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Abstract Let H = (V,E) be a hypergraph, where V is a set of vertices and E is a set of non-empty subsets of

V called edges. If all edges of H have the same cardinality r, then H is an r-uniform hypergraph; if E consists

of all r-subsets of V , then H is a complete r-uniform hypergraph, denoted by Kr
n, where n = |V |. A hypergraph

H′ = (V ′, E′) is called a subhypergraph of H = (V,E) if V ′ ⊆ V and E′ ⊆ E. The edge-connectivity of

a hypergraph H is the cardinality of a minimum edge set F ⊆ E such that H − F is not connected, where

H − F = (V,E \ F ). An r-uniform hypergraph H = (V,E) is k-edge-maximal if every subhypergraph of H has

edge-connectivity at most k, but for any edge e ∈ E(Kr
n) \ E(H), H + e contains at least one subhypergraph

with edge-connectivity at least k + 1.

Let k and r be integers with k ≥ 2 and r ≥ 2, and let t = t(k, r) be the largest integer such that (t−1
r−1) ≤ k.

That is, t is the integer satisfying (t−1
r−1) ≤ k < ( t

r−1). We prove that if H is an r-uniform k-edge-maximal

hypergraph such that n = |V (H)| ≥ t, then (i) |E(H)| ≤ (tr) + (n − t)k, and this bound is best possible; (ii)

|E(H)| ≥ (n− 1)k − ((t− 1)k − (tr))⌊n
t
⌋, and this bound is best possible.
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1 Introduction

For graph-theoretical terminologies and notation not defined here, we follow[3]. The edge-
connectivity of a graph G, denoted by κ′(G), is the the cardinality of a minimum edge set
F ⊆ E such that G − F is not connected. The complement of a graph G is denoted by Gc.
For X ⊆ E(Gc), G+X is the graph with vertex set V (G) and edge set E(G)∪X. We will use
G + e for G + {e}. The floor of a real number x, denoted by ⌊x⌋, is the greatest integer not
larger than x; the ceiling of a real number x, denoted by ⌈x⌉, is the least integer greater than
or equal to x. For two integers n and k, we define (nk ) =

n!
k!(n−k)! when k ≤ n and (nk ) = 0 when

k > n.
Given a graph G, Matula[9] defined the strength κ′(G) of G as max{κ′(G′) : G′ ⊆ G}. For

a positive integer k, the graph G is k-edge-maximal if κ′(G) ≤ k but for any edge e ∈ E(Gc),
κ′(G+ e) > k. Mader[8] and Lai[6] proved the following results.

Theorem 1.1. Let k ≥ 1 be an integer, and G be a k-edge-maximal graph on n > k+1 vertices.
Each of the following holds.

(i) (Mader[8]) |E(G)| ≤ (n− k)k + (k2). Furthermore, this bound is best possible.
(ii) (Lai[6]) |E(G)| ≥ (n− 1)k − ⌊ n

k+2⌋(
k
2). Furthermore, this bound is best possible.
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In [1] and [7], k-edge-maximal digraphs are investigated, and the upper bound and the lower
bound of the sizes of the k-edge-maximal digraphs are determined, respectively. Motivated by
these results, we will study k-edge-maximal hypergraphs in this paper.

Let H = (V,E) be a hypergraph, where V is a finite set and E is a set of non-empty subsets
of V , called edges. Throughout we will assume that every edge contains at least two vertices.
An edge of cardinality 2 is just a graph edge. For a vertex u ∈ V and an edge e ∈ E, we say
u is incident with e or e is incident with u if u ∈ e (we see the edge e as a subset of V ). If all
edges of H have the same cardinality r, then H is an r-uniform hypergraph; if E consists of
all r-subsets of V , then H is a complete r-uniform hypergraph, denoted by Kr

n, where n = |V |.
For n < r, the complete r-uniform hypergraph Kr

n is just the hypergraph with n vertices and
no edges. The complement of a r-uniform hypergraph H = (V,E), denoted by Hc, is the
r-uniform hypergraph with vertex set V and edge set consisting of all r-subsets of V not in E.
A hypergraph H ′ = (V ′, E′) is called a ubhypergraph of H = (V,E), denoted by H ′ ⊆ H, if
V ′ ⊆ V and E′ ⊆ E. Note that subhypergraph here is called a hypersubgraph in [2] and a
strong subhypergraph in [4]. For X ⊆ E(Hc), H +X is the hypergraph with vertex set V (H)
and edge set E(H) ∪X; for X ′ ⊆ E(H), H −X ′ is the hypergraph with vertex set V (H) and
edge set E(H) \ X ′. We use H + e for H + {e} and H − e′ for H − {e′} when e ∈ E(Hc)
and e′ ∈ E(H). For Y ⊆ V (H), we use H[Y ] to denote the hypergraph induced by Y , where
V (H[Y ]) = Y and E(H[Y ]) = {e ∈ E(H) : e ⊆ Y }. H − Y is the hypergraph induced by
V (H) \ Y .

