Acta Mathematicae Applicatae Sinica, English Series Vol. 38, No. 3 (2022) 532–539 https://doi.org/10.1007/s10255-022-1095-3 http://www.ApplMath.com.cn & www.SpringerLink.com

Acta Mathematicae Applicatae Sinica, English Series © The Editorial Office of AMAS & Springer-Verlag GmbH Germany 2022

On the Sizes of k-edge-maximal r-uniform Hypergraphs

Ying-zhi TIAN^{1, \dagger}, Hong-Jian LAI², Ji-xiang MENG¹, Li-qiong XU³

¹College of Mathematics and System Sciences, Xinjiang University, Urumqi 830046, China ([†]E-mail: tianyzhxj@163.com)

²Department of Mathematics, West Virginia University, Morgantown, WV 26506, USA

³School of Science, Jimei University, Xiamen 361021, China

Abstract Let H = (V, E) be a hypergraph, where V is a set of vertices and E is a set of non-empty subsets of V called edges. If all edges of H have the same cardinality r, then H is an r-uniform hypergraph; if E consists of all r-subsets of V, then H is a complete r-uniform hypergraph, denoted by K_n^r , where n = |V|. A hypergraph H' = (V', E') is called a subhypergraph of H = (V, E) if $V' \subseteq V$ and $E' \subseteq E$. The edge-connectivity of a hypergraph H is the cardinality of a minimum edge set $F \subseteq E$ such that H - F is not connected, where $H - F = (V, E \setminus F)$. An r-uniform hypergraph H = (V, E) is k-edge-maximal if every subhypergraph of H has edge-connectivity at most k, but for any edge $e \in E(K_n^r) \setminus E(H)$, H + e contains at least one subhypergraph with edge-connectivity at least k + 1.

Let k and r be integers with $k \ge 2$ and $r \ge 2$, and let t = t(k, r) be the largest integer such that $\binom{t-1}{r-1} \le k$. That is, t is the integer satisfying $\binom{t-1}{r-1} \le k < \binom{t}{r-1}$. We prove that if H is an r-uniform k-edge-maximal hypergraph such that $n = |V(H)| \ge t$, then (i) $|E(H)| \le \binom{t}{r} + (n-t)k$, and this bound is best possible; (ii) $|E(H)| \ge (n-1)k - ((t-1)k - \binom{t}{r})\lfloor \frac{n}{t} \rfloor$, and this bound is best possible.

Keywords Edge-connectivity; *k*-edge-maximal hypergraphs; *r*-uniform hypergraphs **2000 MR Subject Classification** 05C40

1 Introduction

For graph-theoretical terminologies and notation not defined here, we follow^[3]. The edgeconnectivity of a graph G, denoted by $\kappa'(G)$, is the the cardinality of a minimum edge set $F \subseteq E$ such that G - F is not connected. The *complement* of a graph G is denoted by G^c . For $X \subseteq E(G^c)$, G + X is the graph with vertex set V(G) and edge set $E(G) \cup X$. We will use G + e for $G + \{e\}$. The *floor* of a real number x, denoted by $\lfloor x \rfloor$, is the greatest integer not larger than x; the *ceiling* of a real number x, denoted by $\lfloor x \rfloor$, is the least integer greater than or equal to x. For two integers n and k, we define $\binom{n}{k} = \frac{n!}{k!(n-k)!}$ when $k \leq n$ and $\binom{n}{k} = 0$ when k > n.

Given a graph G, Matula^[9] defined the strength $\overline{\kappa}'(G)$ of G as $\max\{\kappa'(G') : G' \subseteq G\}$. For a positive integer k, the graph G is k-edge-maximal if $\overline{\kappa}'(G) \leq k$ but for any edge $e \in E(G^c)$, $\overline{\kappa}'(G+e) > k$. Mader^[8] and Lai^[6] proved the following results.

Theorem 1.1. Let $k \ge 1$ be an integer, and G be a k-edge-maximal graph on n > k+1 vertices. Each of the following holds.

(i) $(Mader^{[8]}) | E(G) | \le (n-k)k + {k \choose 2}$. Furthermore, this bound is best possible.

(ii) $(Lai^{[6]}) |E(G)| \ge (n-1)k - \lfloor \frac{n}{k+2} \rfloor \binom{k}{2}$. Furthermore, this bound is best possible.

[†]Corresponding author.

Manuscript received December 17, 2019. Accepted on March 15, 2021.

This paper is supported by the National Natural Science Foundation of China (Nos. 11861066, 11531011), Tianshan Youth Project of Xinjiang (2018Q066).

In [1] and [7], k-edge-maximal digraphs are investigated, and the upper bound and the lower bound of the sizes of the k-edge-maximal digraphs are determined, respectively. Motivated by these results, we will study k-edge-maximal hypergraphs in this paper.

