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a b s t r a c t 

The index of a property P for a directed multigraph D is the smallest nonnegative integer k 

such that the iterated line digraph L k (D ) has the property P . Let e (D ) denote the eulerian 

index of D and h (D ) denote the hamiltonian index of D . Directed multigraphs families F 

and H are defined such that a directed multigraph D has a finite value e (D ) if and only 

if D ∈ F , and D has a finite value h (D ) if and only if D ∈ F ∪ H . Furthermore, the values 

of the hamiltonian indices for members in F ∪ H are determined. In addition, line digraph 

stable properties are investigated, and sufficient and necessary conditions are obtained for 

a subfamily of strong directed multigraphs in which being eulerian and being hamiltonian 

are line digraph stable. 
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1. The problem 

A directed graph (or just a digraph) D consists of a non-empty finite set V (D ) of elements called vertices and a finite

set A (D ) of ordered pairs of distinct vertices called arcs. Thus a digraph may have arcs incident with the same pair of

vertices but with opposite orientations, and does not contain parallel arcs, that is, arcs with the same tail and the same

head, or loops (i.e. arcs whose head and tail coincide). When parallel arcs and loops are admissible we speak of directed

pseudographs; directed pseudographs without loops are directed multigraphs. We consider finite graphs and finite directed 

multigraphs. 

Undefined terms and notation one can refer to [2] for directed multigraphs and [4] for graphs. Let D = (V (D ) , A (D )) be

a directed multigraph. For subsets X 1 , X 2 ⊆ V (D ) , define 

(X 1 , X 2 ) D = { (x 1 , x 2 ) ∈ A (D ) : x 1 ∈ X 1 , x 2 ∈ X 2 } . 
If X 1 = { x 1 } or X 2 = { x 2 } , we often use (x 1 , X 2 ) D for (X 1 , X 2 ) D or (X 1 , x 2 ) D for (X 1 , X 2 ) D , respectively. Hence (x 1 , x 2 ) D =
({ x 1 } , { x 2 } ) D . For a vertex x ∈ V (D ) , let ∂ + 

D 
(x ) = (x, V (D ) − { x } ) D and ∂ −

D 
(x ) = (V (D ) − { x } , x ) D . Thus d + 

D 
(x ) = | ∂ + 

D 
(x ) | and

d −
D 
(x ) = | ∂ −

D 
(x ) | . As in [2] , a directed multigraph D is strong if and only if for any proper non-empty subset X ⊂ V (D ) ,

(X, V (D ) − X ) D � = ∅ . An empty graph is one with at least one vertex such that it does not have any arcs. For convenience of

our discussions, we shall use D to denote the family of all strong directed multigraphs. 

Let G = (V (G ) , E(G )) be a graph. The line graph L (G ) of a graph G is a simple graph whose vertex set is E(G ) , where

ab is an edge of line graph L (G ) if and only if a and b are adjacent in graph G . Iterated line graphs are recursively de-

fined: L 0 (G ) = G , and L n (G ) = L (L n −1 (G )) for n ≥ 1 . Let G denote the family of all connected nontrivial graphs that are not
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isomorphic to a path, a cycle or a star K 1 , 3 . In recent years, the index problem of iterated line graph has became a hot topic

in graph theory. Chartrand and Wall [6] launched the study of the smallest integer k ≥ 0 such that the iterated line graph

L k (G ) becomes hamiltonian, which called the hamiltonian index of a graph G . In [8] , Clark and Wormald discussed some

other hamiltonian like indices. Additional researches on hamiltonian index can be found in [7,9–12,16–21] , among others. 

Assume that P is a graphical property and G ∈ G is a connected graph. Simultaneously, P can be used to denote the family

of graphs that has property P . Hence G ∈ P if and only if G has property P . More generally, Lai and Shao introduced the

general definition as follows. 

Definition 1.1 (Definition 5.8 of [13] ) . The P -index of G , denoted by P (G ) , has the following form: 

P (G ) = 

{
min { k : L k (G ) ∈ P } , i f f or a nonnegati v e integer t, L t (G ) ∈ P , 

∞ , otherwise. 

A property P is line graph stable if L (G ) has P whenever G has P . Chartrand [5] showed that for every graph G ∈ G ,
the hamiltonian index exists as a finite number, and the characterization of hamiltonian line graphs by Harary and Nash- 

Williams implies that being hamiltonian is line graph stable. Ryj ́a ̆c ek et al. showed that it is difficult to determine the value

of hamiltonian index [15] . Clark and Wormald [8] proved that for all graphs in G , other hamiltonian-like indices also exist

as finite numbers; and in [13] , it was stated that these hamiltonian-like properties are also line graph stable. 

It is natural to consider the index problem of directed multigraphs. A line digraph L (D ) of a directed multigraph D is

a digraph whose vertex set is A (D ) , where (a, b) ∈ A (L (D )) if and only if there exist vertices x 1 , x 2 and x 3 in D such that

a = (x 1 , x 2 ) and b = (x 2 , x 3 ) are in A (D ) . As in the graph case, we have the following. 

Definition 1.2. Let D be a directed multigraph, and n ≥ 1 be an integer. Define L 0 (D ) = D and L n (D ) = L (L n −1 (D )) . 

Aigner [1] proved the following fundamental theorem. 

Theorem 1.1 ( [1] ) . Assume that D is a directed multigraph without isolated vertices. Then the line digraph L (D ) is strong if and

only if D is strong. 

It follows from Theorem 1.1 and Definition 1.2 that for any directed multigraph D and integer n ≥ 0 , the iterated line

digraph L n (D ) is strong if and only if D is strong. 

Let D = (V (D ) , A (D )) be a directed multigraph with vertex set V (D ) and arc set A (D ) , and let k > 1 be an integer. A walk

 in D is an alternating sequence with 

W = x 1 a 1 x 2 · · · x k −1 a k −1 x k a k x k +1 (1) 

of vertices x i (1 ≤ i ≤ k + 1) and arcs a j = (x j , x j+1 ) (1 ≤ j ≤ k ) being in D . As the walk W in (1) uses k arcs, W is called a k -

walk . For presentational simplicity, we often write the vertex sequence x 1 x 2 · · · x k −1 x k x k +1 for the walk in (1) . To emphasize

the beginning and ending vertices (arcs, respectively) we often call W an (x 1 , x k +1 ) -walk ( (a 1 , a k ) -walk, respectively). A walk

presented as in (1) is a closed walk if x 1 = x k +1 . While a walk is defined as a sequence, it is not defined as a subdigraph.