For a hypergraph H = (V,E) and two disjoint vertex subsets X,Y ⊆ V , let EH [X,Y ] be
the set of edges with non-empty intersecting with both X and Y and dH(X,Y ) = |EH [X,Y ]|.
We use EH(X) and dH(X) for EH [X,V \ X] and dH(X,V \ X), respectively. If X = {u},
we use EH(u) and dH(u) for EH({u}) and dH({u}), respectively. The degree of u in H is the
number of edges incident with u in H, which is dH(u) (Because we assume that every edge
contains at least two vertices in this paper). The minimum degree δ(H) of H is defined as
min{dH(u) : u ∈ V }; the maximum degree ∆(H) of H is defined as max{dH(u) : u ∈ V }.
When δ(H) = ∆(H) = k, we call H k-regular.

For a nonempty proper vertex subset X of a hypergraph H, we call EH(X) an edge-cut
of H. The edge-connectivity κ′(H) of a hypergraph H is min{dH(X) : Ø ̸= X $ V (H)}.
By definition, κ′(H) ≤ δ(H). We call a hypergraph H k-edge-connected if κ′(H) ≥ k. A
hypergraph is connected if it is 1-edge-connected. A maximal connected subhypergraph of H is
called a component of H. It is easy to see that the edge-connectivity of a hypergraph H is the
cardinality of a minimum edge set F ⊆ E such that H − F is not connected. Similarly, define
the strength κ′(H) of H as max{κ′(H ′) : H ′ ⊆ H}. An r-uniform hypergraph H = (V,E) is
k-edge-maximal if every subhypergraph of H has edge-connectivity at most k, but for any edge
e ∈ E(Hc), H + e contains at least one subhypergraph with edge-connectivity at least k + 1.
For any integer k with k ≥ (n−1

r−1 ), since κ′(Kr
n) = (n−1

r−1 ) ≤ k and there is no edge in (Kr
n)

c, we
regard Kr

n as a k-edge maximal hypergraph. Thus H is a complete r-uniform hypergraph if H
is a k-edge-maximal r-uniform hypergraph with (n−1

r−1 ) ≤ k, where n = |V (H)|. For results on
the connectivity of hypergraphs, see cf. [2, 4, 5] for references.

The main goal of this research is to determine, for given integers n, k and r, the extremal
sizes of a k-edge-maximal r-uniform hypergraph on n vertices. Section 2 below is devoted to
the study of some properties of k-edge-maximal r-uniform hypergraphs. In section 3, we give
the upper bound of the sizes of k-edge-maximal r-uniform hypergraphs and characterize these
k-edge-maximal r-uniform hypergraphs attained this bound. We obtain the lower bound of the
sizes of k-edge-maximal r-uniform hypergraphs and show that this bound is best possible in
section 4.
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2 Properties of k-edge-maximal r-uniform Hypergraphs

For a 1-edge-maximal r-uniform hypergraph H with n = |V (H)|, we can verify that ⌈n−1
r−1 ⌉ ≤

|E(H)| ≤ n− r + 1. If H is the hypergraph with vertex set V (H) = {v1, · · · , vn} and edge set
E(H) = {e1, · · · , en−r+1}, where ei = {v1, · · · , vr−1, vr−1+i} for i = 1, · · · , n − r + 1, then H
is a 1-edge-maximal r-uniform hypergraph H with |E(H)| = n − r + 1. The 1-edge-maximal
r-uniform hypergraph Kr

r shows that the lower bound ⌈n−1
r−1 ⌉ is also sharp. Thus, from now on,

we always assume k ≥ 2.

Definition 2.1. For two integers k and r with k, r ≥ 2, define t = t(k, r) to be the largest
integer such that (t−1

r−1) ≤ k. That is, t is the integer satisfying (t−1
r−1) ≤ k < (tr−1).