Let H = (V, E) be a hypergraph, where V is a finite set and E is a set of non-empty subsets of V, called edges. Throughout we will assume that every edge contains at least two vertices. An edge of cardinality 2 is just a graph edge. For a vertex $u \in V$ and an edge $e \in E$, we say u is incident with e or e is incident with u if $u \in e$ (we see the edge e as a subset of V). If all edges of H have the same cardinality r, then H is an r-uniform hypergraph; if E consists of all r-subsets of V, then H is a complete r-uniform hypergraph, denoted by K_n^r , where n = |V|. For n < r, the complete r-uniform hypergraph K_n^r is just the hypergraph with n vertices and no edges. The complement of a r-uniform hypergraph H = (V, E), denoted by H^c , is the r-uniform hypergraph with vertex set V and edge set consisting of all r-subsets of V not in E. A hypergraph H' = (V', E') is called a ubhypergraph of H = (V, E), denoted by $H' \subseteq H$, if $V' \subseteq V$ and $E' \subseteq E$. Note that subhypergraph here is called a hypersubgraph in [2] and a strong subhypergraph in [4]. For $X \subseteq E(H^c)$, H + X is the hypergraph with vertex set V(H)and edge set $E(H) \cup X$; for $X' \subseteq E(H)$, H - X' is the hypergraph with vertex set V(H) and edge set $E(H) \setminus X'$. We use H + e for $H + \{e\}$ and H - e' for $H - \{e'\}$ when $e \in E(H^c)$ and $e' \in E(H)$. For $Y \subseteq V(H)$, we use H[Y] to denote the hypergraph induced by Y, where V(H[Y]) = Y and $E(H[Y]) = \{e \in E(H) : e \subseteq Y\}$. H - Y is the hypergraph induced by $V(H) \setminus Y.$

For a hypergraph H = (V, E) and two disjoint vertex subsets $X, Y \subseteq V$, let $E_H[X, Y]$ be the set of edges with non-empty intersecting with both X and Y and $d_H(X, Y) = |E_H[X, Y]|$. We use $E_H(X)$ and $d_H(X)$ for $E_H[X, V \setminus X]$ and $d_H(X, V \setminus X)$, respectively. If $X = \{u\}$, we use $E_H(u)$ and $d_H(u)$ for $E_H(\{u\})$ and $d_H(\{u\})$, respectively. The degree of u in H is the number of edges incident with u in H, which is $d_H(u)$ (Because we assume that every edge contains at least two vertices in this paper). The minimum degree $\delta(H)$ of H is defined as $\min\{d_H(u) : u \in V\}$; the maximum degree $\Delta(H)$ of H is defined as $\max\{d_H(u) : u \in V\}$. When $\delta(H) = \Delta(H) = k$, we call H k-regular.

For a nonempty proper vertex subset X of a hypergraph H, we call $E_H(X)$ an edge-cut of H. The edge-connectivity $\kappa'(H)$ of a hypergraph H is $\min\{d_H(X) : \emptyset \neq X \subsetneq V(H)\}$. By definition, $\kappa'(H) \leq \delta(H)$. We call a hypergraph H k-edge-connected if $\kappa'(H) \geq k$. A hypergraph is connected if it is 1-edge-connected. A maximal connected subhypergraph of H is called a component of H. It is easy to see that the edge-connectivity of a hypergraph H is the cardinality of a minimum edge set $F \subseteq E$ such that H - F is not connected. Similarly, define the strength $\overline{\kappa}'(H)$ of H as $\max\{\kappa'(H') : H' \subseteq H\}$. An r-uniform hypergraph H = (V, E) is k-edge-maximal if every subhypergraph of H has edge-connectivity at most k, but for any edge $e \in E(H^c), H + e$ contains at least one subhypergraph with edge-connectivity at least k + 1. For any integer k with $k \geq \binom{n-1}{r-1}$, since $\kappa'(K_n^r) = \binom{n-1}{r-1} \leq k$ and there is no edge in $(K_n^r)^c$, we regard K_n^r as a k-edge maximal hypergraph. Thus H is a complete r-uniform hypergraph if H is a k-edge-maximal r-uniform hypergraph with $\binom{n-1}{r-1} \leq k$, where n = |V(H)|. For results on the connectivity of hypergraphs, see cf. [2, 4, 5] for references.

The main goal of this research is to determine, for given integers n, k and r, the extremal sizes of a k-edge-maximal r-uniform hypergraph on n vertices. Section 2 below is devoted to the study of some properties of k-edge-maximal r-uniform hypergraphs. In section 3, we give the upper bound of the sizes of k-edge-maximal r-uniform hypergraphs and characterize these k-edge-maximal r-uniform hypergraphs attained this bound. We obtain the lower bound of the sizes of k-edge-maximal r-uniform hypergraphs and show that this bound is best possible in section 4.

2 Properties of k-edge-maximal r-uniform Hypergraphs

For a 1-edge-maximal r-uniform hypergraph H with n = |V(H)|, we can verify that $\lceil \frac{n-1}{r-1} \rceil \leq |E(H)| \leq n-r+1$. If H is the hypergraph with vertex set $V(H) = \{v_1, \cdots, v_n\}$ and edge set $E(H) = \{e_1, \cdots, e_{n-r+1}\}$, where $e_i = \{v_1, \cdots, v_{r-1}, v_{r-1+i}\}$ for $i = 1, \cdots, n-r+1$, then H is a 1-edge-maximal r-uniform hypergraph H with |E(H)| = n-r+1. The 1-edge-maximal r-uniform hypergraph K_r^r shows that the lower bound $\lceil \frac{n-1}{r-1} \rceil$ is also sharp. Thus, from now on, we always assume $k \geq 2$.

Definition 2.1. For two integers k and r with $k, r \ge 2$, define t = t(k, r) to be the largest integer such that $\binom{t-1}{r-1} \le k$. That is, t is the integer satisfying $\binom{t-1}{r-1} \le k < \binom{t}{r-1}$.

Lemma 2.1. Let H = (V, E) be a k-edge-maximal r-uniform hypergraph on n vertices, where $k, r \geq 2$. Assume $n \geq t$ when $\binom{t-1}{r-1} = k$ and $n \geq t+1$ when $\binom{t-1}{r-1} < k$, where t = t(k, r). Then $\kappa'(H) = \overline{\kappa}'(H) = k$.