A trail is a walk in which all arcs are distinct. A trail is an Euler (or eulerian) trail if the trail is closed. If the vertices of

a walk W are distinct, then W is called a path . The length of a path is the number of arcs in the path. A k -path is a path

of length k with k + 1 vertices. A closed path is a cycle and a k -cycle is a cycle with k vertices and k arcs. A cycle C is a

hamiltonian cycle of D if V (C) = V (D ) . We know that D is eulerian if D itself is an Euler trail, and D is hamiltonian if D

contains a hamiltonian cycle. Assume that P is a graphical property and D is a strong directed multigraph. Simultaneously, 

P can be used to denote the family of directed multigraphs that has property P . Hence D ∈ P if and only if D has property

P . To study the digraph index problem, we introduce the general definition as follows. 

Definition 1.3. The P-index of D , denoted by P(D ) , has the following form: 

P(D ) = 

{
min { k : L k (D ) ∈ P} , i f one such integer k exists, 
∞ , otherwise. 

The goal of this research is to investigate the indices for the properties of being eulerian and being hamiltonian of

directed multigraphs in D . We use e (D ) to denote the eulerian index and h (D ) to denote the hamiltonian index of D . In

the consequent sections, we shall identify a directed multigraph family F such that each digraph D ∈ F has a finite e (D )

and each digraph D ∈ F ∪ H has a finite h (D ) . We also determine the values of the hamiltonian indices for members in

F ∪ H . A concrete example will be presented and discussed in the third section. In Section 4 , we will introduce line digraph

stable properties and obtain sufficient and necessary conditions for a subfamily of strong directed multigraphs in which 

being eulerian and being hamiltonian are both line digraph stable properties. 
2 
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Fig. 1. Digraph D 0 (n ) . 
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2. Hamiltonian and eulerian indices of directed multigraphs 

Throughout the rest of this paper, for a positive integer n ≥ 2 , we use Z n = { 1 , 2 , · · · , n } to denote the cyclic group of

order n , which is often used as vertex subscript indices in the discussions. There have been some well-known results on

line digraphs with certain eulerian and hamiltonian properties, as shown in Theorems 2.1 and 2.2 below. 

Theorem 2.1 ( [1] ) . Assume that D is a strong directed multigraph. Then 

(i) L (D ) is eulerian if and only if d −(x 1 ) = d + (x 2 ) for any (x 1 , x 2 ) ∈ A (D ) . 

ii) L (D ) is hamiltonian if and only if D is eulerian. 

Theorem 2.2 ( [14] ) . Assume that D is a strong directed multigraph with | A (D ) | ≥ 1 . Then for any two distinct arcs a 1 and a m 

of

D , L (D ) possesses a hamiltonian (a 1 , a m 

) -path if and only if D itself is an (a 1 , a m 

) -trail. 

In this section, D ∈ D , the family of all strong directed multigraphs, will be used all the time. Given a positive integer n ≥
1 , let W n (D ) denote the set of all n -walks of D . It is routine to prove by induction (as seen in Exercise 2.10 of [2] ) that L n (D )

is isomorphic to the digraph D 

′ , whose vertex set is W n (D ) , where there exists an arc from v 0 v 1 · · · v n −1 v n to v 1 · · · v n v n +1 

for every vertex v n +1 ∈ V (D ) with (v n , v n +1 ) ∈ A (D ) . We shall investigate certain relationship between the out(in)-degree of

strong directed multigraph and out(in)-degree of its iterated line graph L k (G ) for k ≥ 1 . By the definition of line digraphs,

we summarize several observations as in the following routine proposition. 

Proposition 2.1. Let n ≥ 1 be an integer, D ∈ D be a strong directed multigraph and L n −1 (D ) be the (n − 1) th iterated line

digraph of D . Then each of the following holds. 

(i) (Proposition 11.2.2 of [3] ) d −
L (D ) 

((z, w )) = d −
D 
(z) and d + 

L (D ) 
((z, w )) = d + 

D 
(w ) for any arc (z, w ) ∈ A (D ) . 

ii) V (L k (D )) = W k (D ) . 

ii) If W = x 1 x 2 · · · x n ∈ W n −1 (D ) , then d −
D 
(x 1 ) = d −

L n −1 (D ) 
(W ) and d + 

D 
(x n ) = d + 

L n −1 (D ) 
(W ) . 

v) For any W = x 1 x 2 · · · x n ∈ W n −1 (D ) , d −
D 
(x 1 ) = d + 

D 
(x n ) if and only if d −

L n −1 (D ) 
(W ) = d + 

L n −1 (D ) 
(W ) . 

In order to study the eulerian index and the hamiltonian index, we introduce the following directed multigraph families, 

whose properties would play useful roles in our discussions. 

Definition 2.1. Let s, s ′ be integers with s ≥ 1 and s ′ ≥ 2 . 

i) Define a family M (s ′ ) ⊂ D of strong directed multigraphs such that D ∈ M (s ′ ) if and only if there exists an s ′ -cycle C of

D such that for any m with 0 ≤ m ≤ s ′ − 1 , C contains an m -path P = x m 

1 
x m 

2 
· · · x m 

m +1 
satisfying d −

D 
(x m 

1 
) � = d + 

D 
(x m 

m +1 
) . 

 ii ) Define a family F(s ) ⊂ D of strong directed multigraphs such that D ∈ F(s ) if and only if for any (s − 1) -walk W =
x 1 x 2 · · · x s of D satisfying d −

D 
(x 1 ) = d + 

D 
(x s ) . 

ii) Define M = 

⋃ 

s ′ ≥2 M (s ′ ) and F = 

⋃ 

s ≥1 F(s ) . 