Lemma 2.1. Let H = (V,E) be a k-edge-maximal r-uniform hypergraph on n vertices, where
k, r ≥ 2. Assume n ≥ t when (t−1

r−1) = k and n ≥ t+ 1 when (t−1
r−1) < k, where t = t(k, r). Then

κ′(H) = κ′(H) = k.

Proof. Since H is k-edge-maximal, we have κ′(H) ≤ κ′(H) ≤ k. In order to complete the
proof, we only need to show that κ′(H) ≥ k.

Let X be a minimum edge-cut of H, and let H1 be a component of H −X with minimum
number of vertices and H2 = H − V (H1). Denote n1 = |V (H1)| and n2 = |V (H2)|. Thus we
have X = EH [V (H1), V (H2)], n = n1 + n2 and n1 ≤ n2. To prove the lemma, we consider the
following two cases.

Case 1. EHc [V (H1), V (H2)] ̸= Ø.
Pick an edge e ∈ EHc [V (H1), V (H2)]. Since H is k-edge-maximal, we have κ′(H + e) > k.

Let H ′ ⊆ H+e be a subhypergraph such that κ′(H ′) ≥ k+1. By κ′(H) ≤ k, we have e ∈ H ′. It
follows that (X∪{e})∩E(H ′) is an edge-cut of H ′. Thus |X|+1 ≥ |(X∪{e})| ≥ κ′(H ′) ≥ k+1,
implying |X| ≥ k. Thus κ′(H) ≥ k.

Case 2. EHc [V (H1), V (H2)] = Ø.
Since EHc [V (H1), V (H2)] = Ø, we know that EH [V (H1), V (H2)] consists of all r-subsets of

V (H) intersecting both V (H1) and V (H2). Thus

|EH [V (H1), V (H2)]| =
r−1∑
s=1

(n1
s )(n2

r−s) = (nr )− (n1
r )− (n2

r ).

Let g(x) = (xr ) + (n−x
r ). It is routine to verify that g(x) is a decreasing function when 1 ≤ x ≤

n/2. If n1 ≥ 2, then as H is connected we have r ≤ n1 ≤ n/2. Thus

κ′(H) = |EH [V (H1), V (H2)]| = (nr )− (n1
r )− (n2

r ) ≥ (nr )− (2r)− (n−2
r ) > (n−1

r−1 ) ≥ δ(H), (2.1)

which contradicts to κ′(H) ≤ δ(H). Thus, we assume n1 = 1. Now we have

κ′(H) = |EH [V (H1), V (H2)]| = (nr )− (n1
r )− (n2

r ) = (nr )− (1r)− (n−1
r ) = (n−1

r−1 ) ≥ δ(H),

which implies κ′(H) = δ(H) = (n−1
r−1 ) and so H is a complete r-uniform hypergraph. Since n ≥ t

when (t−1
r−1) = k and n ≥ t+ 1 when (t−1

r−1) < k, we have κ′(H) = (n−1
r−1 ) ≥ k. �

Lemma 2.2. Suppose that H = (V,E) is a k-edge-maximal r-uniform hypergraph, where k, r ≥
2. Let X ⊆ E(H) be a minimum edge-cut of H and let H1 be a union of some but not all
components of H −X. Then H1 is a k-edge-maximal r-uniform hypergraph.

Proof. If H1 is complete, then H1 is k-edge-maximal by definition. Thus assume H1 is not
complete. For any edge e ∈ E(Hc

1), H + e has a subhypergraph H ′ with κ′(H ′) ≥ k + 1 by
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E(Hc
1) ⊆ E(Hc). Since X is a minimum edge-cut of H, we have |X| = κ′(H) ≤ κ′(H) ≤ k.

Thus X∩E(H ′) = Ø. As e ∈ E(H ′)∩E(Hc
1), we conclude that H

′ is a subhypergraph of H1+e,
and so κ′(H1 + e) ≥ k + 1. Since κ′(H1) ≤ κ′(H) ≤ k, it follows that H1 is a k-edge-maximal
r-uniform hypergraph. �

Lemma 2.3. Let H = (V,E) be a k-edge-maximal r-uniform hypergraph on n vertices, where
k, r ≥ 2. Assume n ≥ t when (t−1

r−1) = k and n ≥ t + 1 when (t−1
r−1) < k, where t = t(k, r). Let

X ⊆ E(H) be a minimum edge-cut of H and let H1 be a union of some but not all components
of H − X. If r ≤ |V (H1)| ≤ n − 2, then |V (H1)| ≥ t. Moreover, if H1 is complete, then
|V (H1)| = t; if H1 is not complete, then |V (H1)| ≥ t+ 1.