Proof. Since H is k-edge-maximal, we have $\kappa'(H) \leq \overline{\kappa}'(H) \leq k$. In order to complete the proof, we only need to show that $\kappa'(H) \geq k$.

Let X be a minimum edge-cut of H, and let H_1 be a component of H - X with minimum number of vertices and $H_2 = H - V(H_1)$. Denote $n_1 = |V(H_1)|$ and $n_2 = |V(H_2)|$. Thus we have $X = E_H[V(H_1), V(H_2)]$, $n = n_1 + n_2$ and $n_1 \le n_2$. To prove the lemma, we consider the following two cases.

Case 1. $E_{H^c}[V(H_1), V(H_2)] \neq \emptyset$.

Pick an edge $e \in E_{H^c}[V(H_1), V(H_2)]$. Since H is k-edge-maximal, we have $\overline{\kappa}'(H+e) > k$. Let $H' \subseteq H+e$ be a subhypergraph such that $\kappa'(H') \ge k+1$. By $\overline{\kappa}'(H) \le k$, we have $e \in H'$. It follows that $(X \cup \{e\}) \cap E(H')$ is an edge-cut of H'. Thus $|X|+1 \ge |(X \cup \{e\})| \ge \kappa'(H') \ge k+1$, implying $|X| \ge k$. Thus $\kappa'(H) \ge k$.

Case 2. $E_{H^c}[V(H_1), V(H_2)] = \emptyset$.

Since $E_{H^c}[V(H_1), V(H_2)] = \emptyset$, we know that $E_H[V(H_1), V(H_2)]$ consists of all *r*-subsets of V(H) intersecting both $V(H_1)$ and $V(H_2)$. Thus

$$|E_H[V(H_1), V(H_2)]| = \sum_{s=1}^{r-1} {n_1 \choose s} {n_2 \choose r-s} = {n \choose r} - {n_1 \choose r} - {n_2 \choose r}.$$

Let $g(x) = {\binom{x}{r}} + {\binom{n-x}{r}}$. It is routine to verify that g(x) is a decreasing function when $1 \le x \le n/2$. If $n_1 \ge 2$, then as H is connected we have $r \le n_1 \le n/2$. Thus

$$\kappa'(H) = |E_H[V(H_1), V(H_2)]| = \binom{n}{r} - \binom{n_1}{r} - \binom{n_2}{r} \ge \binom{n}{r} - \binom{2}{r} - \binom{n-2}{r} > \binom{n-1}{r-1} \ge \delta(H), \quad (2.1)$$

which contradicts to $\kappa'(H) \leq \delta(H)$. Thus, we assume $n_1 = 1$. Now we have

$$\kappa'(H) = |E_H[V(H_1), V(H_2)]| = \binom{n}{r} - \binom{n_1}{r} - \binom{n_2}{r} = \binom{n}{r} - \binom{1}{r} - \binom{n-1}{r} = \binom{n-1}{r-1} \ge \delta(H),$$

which implies $\kappa'(H) = \delta(H) = \binom{n-1}{r-1}$ and so H is a complete r-uniform hypergraph. Since $n \ge t$ when $\binom{t-1}{r-1} = k$ and $n \ge t+1$ when $\binom{t-1}{r-1} < k$, we have $\kappa'(H) = \binom{n-1}{r-1} \ge k$.

Lemma 2.2. Suppose that H = (V, E) is a k-edge-maximal r-uniform hypergraph, where $k, r \ge 2$. Let $X \subseteq E(H)$ be a minimum edge-cut of H and let H_1 be a union of some but not all components of H - X. Then H_1 is a k-edge-maximal r-uniform hypergraph.

Proof. If H_1 is complete, then H_1 is k-edge-maximal by definition. Thus assume H_1 is not complete. For any edge $e \in E(H_1^c)$, H + e has a subhypergraph H' with $\kappa'(H') \ge k + 1$ by

 $E(H_1^c) \subseteq E(H^c)$. Since X is a minimum edge-cut of H, we have $|X| = \kappa'(H) \leq \overline{\kappa}'(H) \leq k$. Thus $X \cap E(H') = \emptyset$. As $e \in E(H') \cap E(H_1^c)$, we conclude that H' is a subhypergraph of $H_1 + e$, and so $\overline{\kappa}'(H_1 + e) \geq k + 1$. Since $\overline{\kappa}'(H_1) \leq \overline{\kappa}'(H) \leq k$, it follows that H_1 is a k-edge-maximal r-uniform hypergraph.

Lemma 2.3. Let H = (V, E) be a k-edge-maximal r-uniform hypergraph on n vertices, where $k, r \geq 2$. Assume $n \geq t$ when $\binom{t-1}{r-1} = k$ and $n \geq t+1$ when $\binom{t-1}{r-1} < k$, where t = t(k, r). Let $X \subseteq E(H)$ be a minimum edge-cut of H and let H_1 be a union of some but not all components of H - X. If $r \leq |V(H_1)| \leq n-2$, then $|V(H_1)| \geq t$. Moreover, if H_1 is complete, then $|V(H_1)| = t$; if H_1 is not complete, then $|V(H_1)| \geq t+1$.

Proof. By Lemmas 2.1 and 2.2, we have $|X| = \kappa'(H) = k$ and H_1 is a k-edge-maximal runiform hypergraph, respectively. If H_1 is not complete, then there is a subhypergraph H'_1 of $H_1 + e$ such that $\kappa'(H'_1) \ge k+1$ for any $e \in E(H_1^c)$. Since $\binom{t-1}{r-1} \le k$ and $\delta(H'_1) \ge \kappa'(H'_1) \ge k+1$, we have $|V(H_1)| \ge |V(H'_1)| \ge t+1$.

