_{1}=G\left[V_{1} \cup\left\{v_{14}\right\}\right] \cup G\left[E_{0}\right]=G\left[V_{1} \cup V_{4} \cup\left\{v_{14}\right\}\right]$ and $\bar{G}_{2}=G\left[V_{2} \cup\left\{v_{14}\right\}\right] \cup G\left[E_{0}\right]=G\left[V_{2} \cup V_{4} \cup\left\{v_{14}\right\}\right]$. Likewise, for Cases (ii) and (iii), we can let $G=\tau_{30}$ and τ_{29}, respectively.

Lemma 13. With the notation in Definition 3, if \bar{G}_{j} is 3-cutwidth critical for each $j \in \mathcal{S}_{3}$, then G is 4-cutwidth critical.

Proof. Without loss of generality, let G_{1}, G_{2}, G_{3} satisfy (i) and $C_{3} \subset \bar{G}_{3}$ by assumption. Then \bar{G}_{1}, \bar{G}_{2} are subtrees in G. Due to the fact that \bar{G}_{j} is 3-cutwidth critical for each $j \in \mathcal{S}_{3}$, $\bar{G}_{3} \in\left\{H_{3}, H_{4}\right\}$ and $\bar{G}_{1}, \bar{G}_{2} \in\left\{H_{1}, H_{2}\right\}$, it can be concluded that $G \in\left\{\tau_{16}, \tau_{31}, \tau_{34}, \tau_{36}, \tau_{40}\right\}$ via direct computation. So, G is 4 -cutwidth critical by Lemma 5. Similarly, for Case (ii), $G \in\left\{\tau_{30}, \tau_{33}, \tau_{37}, \tau_{39}\right\}$; and for Case (iii), $G \in\left\{\tau_{29}, \tau_{32}, \tau_{35}, \tau_{38}\right\}$. So, the Lemma holds.

Lemma 14. With the notation in Definition 3, G is 4 -cutwidth critical if and only if $G \in$ $\left\{\tau_{16}, \tau_{29}, \tau_{30}, \ldots, \tau_{40}\right\}$.

Proof. It suffices to show its necessity by Lemma 5. As the arguments are similar, we only consider the case that G_{1}, G_{2}, G_{3} satisfy (i) of Definition 3. Furthermore, without loss of generality, let cycle $C_{3} \subset \bar{G}_{3}$ by assumption, then \bar{G}_{1}, \bar{G}_{2} are subtrees in G.

Claim 3. For each $j \in \mathcal{S}_{3}, \bar{G}_{j}$ is 3-cutwidth critical.
In fact, if there is some $j_{0} \in \mathcal{S}_{3}$, say $j_{0}=3$, such that \bar{G}_{3} is not 3-cutwidth critical, then two cases need to be considered: (1) there are at least an edge $e \in E\left(\bar{G}_{3}\right)$ such that $c\left(\bar{G}_{3}-e\right) \geq 3 ;(2) c\left(\bar{G}_{3}\right) \leq 2$. By assumption that G is 4 -cutwidth critical, we can see that Case (1) is impossible by Lemma 13. Hence, it suffices to verify that Case (2) is also impossible. As \bar{G}_{1} and \bar{G}_{2} are 3-cutwidth critical, $c\left(G_{1}\right) \leq 2$ and $c\left(G_{2}\right) \leq 2$. Let f_{1}, f_{2}, f_{3} be the optimal labelings of G_{1}, \bar{G}_{2}, and G_{3}, respectively. Then, similar to that of (5) in Definition 2, we can obtain a 3-cutwidth labeling $f: V(G) \mapsto \mathcal{S}_{|V(G)|}$ by the order
$\left(f_{1}, f_{2}, f_{3}\right)$ with $c(G, f)=3$, which implies $c(G) \leq 3$, contrary to $c(G)=4$. Similarily, for $j_{0} \in\{1,2\}$, if $\bar{G}_{j_{0}}$ is not 3-cutwidth critical, then a similar contradiction can also be obtained. So, Case (2) is not possible and Claim 3 holds.