Proof. By Lemmas 2.1 and 2.2, we have |X| = κ′(H) = k and H1 is a k-edge-maximal r-
uniform hypergraph, respectively. If H1 is not complete, then there is a subhypergraph H ′

1 of
H1+e such that κ′(H ′

1) ≥ k+1 for any e ∈ E(Hc
1). Since (

t−1
r−1) ≤ k and δ(H ′

1) ≥ κ′(H ′
1) ≥ k+1,

we have |V (H1)| ≥ |V (H ′
1)| ≥ t+ 1.

Now we assume H1 is a complete r-uniform hypergraph. Let H2 = H − V (H1). If n1 =
|V (H1)| < t, then, in order to ensure each vertex in H1 has degree at least k in H (because
δ(H) ≥ κ′(H) = k), we must have n1 = t − 1 and k = (t−1

r−1). Moreover, each vertex in H1 is

incident with exactly (t−2
r−2) edges in EH [H1,H2], and thus dH(u) = k for each u ∈ V (H1). By

(2.1), there is an e intersecting both V (H1) and V (H2) but e /∈ X. Since n1 ≥ r, there is a
vertex w ∈ V (H1) such that w is not incident with e. Then dH+e(w) = k. This implies w is
not contained in a (k + 1)-edge-connected subhypergraph of H + e. But then each vertex in
V (H1) \ {w} has degree at most k in (H + e)−w, and thus each vertex in V (H1) \ {w} is not
contained in a (k + 1)-edge-connected subhypergraph of H + e. This illustrates that there is
no (k + 1)-edge-connected subhypergraph in H + e, a contradiction. Thus we have n1 ≥ t. If
n1 > t, then κ′(H1) = (n1−1

r−1 ) ≥ (tr−1) > k, contrary to H is k-edge-maximal. Therefore, n1 ≤ t,
and thus n1 = t holds. �

3 The Upper Bound of the Sizes of k-edge-maximal r-uniform

Hypergraphs

Definition 3.1. Let n, k, r be integers such that k, r ≥ 2 and n ≥ t, where t = t(k, r). A
hypergraph H ∈ M(n; k, r) if and only if it is constructed as follows:

(i) Start from the complete hypergraph H0
∼= Kr

t ;

(ii) If n − t = s = 0, then Hs = H0. If n − t = s ≥ 1, then we construct, recursively, Hi

from Hi−1 by adding a new vertex vi and k new edges containing vi and intersecting V (Hi−1)
for i = 1, · · · , s;

(iii) Set H = Hs.

It is known that κ′(H) ≤ δ(H) holds for any hypergraph H. If κ′(H) = δ(H), then we say
H is maximal-edge-connected. An edge-cut X of H is peripheral if there exists a vertex v such
that X = EH(v). A hypergraph H is super-edge-connected if every minimum edge-cut of H is
peripheral. By definition, every super-edge-connected hypergraph is maximal-edge-connected.

Lemma 3.1. Let k and r be integers with k, r ≥ 2. If n ≥ t when (t−1
r−1) = k and n ≥ t + 1

when (t−1
r−1) < k, where t = t(k, r), then for any H ∈ M(n; k, r), we have

(i) δ(H) = k;

(ii) H is super-edge-connected; and

(iii) H is k-edge-maximal.
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Proof. Let H = Hs, where Hs is recursively constructed from H0, · · · , Hs−1 as in Definition
3.1. Then V (Hs) = V (H0) ∪ {v1, · · · , vs}. We will prove this lemma by induction on n.

(i) If n = t and (t−1
r−1) = k, then H ∼= Kr

t and δ(H) = (t−1
r−1) = k. If n = t+1 and (t−1

r−1) < k,
then H is obtained from Kr

t by adding a new vertex v1 and k edges with cardinality r such
that each added edge is incident with v1. Let k = (t−1

r−1) + i. As (t−1
r−1) < k < (tr−1), we have

1 ≤ i ≤ (t−1
r−2)− 1. If there exists a vertex u ∈ V (Kr

t ) such that at most i− 1 edges are incident

with both u and v1 in H, then by k = (t−1
r−1) + i, we have |EH [{v1}, V (H) \ {u, v1}]| > (t−1

r−1).
But this can not happen because |V (H) \ {u, v1}| = t − 1. Thus for any vertex u ∈ V (Kr

t ),
there are at least i edges incident with both u and v1 in H. This implies dH(v) ≥ (t−1

r−1)+ i = k
for any u ∈ V (Kr

t ). As dH(v1) = k, we have δ(H) = k.