Now we assume H_1 is a complete r-uniform hypergraph. Let $H_2 = H - V(H_1)$. If $n_1 = |V(H_1)| < t$, then, in order to ensure each vertex in H_1 has degree at least k in H (because $\delta(H) \ge \kappa'(H) = k$), we must have $n_1 = t - 1$ and $k = \binom{t-1}{r-1}$. Moreover, each vertex in H_1 is incident with exactly $\binom{t-2}{r-2}$ edges in $E_H[H_1, H_2]$, and thus $d_H(u) = k$ for each $u \in V(H_1)$. By (2.1), there is an e intersecting both $V(H_1)$ and $V(H_2)$ but $e \notin X$. Since $n_1 \ge r$, there is a vertex $w \in V(H_1)$ such that w is not incident with e. Then $d_{H+e}(w) = k$. This implies w is not contained in a (k + 1)-edge-connected subhypergraph of H + e. But then each vertex in $V(H_1) \setminus \{w\}$ has degree at most k in (H + e) - w, and thus each vertex in $V(H_1) \setminus \{w\}$ is not contained in a (k + 1)-edge-connected subhypergraph of H + e. This illustrates that there is no (k + 1)-edge-connected subhypergraph of H + e. This illustrates that there is no (k + 1)-edge-connected subhypergraph of H + e. This illustrates that there is no (k + 1)-edge-connected subhypergraph of H + e. This illustrates that there is no (k + 1)-edge-connected subhypergraph of H + e. This illustrates that there is no (k + 1)-edge-connected subhypergraph of H + e. This illustrates that there is no (k + 1)-edge-connected subhypergraph of H + e. This illustrates that there is no (k + 1)-edge-connected subhypergraph of H + e. This illustrates that there is no (k + 1)-edge-connected subhypergraph of H + e. This illustrates that there is no (k + 1)-edge-connected subhypergraph of H + e. This illustrates that there is no (k + 1)-edge-connected subhypergraph in H + e, a contradiction. Thus we have $n_1 \ge t$. If $n_1 > t$, then $\kappa'(H_1) = \binom{n_1-1}{r-1} \ge \binom{t}{r-1} > k$, contrary to H is k-edge-maximal. Therefore, $n_1 \le t$, and thus $n_1 = t$ holds.

3 The Upper Bound of the Sizes of k-edge-maximal r-uniform Hypergraphs

Definition 3.1. Let n, k, r be integers such that $k, r \ge 2$ and $n \ge t$, where t = t(k, r). A hypergraph $H \in \mathcal{M}(n; k, r)$ if and only if it is constructed as follows:

(i) Start from the complete hypergraph $H_0 \cong K_t^r$;

(ii) If n - t = s = 0, then $H_s = H_0$. If $n - t = s \ge 1$, then we construct, recursively, H_i from H_{i-1} by adding a new vertex v_i and k new edges containing v_i and intersecting $V(H_{i-1})$ for $i = 1, \dots, s$;

(iii) Set $H = H_s$.

It is known that $\kappa'(H) \leq \delta(H)$ holds for any hypergraph H. If $\kappa'(H) = \delta(H)$, then we say H is maximal-edge-connected. An edge-cut X of H is peripheral if there exists a vertex v such that $X = E_H(v)$. A hypergraph H is super-edge-connected if every minimum edge-cut of H is peripheral. By definition, every super-edge-connected hypergraph is maximal-edge-connected.

Lemma 3.1. Let k and r be integers with $k, r \ge 2$. If $n \ge t$ when $\binom{t-1}{r-1} = k$ and $n \ge t+1$ when $\binom{t-1}{r-1} < k$, where t = t(k, r), then for any $H \in \mathcal{M}(n; k, r)$, we have

(i) $\delta(H) = k;$

(ii) H is super-edge-connected; and

(iii) H is k-edge-maximal.

Proof. Let $H = H_s$, where H_s is recursively constructed from H_0, \dots, H_{s-1} as in Definition 3.1. Then $V(H_s) = V(H_0) \cup \{v_1, \dots, v_s\}$. We will prove this lemma by induction on n.

(i) If n = t and $\binom{t-1}{r-1} = k$, then $H \cong K_t^r$ and $\delta(H) = \binom{t-1}{r-1} = k$. If n = t + 1 and $\binom{t-1}{r-1} < k$, then H is obtained from K_t^r by adding a new vertex v_1 and k edges with cardinality r such that each added edge is incident with v_1 . Let $k = \binom{t-1}{r-1} + i$. As $\binom{t-1}{r-1} < k < \binom{t}{r-1}$, we have $1 \le i \le \binom{t-1}{r-2} - 1$. If there exists a vertex $u \in V(K_t^r)$ such that at most i - 1 edges are incident with both u and v_1 in H, then by $k = \binom{t-1}{r-1} + i$, we have $|E_H[\{v_1\}, V(H) \setminus \{u, v_1\}]| > \binom{t-1}{r-1}$. But this can not happen because $|V(H) \setminus \{u, v_1\}| = t - 1$. Thus for any vertex $u \in V(K_t^r)$, there are at least i edges incident with both u and v_1 in H. This implies $d_H(v) \ge \binom{t-1}{r-1} + i = k$ for any $u \in V(K_t^r)$. As $d_H(v_1) = k$, we have $\delta(H) = k$.

Now we assume $n \ge t+1$ when $\binom{t-1}{r-1} = k$ and $n \ge t+2$ when $\binom{t-1}{r-1} < k$. Since $H = H_s$ is obtained from H_{s-1} by adding a new vertex v_s and k edges with cardinality r such that each added edge is incident with v_s , then by the induction assumption that $\delta(H_{s-1}) = k$, we obtain $\delta(H) = \delta(H_s) = k$.

