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Abstract
Boesch and McHugh in [J. Combinatorial Theory Ser. B 38 (1985), 1-7] introduced

the edge-maximal ðk; ‘Þ-graphs to study of network subcohesion, and obtained best

possible upper size bounds for all edge-maximal ðk; ‘Þ-graphs. The best possible

lower bounds are obtained in [J. Graph Theory 18 (1994), 227-240]. Let k; ‘[ 0 be

integers. A strict digraph D is a ðk; ‘Þ-digraph if for any subdigraph H of D, that

jVðHÞj� ‘ implies kðHÞ� k � 1. An arc-maximal ðk; ‘Þ-digraph D is one such that

for any e 2 AðDcÞ, Dþ e is not a ðk; ‘Þ-digraph. We show that there is a close

relationship between the extremal edge-maximal ðk; ‘Þ-graphs and the extremal arc-

maximal ðk; ‘Þ-digraphs. This is applied to determine the optimal upper and lower

bounds of the sizes of an arc-maximal ðk; ‘Þ-digraphs. Moreover, the arc-maximal

ðk; ‘Þ-digraphs reaching the lower bounds and the upper bounds are respectively

characterized.
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1 Introduction

Throughout this paper, we consider finite simple graphs and strict digraphs, and

normally use G to denote a graph and D a digraph. Undefined terms and notation

will follow [5] and [2]. In particular, j0ðGÞ denotes the edge connectivity of a graph

G and kðDÞ denotes the arc-strong connectivity of a digraph D. We shall use (u, v)

to denote an arc oriented from u to v in a digraph. If W � VðDÞ or if W � AðDÞ,
then D[W] denotes the subdigraph of D induced by W. For v 2 VðDÞ, we use D� v
for D½VðDÞ � v�. We use H � G to mean that H is a subgraph of G, and H � D to

mean that H is a subdigraph of D. A simple graph G on n vertices can be viewed as a

spanning subgraph of Kn. Let Gc ¼ Kn � EðGÞ be the complement of G. Likewise,

let K�
n be the strict digraph on n vertices such that for every pair of distinct vertices

u; v 2 VðK�
nÞ, both ðu; vÞ 2 AðK�

nÞ and ðv; uÞ 2 AðK�
n Þ. Thus K�

n is the complete

digraph on n vertices. Any strict digraph D on n vertices can be viewed as a

spanning subdigraph of K�
n , that is for every pair of distinct vertices u; v 2 VðK�

nÞ,
ðu; vÞ 2 AðDÞ, or ðv; uÞ 2 AðDÞ, or both ðu; vÞ; ðv; uÞ 2 AðDÞ, and let Dc ¼ K�

n �
AðDÞ be the complement of D. If X � EðGÞ, then Gþ X is the simple graph with

vertex set V(G) and edge set EðGÞ [ X. We will use Gþ e for Gþ feg. Likewise,

for X � AðDcÞ and e 2 AðDcÞ, we similarly define the strict digraphs Dþ X and

Dþ e, respectively.

As shown in [4], given a family of simple graphs F , and an integer n[ 0,

determining the extremal size of a simple graph on n vertices that does not contain a

subgraph isomorphic to a member in F has been one of the mostly studied problem

in graph theory. The theorems of Mental (see Chapter 2 of [5]) and Turán ( [14]) on

the case when F ¼ fKkg are well-known. Mader in [9] studied the case when

F ¼ fG : j0ðGÞ� k � 1g, which is related to the study of network subcohesion by

Matula [10–12]. Extending the work of Mader and Matula, Boesch and McHugh in

[3] studied the case when F ¼ fG : j0ðGÞ� k � 1; jVðGÞj� ‘g. For integers n; k; ‘
with n� ‘[ k� 2, Boesch and McHugh defines a ðk; ‘Þ-graph to be a simple graph

G such that for any subgraph H of G with jVðHÞj � ‘ satisfies j0ðHÞ� k � 1. A

ðk; ‘Þ-graph G is an edge-maximal ðk; ‘Þ-graph if, for any e 2 EðGcÞ, Gþ e has a

subgraph H with jVðHÞj � ‘ and j0ðHÞ� k. Let Eðn; k; ‘Þ denote the collection of all

edge-maximal ðk; ‘Þ-graphs of order n and Eðk; lÞ ¼ [n� ‘Eðn; k; ‘Þ. For integers

n� l� k þ 1, define

Uðn; k; ‘Þ ¼maxfjEðGÞj : G 2 Eðn; k; ‘Þg;
MMðn; k; ‘Þ ¼fG : G 2 Eðn; k; ‘Þ and jEðGÞj ¼ Uðn; k; ‘Þg;

/ðn; k; ‘Þ ¼minfjEðGÞj : G 2 Eðn; k; ‘Þg;
SMðn; k; ‘Þ ¼fG : G 2 Eðn; k; ‘Þ and jEðGÞj ¼ /ðn; k; ‘Þg:

ð1Þ

Mader [9] initiated the study of edge-maximal ðk; k þ 1Þ-graphs. In [3], Boesch and

McHugh extended the study to edge-maximal ðk; ‘Þ-graphs for any ‘� k þ 1. The

subject has been studied by quite a few researchers, as seen in [3, 6, 7, 9, 11, 13],

among others.

Theorem 1.1 Let k, n be integers with n[ k þ 1� 2. Each of the following holds.
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(i) (Mader [9]) Uðn; k; k þ 1Þ ¼ ðn� kÞk þ k
2

� �
. Furthermore, all graphs in

MMðn; k; k þ 1Þ are recursively characterized.

(i) (Lai, Theorem 2 of [6]) /ðn; k; k þ 1Þ ¼ ðn� 1Þk � k
2

� �
b n

k þ 2
c: Further-

more, all graphs in SMðn; k; k þ 1Þ are recursively characterized.