Now we assume n ≥ t+ 1 when (t−1
r−1) = k and n ≥ t+ 2 when (t−1

r−1) < k. Since H = Hs is
obtained from Hs−1 by adding a new vertex vs and k edges with cardinality r such that each
added edge is incident with vs, then by the induction assumption that δ(Hs−1) = k, we obtain
δ(H) = δ(Hs) = k.

(ii) If n = t and (t−1
r−1) = k, then H ∼= Kr

t and |EH [X,V (H) \ X]| > δ(H) = k for any
X ⊆ V (H) with 2 ≤ |X| ≤ n− 2 by (2.1). Thus H is super-edge-connected.

If n = t + 1 and (t−1
r−1) < k, then H is obtained from Kr

t by adding a new vertex v1 and

k edges with cardinality r such that each added edge is incident with v1. Let k = (t−1
r−1) + i.

As (t−1
r−1) < k < (tr−1), we have 1 ≤ i ≤ (t−1

r−2) − 1. In order to prove that H is super-edge-
connected, we only need to verify that dH(X) > k for any X ⊆ V (H) \ {v1} with 2 ≤ |X| ≤
|V (H)| − 2. If |X| ≤ |V (H)| − 3, then |EKr

t
[X,V (Kr

t ) \ X]| > (t−1
r−1) by (2.1). Since for any

vertex u ∈ V (Kr
t ), there are at least i edges incident with both u and v1 in H (by the proof

of (i)), we have |EH(X) ∩ EH(v1)| ≥ i. Thus dH(X) = |EKr
t
[X,V (Kr

t ) \ X]| + |EH(X) ∩
EH(v1)| > (t−1

r−1) + i = k. Assume |X| = |V (H)| − 2 and V (H) \ X = {v1, w}. If r ≥ 3,

then dH(X) = |EKr
t
[X,V (Kr

t ) \ X]| + |EH(X) ∩ EH(v1)| = (t−1
r−1) + k > k. If r = 2, then

dH(X) = |EKr
t
[X,V (Kr

t ) \X]|+ |EH(X) ∩ EH(v1)| ≥ (t−1
r−1) + k − 1 > k.

Now we assume n ≥ t + 1 when (t−1
r−1) = k and n ≥ t + 2 when (t−1

r−1) < k. On the
contrary, assume Hs is not super-edge-connected. Then there is a minimum edge-cut X =
EHs [V (J1), V (J2)] of Hs with |X| ≤ δ(Hs) = k, where J1 is a component of Hs − X and
J2 = Hs−V (J1) withmin{|V (J1)|, |V (J2)|} ≥ 2. Without loss of generality, assume vs ∈ V (J1).
If EHs(vs) ∩ X ̸= Ø, then as X ̸= EHs(vs), X − EHs(vs) is an edge-cut of Hs−1, and so
κ′(Hs−1) ≤ |X−EHs(vs)| < k, contradicts to the induction assumption thatHs−1 is super-edge-
connected. It follows that EHs(vs) ∩X = Ø and so X = EHs−1 [V (J1 − vs), V (J2)] is an edge-
cut of Hs−1. Since Hs−1 is super-edge-connected, we conclude that either |V (J1 − vs)| = 1 or
|V (J2)| = 1. If |V (J2)| = 1, then it contradicts tomin{|V (J1)|, |V (J2)|} ≥ 2. If |V (J1−vs)| = 1,
then |V (J1)| = 2, r = 2 and k = 1, contrary to k ≥ 2.

(iii) If n = t and (t−1
r−1) = k, then H ∼= Kr

t is k-edge-maximal by the definition.

If n = t+1 and (t−1
r−1) < k, let k = (t−1

r−1)+i. As (t−1
r−1) < k < (tr−1), we have 1 ≤ i ≤ (t−1

r−2)−1.
In order to prove that H is k-edge-maximal, it suffices to verify that κ′(H + e) ≥ k + 1 for
any e ∈ E(Hc). By Definition 3.1, H + e is obtained from Kr

t by adding a new vertex v1 and
k + 1 edges with cardinality r such that each added edge is incident with v1. If there exists a
vertex u ∈ V (Kr

t ) such that at most i edges are incident with both u and v1 in H + e, then by
k = (t−1

r−1) + i, we have |EH+e[{v1}, V (H) \ {u, v1}]| > (t−1
r−1). But this can not happen because