(ii) If n = t and $\binom{t-1}{r-1} = k$, then $H \cong K_t^r$ and $|E_H[X, V(H) \setminus X]| > \delta(H) = k$ for any $X \subseteq V(H)$ with $2 \le |X| \le n-2$ by (2.1). Thus H is super-edge-connected.

If n = t + 1 and $\binom{t-1}{r-1} < k$, then H is obtained from K_t^r by adding a new vertex v_1 and k edges with cardinality r such that each added edge is incident with v_1 . Let $k = \binom{t-1}{r-1} + i$. As $\binom{t-1}{r-1} < k < \binom{t}{r-1}$, we have $1 \le i \le \binom{t-1}{r-2} - 1$. In order to prove that H is super-edgeconnected, we only need to verify that $d_H(X) > k$ for any $X \subseteq V(H) \setminus \{v_1\}$ with $2 \le |X| \le |V(H)| - 2$. If $|X| \le |V(H)| - 3$, then $|E_{K_t^r}[X, V(K_t^r) \setminus X]| > \binom{t-1}{r-1}$ by (2.1). Since for any vertex $u \in V(K_t^r)$, there are at least i edges incident with both u and v_1 in H (by the proof of (i)), we have $|E_H(X) \cap E_H(v_1)| \ge i$. Thus $d_H(X) = |E_{K_t^r}[X, V(K_t^r) \setminus X]| + |E_H(X) \cap E_H(v_1)| > \binom{t-1}{r-1} + i = k$. Assume |X| = |V(H)| - 2 and $V(H) \setminus X = \{v_1, w\}$. If $r \ge 3$, then $d_H(X) = |E_{K_t^r}[X, V(K_t^r) \setminus X]| + |E_H(X) \cap E_H(v_1)| = \binom{t-1}{r-1} + k > k$. If r = 2, then $d_H(X) = |E_{K_t^r}[X, V(K_t^r) \setminus X]| + |E_H(X) \cap E_H(v_1)| \ge \binom{t-1}{r-1} + k - 1 > k$.

Now we assume $n \geq t+1$ when $\binom{t-1}{r-1} = k$ and $n \geq t+2$ when $\binom{t-1}{r-1} < k$. On the contrary, assume H_s is not super-edge-connected. Then there is a minimum edge-cut $X = E_{H_s}[V(J_1), V(J_2)]$ of H_s with $|X| \leq \delta(H_s) = k$, where J_1 is a component of $H_s - X$ and $J_2 = H_s - V(J_1)$ with $min\{|V(J_1)|, |V(J_2)|\} \geq 2$. Without loss of generality, assume $v_s \in V(J_1)$. If $E_{H_s}(v_s) \cap X \neq \emptyset$, then as $X \neq E_{H_s}(v_s)$, $X - E_{H_s}(v_s)$ is an edge-cut of H_{s-1} , and so $\kappa'(H_{s-1}) \leq |X - E_{H_s}(v_s)| < k$, contradicts to the induction assumption that H_{s-1} is super-edge-connected. It follows that $E_{H_s}(v_s) \cap X = \emptyset$ and so $X = E_{H_{s-1}}[V(J_1 - v_s), V(J_2)]$ is an edge-cut of H_{s-1} . Since H_{s-1} is super-edge-connected, we conclude that either $|V(J_1 - v_s)| = 1$ or $|V(J_2)| = 1$. If $|V(J_2)| = 1$, then it contradicts to $min\{|V(J_1)|, |V(J_2)|\} \geq 2$. If $|V(J_1 - v_s)| = 1$, then $|V(J_1)| = 2$, r = 2 and k = 1, contrary to $k \geq 2$.

(iii) If n = t and $\binom{t-1}{r-1} = k$, then $H \cong K_t^r$ is k-edge-maximal by the definition.

If n = t+1 and $\binom{t-1}{r-1} < k$, let $k = \binom{t-1}{r-1} + i$. As $\binom{t-1}{r-1} < k < \binom{t}{r-1}$, we have $1 \le i \le \binom{t-1}{r-2} - 1$. In order to prove that H is k-edge-maximal, it suffices to verify that $\overline{\kappa}'(H+e) \ge k+1$ for any $e \in E(H^c)$. By Definition 3.1, H + e is obtained from K_t^r by adding a new vertex v_1 and k+1 edges with cardinality r such that each added edge is incident with v_1 . If there exists a vertex $u \in V(K_t^r)$ such that at most i edges are incident with both u and v_1 in H + e, then by $k = \binom{t-1}{r-1} + i$, we have $|E_{H+e}[\{v_1\}, V(H) \setminus \{u, v_1\}]| > \binom{t-1}{r-1}$. But this can not happen because $|V(H+e) \setminus \{u, v_1\}| = t-1$. Thus for any vertex $u \in V(K_t^r)$, there are at least i+1 edges incident with both u and v_1 in H + e. This implies $d_{H+e}(u) \ge \binom{t-1}{r-1} + i + 1 = k+1$ for any $u \in V(K_t^r)$. By $d_{H+e}(v_1) = k+1$, we have $\delta(H+e) = k+1$. For any edge-cut W of H+e, if W is peripheral, then $|W| \ge \delta(H+e) = k+1$. Suppose W is not peripheral, and so W - e is a non peripheral edge-cut of H. Since H is super-edge-connected, $|W| \ge |W-e| \ge \delta(H) + 1 = k+1$. Now we assume $n \ge t + 1$ when $\binom{t-1}{r-1} = k$ and $n \ge t + 2$ when $\binom{t-1}{r-1} < k$. On the contrary, assume H_s is not k-edge-maximal. Then there is an edge $e \in E(H_s^c)$ such that $\overline{\kappa}'(H_s + e) \le k$. If $e \in E(H_{s-1}^c)$, then by induction assumption, $\overline{\kappa}'(H_{s-1} + e) \ge k + 1$, a contradiction. Hence $e \notin E(H_{s-1}^c)$. Since H_s is obtained from H_{s-1} by adding a new vertex v_s and k edges incident with v_s , we have $e \in E_{H_s+e}(v_s)$.