In Example 2.1 below, we shall show that there is an infinite sequence of hamiltonian directed multigraphs that are in

M but not in F . Define 

H = { D ∈ D : D is hamiltonian } 
be a family of all hamiltonian directed multigraphs. 

Example 2.1. Let n ≥ 6 be an integer. Define a family D 0 of digraphs such that a digraph D 0 (n ) ∈ D 0 if and only if D 0 (n ) has

vertex set V (D 0 (n )) = { x i : i ∈ Z n } and arc set A (D 0 (n )) = { (x i , x i +1 ) : i ∈ Z n } ∪ { (x 1 , x 3 ) , (x 1 , x 4 ) , (x 5 , x 1 ) } . Then every digraph

D 0 (n ) in the family D 0 is strong and lies in M .(See Fig. 1 for an illustration.) 

Proof. Since D 0 (n ) has a hamiltonian cycle x 1 x 2 x 3 · · · x n x 1 , we conclude that D 0 (n ) is strong and D 0 (n ) ∈ H. Let C = x 1 x 4 x 5 x 1 
denote a 3-cycle of D 0 (n ) . We are to show that for any m with 0 ≤ m ≤ 2 , C contains an m -path P = x m 

1 
x m 

2 
· · · x m 

m +1 
satisfy-

ing d −
D (n ) 

(x m 

1 
) � = d + 

D (n ) 
(x m 

m +1 
) . If m = 0 , as d −

D (n ) 
(x 1 ) = 2 and d + 

D (n ) 
(x 1 ) = 3 , then d −

D (n ) 
(x 1 ) � = d + 

D (n ) 
(x 1 ) . If m = 1 , then as
0 0 0 0 0 0 

3 
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d −
D 0 (n ) 

(x 1 ) = 2 and d + 
D 0 (n ) 

(x 4 ) = 1 , we have d −
D 0 (n ) 

(x 1 ) � = d + 
D 0 (n ) 

(x 4 ) . If m = 2 , then as d −
D 0 (n ) 

(x 4 ) = 2 and d + 
D 0 (n ) 

(x 1 ) = 3 , we

have d −
D 0 (n ) 

(x 4 ) � = d + 
D 0 (n ) 

(x 1 ) . As (x 1 , x 4 ) ∈ A (C) and x 4 x 5 x 1 is a 2-path of C, then by Definition 2.1 , D 0 (n ) ∈ M . �

Lemma 2.1. With the Definition 2.1 and Example 2.1 , we conclude that each of the following holds. 

’) M � = ∅ and F � = ∅ . 
’) For any D ∈ M , we have D �∈ F . 

c’) For any D 0 (n ) ∈ D 0 , we have D 0 (n ) ∈ H − F . 

Proof. By Example 2.1 , for any D 0 (n ) ∈ D 0 we have D 0 (n ) ∈ M , and so M � = ∅ . Since for any eulerian digraph D 

′ , we have

D 

′ ∈ F , hence F � = ∅ . Thus (a ′ ) holds. 

Since D ∈ M , there exists an integer s ′ with s ′ ≥ 2 such that D ∈ M (s ′ ) . Thus there exists an s ′ -cycle C of D such that for

any m with 0 ≤ m ≤ s ′ − 1 , 

C contains an m -path P = x m 

1 x 
m 

2 · · · x m 

m +1 satisfying d −
D 
(x m 

1 ) � = d + 
D 
(x m 

m +1 ) . (2) 

For any s ≥ 1 , then s = s ′ k + t with k ≥ 0 and 1 ≤ t ≤ s ′ . By (2) , D contains a (t − 1) -path P = x t−1 
1 

x t−1 
2 

· · · x t−1 
t satisfying

d −
D 
(x t−1 

1 
) � = d + 

D 
(x t−1 

t ) . Since C is a cycle, hence let C = y t−1 
1 

y t−1 
2 

· · · y t−1 
s ′ y t−1 

1 
such that y t−1 

1 
y t−1 

2 
· · · y t−1 

t = x t−1 
1 

x t−1 
2 

· · · x t−1 
t . Thus

D has an (s − 1) -walk y t−1 
1 

y t−1 
2 

· · · y t−1 
s ′ · · · y t−1 

1 
y t−1 

2 
· · · y t−1 

s ′ x t−1 
1 

x t−1 
2 

· · · x t−1 
t with d −

D 
(x t−1 

1 
) � = d + 

D 
(x t−1 

t ) . Hence D �∈ F . Thus (b ′ )
holds. 

Since D 0 (n ) ∈ M , by (b ′ ) , D 0 (n ) / ∈ F . As D 0 (n ) ∈ H, so D 0 (n ) ∈ H − F . Thus (c ′ ) holds. �

Theorem 2.3. Assume that D is a strong directed multigraph. Then 

(i) e (D ) exists as a finite number if and only if D ∈ F . 

ii) h (D ) exists as a finite number if and only if D ∈ F ∪ H. 

Proof. Assume that e (D ) exists as a finite number. Then let t be an integer with t ≥ 0 such that L t (D ) is eulerian. Thus

randomly pick a vertex W ∈ V (L t (D )) , we have d −
L t (D ) 

(W ) = d + 
L t (D ) 

(W ) . By Proposition 2.1 (ii ) , we have W ∈ W t (D ) . Let W =
x 1 x 2 · · · x t+1 . By Proposition 2.1 (i v ) and d −

L t (D ) 
(W ) = d + 

L t (D ) 
(W ) , we have d −

D 
(x 1 ) = d + 

D 
(x t+1 ) . Therefore D ∈ F . 

We now assume that D ∈ F . Then D is strong and there exists an integer s with s ≥ 1 such that for any (s − 1) -walk

 = x 1 x 2 · · · x s of D , we obtain that d −
D 
(x 1 ) = d + 

D 
(x s ) . As D is strong, every iterated line digraph of D is also strong. By

Proposition 2.1 , W ∈ V (L s −1 (D )) and d −
L s −1 (D ) 

(W ) = d + 
L s −1 (D ) 

(W ) . Hence L s −1 (D ) is eulerian. This proves (i ) . 