|V (H + e) \ {u, v1}| = t − 1. Thus for any vertex u ∈ V (Kr
t ), there are at least i + 1 edges

incident with both u and v1 in H + e. This implies dH+e(u) ≥ (t−1
r−1) + i + 1 = k + 1 for any

u ∈ V (Kr
t ). By dH+e(v1) = k+1, we have δ(H+e) = k+1. For any edge-cut W of H+e, if W

is peripheral, then |W | ≥ δ(H+e) = k+1. Suppose W is not peripheral, and so W −e is a non
peripheral edge-cut of H. Since H is super-edge-connected, |W | ≥ |W − e| ≥ δ(H)+ 1 = k+1.
Thus κ′(H + e) ≥ κ(H + e) ≥ k + 1.
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Now we assume n ≥ t+ 1 when (t−1
r−1) = k and n ≥ t+ 2 when (t−1

r−1) < k. On the contrary,
assume Hs is not k-edge-maximal. Then there is an edge e ∈ E(Hc

s) such that κ′(Hs + e) ≤ k.
If e ∈ E(Hc

s−1), then by induction assumption, κ′(Hs−1 + e) ≥ k + 1, a contradiction. Hence
e /∈ E(Hc

s−1). Since Hs is obtained from Hs−1 by adding a new vertex vs and k edges incident
with vs, we have e ∈ EHs+e(vs).

Let Y = EHs+e[V (F1), V (F2)] be a minimum edge-cut of Hs + e with |Y | ≤ k, where F1 is
a component of (Hs + e) − Y and F2 = (Hs + e) − V (F1). Since Hs is super-edge-connected,
we have κ′(Hs) = δ(Hs) = k, and so e /∈ Y and Y ̸= EHs(vs). This implies Y ⊆ E(Hs).
Without loss of generality, assume that vs ∈ V (F1). By Hs−1 is super-edge-connected, we have
κ′(Hs−1) = δ(Hs−1) = k. If Y ∩ EHs(vs) ̸= Ø, then as Y ̸= EHs(vs), Y − EHs(vs) is an
edge-cut of Hs−1. It follows that κ′(Hs−1) ≤ |Y − EHs(vs)| < k = κ′(Hs−1), a contradiction.
Hence we must have Y ∩ EHs(vs) = Ø, and so Y ⊆ E(Hs) − EHs(vs) = E(Hs−1). By Hs−1

is super-edge-connected, there exists a vertex w ∈ V (Hs−1) such that Y = EHs−1(w). As
NHs(vs) ∪ {vs} ⊆ V (F1), we have V (F2) = {w}.

Let H ′ = Hs − w. Then e ∈ E((H ′)c). If w ∈ V (Hs) \ V (H0), then H ′ ∈ M(n − 1; k, r).
If w ∈ V (H0), then by dHs(w) = |Y | = k, we have dH1(w) = k. By Definition 3.1, there are
exactly k − (t−1

r−1) edges containing {w, v1} in H1 and |EH1 [v1, V (H0) \ w]| = (t−1
r−1). Thus the

hypergraph induced by (V (H0) \ {w}) ∪ {v1} in Hs is complete, and so H ′ ∈ M(n − 1; k, r).
By induction assumption, κ′(H ′ + e) ≥ k+1, and so κ′(Hs + e) ≥ κ′(H ′ + e) ≥ k+1, contrary
to κ′(Hs + e) ≤ k. �

Theorem 3.2. Let H be a k-edge-maximal r-uniform hypergraph on n vertices, where k, r ≥ 2.
If n ≥ t, where t = t(k, r), then each of the following holds.

(i) |E(H)| ≤ (tr) + (n− t)k.
(ii) |E(H)| = (tr) + (n− t)k if and only if H ∈ M(n; k, r).

Proof. By Definition 3.1, we have |E(H)| = (tr) + (n− t)k if H ∈ M(n; k, r).
We will prove the theorem by induction on n. If n = t, then by H is k-edge-maximal and

(t−1
r−1) ≤ k, we have H ∼= Kr

t . Thus |E(H)| = (tr) + (n− t)k and H ∈ M(n; k, r).
Now suppose n > t. We assume that if t ≤ n′ < n and if H ′ is a k-edge-maximal r-

uniform hypergraph with n′ vertices, then |E(H ′)| ≤ (tr) + (n′ − t)k and H ′ ∈ M(n′; k, r) if
|E(H ′)| = (tr) + (n′ − t)k.

Let X be a minimum edge-cut H. By Lemma 2.1, we have |X| = k. We consider two cases
in the following.