Thus, by Claim 3 and Lemma 13, $G \in\left\{\tau_{16}, \tau_{29}, \tau_{30}, \ldots, \tau_{40}\right\}$. The proof is completed.
Lemma 15. Let $t=4$ in C_{t}. Then, G is 4 -cutwidth critical if and only if $G \in\left\{\tau_{41}, \tau_{42}, \ldots, \tau_{45}\right\}$.
Proof. By Lemma 5, it suffices to show its necessity. By Lemma 6, $T_{i} \in \mathcal{F}_{1} \cup \mathcal{F}_{2}$ for each $v_{i} \in V\left(C_{4}\right)$. So, two cases need to be considered.
Case $1 T_{i} \in \mathcal{F}_{2}$. In Lemma 6, we already showed that G is 4-cutwidth critical if and only if $G \in\left\{\tau_{41}, \tau_{42}, \tau_{43}\right\}$ in this case, omitted here.
Case $2 T_{i} \in \mathcal{F}_{1}$. By (6), for each $v_{i} \in V\left(C_{4}\right), d_{G}\left(v_{i}\right) \geq 3$ in G.
Claim 4. There is a unique vertex, say v_{1}, such that $d_{G}\left(v_{1}\right) \geq 4$ in G.
First, let $d_{G}\left(v_{i}\right)=3$ for each $v_{i} \in V\left(C_{4}\right)$. In this case, there are at least three subtrees, say T_{1}, T_{2}, T_{4}, such that T_{1}, T_{2}, T_{4} are all in $\left\{K_{1,5}, F_{1}\right\}$, which leads to the conclusion that one of $\left\{\tau_{11}, \tau_{12}, \tau_{13}\right\}$ is homeomorphic to a subgraph of G, which contradicts the minimality of G. Otherwise, by the fact that the cutwidth of each member of \mathcal{F}_{1} is at most two, we can verify that $c(G)<4$, contrary to $c(G)=4$. In fact, for an optimal labeling f of G with $f\left(v_{1}\right)=\min \left\{f\left(v_{i}\right): v_{i} \in V\left(C_{t}\right)\right\}$ and $f\left(v_{4}\right)=\max \left\{f\left(v_{i}\right): v_{i} \in V\left(C_{4}\right)\right\}$, let $f(x)=\max \left\{f(v): v \in V\left(T_{1}-v_{1}\right)\right\}, f(y)=\min \left\{f(v): v \in V\left(T_{4}-v_{4}\right)\right\}$. Under f, we first embed T_{1} into the interval $\left[1, f\left(v_{1}\right)\right]$ with a congestion of three and T_{4} into the interval $\left[f\left(v_{4}\right), n\right]$ with a congestion of three, resulting in $T_{1}, T_{4} \in\left\{K_{1,5}, F_{1}\right\}$. If $T_{2}, T_{3} \in\left\{K_{2}, K_{1,3}, F_{2}\right\}$, then we can conclude that $c(G)=3$ by embedding T_{2} into the interval $\left(f(x), f\left(v_{1}\right)\right)$ with a congestion of three and T_{3} into the interval $\left(f\left(v_{4}\right), f(y)\right)$ with a congestion of three. This is a contradiction, which leads to the conclusion that one of $\left\{T_{2}, T_{3}\right\}$ is in $\left\{K_{1,5}, F_{1}\right\}$.

Second, let $d_{G}\left(v_{2}\right) \geq 4$, i.e., $T_{2}=F_{2}$ or $K_{1,3}$ centered at v_{2}. If $T_{3}=K_{2}$ and $T_{4}=K_{2}$, then $c(G)=3$, contradicting $c(G)=4$. So, at least one of $\left\{T_{3}, T_{4}\right\}$ is a $K_{1,3}$. However, in this case, one of $\left\{\tau_{2}, \tau_{3}, \tau_{4}\right\}$ is homeomorphic to a subgraph of G, contrary to the minimality of G. So, Claim 4 holds.