Let $Y = E_{H_s+e}[V(F_1), V(F_2)]$ be a minimum edge-cut of $H_s + e$ with $|Y| \leq k$, where F_1 is a component of $(H_s + e) - Y$ and $F_2 = (H_s + e) - V(F_1)$. Since H_s is super-edge-connected, we have $\kappa'(H_s) = \delta(H_s) = k$, and so $e \notin Y$ and $Y \neq E_{H_s}(v_s)$. This implies $Y \subseteq E(H_s)$. Without loss of generality, assume that $v_s \in V(F_1)$. By H_{s-1} is super-edge-connected, we have $\kappa'(H_{s-1}) = \delta(H_{s-1}) = k$. If $Y \cap E_{H_s}(v_s) \neq \emptyset$, then as $Y \neq E_{H_s}(v_s), Y - E_{H_s}(v_s)$ is an edge-cut of H_{s-1} . It follows that $\kappa'(H_{s-1}) \leq |Y - E_{H_s}(v_s)| < k = \kappa'(H_{s-1})$, a contradiction. Hence we must have $Y \cap E_{H_s}(v_s) = \emptyset$, and so $Y \subseteq E(H_s) - E_{H_s}(v_s) = E(H_{s-1})$. By H_{s-1} is super-edge-connected, there exists a vertex $w \in V(H_{s-1})$ such that $Y = E_{H_{s-1}}(w)$. As $N_{H_s}(v_s) \cup \{v_s\} \subseteq V(F_1)$, we have $V(F_2) = \{w\}$.

Let $H' = H_s - w$. Then $e \in E((H')^c)$. If $w \in V(H_s) \setminus V(H_0)$, then $H' \in \mathcal{M}(n-1;k,r)$. If $w \in V(H_0)$, then by $d_{H_s}(w) = |Y| = k$, we have $d_{H_1}(w) = k$. By Definition 3.1, there are exactly $k - \binom{t-1}{r-1}$ edges containing $\{w, v_1\}$ in H_1 and $|E_{H_1}[v_1, V(H_0) \setminus w]| = \binom{t-1}{r-1}$. Thus the hypergraph induced by $(V(H_0) \setminus \{w\}) \cup \{v_1\}$ in H_s is complete, and so $H' \in \mathcal{M}(n-1;k,r)$. By induction assumption, $\overline{\kappa}'(H'+e) \ge k+1$, and so $\overline{\kappa}'(H_s+e) \ge \overline{\kappa}'(H'+e) \ge k+1$, contrary to $\overline{\kappa}'(H_s+e) \le k$.

Theorem 3.2. Let H be a k-edge-maximal r-uniform hypergraph on n vertices, where $k, r \ge 2$. If $n \ge t$, where t = t(k, r), then each of the following holds.

- (i) $|E(H)| \le {t \choose r} + (n-t)k$.
- (ii) $|E(H)| = {t \choose r} + (n-t)k$ if and only if $H \in \mathcal{M}(n;k,r)$.

Proof. By Definition 3.1, we have $|E(H)| = {t \choose r} + (n-t)k$ if $H \in \mathcal{M}(n; k, r)$.

We will prove the theorem by induction on n. If n = t, then by H is k-edge-maximal and $\binom{t-1}{r-1} \leq k$, we have $H \cong K_t^r$. Thus $|E(H)| = \binom{t}{r} + (n-t)k$ and $H \in \mathcal{M}(n;k,r)$.

Now suppose n > t. We assume that if $t \le n' < n$ and if H' is a k-edge-maximal runiform hypergraph with n' vertices, then $|E(H')| \le {t \choose r} + (n'-t)k$ and $H' \in \mathcal{M}(n';k,r)$ if $|E(H')| = {t \choose r} + (n'-t)k$.

Let X be a minimum edge-cut H. By Lemma 2.1, we have |X| = k. We consider two cases in the following.

Case 1. There is a component, say H_1 , of H - X such that $|V(H_1)| = 1$.

Let $H_2 = H - V(H_1)$. By Lemma 2.2, H_2 is k-edge-maximal. Since $|V(H_2)| = n - 1 \ge t$, by induction assumption, we have $|E(H_2)| \le {t \choose r} + (n - 1 - t)k$ and $H_2 \in \mathcal{M}(n - 1; k, r)$ if $|E(H_2)| = {t \choose r} + (n - 1 - t)k$. Thus $|E(H)| = |E(H_2)| + k \le {t \choose r} + (n - t)k$. If $|E(H)| = {t \choose r} + (n - t)k$, then $|E(H_2)| = {t \choose r} + (n - 1 - t)k$ and $H_2 \in \mathcal{M}(n - 1; k, r)$. Thus, by $|V(H_1)| = 1$ and |X| = k, we have $H \in \mathcal{M}(n; k, r)$ if $|E(H)| = {t \choose r} + (n - t)k$.

Case 2. Each component of H - X has at least two vertices.