Case 1. There is a component, say H1, of H −X such that |V (H1)| = 1.
Let H2 = H − V (H1). By Lemma 2.2, H2 is k-edge-maximal. Since |V (H2)| = n − 1 ≥ t,

by induction assumption, we have |E(H2)| ≤ (tr) + (n − 1 − t)k and H2 ∈ M(n − 1; k, r) if
|E(H2)| = (tr)+(n−1−t)k. Thus |E(H)| = |E(H2)|+k ≤ (tr)+(n−t)k. If |E(H)| = (tr)+(n−t)k,
then |E(H2)| = (tr) + (n− 1− t)k and H2 ∈ M(n− 1; k, r). Thus, by |V (H1)| = 1 and |X| = k,
we have H ∈ M(n; k, r) if |E(H)| = (tr) + (n− t)k.

Case 2. Each component of H −X has at least two vertices.
Let H1 be a component of H −X and H2 = H − V (H1). By Lemma 2.2, both H1 and H2

are k-edge-maximal. Assume n1 = |V (H1)| and n2 = |V (H2)|. Then n1 + n2 = n. Since each
edge contains r vertices, we have n1, n2 ≥ r. By Lemma 2.3, we have n1, n2 ≥ t. By induction
assumption, we have |E(Hi)| ≤ (tr)+ (ni − t)k and Hi ∈ M(ni; k, r) if |E(Hi)| = (tr)+ (ni − t)k
for i ∈ {1, 2}. Thus

|E(H)| =|E(H1)|+ |E(H2)|+ k

≤(tr) + (n1 − t)k + (tr) + (n2 − t)k + k

=(tr) + (n1 + n2 − t)k + (tr)− (t− 1)k
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≤(tr) + (n1 + n2 − t)k + (tr)− (t− 1)(t−1
r−1)

=(tr) + (n1 + n2 − t)k +
( t

r
− (t− 1)

)
(t−1
r−1)

≤(tr) + (n− t)k.

If |E(H)| = (tr) + (n− t)k, then t
r − (t− 1) = 0 and k = (t−1

r−1), which imply t = r = 2 and
k = 1, contrary to k ≥ 2. Thus |E(H)| < (tr) + (n− t)k holds. �

If r = 2, then H is a graph and t = k + 1. Mader’s [8] result for the upper bound of the
sizes of k-edge-maximal graphs is a corollary of Theorem 3.2.

Corollary 3.3[8]. Let G be a k-edge-maximal graph with n vertices, where k ≥ 2. If n ≥ k+1,
then we have |E(G)| ≤ (k+1

2 )+(n−k−1)k = (k2)+(n−k)k. Furthermore, |E(G)| = (k2)+(n−k)k
if and only if G ∈ M(n; k, 2).

4 The Lower Bound of the Sizes of k-edge-maximal r-uniform

Hypergraphs

Theorem 4.1. Let H be a k-edge-maximal r-uniform hypergraph with n vertices, where k, r ≥ 2.
If n ≥ t, where t = t(k, r), then we have |E(H)| ≥ (n− 1)k − ((t− 1)k − (tr))⌊n

t ⌋.

Proof. We will prove the theorem by induction on n. If n = t, then by H is k-edge-maximal
and (t−1

r−1) ≤ k, we have H ∼= Kr
t . Thus |E(H)| = (tr) = (n− 1)k − ((t− 1)k − (tr))⌊n

t ⌋.
Now suppose n > t. We assume that if t ≤ n′ < n and if H ′ is a k-edge-maximal r-uniform

hypergraph with n′ vertices, then |E(H ′)| ≥ (n′ − 1)k − ((t− 1)k − (tr))⌊n′

t ⌋.
Let X be a minimum edge-cut H. By Lemma 2.1, we have |X| = k. We consider two cases

in the following.

Case 1. There is a component, say H1, of H −X such that |V (H1)| = 1.
Let H2 = H − V (H1). By Lemma 2.2, H2 is k-edge-maximal. Since |V (H2)| = n − 1 ≥ t,

by induction assumption, we have |E(H2)| ≥ (n− 2)k − ((t− 1)k − (tr))⌊n−1
t ⌋. Thus

|E(H)| =|E(H2)|+ k

≥(n− 1)k − ((t− 1)k − (tr))
⌊n− 1

t

⌋
≥(n− 1)k − ((t− 1)k − (tr))

⌊n
t

⌋
,

the last inequality holds because (t− 1)k − (tr) ≥ (t− 1)(t−1
r−1)− t

r (
t−1
r−1) ≥ 0.