Because $\tau_{41}, \tau_{42}, \tau_{43}$ are 4-cutwidth critical, there is at least a subtree $T_{i}(i=2,3,4)$ such that $T_{i} \neq K_{2}$. In addition, $K_{1,3} \subset K_{1,5}$ and $F_{2} \subset F_{1}$. So, by Claim 4 and the minimality of G, G must be among the six graphs in Figure 8. From direct computation, only graphs (c) and (f) are 4-cutwidth critical, which are τ_{44} and τ_{45} in Figure 8, respectively. Thus, $G \in\left\{\tau_{41}, \tau_{42}, \tau_{43}, \tau_{44}, \tau_{45}\right\}$.

Figure 8. (a-f) Six possible graphs on G with the proof of Lemma 15.
Lemma 16. Let $t=5$ in C_{t}. Then, G is 4-cutwidth critical if and only if $G \in\left\{\tau_{46}, \tau_{47}, \tau_{48}, \tau_{49}\right\}$.
Proof. By Lemma 5, it suffices to prove its necessity. Because G is 4-cutwidth critical and $t=5$, by Lemmas 6 and $15, T_{i} \in \mathcal{F}_{1}$ for each $i \in \mathcal{S}_{5}$.

Claim 5. $d_{G}\left(v_{i}\right)=3$ for each $v_{i} \in V\left(C_{5}\right)$, and at most two subtrees $T_{i_{1}}$ and $T_{i_{2}}$ are in $\left\{K_{1,5}, F_{1}\right\}$.
In fact, if there exists at least one vertex, say v_{1}, such that $d_{G}\left(v_{1}\right) \geq 4$, then, with an argument similar to that of Lemma 15 , we can verify that one of $\left\{\tau_{1}, \tau_{2}, \ldots, \tau_{10}, \tau_{44}, \tau_{45}\right\}$ is homeomorphic to a subgraph of G, which is a contradiction. If there is another $T_{i_{3}} \in$
$\left\{K_{1,5}, F_{1}\right\}$, then one of $\left\{\tau_{11}, \tau_{12}, \tau_{13}\right\}$ is homeomorphic to a subgraph of G, which is another contradiction. Claim 5 holds.

By the minimality of G, if each of $\left\{\tau_{46}, \tau_{47}, \tau_{48}, \tau_{49}\right\}$ is homeomorphic to a subgraph of G, then G does not need to be considered. Similarly, if G is not homeomorphic to any of $\left\{\tau_{46}, \tau_{47}, \tau_{48}, \tau_{49}\right\}$, then any homeomorphic subgraph of G is not also considered by (4). Thus, except for $\tau_{46}, \tau_{47}, \tau_{48}$, and τ_{49}, it is possible that G is among the five graphs in Figure 9 by Claim 5. However, by direct computations, $c(G)=3$ for each graph G in Figure 9, contrary to $c(G)=4$. So, $G \in\left\{\tau_{46}, \tau_{47}, \tau_{48}, \tau_{49}\right\}$.

Figure 9. (a-e) Possible graphs on G with the proof of Lemma 16.
Lemma 17. Let $t=6$ in C_{t}. Then, G is 4-cutwidth critical if and only if $G=\tau_{50}$.
Proof. By Lemma 5, it suffices to prove its necessity. Similar to those of Lemmas 15 and 16, we can verify that $d_{G}\left(v_{i}\right)=3$ for each $i \in \mathcal{S}_{6}$ and $T_{i_{1}}, T_{i_{2}}, T_{i_{3}} \in\left\{K_{1,3}\right\}, T_{i_{4}}, T_{i_{5}}, T_{i_{6}} \in\left\{K_{2}\right\}$. Thus, G is among the following three graphs in Figure 10. By direct computations, we can see that only graph (c) is 4-cutwidth critical, and $(c)=\tau_{50}$. So, $G=\tau_{50}$ and the Lemma holds.