Theorem 1.2 (F. T. Boesch and J. A. M. McHugh, Theorem 1 of [3]) Let k; ‘; n be
integers with n� ‘� k, and s; r� 0 be integers satisfying n ¼ sð‘� 1Þ þ r with
0� r� ‘� 2.

Uðn; k; ‘Þ ¼

sð‘� 1Þð‘� 2Þ
2

þ ðs� 1 þ rÞðk � 1Þ if 2ðk � 1Þ\‘� 1 and r\2ðk � 1Þ,

sð‘� 1Þð‘� 2Þ
2

þ sðk � 1Þ þ rðr � 1Þ
2

if 2ðk � 1Þ\‘� 1 and r� 2ðk � 1Þ,

ð‘� 1Þð‘� 2Þ
2

þ ðn� ‘þ 1Þðk � 1Þ if 2ðk � 1Þ� ‘� 1.

8>>>>>><
>>>>>>:

Furthermore, classes of edge-maximal ðk; ‘Þ-graphs on n vertices with sizes

equaling Uðn; k; ‘Þ are constructed.

The value of /ðn; k; ‘Þ is determined in [7], with the extremal graphs

characterized using the following definitions.

Definition 1.3 ( [7]) Let k, ‘ and r be positive integers with ‘� k þ 2 and r� 2. Let

G1, G2, . . ., Gr be mutually vertex disjoint simple graphs.

(i) Let G1 and G2 be vertex-disjoint simple graphs with

maxfjVðG1Þj; jVðG2Þjg� k, a ðk; ‘Þ-joint of G1 and G2 is a simple graph

obtained from the disjoint union of G1 and G2 by adding k new edges e1, e2,

. . ., ek to G1 [ G2 such that each ei is incident with a vertex in VðG1Þ and a

vertex in VðG2Þ, and such that if the new edges e1, e2, . . ., ek are joining two

maximal complete subgraphs Kr1
� G1 and Kr2

� G2 where ri ¼ 1 or k þ
1� ri � ‘� 1 (i ¼ 1; 2), then the orders of these subgraphs must satisfy

r1 þ r2 � l. Denote by ½G1;G2�‘k the set of all ðk; ‘Þ-joints of G1 and G2. For

notational convenience, we denote ½G;G�‘k ¼ fGg.

(ii) Inductively, assume that r� 3 is an integer and that the ðk; ‘Þ-joints of of any

group of at most r � 1 graphs have been defined. Let G1, G2, . . ., Gr be

vertex-disjoint simple graphs with max fjVðG1Þj; . . .; jVðGrÞjg � k. Define

a ðk; ‘Þ-joint of G1, G2, . . ., Gr by partitioning these graphs into two groups:

G1, G2, . . ., Gm and Gmþ1, . . ., Gr (say), where 1�m� r � 1. A ðk; ‘Þ -joint
of G1, G2, . . ., Gr is a graph in the form G 2 ½G0;G00�‘k for some G0 2
½G1;G2; . . .;Gm�‘k and G00 2 ½Gmþ1;Gmþ2; . . .;Gr�‘k. Let ½G1;G2; . . .;Gr�‘k
denote the set of all ðk; ‘Þ-joints of G1, G2, . . ., Gr.

Theorem 1.4 (Lai and Zhang, [7]) Let n� ‘� k þ 2� 5 be integers. Then

123

Graphs and Combinatorics           (2022) 38:72 Page 3 of 20    72 



/ðn; k; ‘Þ ¼

ð‘� 1Þð‘� 2Þ
2

þ ðn� ‘þ 1Þðk � 1Þ if ‘� n\2k þ 2,

ðn� 1Þðk � 1Þ � b n

k þ 1
c k

2 � 3k

2
if ‘� 2k þ 2� n,

ðn� 2t þ 1Þðk � 1Þ þ tðt � 1Þ � bn� 2t

k þ 1
c k

2 � 3k

2
if n� ‘ ¼ 2t� 2k þ 3,

ðn� 2tÞðk � 1Þ þ t2 � bn� 2t � 1

k þ 1
c k

2 � 3k

2
if n� ‘ ¼ 2t þ 1� 2k þ 3.

8>>>>>>>>>>><
>>>>>>>>>>>:

Furthermore, a graph G is in SMðn; k; ‘Þ if and only if one of the following holds.

(i) ‘� n\2k þ 2, and either G 2 ½Kl�1;K1�‘k�1 or G has a vertex v of degree

k � 1 such that G� v 2 SMðn� 1; k; 1Þ.
(ii) ‘� 2k þ 2� n, and either G 2 ½Kkþ1;Kkþ1�‘k�1 or G 2 ½H1;H2�‘k�1 such that

H1;H2 2 fK1;Kkþ1g [ SMðn; k; ‘Þ, jVðHiÞj 2 f1; k þ 1g or for each

i 2 f1; 2g, jVðHiÞj � 2k þ 2 and bjVðH1Þj
kþ1

c þ bjVðH2Þj
kþ1

c ¼ b n
kþ1

c.

(iii) n� l ¼ 2t� 2k þ 3, and either G 2 ½Kt;Kt�‘k�1 or G 2 ½H1;H2�‘k�1 such that

H1 2 fK1;Kkþ1g, H2 2 SMðjVðH2Þj; k; ‘Þ with jVðH2Þj � 2t, and

bjVðH1Þj
kþ1

c þ bjVðH2Þj�2t
kþ1

c ¼ bn�2t
kþ1

c.

(iv) n� l ¼ 2t þ 1� 2k þ 3 and either G 2 ½Ktþ1;Kt�‘k�1 or G 2 ½H1;H2�‘k�1

such that H1 2 fK1;Kkþ1g, H2 2 SMðjVðH2Þj; k; ‘Þ with jVðH2Þj � 2t þ 1,

and bjVðH1Þj
kþ1

c þ bjVðH2Þj�2t�1

kþ1
c ¼ bn�2t�1

kþ1
c.