If h (D ) exists as a finite number, then let t be an integer with t ≥ 0 satisfying L t (D ) is hamiltonian. If t = 0 , then directed

multigraph D is hamiltonian, and so D ∈ H. If t ≥ 1 , then by Theorem 2.1 (ii ) , L t−1 (D ) is eulerian. Hence for any vertex W 

′ ∈
 (L t−1 (D )) , d −

L t−1 (D ) 
(W 

′ ) = d + 
L t−1 (D ) 

(W 

′ ) . By Proposition 2.1 (ii ) , W 

′ ∈ W t−1 (D ) . Let W 

′ = x 1 x 2 · · · x t . By Proposition 2.1 (i v ) and

d −
L t−1 (D ) 

(W 

′ ) = d + 
L t−1 (D ) 

(W 

′ ) , we have d −
D 
(x 1 ) = d + 

D 
(x t ) . Hence D ∈ F . 

Conversely, if D ∈ H, then D is hamiltonian. If D ∈ F − H, then there is a positive integer s with s ≥ 1 such that for

any (s − 1) -walk W = x 1 x 2 · · · x s of D satisfying d −
D 
(x 1 ) = d + 

D 
(x s ) . By Proposition 2.1 , W ∈ V (L s −1 (D )) and d −

L s −1 (D ) 
(W ) =

d + 
L s −1 (D ) 

(W ) . Hence L s −1 (D ) is eulerian. By Theorem 2.1 , L s (D ) is hamiltonian. �

Theorem 2.3 characterizes digraph D for which e (D ) or h (D ) exists. Thus by Theorem 2.3 , in the consequent discussion

of this section, we shall suppose D ∈ F ∪ H. We are to investigate the exact values of the eulerian index and hamiltonian

index for each digraph D ∈ F ∪ H. Aiming at this goal, we present a relationship of e (D ) and h (D ) as follows. 

Proposition 2.2. Let D be a strong directed multigraph with D ∈ F ∪ H. Then 

h (D ) = 

{
0 , if D ∈ H, 

e (D ) + 1 , if D ∈ F − H. 

Proof. If D ∈ H, then D is hamiltonian, and so h (D ) = 0 . If D ∈ F − H, then by Theorem 2.3 (ii ) , there is an integer s ≥ 0

satisfying h (D ) = s . We may claim that s ≥ 1 . Otherwise, if s = 0 , then D is hamiltonian, thus D ∈ H, contrary to D ∈ F − H.

Hence s ≥ 1 . If s = 1 , then L (D ) is hamiltonian. By Theorem 2.1 (ii ) , D is eulerian and e (D ) = 0 . Thus h (D ) = e (D ) + 1 = 1 .

Assume now that s ≥ 2 . Hence L s (D ) is hamiltonian. By Theorem 2.1 (ii ) , L s −1 (D ) is eulerian, and so e (D ) ≤ s − 1 . If there

exists an integer s ′ with 1 ≤ s ′ < s − 1 such that L s 
′ 
(D ) is eulerian, then by Theorem 2.1 (ii ) , L s 

′ +1 (D ) is hamiltonian, contrary

to h (D ) = s . Hence e (D ) = s − 1 . Thus if D ∈ F − H, we have h (D ) = s = e (D ) + 1 . �

By Proposition 2.2 and definition of the hamiltonian index, we have 

h (D ) = 0 if and only if D ∈ H. 

We shall consider D ∈ F − H in the following results. 

Theorem 2.4. Let D ∈ F − H be a strong directed multigraph. Then for an integer s with s ≥ 1 , the following statements are

equivalent. 
4 
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(i) h (D ) = s . 

ii) D ∈ F(s ) and for any 1 ≤ t ≤ s − 1 , D �∈ F(t) . 

Proof. (i ) ⇒ (ii ) . If h (D ) = s , then L s (D ) is hamiltonian. By Theorem 2.1 (ii ) , L s −1 (D ) is eulerian. Hence for any vertex

 ∈ V (L s −1 (D )) , we have d + 
L s −1 (D ) 

(W ) = d −
L s −1 (D ) 

(W ) . Thus by Proposition 2.1 (ii ) , W ∈ W s −1 (D ) . Let W = x 1 x 2 · · · x s . Since

d + 
L s −1 (D ) 

(W ) = d −
L s −1 (D ) 

(W ) , hence by Proposition 2.1 (i v ) , d −
D 
(x 1 ) = d + 

D 
(x s ) , and so D ∈ F(s ) . Since h (D ) = s , it follows that

for any t with 1 ≤ t ≤ s − 1 , L t (D ) is not hamiltonian. Thus by Theorem 2.1 (ii ) , L t−1 (D ) is not eulerian, and so L t−1 (D )

has a vertex W 

′ satisfying d + 
L t−1 (D ) 

(W 

′ ) � = d −
L t−1 (D ) 

(W 

′ ) . By Proposition 2.1 (ii ) , W 

′ ∈ W t−1 (D ) . Let W 

′ = y 1 y 2 · · · y t . Since

d + 
L t−1 (D ) 

(W 

′ ) � = d −
L t−1 (D ) 

(W 

′ ) , by Proposition 2.1 (i v ) , it follows that d −
D 
(y 1 ) � = d + 

D 
(y t ) , and so D �∈ F(t) . 