Figure 10. (a-c) Three possible graphs with the proof of Lemma 17.
Proof of Theorem 1. By Lemmas 5, 8-12, and 14-17, the desired result holds.

4. Remarks

In this paper, fifty critical unicyclic graphs with a cutwidth of four were obtained, during which a decomposable property of some 4-cutwidth critical unicyclic graphs was also obtained (see Lemma 12 and Definition 3). For an integer $k \geq 4$, although it seems to be difficult to find all k-cutwidth critical graphs, some structural properties of some of them can be found definitively. In fact, as the decomposability of k-cutwidth critical trees [25] and some special non-tree graphs with uncomplicated structure [26], a similar decomposable property of 4-cutwidth critical unicyclic graphs, which is contained in Lemma 12 and Definition 3, can be generalized to k-cutwidth critical graphs even if these graphs are multicyclic graphs. For instance, in Lemma 12, if any element of $\left\{G_{1}, G_{2}, G_{3}\right\}$ is a critical unicyclic graph with a cutwidth of $k-1$, then we can verify that $K_{1,3} \circ\left(G_{1}^{\prime}, G_{2}^{\prime}, G_{3}^{\prime}\right)$ is a critical unicyclic graph with a cutwidth of k. Clearly, if $v_{j} \notin V_{p}^{(j)}$ with $1 \leq j \leq 3$, then $\left\{G_{j}^{\prime}+u_{0} v_{j}: 1 \leq j \leq 3\right\}$ is a decomposition of $K_{1,3} \circ\left(G_{1}^{\prime}, G_{2}^{\prime}, G_{3}^{\prime}\right)$. Regarding the critical multicyclic graphs with a cutwidth of at least four, their general structural properties have yet to be known. Additionally, the application of critical unicyclic graphs with a cutwidth of four to some realistic fields, such as social and biological networks, multivariate
cryptography, and other fields, is worth studying. These will be the objects for further study in future works.

Author Contributions: Conceptualization, Z.Z. and H.L.; writing-original draft preparation, Z.Z.; writing-review and editing, H.L.; project administration, Z.Z. and H.L.; funding acquisition, Z.Z. All authors have read and agreed to the published version of the manuscript.

Funding: The research was partially funded by Soft Science Foundation of Henan Province of China (192400410212) and Science and Technology Key Project of Henan Province China (222102110028).