It is natural to investigate the corresponding problems for strict digraphs. Given

integers ‘ and k with ‘� k� 2, a strict digraph D with jVðDÞj � ‘[ k� 2 is a ðk; ‘Þ-
digraph if for any H � D with jVðHÞj� ‘ satisfies kðHÞ� k � 1. A ðk; ‘Þ-digraph D
is an arc-maximal ðk; ‘Þ -digraph if, for any e 2 AðDcÞ, Dþ e has a subgraph H
with jVðHÞj � ‘ and kðHÞ� k. Let Aðn; k; ‘Þ be the family of all arc-maximal ðk; ‘Þ-
digraphs on n vertices and Aðk; ‘Þ ¼ [n� ‘Aðn; k; ‘Þ. Define

f ðn; k; ‘Þ ¼minfjAðDÞj : D 2 Aðn; k; ‘Þg;
Fðn; k; ‘Þ ¼maxfjAðDÞj : D 2 Aðn; k; ‘Þg;

SAðn; k; ‘Þ ¼fD : D 2 Aðn; k; ‘Þ; and jAðDÞj ¼ f ðn; k; ‘Þg;
MAðn; k; ‘Þ ¼fD : D 2 Aðn; k; ‘Þ; and jAðDÞj ¼ Fðn; k; ‘Þg:

ð2Þ

Theorem 1.5 Let k, n be integers with n[ k� 2.

(i) (Anderson, Lai, Lin and Xu, Theorem 1.2 of [1])

Fðn; k; k þ 1Þ ¼ nk � kðk þ 1Þ
2

þ nðn� 1Þ
2

. Moreover, all digraphs in

MAðn; k; k þ 1Þ are recursively characterized.

(ii) (Lin, Fan, Lai and Xu, Theorem 1.4 of [8])

f ðn; k; k þ 1Þ ¼ ðn� 1Þk � kðk � 1Þ
2

b n

k þ 2
c þ nðn� 1Þ

2
. Moreover, all

digraphs in SAðn; k; k þ 1Þ are recursively characterized.
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The main purpose of this research is, for any n� ‘� k þ 2, to determine the

values of Fðn; k; ‘Þ and f ðn; k; ‘Þ and to characterize the extremal digraphs.

Motivated by the comparisons of Theorems 1.1 and 1.5, we have found a

relationship between edge-maximal ðk; ‘Þ-graphs and arc-maximal ðk; ‘Þ-digraphs,

which allows us to characterize digraphs in SAðn; k; ‘Þ and MAðn; k; ‘Þ.
In the next section, we investigate properties of arc-maximal (k, l)-digraphs, to be

applied in our arguments. In Section 3, we focus on the discussion of a relationship

between extremal ðk; ‘Þ-graphs and extremal ðk; ‘Þ-digraphs. To obtain our main

results and determine the values of Fðn; k; ‘Þ and f ðn; k; ‘Þ, complete and refined

characterizations of graphs in MMðn; k; ‘Þ and SMðn; k; ‘Þ are respectively

presented in Section 3, which extend Theorems 1.2 and 1.4. The main results are the

following, which will be proved in the last section.

Theorem 1.6 Let n; k; ‘ be integers with n� ‘� k þ 2� 5, and s; r� 0 be integers
satisfying n ¼ sð‘� 1Þ þ r with 0� r� ‘� 2. Then

Fðn; k; ‘Þ ¼

sð‘� 1Þð‘� 2Þ
2

þ ðs� 1 þ rÞðk � 1Þ þ nðn� 1Þ
2

if r\2ðk � 1Þ\‘� 1,

sð‘� 1Þð‘� 2Þ
2

þ sðk � 1Þ þ rðr � 1Þ
2

þ nðn� 1Þ
2

if 2ðk � 1Þ\‘� 1 and r[ 2ðk � 1Þ,

sð‘� 1Þð‘� 2Þ
2

þ sðk � 1Þ þ rðr � 1Þ
2

þ nðn� 1Þ
2

if r ¼ 2ðk � 1Þ\‘� 1,

sð‘� 1Þð‘� 2Þ
2

þ ðn� ‘þ 1Þðk � 1Þ þ nðn� 1Þ
2

if 2ðk � 1Þ[ ‘� 1,

sð‘� 1Þð‘� 2Þ
2

þ ðn� ‘þ 1Þðk � 1Þ þ nðn� 1Þ
2

if 2ðk � 1Þ ¼ ‘� 1.

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

Furthermore, all the bounds are best possible.

Theorem 1.7 Let n; k; ‘ be integers with n� ‘� k þ 2� 5, and s; r� 0 be integers

satisfying n ¼ sð‘� 1Þ þ r with 0� r� ‘� 2. Define q1 ¼ b n

k þ 1
c and

q2 ¼ bn� ‘

k þ 1
c. Then

f ðn; k; ‘Þ ¼

ð‘� 1Þð‘� 2Þ
2

þ ðn� ‘þ 1Þðk � 1Þ þ nðn� 1Þ
2

if ‘� n\2k þ 2,

ðn� 1Þðk � 1Þ � b n

k þ 1
c k

2 � 3k

2
þ nðn� 1Þ

2
if ‘� 2k þ 2� n,

ðn� 2t þ 1Þðk � 1Þ þ tðt � 1Þ � bn� 2t

k þ 1
c k

2 � 3k

2
þ nðn� 1Þ

2
if n� ‘ ¼ 2t� 2k þ 3,

ðn� 2tÞðk � 1Þ þ t2 � bn� 2t � 1

k þ 1
c k

2 � 3k

2
þ nðn� 1Þ

2
if n� ‘ ¼ 2t þ 1� 2k þ 3.