(ii ) ⇒ (i ) . Since D ∈ F(s ) , D is strong and for any (s − 1) -walk W = x 1 x 2 · · · x s , we have d −
D 
(x 1 ) = d + 

D 
(x s ) . Hence each

iterated line digraph of D is also strong and by Proposition 2.1 , W ∈ V (L s −1 (D )) and d −
L s −1 (D ) 

(W ) = d + 
L s −1 (D ) 

(W ) . It follows that

L s −1 (D ) is eulerian. By Theorem 2.1 (ii ) , L s (D ) is hamiltonian, and so h (D ) ≤ s . Since for any t with 1 ≤ t ≤ s − 1 , D �∈ F(t) ,

hence there exists a (t − 1) -walk W 

′ = y 1 y 2 · · · y t with d −
D 
(y 1 ) � = d + 

D 
(y t ) , and so by Proposition 2.1 , W 

′ ∈ V (L t−1 (D )) and

d + 
L t−1 (D ) 

(W 

′ ) � = d −
L t−1 (D ) 

(W 

′ ) . Thus L t−1 (D ) is not eulerian. By Theorem 2.1 (ii ) , L t (D ) is not hamiltonian. Since D ∈ F − H,

hence D is not hamiltonian. It follows that h (D ) > t . Since h (D ) ≤ s , hence h (D ) = s . �

3. An example for directed multigraphs with prescribed hamiltonian index 

Let s ≥ 0 be a given integer. While Theorem 2.4 characterizes directed multigraphs with hamiltonian index s , the ex-

istence of directed multigraphs D with h (D ) = s is warranted in theory by the arguments in the proof. Thus it would be

interesting to have a concrete example for such directed multigraphs. We shall present the constructions of such examples 

to illustrate the result. 

A collection C = { C 1 , C 2 , . . . , C k } of cycles is a cycle cover of D , if members in C are cycles of D satisfying A (D ) =
∪ C∈ C 

A (C) and C s � = C t whenever 1 ≤ s < t ≤ k . For any two distinct cycles C i , C j ∈ C , since C i and C j are cycles, hence C i ∩ C j is

a union of some vertex-disjoint paths. Set C i ∩ C j = P i j 1 
∪ P i j 2 

∪ · · · ∪ P i j � i j 
, where P i j 1 

, P i j 2 
, . . . , P i j � i j 

are � i j vertex-disjoint paths.

Example 3.1. Let s be an integer with s ≥ 0 . Define a family D(s ) of strong directed multigraphs such that D ∈ D(s ) if and

only if there exists a cycle cover C = { C 1 , C 2 , . . . , C k } in D satisfying for any two distinct cycles C i , C j ∈ C , C i ∩ C j = P i j 1 
∪ P i j 2 

∪
· · · ∪ P i j � i j 

is a union of some vertex-disjoint paths and for any P ∈ 

⋃ k 
i =1 

⋃ k 
j= i +1 { P i j 1 

, P i j 2 
, . . . , P i j � i j 

} , | V (P ) | = s . 

For any D ∈ D(0) , by Example 3.1 and D is strong, thus D is a cycle. For any D ∈ D(1) , by Example 3.1 , D has a cycle

cover C = { C 1 , C 2 , . . . , C k } satisfying for any two distinct cycles C i , C j ∈ C , C i ∩ C j is an empty graph. Thus, we obtain that D is

eulerian. Let s be an integer with s ≥ 2 and D ∈ D(s ) be a strong directed multigraph defined as in Example 3.1 , then there

is a cycle cover C = { C 1 , C 2 , . . . , C k } of D , such that 

∀ C i , C j ∈ C with i � = j, C i ∩ C j = P i j 1 ∪ P i j 2 ∪ · · · ∪ P i j � i j 
is a union of some vertex-disjoint paths 

and for any P ∈ 

⋃ k 
i =1 

⋃ k 
j= i +1 { P i j 1 , P i j 2 , . . . , P i j � i j 

} , | V (P ) | = s. 
(3) 

Proposition 3.1. Let s be a positive integer with s ≥ 2 and D ∈ D(s ) be a strong directed multigraph defined as in Example 3.1 .

Suppose that there is a cycle cover C = { C 1 , C 2 , . . . , C k } in D satisfying (3) . For any two distinct cycles C i , C j ∈ C , let P = v 1 v 2 · · · v s
be a maximal subpath of C i ∩ C j . We can get the following results. 

(i) For any C j ′ ∈ C − { C i , C j } , if C j ′ ∩ P � = ∅ , then P is a subpath of C j ′ . 
ii) For any arc a ∈ ∂ −

D 
(v 1 ) ∪ ∂ + 

D 
(v s ) , there exists only one C ∈ C such that a ∈ A (C) . 

Proof. Since P is a maximal subpath of C i ∩ C j . By contradiction, assume that there is C j ′ ∈ C − { C i , C j } with C j ′ ∩ P � = ∅ and

P is not subpath of C j ′ . If v 1 , v s �∈ V (C j ′ ) , then C i ∩ C j ′ has a maximal subpath P ′ such that A (P ′ ) ⊂ A (P ) and v 1 , v s �∈ V (P ′ ) .
Thus | V (P ′ ) | ≤ s − 2 , contrary to (3) . Hence assume that v 1 ∈ V (C j ′ ) or v s ∈ V (C j ′ ) . If v 1 ∈ V (C j ′ ) , then there exists an integer

t with 2 ≤ t ≤ s such that v t �∈ V (C j ′ ) and v 1 , v 2 , . . . , v t−1 ∈ V (C j ′ ) . Hence v 1 v 2 · · · v t−1 is a subpath of both C i ∩ C j ′ and C j ∩ C j ′ .
Let x ∈ N 

−
C i 
(v 1 ) and y ∈ N 

−
C j 

(v 1 ) . Since P is a maximal subpath of C i ∩ C j , x � = y . By the assumption of Proposition 3.1 and as

v t �∈ V (C j ′ ) , we conclude that either x ∈ V (C j ′ ) or y ∈ V (C j ′ ) . Since C j ′ is a cycle, if x ∈ V (C j ′ ) , then y �∈ V (C j ′ ) . Thus v 1 v 2 · · · v t−1

is a maximal subpath of C j ∩ C j ′ , contrary to (3) . If y ∈ V (C j ′ ) , then x �∈ V (C j ′ ) . Thus v 1 v 2 · · · v t−1 is a maximal subpath of

 i ∩ C j ′ , contrary to (3) . Likewise, if v s ∈ V (C j ′ ) , then a contradiction will be obtained similarly. Thus (i ) holds. 