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.
Data Availability Statement: Not applicable.
Acknowledgments: The authors would like to express their sincere gratitude to the referees for their helpful comments and suggestions on improving the quality of this paper. The research is partially supported by the Soft Science Foundation of the Henan Province of China (192400410212) and the Science and Technology Key Project of the Henan Province China (222102110028).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Bondy, J.A.; Murty, U.S.R. Graph Theory; Springer: NewYork, NY, USA, 2008.
2. Diaz, J.; Petit, J.; Serna, M. A survey of graph layout problems. ACM Comput. Surv. 2002, 34, 313-356. [CrossRef]
3. Chung, M.; Makedon, F.; Sudborough, I.H.; Turner, J. Polynomial time algorithms for the min-cut problem on degree restricted trees. SIAM J. Comput. 1985, 14, 158-177. [CrossRef]
4. Garey, M.R.; Johnson, D.S. Computers and Intractability: A Guide to the Theory of NP-Completeness; W.H. Freeman \& Company: San Francisco, CA, USA, 1979.
5. Gavril, F. Some NP-complete problems on graphs. In Proceedings of the 11th Conference on Information Sciences and Systems, Baltimore, MD, USA, 28-31 May 1977; pp. 91-95.
6. Yannakakis, M. A polynomial algorithm for the min-cut arrangement of trees. J. ACM 1985, 32, 950-989. [CrossRef]
7. Monien, B.; Sudborough, I.H. Min-cut is NP-complete for edge weighted trees. Theor. Comp. Sc. 1988, 58, 209-229. [CrossRef]
8. Chung, F.R.K. On the cutwidth and topological bandwidth of a tree. SIAM J. Alg. Disc. Meth. 1985, 6, 268-277. [CrossRef]
9. Lin, Y.; Yang, A. On 3-cutwidth critical graphs. Discret. Math. 2004, 275, 339-346. [CrossRef]
10. Zhang, Z.; Lai, H. Characterizations of k-cutwidth critical trees. J. Comb. Optim. 2017, 34, 233-244. [CrossRef]
11. Arnborg, S.; Proskurowski, A.; Corneil, D.G. Forbidden minors characterization of partial 3-trees. Discret. Math. 1990, 80, 1-19. [CrossRef]
12. Bodlaender, H.L.; Thilikos, D.M. Graphs with Branchwidth at most three. J. Algorithms 1999, 32, 167-194. [CrossRef]
13. Kinnersley, N.G.; Langston, M.A. Obstruction set isolation for the gate matrix layout problem. Discret. Appl Math. 1994, 54, 169-213. [CrossRef]
14. Robertson, N.; Seymour, P.D. Graph minors. XVI. Wagner's conjecture. J. Comb. Theory Ser. B 2004, 2, 325-357.
15. Lengauer, T. Upper and lower bounds on the complexity of the min-cut linear arrangement problem on trees. SIAM J. Alg. Disc. Meth. 1982, 3, 99-113. [CrossRef]
16. Makedon, F.S.; Sudborough, I.H. On minimizing width in linear layouts. Discret. Appl. Math. 1989, 23, 243-265. [CrossRef]
17. Karger, D.R. A randomized fully polynomial time approximation scheme for the all terminal network reliability problem. SIAM J. Comput. 1999, 29, 492-514. [CrossRef]
18. Mutzel, P. A polyhedral approach to planar augmentation and related problems. In European Symposium on Algorithms; Volume 979 of Lecture Notes in Computer Science; Spirakis, P., Ed.; Springer: Berlin/Heidelberg, Germany, 1995; pp. 497-507.
19. Botafogo, R.A. Cluster analysis for hypertext systems. In Proceedings of the 16th Annual ACM SIGIR Conference on Research and Development in Information Retrieval, Pittsburgh, PA, USA, 27 June-1 July 1993; pp. 116-125.
20. Hesarkazzazi, S.; Hajibabaei, M.; Bakhshipour, A.E.; Dittmer, U.; Haghighi, A.; Sitzenfrei, R. Generation of optimal (de)centralized layouts for urban drainage systems: A graph theory based combinatorial multiobjective optimization framework. Sustain. Cities Soc. 2022, 81, 103827. [CrossRef]
21. Chung, F.R.K. Labelings of graphs. Sel. Top. Graph Theory 1988, 3, 151-168.
22. Thilikos, D.M.; Serna, M.; Bodlaender, H.L. Cutwidth II: Algorithms for partial w-trees of bounded degree. J. Algorithm 2005, 56, 25-49. [CrossRef]
23. Chung, F.R.K.; Seymour, P.D. Graphs with small bandwidth and cutwidth. Discret. Math. 1989, 75, 113-119. [CrossRef]
24. Korach, E.; Solel, N. Treewidth, pathwidth and cutwidth. Discret. Appl. Math. 1993, 43, 97-101. [CrossRef]
25. Zhang, Z. Decompositions of critical trees with cutwidth k. Comput. Appl. Math. 2019, 38, 148. [CrossRef]
26. Zhang, Z.; Zhao, Z.; Pang, L. Decomposability of a class of k-cutwidth critical graphs. J. Comb. Optim. 2022, 43, 384-401. [CrossRef]