8>>>>>>>>>>><
>>>>>>>>>>>:

Furthermore, all the bounds are best possible.
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2 Properties of ðk,‘)-Digraphs

Let n, k, ‘ be positive integers. By Theorem 1.5, we assume throughout the paper,

that ‘� k þ 2. It follows from the definition of a ðk; ‘Þ-digraph that

every ðk; ‘Þ-digraph D with jVðDÞj� ‘� k þ 2 satisfies kðDÞ� k � 1. ð3Þ

Following [2], for a digraph D and vertex subsets X; Y � VðDÞ, define ðX; YÞD ¼
fðx; yÞ 2 AðDÞ : x 2 X; y 2 Yg and

oþDðXÞ ¼ ðX;VðDÞ � XÞD and o�DðXÞ ¼ ðVðDÞ � X;XÞD:

For a vertex v 2 VðDÞ, we define

Nþ
D ðvÞ ¼ fu 2 VðDÞ : ðv; uÞ 2 AðDÞg and N�

D ðvÞ ¼ fu 2 VðDÞ : ðu; vÞ 2 AðDÞg:

Definition 2.1 Let k, ‘ and r be positive integers with ‘� k þ 2 and r� 2. Let D1,

D2, . . ., Dr be mutually vertex disjoint strict digraphs.

(i) A ðk; ‘Þ -joint from D1 to D2 is a strict digraph obtained from the disjoint

union of D1 and D2 by adding k new arcs (called the forward arcs) e1, e2,

� � �, ek, each of which is oriented from a vertex in D1 to a vertex in D2, and

by adding all possible arcs (called the backward arcs) of the form fðu; vÞ :
v 2 VðD1Þ and u 2 VðD2Þg, in such a way that if the new arcs e1, e2, . . ., ek
are joining two maximal complete subdigraphs K�

r1
� D1 and K�

r2
� D2, then

the orders of these subdigraphs must satisfy r1 þ r2 � ‘. We use ½D1;D2�‘k to

denote the family of all ðk; ‘Þ -joints of D1 and D2, consisting of all ðk; ‘Þ-
joints from D1 to D2 as well as all ðk; ‘Þ-joints from D2 to D1. Thus

½D1;D2�‘k ¼ ½D2;D1�‘k.
(ii) Inductively, assume that r� 3, and that for some integer m with

1�m� r � 1, both ½D1;D2; . . .;Dm�‘k, the family of all the ðk; ‘Þ-joints of

D1, D2, . . ., Dm and ½Dmþ1;Dmþ2; . . .; Dr�‘k, the family of all the ðk; ‘Þ-joints

of Dmþ1, Dmþ2, . . ., Dr have been obtained. Define a ðk; ‘Þ-joint of D1, D2,

. . ., Dm, Dmþ1 . . ., Dr to be a strict digraph in ½D0;D00�‘k, where D0 2
½D1;D2; . . .;Dm�‘k and D00 2 ½Dmþ1;Dmþ2; . . .;Dr�‘k. We use ½D1;D2; . . .;Dr�‘k
denote the family of all ðk; ‘Þ-joints of D1, D2, . . ., Dr. Thus if

ðD0
1;D

0
2; :::;D

0
rÞ is an r-tuple formed by permuting the components of

ðD1;D2; . . .;DrÞ, then ½D0
1;D

0
2; . . .;D

0
r�
‘
k ¼ ½D1;D2; . . .;Dr�‘k.

Following the definition of arc-strong connectivity in [2], a digraph D satisfies

kðDÞ� k if and only if for any nonempty proper subset X 	 VðDÞ, we always have

joþDðXÞj� k. Recall that Aðn; k; ‘Þ is the collection of all arc-maximal ðk; ‘Þ-digraphs

on n vertices.

Lemma 2.2 Suppose that D 2 Aðk; ‘Þ. For any proper nonempty subset X 	 VðDÞ
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such that joþDðXÞj � k � 1, each of the following holds:

(i) ðX;VðDÞ � XÞDc 6¼ ;.

(ii) joþDðXÞj ¼ k � 1.

(iii) ðVðDÞ � X;XÞD ¼ fðy; xÞ : for any y 2 VðDÞ � X and for any x 2 Xg.

Proof Let n ¼ jVðDÞj and Y ¼ VðDÞ � X. Suppose that ðX; YÞDc ¼ ;. Then the

arcs in oþDðXÞ induce an underlying complete bipartite digraph with a vertex

bipartite fX; Yg. It follows from joþDðXÞj � k � 1 that we must have

jXjðn� jXjÞ ¼ jXjjY j ¼ oþDðXÞ� k � 1; and jXj þ jY j ¼ n� k þ 1:

Thus the minimum of jXjðn� jXjÞ must be attained at the boundary point of the

domain 1� jXj � n� 1, and so k� n� 1� jXjðn� jXjÞ � k � 1, a contradiction.

This proves (i).

By (i), there exists an arc e ¼ ðx; yÞ 2 ðX; YÞDc . Since D 2 Aðn; k; ‘Þ, Dþ e has a

subdigraph H with jVðHÞj � ‘ and kðHÞ� k. As D is a ðk; ‘Þ-digraph, we must have

e 2 AðHÞ and so x; y 2 VðHÞ. It follows that e 2 oþHðX \ VðHÞÞ and so

oþHðX \ VðHÞÞ � feg � oþDðXÞ. Thus

k � 1� joþDðXÞj � joþHðX \ VðHÞÞ � fegj� k � 1;

implying that joþDðXÞj ¼ k � 1. This proves (ii).