For any arc a ∈ ∂ −
D 

(v 1 ) ∪ ∂ + 
D 

(v s ) , as C is a cycle cover of D , hence there is a cycle C ∈ C such that a ∈ A (C) . If D has

another cycle C ′ ∈ C − { C} with a ∈ A (C ′ ) , then as a ∈ ∂ −
D 

(v 1 ) ∪ ∂ + 
D 

(v s ) and P is a maximal subpath of C i ∩ C j , hence { C ′ , C} � =
{ C i , C j } . We assume that C �∈ { C i , C j } . By (i ) , path P is a subpath of cycle C. If C ′ ∈ { C i , C j } , then P is a subpath of cycle C ′ ; if
 

′ �∈ { C i , C j } , then by (i ) , P is a subpath of cycle C ′ . Hence P is a subpath of C ∩ C ′ . Likewise, if C ′ �∈ { C i , C j } , then the result

that P is a subpath of C ∩ C ′ is obtained similarly. Since a ∈ A (C ∩ C ′ ) , hence P ∪ { a } is a subpath of C ∩ C ′ , contrary to (3) .

This proves the proposition. �
5
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Lemma 3.1. Let s be a positive integer with s ≥ 2 , and D ∈ D(s ) be a strong directed multigraph defined as in Example 3.1 . Then

L (D ) ∈ D(s − 1) . 

Proof. Since D ∈ D(s ) with s ≥ 2 , by (3) , D has a cycle cover C = { C 1 , C 2 , . . . , C k } such that for any two distinct cycles C i , C j ∈
C , C i ∩ C j = P i j 1 

∪ P i j 2 
∪ · · · ∪ P i j � i j 

is a union of some vertex-disjoint paths and for any P ∈ 

⋃ k 
i =1 

⋃ k 
j= i +1 { P i j 1 

, P i j 2 
, . . . , P i j � i j 

} ,
| V (P ) | = s . 

For any C i ∈ C , since C i is a cycle, hence by Theorem 2.1 (ii ) , L (C i ) is a cycle of L (D ) . Let C ′ 
i 
= L (C i ) for any 1 ≤ i ≤ k and

let C 

′ = { C ′ 1 , C ′ 2 , . . . , C ′ k } . Firstly, we are to prove that C 

′ is a cycle cover of L (D ) . Since A ( 
⋃ 

C∈ C 

C) = A (D ) = V (L (D )) , hence

 ( 
⋃ 

C ′ ∈ C 

′ C ′ ) = V (L (D )) , and so 
⋃ 

C ′ ∈ C 

′ C ′ is a spanning subdigraph of L (D ) . If A (L (D )) � = A ( 
⋃ 

C ′ ∈ C 

′ C ′ ) , then there exists an

arc (a, b) ∈ A (L (D )) − A ( 
⋃ 

C ′ ∈ C 

′ C ′ ) , where a = (u 1 , v 1 ) and b = (v 1 , v 2 ) . It follows that either u 1 � = v 2 and u 1 v 1 v 2 is a 2-path

of D , or u 1 = v 2 and u 1 v 1 v 2 is a 2-cycle of D . Since C is a cycle cover of D , there exist two cycles C 1 and C 2 (say) such that

a = (u 1 , v 1 ) ∈ A (C 1 ) and b = (v 1 , v 2 ) ∈ A (C 2 ) . If C 1 � = C 2 , since (a, b) ∈ A (L (D )) − A ( 
⋃ 

C ′ ∈ C 

′ C ′ ) , hence u 1 v 1 v 2 is not a subpath

of both C 1 and C 2 . Thus u 1 ∈ V (C 1 ) − V (C 2 ) and v 2 ∈ V (C 2 ) − V (C 1 ) . Hence v 1 is a maximal path of C 1 ∩ C 2 , a contradiction

to (3) with s ≥ 2 . If C 1 = C 2 , then u 1 v 1 v 2 is a subpath of C 1 , or C 1 is 2-cycle, thus (a, b) ∈ A (L (C 1 )) , a contradiction to the

assumption that (a, b) ∈ A (L (D )) − A ( 
⋃ 

C ′ ∈ C 

′ C ′ ) . Hence A (L (D )) = A ( 
⋃ 

C ′ ∈ C 

′ C ′ ) , and so C 

′ is a cycle cover of L (D ) . 

Now, we are to show that L (D ) ∈ D(s − 1) . For any two distinct cycles C ′ 
i 
, C ′ 

j 
∈ C 

′ , let C ′ 
i 
∩ C ′ 

j 
= P ′ 

i j 1 
∪ P ′ 

i j 2 
∪ · · · ∪

P ′ 
i j 

� ′ 
i j 

be a union of some vertex-disjoint paths. Since C ′ 
i 
= L (C i ) , C ′ 

j 
= L (C j ) and P i j 1 

, P i j 2 
, . . . , P i j � i j 

∈ C i ∩ C j , hence

L (P i j 1 
) , L (P i j 2 

) , . . . , L (P i j � i j 
) ∈ L (C i ) ∩ L (C j ) , and so L (P i j 1 

) , L (P i j 2 
) , . . . , L (P i j � i j 

) ∈ C ′ 
i 
∩ C ′ 

j 
. Next, we are to prove that C ′ 

i 
∩ C ′ 

j 
=

L (P i j 1 
) ∪ L (P i j 2 

) ∪ · · · ∪ L (P i j � i j 
) . Suppose, by contradiction, that { P ′ 

i j 1 
, P ′ 

i j 2 
, · · · , P ′ 

i j 
� ′ 
i j 

} − { L (P i j 1 
) , L (P i j 2 

) , . . . , L (P i j � i j 
) } � = ∅ . Let P ′ ∈

{ P ′ 
i j 1 

, P ′ 
i j 2 

, · · · , P ′ 
i j 

� ′ 
i j 

} − { L (P i j 1 
) , L (P i j 2 

) , . . . , L (P i j � i j 
) } . Since P ′ is a maximal subpath of C ′ 

i 
∩ C ′ 

j 
, hence, applying Theorem 2.2 , D

has a trail T with A (T ) = V (P ′ ) . Since A (T ) = V (P ′ ) , V (P ′ ) ⊆ V (C ′ 
i 
∩ C ′ 

j 
) and V (C ′ 

i 
∩ C ′ 

j 
) = A (C i ∩ C j ) , hence A (T ) ⊆ A (C i ∩ C j ) .