Case 2. Each component of H −X has at least two vertices.
Let H1 be a component of H −X and H2 = H − V (H1). By Lemma 2.2, both H1 and H2

are k-edge-maximal. Assume n1 = |V (H1)| and n2 = |V (H2)|. Then n1 + n2 = n. Since each
edge contains r vertices, we have n1, n2 ≥ r. By Lemma 2.3, we have n1, n2 ≥ t. By induction
assumption, we have |E(Hi)| ≥ (ni − 1)k − ((t− 1)k − (tr))⌊ni

t ⌋ for i ∈ {1, 2}. Thus

|E(H)| =|E(H1)|+ |E(H2)|+ k

≥(n1 − 1)k − ((t− 1)k − (tr))
⌊n1

t

⌋
+ (n2 − 1)k − ((t− 1)k − (tr))

⌊n2

t

⌋
+ k

=(n− 1)k − ((t− 1)k − (tr))
(⌊n1

t

⌋
+
⌊n2

t

⌋)
≥(n− 1)k − ((t− 1)k − (tr))

⌊n1 + n2

t

⌋
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=(n− 1)k − ((t− 1)k − (tr))
⌊n
t

⌋
.

The theorem thus holds. �

Definition 4.1. Let k, t, r be integers such that t > r > 2, k = (t−1
r−1) and kr ≥ 2t. Assume

n = st, where s ≥ 2. For any tree T with V (T ) = {v1, · · · , vs}, we define a family of r-
uniform hypergraphs N (T ) as follows. Firstly, we replace each vi by a complete r-uniform
hypergraph Kr

t (i) with t vertices. Then whenever there is an edge vivj ∈ E(T ), we add a set
Eij of k edges with cardinality r such that (i) e ⊆ V (Kr

t (i))∪V (Kr
t (j)), e∩V (Kr

t (i)) ̸= Ø and
e ∩ V (Kr

t (j)) ̸= Ø for any e ∈ Eij, and (ii) each vertex in V (Kr
t (i)) ∪ V (Kr

t (j)) is incident
with some edge in Eij (we can do this because kr ≥ 2t).

Theorem 4.2. If H ∈ N (T ), then H is a k-edge-maximal r-uniform hypergraph.

Proof. By definition, κ′(H) ≤ k. We will prove the theorem by induction on s. If s = 2, then
|V (H)| = 2t and δ(H) ≥ (t−1

r−1) + 1 = k + 1. Since Kr
t (1) and Kr

t (2) are super-edge-connected

and δ(H) ≥ (t−1
r−1) + 1 = k + 1, each edge-cut of H except for EH [V (Kr

t (1), V (Kr
t (2)] has

cardinality at least k + 1. For any e ∈ E(Hc), we have e ∈ EHc [V (Kr
t (1), V (Kr

t (2)]. Thus
every edge-cut of H + e has cardinality at least k + 1, that is, κ′(H + e) ≥ k + 1. This shows
κ′(H + e) ≥ κ′(H + e) ≥ k + 1, and thus H is k-edge-maximal.

Now suppose s ≥ 3. We assume that each hypergraph constructed in Definition 4.1 with
less than st vertices is k-edge-maximal. In the following, we will show that each H in N (T )
with st vertices is also k-edge-maximal.

By contradiction, assume that there is an edge e ∈ E(Hc) such that κ′(H + e) ≤ k. Let
EH+e[X,V (H) \X] be an edge-cut in H + e with cardinality at most k. Since Kr

t (i) is super-
edge-connected for 1 ≤ i ≤ s and δ(H) ≥ k + 1, edge-cuts in H with cardinality at most k
are these Eij , where vivj ∈ E(T ). Thus EH+e[X,V (H) \X] = Eij for some 1 ≤ i, j ≤ s with
vivj ∈ E(T ). Then e ∈ EH+e(Hi + e), where Hi is a component of H −Eij . Since Hi ∈ N (Ti),
where Ti is a components of T−vivj , by induction assumption, Hi+e contains a subhypergraph
H ′ with κ′(H ′) ≥ k + 1. But H ′ is also a subhypergraph of H + e, contrary to κ′(H + e) ≤ k.

�
For any H ∈ N (T ), we have |E(H)| = (n− 1)k − ((t− 1)k − (tr))⌊n

t ⌋. By Theorem 4.2, H
is k-edge-maximal. Thus, the lower bound given in Theorem 4.1 is best possible.
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