We argue by contradiction to prove (iii) and assume that for some x 2 X and

y 2 Y , the arc ðy; xÞ 62 AðDÞ. Then as D 2 Aðk; ‘Þ, it follows that Dþ ðy; xÞ has a

subdigraph H0 with jH0j � ‘ and kðH0Þ � k. Since D is a ðk; ‘Þ-digraph, we must have

ðy; xÞ 2 AðH0Þ. Hence both X \ VðH0Þ 6¼ ; and Y \ VðH0Þ 6¼ ;. As

oþH0 ðX \ VðH0ÞÞ � oþDðXÞ, we have k� joþH0 ðX \ VðH0ÞÞj � joþDðXÞj � k � 1, a con-

tradiction. h

Lemma 2.3 Let D 2 Aðk; ‘Þ, and let X 	 VðDÞ be a proper nonempty subset

satisfying either joþDðXÞj ¼ k � 1 or jo�DðXÞj ¼ k � 1. Each of the following holds:

(i) For any e 2 AðD½X�cÞ, if H is a subdigraph of Dþ e with jVðHÞj � ‘ and

kðHÞ� k, then H must be a subdigraph of D½X� þ e with e 2 AðHÞ.
(ii) If D[X] is not a complete digraph, then jXj � ‘ and D½X� 2 Aðk; ‘Þ. On the

other hand, if jXj � ‘, then D½X� 2 Aðk; ‘Þ.
(iii) If jXj � ‘� 1 and ‘� k þ 2, then D[X] is a complete digraph. Moreover, if

k� 3, then either jXj ¼ 1 or jXj � k þ 1.

Proof Let n ¼ jVðDÞj. We justify each of the conclusions.

(i) For any e 2 AðD½X�cÞ, suppose that Dþ e has a subdigraph H of Dþ e with

jVðHÞj � ‘ and kðHÞ� k. Since D is a ðk; ‘Þ-digraph, H cannot be a

subdigraph of D and so we must have e 2 AðHÞ. Thus X \ VðHÞ 6¼ ;. If

VðHÞ � X 6¼ ;, then
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oþHðX \ VðHÞÞ ¼ ðVðHÞ \ X;VðHÞ � XÞH � ðX;D� XÞD;

and

o�HðX \ VðHÞÞ ¼ ðVðHÞ � X;VðHÞ \ XÞH � ðD� X;XÞD:

It follows that k� kðHÞ� minfjoþHðX \ VðHÞÞj; jo�HðX \ VðHÞÞjg� k � 1,

a contradiction. Hence H must be a subdigraph of D½X� þ e. This proves (i).

(ii) Suppose D[X] is not a complete digraph. As D 2 Aðk; ‘Þ, for any

e 2 AðD½X�cÞ, Dþ e has a subdigraph H with both jVðHÞj� ‘ and

kðHÞ� k. By Lemma 2.3(i), H must be a subdigraph of D½X� þ e and so

jXj � jVðHÞj � ‘. By definition, D½X� 2 Aðk; ‘Þ. If jXj � ‘, then as D is a

ðk; ‘Þ-digraph, D[X] cannot be a complete digraph, and so we also have

AðD½X�cÞ 6¼ ;, which implies that D½X� 2 Aðk; ‘Þ. This justifies Lemma

2.3(ii).

To prove (iii), we assume that jXj � ‘� 1 and ‘� k þ 2. If D[X] is not complete,

then there is an arc e 2 AðD½X�cÞ � AðDcÞ. As D is an arc-maximal ðk; ‘Þ-digraph,

Dþ e has a subdigraph H with jVðHÞj � ‘ and kðHÞ� k. By Lemma 2.3 (i), H must

be a subdigraph of D½X� þ e, and so ‘� 1� jXj � jVðHÞj � ‘, a contradiction. Hence

D[X] must be a complete digraph.

In the rest of the arguments, we by symmetry assume both k� 3 and joþDðXÞj ¼
ðX;D� XÞD ¼ k � 1 to prove the other conclusions of Lemma 2.3(iii). Let r1 ¼ jXj.
Then D½X� ¼ K�

r1
. Suppose that 1\r1 � k.

Claim 1 There exists an arc e ¼ ðu; u0Þ 2 AðDcÞ such that u 2 X, u0 2 VðDÞ � X

and u is not incident with at least one arc in oþDðXÞ.

If there is a vertex x in X incident with all arcs joining X to VðDÞ � X in oþDðXÞ,
then since jXj ¼ r1 [ 1, there must be a vertex u 2 X � fxg, which is not incident

with any arc in oþDðXÞ, and so Claim 1 holds in this case. Thus we assume that no

vertex in X is incident with all arcs in oþDðXÞ.
Let r2 ¼ jVðDÞ � Xj. By contradiction, we assume that every vertex in X is

joining to all vertices in VðDÞ � X. Then r1r2 ¼ joþDðXÞj ¼ k � 1. As 2� r1 � k and

r1 þ r2 � ‘� k þ 2, we have r2 � ‘� r1 � 2. Since r1 � 2 and r2 � 2,
r1þr2

r1r2
¼ 1

r2
þ 1

r1
� 1. Thus, r1r2 � r1 þ r2. It follows that

k � 1 ¼ r1r2 � r1 þ r2 ¼ jVðDÞj � ‘, a contradiction. This proves the claim.

By Claim 1, there exists an arc e ¼ ðu; u0Þ 2 AðDcÞ satisfying the conclusion of

Claim 1. Since D 2 Aðk; ‘Þ, Dþ e has a subdigraph H with jVðHÞj � ‘ and

kðHÞ� k. Since D is a ðk; ‘Þ-digraph, we must have e 2 AðHÞ. Since kðHÞ� k and

e 2 AðHÞ, it follows that all the k � 1 arcs in oDðXÞ must be in A(H). Let H1 ¼
H \ D½X� and H2 ¼ H \ ðD� XÞ.

Claim 2 Each of the following holds.

(i) jVðH1Þj � 2 and H1 ¼ D½X�.

123

   72 Page 8 of 20 Graphs and Combinatorics           (2022) 38:72 



(ii) Each vertex in X � fug is incident with exactly one of the k � 1 arcs in

oþDðXÞ.
(iii) The vertex u is not incident with any arc in oþDðXÞ.