Since C i ∩ C j is a union of some vertex-disjoint paths, hence T is a path of C i ∩ C j . Next, we can claim that T is a maxi-

mal subpath of C i ∩ C j . Otherwise, if C i ∩ C j has a path T ′ with A (T ) ⊂ A (T ′ ) , then by Theorem 2.2 , C ′ 
i 
∩ C ′ 

j 
has a path P ′′ 

with V (P ′′ ) = A (T ′ ) . Since A (T ) ⊂ A (T ′ ) , hence | V (P ′′ ) | > | V (P ′ ) | , a contradiction to assumption that P ′ is a maximal path of

 

′ 
i 
∩ C ′ 

j 
. Hence C ′ 

i 
∩ C ′ 

j 
= P ′ 

i j 1 
∪ P ′ 

i j 2 
∪ · · · ∪ P ′ 

i j 
� ′ 
i j 

= L (P i j 1 
) ∪ L (P i j 2 

) ∪ · · · ∪ L (P i j � i j 
) . Since for any P ∈ 

⋃ k 
i =1 

⋃ k 
j= i +1 { P i j 1 

, P i j 2 
, . . . , P i j � i j 

} ,
we have | V (P ) | = s , and so for any P ′ ∈ 

⋃ k 
i =1 

⋃ k 
j= i +1 { P ′ i j 1 

, P ′ 
i j 2 

, . . . , P ′ 
i j 

� ′ 
i j 

} , | V (P ′ ) | = s − 1 with s ≥ 2 . Hence L (D ) ∈ D(s − 1) . This

proves the lemma. �

By Lemma 3.1 , if D ∈ D(s ) with s ≥ 2 , then L (D ) ∈ D(s − 1) , and so L 2 (D ) ∈ D(s − 2) . Applying Lemma 3.1 repeatedly, we

conclude that 

if D ∈ D(s ) with s ≥ 2 , then for any t with 1 ≤ t ≤ s − 1 , L t (D ) ∈ D(s − t) . (4) 

Theorem 3.1. Let s be an integer with s ≥ 1 , and D ∈ D(s ) be a strong directed multigraph defined as in Example 3.1 . Then 

h (D ) = 

{
0 , if D ∈ D(0) or D ∈ D(s ) ∩ H, 

s, if D ∈ D(s ) − H. 

Proof. For any D ∈ D(0) , by Example 3.1 and D is strong, we have D is a cycle. Thus D ∈ H, and so h (D ) = 0 . If D ∈ D(s ) ∩ H,

then D is hamiltonian, we have h (D ) = 0 . 

Assume now that D ∈ D(s ) − H with s ≥ 1 . 

If s = 1 , then D ∈ D(1) , and so D is eulerian. Applying Theorem 2.1 (ii ) , L (D ) is hamiltonian. Hence as D ∈ D(s ) − H, we

have h (D ) = 1 = s . 

If s ≥ 2 , by (4) , then L s −1 (D ) ∈ D(1) , and so L s −1 (D ) is eulerian. By Theorem 2.1 (ii ) , L s (D ) is hamiltonian and h (D ) ≤ s .

Next, we are to prove that h (D ) = s with s ≥ 2 . By Theorem 2.4 , it suffices to prove that D ∈ F − H, D ∈ F(s ) and D �∈ F(t)

for any t with 1 ≤ t ≤ s − 1 . 

Firstly, since L s −1 (D ) is eulerian, hence for any vertex W ∈ V (L s −1 (D )) , we have d −
L s −1 (D ) 

(W ) = d + 
L s −1 (D ) 

(W ) . By

Proposition 2.1 (ii ) , W ∈ W s −1 (D ) . Let W = x 1 x 2 · · · x s . Since d + 
L s −1 (D ) 

(W ) = d −
L s −1 (D ) 

(W ) , applying Proposition 2.1 (i v ) , thus

d −
D 
(x 1 ) = d + 

D 
(x s ) , and so D ∈ F(s ) with s ≥ 2 . Since F(s ) ⊂ F and D ∈ D(s ) − H, hence D ∈ F − H. 

Secondly, we are to show that for any t with 1 ≤ t ≤ s − 1 , D �∈ F(t) . Since D is non-hamiltonian, and C is a cycle cover of

strong directed multigraph D , hence there exist two distinct cycles C i , C j ∈ C such that { P i j 1 
, P i j 2 

, · · · , P i j � i j 
} � = ∅ . Since D ∈ D(s )

with s ≥ 2 , hence let P = v 1 v 2 · · · v s ∈ { P i j 1 
, P i j 2 

, · · · , P i j � i j 
} . Then d −

D 
(v 1 ) ≥ 2 . For any t with 1 ≤ t ≤ s − 1 , since s ≥ 2 , hence

d + 
D 
(v t ) = 1 , and so d −

D 
(v 1 ) � = d + 

D 
(v t ) . Thus v 1 v 2 · · · v t is a (t − 1) -path of D with d −

D 
(v 1 ) � = d + 

D 
(v t ) , and so D �∈ F(t) . Hence by
Theorem 2.4 , h (D ) = s . �

6 
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4. Line digraph stable properties 

Let P be a graphical property and D 

′ ⊂ D denote a subfamily of strong directed multigraphs. A property P is line digraph

stable in D 

′ if for any D ∈ D 

′ , and for any positive integer k ≥ 1 , every L k (D ) has property P , whenever D has property P . 

Lemma 4.1. Let D be a strong directed multigraph. Then L (D ) is regular if and only if D is regular. 

Proof. If D is regular, then there is a positive integer t with t ≥ 1 such that for each vertex x ∈ V (D ) , d −
D 
(x ) = d + 

D 
(x ) = t .

Hence for any arc a ′ = (u, v ) ∈ A (D ) , we have d −
D 
(u ) = d + 

D 
(v ) = t . By Proposition 2.1 , a ′ ∈ V (L (D )) and d −

L (D ) 
(a ′ ) = d + 

L (D ) 
(a ′ ) =

t , and so L (D ) is regular. 