Let H_1 be a component of H - X and $H_2 = H - V(H_1)$. By Lemma 2.2, both H_1 and H_2 are k-edge-maximal. Assume $n_1 = |V(H_1)|$ and $n_2 = |V(H_2)|$. Then $n_1 + n_2 = n$. Since each edge contains r vertices, we have $n_1, n_2 \ge r$. By Lemma 2.3, we have $n_1, n_2 \ge t$. By induction assumption, we have $|E(H_i)| \le {t \choose r} + (n_i - t)k$ and $H_i \in \mathcal{M}(n_i; k, r)$ if $|E(H_i)| = {t \choose r} + (n_i - t)k$ for $i \in \{1, 2\}$. Thus

$$|E(H)| = |E(H_1)| + |E(H_2)| + k$$

$$\leq \binom{t}{r} + (n_1 - t)k + \binom{t}{r} + (n_2 - t)k + k$$

$$= \binom{t}{r} + (n_1 + n_2 - t)k + \binom{t}{r} - (t - 1)k$$

$$\leq \binom{t}{r} + (n_1 + n_2 - t)k + \binom{t}{r} - (t - 1)\binom{t - 1}{r - 1}$$

= $\binom{t}{r} + (n_1 + n_2 - t)k + \left(\frac{t}{r} - (t - 1)\right)\binom{t - 1}{r - 1}$
 $\leq \binom{t}{r} + (n - t)k.$

If $|E(H)| = {t \choose r} + (n-t)k$, then $\frac{t}{r} - (t-1) = 0$ and $k = {t-1 \choose r-1}$, which imply t = r = 2 and k = 1, contrary to $k \ge 2$. Thus $|E(H)| < {t \choose r} + (n-t)k$ holds.

If r = 2, then H is a graph and t = k + 1. Mader's ^[8] result for the upper bound of the sizes of k-edge-maximal graphs is a corollary of Theorem 3.2.

Corollary 3.3^[8]. Let G be a k-edge-maximal graph with n vertices, where $k \ge 2$. If $n \ge k+1$, then we have $|E(G)| \le {\binom{k+1}{2}} + (n-k-1)k = {\binom{k}{2}} + (n-k)k$. Furthermore, $|E(G)| = {\binom{k}{2}} + (n-k)k$ if and only if $G \in \mathcal{M}(n; k, 2)$.

4 The Lower Bound of the Sizes of *k*-edge-maximal *r*-uniform Hypergraphs

Theorem 4.1. Let H be a k-edge-maximal r-uniform hypergraph with n vertices, where $k, r \ge 2$. If $n \ge t$, where t = t(k, r), then we have $|E(H)| \ge (n-1)k - ((t-1)k - {t \choose r})\lfloor \frac{n}{t} \rfloor$.

Proof. We will prove the theorem by induction on n. If n = t, then by H is k-edge-maximal and $\binom{t-1}{r-1} \leq k$, we have $H \cong K_t^r$. Thus $|E(H)| = \binom{t}{r} = (n-1)k - ((t-1)k - \binom{t}{r})\lfloor \frac{n}{t} \rfloor$.

Now suppose n > t. We assume that if $t \le n' < n$ and if H' is a k-edge-maximal r-uniform hypergraph with n' vertices, then $|E(H')| \ge (n'-1)k - ((t-1)k - \binom{t}{r})\lfloor \frac{n'}{t} \rfloor$.

Let X be a minimum edge-cut H. By Lemma 2.1, we have |X| = k. We consider two cases in the following.

Case 1. There is a component, say H_1 , of H - X such that $|V(H_1)| = 1$.

Let $H_2 = H - V(H_1)$. By Lemma 2.2, H_2 is k-edge-maximal. Since $|V(H_2)| = n - 1 \ge t$, by induction assumption, we have $|E(H_2)| \ge (n-2)k - ((t-1)k - {t \choose r})\lfloor \frac{n-1}{t} \rfloor$. Thus

$$|E(H)| = |E(H_2)| + k$$

$$\geq (n-1)k - ((t-1)k - {t \choose r}) \left\lfloor \frac{n-1}{t} \right\rfloor$$

$$\geq (n-1)k - ((t-1)k - {t \choose r}) \left\lfloor \frac{n}{t} \right\rfloor,$$

the last inequality holds because $(t-1)k - {t \choose r} \ge (t-1){t-1 \choose r-1} - \frac{t}{r}{t-1 \choose r-1} \ge 0.$

Case 2. Each component of H - X has at least two vertices.

Let H_1 be a component of H - X and $H_2 = H - V(H_1)$. By Lemma 2.2, both H_1 and H_2 are k-edge-maximal. Assume $n_1 = |V(H_1)|$ and $n_2 = |V(H_2)|$. Then $n_1 + n_2 = n$. Since each edge contains r vertices, we have $n_1, n_2 \ge r$. By Lemma 2.3, we have $n_1, n_2 \ge t$. By induction assumption, we have $|E(H_i)| \ge (n_i - 1)k - ((t - 1)k - (\frac{t}{r}))\lfloor \frac{n_i}{t} \rfloor$ for $i \in \{1, 2\}$. Thus

$$\begin{split} |E(H)| &= |E(H_1)| + |E(H_2)| + k \\ &\geq (n_1 - 1)k - ((t - 1)k - \binom{t}{r}) \left\lfloor \frac{n_1}{t} \right\rfloor + (n_2 - 1)k - ((t - 1)k - \binom{t}{r}) \left\lfloor \frac{n_2}{t} \right\rfloor + k \\ &= (n - 1)k - ((t - 1)k - \binom{t}{r}) \left(\left\lfloor \frac{n_1}{t} \right\rfloor + \left\lfloor \frac{n_2}{t} \right\rfloor \right) \\ &\geq (n - 1)k - ((t - 1)k - \binom{t}{r}) \left\lfloor \frac{n_1 + n_2}{t} \right\rfloor \end{split}$$

538

 $On \ the \ Sizes \ of \ k-edge-maximal \ r-uniform \ Hypergraphs$

$$= (n-1)k - ((t-1)k - \binom{t}{r}) \left\lfloor \frac{n}{t} \right\rfloor.$$

The theorem thus holds.