As k� 3 and as e ¼ ðu; u0Þ 2 AðDcÞ satisfies the conclusion of Claim 1, there is at

least one vertex v 2 VðH1Þ � fug. Hence jVðH1Þj� 2. By dþðHÞ� kðHÞ� k, we

have

kjVðH1Þj �
X

v2VðH1ÞD

dþH ðvÞ� jAðH1Þj þ joþDþeðVðH1ÞÞj � jVðH1ÞjðjVðH1Þj � 1Þ þ k;

and so ðjVðH1Þj � 1Þk� jVðH1ÞjðjVðH1Þj � 1Þ. As jVðH1Þj� 2, we have

jVðH1Þj ¼ k ¼ r1 ¼ jXj, implying Claim 2(i).

Since jXj � k and joþHðXÞj � kðHÞ� k, it follows by H1 ¼ D½X� that Claim 2(ii)

must hold. As joþDðXÞj ¼ k � 1, Claim 2(iii) follows from Claim 2(ii). This proves

Claim 2.

Since r2 � 2, there is an arc e0 2 ðX;VðDÞ � XÞDc not incident with u. By the

assumption of D 2 Aðn; k; ‘Þ, Dþ e0 has a subdigraph H0 with jVðH0Þj � ‘ and

kðH0Þ � k. Since e0 is not incident with u and by Claim 2(iii), we conclude that u has

outdegree k � 1 in Dþ e0 and so u 62 VðH0Þ.
Let H0

1 ¼ H0 \ D½X�, H0
2 ¼ H0 \ ðD� XÞ. By Claim 2(ii), we have H0

1 ¼ D½X �
u� and so jVðH0

1Þj ¼ k � 1. It follows that

kðk � 1Þ ¼ kjVðH0
1Þj �

X
v2VðH0

1
Þ
dþH0 ðvÞ� jVðH0

1ÞjðjVðH0
1Þj � 1Þ þ k ¼ ðk � 1Þðk � 2Þ þ k;

forcing k ¼ 2, contrary to the assumption that k� 3. This justifies (iii) and com-

pletes the proof of the lemma. h

Theorem 2.4 Let k and ‘ be integers with ‘� k þ 2 and and k� 3. A strict digraph

D with n ¼ jVðDÞj� ‘ is in Aðk; ‘Þ if and only if D 2 ½H1;H2�‘k�1 for some digraphs
H1 and H2 satisfying one of the following.

(i) H1 ¼ K�
r1

, H2 ¼ K�
r2

with r1 þ r2 � ‘� k þ 2 and for i 2 f1; 2g, either ri ¼
1 or k þ 1� ri � ‘� 1, or

(ii) H1 2 Aðk; lÞ and H2 ¼ K�
r2

with r2 ¼ 1 or k þ 1� r2 � ‘� 1, or

(iii) H1;H2 2 Aðk; ‘Þ.

Proof We first assume that D 2 Aðk; ‘Þ to show one of the conclusions must hold.

Since n� ‘� k þ 2, by (3), there must be a nonempty proper subset X 	 VðDÞ such

that joþDðXÞj\k. Let Y ¼ VðDÞ � X. By Lemma 2.2(iii), all possible arcs from Y to

X are in A(D).

For each W 2 fX; Yg, by Lemma 2.3, either jW j � ‘ and D½W � 2 Aðk; ‘Þ or

D[W] is complete digraph with jW j ¼ 1 or k þ 1� jW j � ‘� 1. If both D[X] and

D[Y] are complete digraphs, then Theorem 2.4(i) must hold. If one of D[X] and

D[Y] is a complete digraph, and the other is not, then Theorem 2.4(ii) holds. If both
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D[X] and D[Y] are not complete digraphs, then Theorem 2.4(iii) follows.

We now assume that D 2 ½H1;H2�‘k�1 and n ¼ jVðDÞj, such that H1 and H2

satisfy one of Theorem 2.4 (i), (ii) and (iii) to show that D 2 Aðk; ‘Þ. We argue by

contradiction and assume that

D is a counterexample with jV(D)j minimized. ð4Þ

Without loss of generality, we assume that D is a ðk; ‘Þ-joint from H1 to H2. Let

W ¼ ðVðH1Þ;VðH2ÞÞD. Then by Lemma 2.2, jW j ¼ k � 1. Since n� ‘� k þ 2, it

follows by (3) that kðDÞ� k � 1 and D cannot be a complete digraph. Hence

AðDcÞ 6¼ ;.

Claim 3 Every subdigraph H of D with jVðHÞj� ‘ must have kðHÞ� k � 1.

If for some i 2 f1; 2g, H is a subdigraph of Hi, then as jVðHiÞj� jVðHÞj � ‘, we

conclude that Hi 2 Aðk; ‘Þ. Thus by (3), kðHÞ� k � 1. Therefore, we assume that

both VðHÞ \ VðH1Þ 6¼ ; and VðHÞ \ VðH2Þ 6¼ ;. Thus kðHÞ� jðVðHÞ \
VðH1Þ;VðHÞ \ VðH2ÞÞH j � jW j ¼ k � 1. This proves Claim 3.

By Claim 3, D is a ðk; ‘Þ-digraph. By (4), D 62 Aðk; ‘Þ, and so there must be an

arc e 2 AðDcÞ such that

Dþ e is also a ðk; ‘Þ � digraph. ð5Þ

If for some i 2 f1; 2g, we have e 2 AðHc
i Þ, then Hi is not a complete digraph and so

by Theorem 2.4 (ii) or (iii), Hi 2 Aðk; ‘Þ. By definition, Hi [ e contains a subdi-

graph H0
i with jVðH0

iÞj � ‘ and kðH0
iÞ� k, contrary to (5). Therefore, we conclude

that e 62 AðHc
1Þ [ AðHc

2Þ. As D is a ðk; ‘Þ-joint from H1 to H2, we have e ¼ ðu1; u2Þ
for some vertices u1 2 VðH1Þ and u2 2 VðH2Þ. If Theorem 2.4(i) holds, then as for

each i 2 f1; 2g, ri ¼ 1 or ri � k þ 1, it follows that kðDþ eÞ� k, contrary to (5).