Conversely, if L (D ) is regular, then there exists an integer t ′ with t ′ ≥ 1 satisfying 

for each vertex a = (u, v ) ∈ V (L (D )) , d −
L (D ) 

(a ) = d + 
L (D ) 

(a ) = t ′ . (5)

Next, we are to prove that D is regular. Assume by contradiction that D is not regular. Then there exist two distinct vertices

x, y ∈ V (D ) such that d −
D 
(x ) = t 1 , d 

+ 
D 
(y ) = t 2 and t 1 � = t 2 . Since D is a strong directed multigraph, hence there exist two arcs

b 1 ∈ ∂ + 
D 

(x ) and b 2 ∈ ∂ −
D 

(y ) . Thus b 1 , b 2 ∈ V (L (D )) . By Proposition 2.1 (iii ) , d + 
L (D ) 

(b 2 ) = d + 
D 
(y ) = t 2 and d −

L (D ) 
(b 1 ) = d −

D 
(x ) = t 1 .

Since t 1 � = t 2 , hence d −
L (D ) 

(b 1 ) � = d + 
L (D ) 

(b 2 ) , contrary to (5) . This proves the lemma. �

Lemma 4.2. A strong directed multigraph D is eulerian and d −
D 
(u ) = d + 

D 
(v ) for any arc a = (u, v ) ∈ A (D ) if and only if D is

regular. 

Proof. Assume first that 

D is eulerian and d −D (u ) = d + D (v ) for any arc a = (u, v ) ∈ A (D ) . (6)

Next, we are to prove that D is regular. Assume by contradiction that D is not regular. As D is eulerian, hence 

for any vertex x ∈ V (D ) , d −
D 
(x ) = d + 

D 
(x ) . (7) 

Since D is not regular, hence there are two distinct vertices x 1 , x t ∈ V (D ) and two distinct positive integers t 1 and t 2 with

d + 
D 
(x 1 ) = d −

D 
(x 1 ) = t 1 and d + 

D 
(x t ) = d −

D 
(x t ) = t 2 . As D is a strong directed multigraph, hence there is a path P from x 1 to

x t of D . Let P = x 1 x 2 · · · x t . By (6) and (7) , d + 
D 
(x t ) = d −

D 
(x t ) = d −

D 
(x 2 ) = d + 

D 
(x 2 ) = · · · = d −

D 
(x t−1 ) = d + 

D 
(x t−1 ) = t 1 . Since t 1 � = t 2 ,

hence d −
D 
(x t−1 ) � = d + 

D 
(x t ) , contrary to (6) . 

Conversely, assume that D is regular. Thus there is a positive integer k such that for each vertex x ∈ V (D ) , d −
D 
(x ) = d + 

D 
(x ) =

k . Hence D is eulerian and d −
D 
(u ) = d + 

D 
(v ) for any arc a = (u, v ) ∈ A (D ) . �

Theorem 4.1. Let D be a strong directed multigraph. Then for each k ≥ 1 , L k (D ) is both eulerian and hamiltonian if and only if

D is regular. 

Proof. If D is regular, then by Lemma 4.1 , for each k ≥ 1 , L k (D ) is regular. Thus, for any k ′ ≥ 0 , L k 
′ 
(D ) is regular. By

Lemma 4.2 , L k 
′ 
(D ) is eulerian and d −

L k 
′ 
(D ) 

(u ) = d + 
L k 

′ 
(D ) 

(v ) for any arc a = (u, v ) ∈ A (L k 
′ 
(D )) . Thus by Theorem 2.1 , for each

k ≥ 1 , L k (D ) is eulerian and hamiltonian. 

Conversely, for each k ≥ 1 , if L k (D ) is eulerian and hamiltonian, then by Theorem 2.1 , for each k ′ ≥ 0 , L k 
′ 
(D ) is eulerian,

and for any arc a = (u, v ) ∈ A (L k 
′ 
(D )) , we get that d −

L k 
′ 
(D ) 

(u ) = d + 
L k 

′ 
(D ) 

(v ) . Thus by Lemma 4.2 , L k 
′ 
(D ) is regular, and so D is

regular as well. �

Define R = { D ∈ D: D is regular } . By Definition 2.1 (ii ) , we have R ⊂ F(1) , and so R ⊂ F as well. 

Theorem 4.2. Let H 

′ ⊆ D be a subfamily of strong directed multigraphs. Each of the following holds. 

(i) If H 

′ ⊆ R , then being eulerian and being hamiltonian are line digraph stable in H 

′ . 
ii) If H 

′ ⊆ F , then being eulerian is line digraph stable in H 

′ if and only if H 

′ ⊆ R . 

ii) If H 

′ ⊆ F ∪ H, then being hamiltonian is line digraph stable in H 

′ if and only if H 

′ ⊆ R . 

Proof. For any D ∈ H 

′ , if H 

′ ⊆ R , then D is regular. By Theorem 4.1 , for any k ≥ 1 , L k (D ) is eulerian and hamiltonian. Thus,

being eulerian and being hamiltonian are line digraph stable in H 

′ . Hence (i ) holds. 

If H 

′ ⊆ F and being eulerian is line digraph stable in H 

′ , then for any D ∈ H 

′ and any k with k ≥ 1 , L k (D ) is eulerian.

Applying Theorem 2.1 (ii ) , for any k ′ ≥ 2 , we conclude that L k 
′ 
(D ) is eulerian and hamiltonian. Thus by Theorem 4.1 , L (D ) is

regular, and so by Lemma 4.1 , D is regular. Hence H 

′ ⊆ R . Conversely, if H 

′ ⊆ R , then by (i ) , being eulerian is line digraph

stable in H 

′ . Thus (ii ) holds. 

If H 

′ ⊆ F ∪ H and being hamiltonian is line digraph stable in H 

′ , then for any D ∈ H 

′ and any k ≥ 1 , L k (D ) is hamilto-

nian. Applying Theorem 2.1 (ii ) , we conclude that L k (D ) is eulerian and hamiltonian. By Theorem 4.1 , D is regular, and so

H 

′ ⊆ R . Conversely, if H 

′ ⊆ R , then by (i ) , being hamiltonian is line digraph stable in H 

′ . Thus (iii ) holds. This proves the
theorem. �
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