Definition 4.1. Let k, t, r be integers such that t > r > 2, $k = \binom{t-1}{r-1}$ and $kr \ge 2t$. Assume n = st, where $s \ge 2$. For any tree T with $V(T) = \{v_1, \dots, v_s\}$, we define a family of r-uniform hypergraphs $\mathcal{N}(T)$ as follows. Firstly, we replace each v_i by a complete r-uniform hypergraph $K_t^r(i)$ with t vertices. Then whenever there is an edge $v_i v_j \in E(T)$, we add a set E_{ij} of k edges with cardinality r such that $(i) e \subseteq V(K_t^r(i)) \cup V(K_t^r(j)), e \cap V(K_t^r(i)) \neq \emptyset$ and $e \cap V(K_t^r(j)) \neq \emptyset$ for any $e \in E_{ij}$, and (ii) each vertex in $V(K_t^r(i)) \cup V(K_t^r(j))$ is incident with some edge in E_{ij} (we can do this because $kr \ge 2t$).

Theorem 4.2. If $H \in \mathcal{N}(T)$, then H is a k-edge-maximal r-uniform hypergraph.

Proof. By definition, $\overline{\kappa}'(H) \leq k$. We will prove the theorem by induction on s. If s = 2, then |V(H)| = 2t and $\delta(H) \geq \binom{t-1}{r-1} + 1 = k+1$. Since $K_t^r(1)$ and $K_t^r(2)$ are super-edge-connected and $\delta(H) \geq \binom{t-1}{r-1} + 1 = k+1$, each edge-cut of H except for $E_H[V(K_t^r(1), V(K_t^r(2)])$ has cardinality at least k + 1. For any $e \in E(H^c)$, we have $e \in E_{H^c}[V(K_t^r(1), V(K_t^r(2))]$. Thus every edge-cut of H + e has cardinality at least k + 1, that is, $\kappa'(H + e) \geq k + 1$. This shows $\overline{\kappa}'(H + e) \geq \kappa'(H + e) \geq k + 1$, and thus H is k-edge-maximal.

Now suppose $s \geq 3$. We assume that each hypergraph constructed in Definition 4.1 with less than st vertices is k-edge-maximal. In the following, we will show that each H in $\mathcal{N}(T)$ with st vertices is also k-edge-maximal.

By contradiction, assume that there is an edge $e \in E(H^c)$ such that $\overline{\kappa}'(H+e) \leq k$. Let $E_{H+e}[X, V(H) \setminus X]$ be an edge-cut in H + e with cardinality at most k. Since $K_t^r(i)$ is superedge-connected for $1 \leq i \leq s$ and $\delta(H) \geq k + 1$, edge-cuts in H with cardinality at most kare these E_{ij} , where $v_i v_j \in E(T)$. Thus $E_{H+e}[X, V(H) \setminus X] = E_{ij}$ for some $1 \leq i, j \leq s$ with $v_i v_j \in E(T)$. Then $e \in E_{H+e}(H_i + e)$, where H_i is a component of $H - E_{ij}$. Since $H_i \in \mathcal{N}(T_i)$, where T_i is a components of $T - v_i v_j$, by induction assumption, $H_i + e$ contains a subhypergraph H' with $\kappa'(H') \geq k + 1$. But H' is also a subhypergraph of H + e, contrary to $\overline{\kappa}'(H + e) \leq k$.

For any $H \in \mathcal{N}(T)$, we have $|E(H)| = (n-1)k - ((t-1)k - \binom{t}{r})\lfloor \frac{n}{t} \rfloor$. By Theorem 4.2, H is k-edge-maximal. Thus, the lower bound given in Theorem 4.1 is best possible.

References

- Anderson, J., Lai, H.-J., Lin, X., Xu, M. On k-maximal strength digraphs. J. Graph Theory, 84: 17–25 (2017)
- Bahmanian, M. A., Šajna, M. Connection and separation in hypergraphs. Theory and Applications of Graphs, 2(2): 0–24 (2015)
- [3] Bondy, J. A., Murty, U. S. R. Graph Theory, Graduate Texts in Mathematics 244. Springer, Berlin, 2008
- [4] Dewar, M., Pike, D., Proos, J. Connectivity in Hypergraphs. Canadian mathematical bulletin = Bulletin canadian de mathematiques, 61(2): 252–271 (2016)
- [5] Frank, A. Edge-connection of graphs, digraphs, and hypergraphs, In: More sets, graphs and numbers, Bolyai Soc. Math. Stud., 15. Springer, Berlin, 2006
- [6] Lai, H.-J. The size of strength-maximal graphs. J. Graph Theory, 14: 187–197 (1990)
- [7] Lin, X., Fan, S., Lai, H.-J., Xu, M. On the lower bound of k-maximal digraphs. Discrete Math., 339: 2500–2510 (2016)
- [8] Mader, W. Minimale n-fach kantenzusammenhngende graphen. Math. Ann., 191: 21–28 (1971)
- [9] Matula, D. K-components, clusters, and slicings in graphs. SIAM J. Appl. Math., 22: 459–480 (1972)