Hence we assume that Theorem 2.4 (ii) or (iii) must hold. It follows by Theorem 2.4

(ii) or (iii) that

both jVðH1Þj � k þ 1 and jVðH2Þj � k þ 1. ð6Þ

By (5) and by (3), there must be a proper nonempty subset X � VðDþ eÞ such that

joþDþeðXÞj � k � 1. Let X1 ¼ X \ VðH1Þ and X2 ¼ X \ VðH2Þ.

Claim 4 Each of the following holds.

(i) X1 6¼ ; and X2 6¼ ;. In particular, X 6¼ VðH1Þ and X 6¼ VðH2Þ.
(ii) For some i 2 f1; 2g, we must have VðHiÞ 	 X and VðH3�iÞ � X 6¼ ;.

Let i 2 f1; 2g. If X \ VðHiÞ ¼ ;, then X � VðH3�iÞ, and so by Definition 1.3 and

by (6), if i ¼ 1, then k � 1� joþDþeðXÞj� jðX;VðH1ÞÞDj � jVðH1Þj � k þ 1; and if

i ¼ 2, k � 1� joþDþeðXÞj � jðVðH2Þ;XÞDj � jVðH2Þj� k þ 1. These contradictions

justify Claim 4(i).
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If VðHiÞ � Xi 6¼ ;, for both i 2 f1; 2g, then by Theorem 2.4 (ii) or (iii), Hi is

either in Aðk; ‘Þ or is a complete digraph with order at least k þ 1. It follows by

Claim 4(i), by Lemma 2.2 and by k� 2 that

k � 1� joþDþeðXÞj �
X2

i¼1

joþDþeðXÞj � 2ðk � 1Þ� k:

This contradiction justifies Claim 4(ii).

By Claim 4, we may assume that both X1 ¼ VðH1Þ and X2 6¼ ;. Then VðH2Þ �
X2 6¼ ; as X is a proper subset of V(D). It follows that in this case,

k � 1� joþDþeðXÞj � joH2
ðX2Þj. If H2 is a complete digraph of order at least k þ 1,

then k � 1� joH2
ðX2Þj � k þ 1, a contradiction. Therefore, by Theorem 2.4 (ii) or

(iii), we conclude by Lemma 2.2 that

H2 2 Aðk; ‘Þ, ðVðH1Þ;VðH2ÞÞDþe � ðVðH1Þ;X2ÞDþe, and joH2
ðX2Þj ¼ k � 1.

ð7Þ

Let L ¼ H2½X2�. Since H2 2 Aðk; ‘Þ, by Lemma 2.3, either jX2j � ‘ and L 2 Aðk; ‘Þ
or jX2j � ‘� 1 and L ¼ K�

r0 with r0 ¼ 1 or r0 � k þ 1. Let D0 ¼ D� ðVðH2Þ � X2Þ.
Then by (7), we conclude that D0 2 ½H1; L�‘k�1 and so by (4), D0 2 Aðk; ‘Þ. It follows

that D0 þ e contains a subdigraph H0 such that jVðH0Þj � ‘ and kðH0Þ � k. As H0 is

also a subdigraph of D, this is a contradiction to (5). This completes the proof of

Lemma. h

Corollary 2.5 Let k and ‘ be integers with ‘� k þ 2 and and k� 3. Let D be a strict
digraph with n ¼ jVðDÞj � ‘. The following are equivalent.

(i) D 2 Aðk; ‘Þ.
(ii) There exist an integer r� 2 and an r-tuple ðm1;m2; :::;mrÞ of integers with

m1 þ m2 þ . . .þ mr ¼ n satisfying

8i 2 f1; 2; :::; rg, k þ 1�mi � ‘� 1 or mi ¼ 1, and maxfmi : 1� i� rg� k þ 1,

ð8Þ

such that D 2 ½K�
m1
; . . .;K�

mr
�‘k�1.

Proof Assume that (i) holds. We argue by induction on n to prove (ii). If n ¼ ‘,

then by Lemmas 2.2 and 2.3, D 2 ½K�
m1
;K�

m2
�lk�1 for some integers m1 and m2

satisfying m1 þ m2 ¼ ‘ such that for i 2 f1; 2g, either mi ¼ 1 or k þ 1�mi � ‘� 1,

and such that maxfm1;m2g� k þ 1.

Therefore, we assume n� ‘þ 1 and Corollary 2.5 holds for smaller values of

n. Since D 2 Aðn; k; lÞ, one of Theorem 2.4 (i), (ii) and (iii) must hold. As

Theorem 2.4(i) implies Corollary 2.5, we may assume that either Theorem 2.4(ii) or

Theorem 2.4(iii) holds, and so there exist digraphs H1 and H2 such that H1 2 Aðk; ‘Þ
and either H2 ffi Km with m ¼ 1 or k þ 1�m� ‘� 1, of H2 2 Aðk; ‘Þ. By

induction, for i 2 f1; 2g, if Hi 2 Aðk; ‘Þ, then Hi is a ðk; ‘Þ-joint of complete

digraphs whose order satisfies (8). It follows that Corollary 2.5(ii) must hold.
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Conversely, we assume (ii) and argue by induction on r to prove (i). If r ¼ 2, then

Theorem 2.4 (i) implies that Corollary 2.5(i) must hold. Assume that r� 3 and that

(ii) implies (i) when r takes a smaller value. Let D 2 ½K�
m1
; . . .;K�

mr
�‘k�1. By

Definition 1.3, we may assume that D 2 ½H1;H2�‘k�1, where for some integer s with

1� s\r, H1 2 ½K�
m1
; . . .;K�

ms
�‘k�1 and H2 2 ½K�

msþ1
; . . .;K�

mr
�‘k�1. By induction, H1 and

H2 satisfy Theorem 2.4 (ii) or (iii). It follows by Theorem 2.4 that D 2 Aðk; ‘Þ and

so (i) must hold. h

3 Relationship between Extremal Graphs and Extremal Digraphs

Throughout this section, let k; ‘; n be integers such that n� ‘� k þ 2. In this section,

we shall show a relationship between edge-maximal ðk; ‘)-graphs and arc-maximal

ðk; ‘)-digraphs. As in [3], extremal graphs in MMðn; k; ‘Þ are not completely

characterized, we in this section will also extend the results in [3] and in [7],

respectively, to obtain structural characterizations for the proofs of our main results

in the last section.

Recall that Eðn; k; ‘Þ is the family of all edge-maximal ðk; ‘Þ-graphs of order n,

and the graph families MMðn; k; ‘Þ and SMðn; k; ‘Þ are defined in (1). We start

with a lemma in [7].

Lemma 3.1 (Lai and Zhang, Lemma 4 and Theorem 1 of [7]). Let G be a simple
graph on n vertices. Then G 2 Eðk; ‘Þ if and only if one of the following holds.

(i) For some integers r1 and r2 satisfying r1 þ r2 � ‘ and for each i 2 f1; 2g,

either ri ¼ 1 or k þ 1� ri � ‘� 1, G 2 ½Kr1
;Kr2

�‘k�1.

(ii) For some H 2 Eðk; ‘Þ and an integer r satisfying either r ¼ 1 or

k þ 1� r� ‘� 1, G 2 ½H;Kr�‘k�1.

(iii) For some H1;H2 2 Eðk; ‘Þ, G 2 ½H1;H2�‘k�1.

Corollary 3.2 below follows Lemma 3.1 with an inductive argument.

Corollary 3.2 A graph G is in Eðn; k; ‘Þ if and only if there exist integers r[ 0 and
m1, m2, . . ., mr satisfying

m1 þ m2 þ . . .þ mr ¼ n; maxfm1; :::;mrg� k þ 1;

and
ð9Þ

such that G 2 ½Km1
;Km2

; . . .;Kmr
�‘k�1.

Following [2], the underlying graph UG(D) of a digraph D is the graph formed

by erasing all the orientations from the arcs in D. Let D 2 Aðn; k; ‘Þ. By Corollary

2.5, D 2 ½K�
m1
; . . .;K�

mr
�‘k�1 for some integers r, and m1;m2; :::;mr satisfying m1 þ

m2 þ . . .þ mr ¼ n and (8). Using the terminology in Definition 2.1, let B(D) denote

the set of all the backward arcs arising from the construction of D from the complete

digraphs K�
m1
; . . .;K�

mr
. For these values of m1; :::;mr, we define the corresponding
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graph of D, denoted by fðDÞ, to be the underlying graph of the digraph D� BðDÞ.
By Definition 1.3, fðDÞ 2 ½Km1

; . . .;Kmr
�‘k�1. By Theorem 1 of [7], fðDÞ 2 Eðn; k; ‘Þ.

Conversely, for each graph G 2 ½Km1
; . . .;Kmr

�‘k�1, there exists a digraph D 2
½K�

m1
; . . .;K�

mr
�‘k�1 such that G ¼ fðDÞ. This digraph D is called an associated

digraph of G. For each G 2 ½Km1
; . . .;Kmr

�‘k�1, let f�1ðGÞ denote the collection of

all associated digraph of G. The following result is the relationship between edge-

maximal ðk; ‘)-graphs and arc-maximal ðk; ‘)-digraphs.

Lemma 3.3 Let D 2 Aðn; k; ‘Þ and G ¼ fðDÞ be the corresponding graph of D.

Then jAðDÞj ¼ jEðGÞj þ nðn�1Þ
2

.

Proof Let D 2 Aðn; k; lÞ. By Lemma 2.5, there exist integers r[ 0 and

m1;m2; :::;mr satisfying m1 þ m2 þ . . .þ mr ¼ n and (8) such that

D 2 ½K�
m1
; . . .;K�

mr
�‘k�1. We color all forward arcs in red and all backward arcs in

blue. By Definition 2.1, A(D) is partitioned into the forward arcs, backward arcs, and

arcs in each of the complete digraphs K�
mi

, 1� i� r. For each i with 1� i� r, and

for any pair of distinct vertices u; v 2 VðK�
mi
Þ, randomly color one arc in blue and

the other in red. Let D1 and D2 be the subdigraphs of D induced by the red arcs, and

by the blue arcs, respectively. By definition, G is isomorphic to UGðD1Þ, and

UGðD2Þ ffi Kn. It follows that jAðDÞj ¼ jAðD1Þj þ jAðD2Þj ¼ jEðGÞj
þjEðKnÞj ¼ jEðGÞj þ 1

2
nðn� 1Þ. h

To apply Lemma 3.3 in the determination of the extremal sizes of the arc-

maximal ðk; ‘Þ-digraphs, and the characterization of the extremal arc-maximal

ðk; ‘Þ-digraphs, we need to extend the results in [3, 7] and to further the

investigation of the structural properties of the extremal ðk; ‘Þ-graphs in

MMðn; k; ‘Þ and in SMðn; k; ‘Þ.

3.1 The Edge-Maximal ðk,‘)-Graphs with Maximum Sizes

The main purpose of this subsection is to determine the structures of graphs in

MMðn; k; ‘Þ.

Lemma 3.4 Let G 2 MMðn; k; ‘Þ, let X 	 EðGÞ be an edge-cut with jXj ¼ k � 1

and Hi be the component of G� X, 1� i� 2. Let ni ¼ jVðHiÞj� ‘. Then
Hi 2 MMðni; k; ‘Þ.

Proof By contradiction, assume by symmetry that H1 62 MMðn1; k; ‘Þ. By Lemma

3.1, H1 2 Eðn1; k; ‘Þ. Hence there is some H0 2 MMðn1; k; ‘Þ with

jEðH0Þj[ jEðH1Þj. Choose some G0 2 ½H0;H2�‘k�1. By Lemma 3.1, G0 2 Eðn; k; ‘Þ
with

jEðG0Þj ¼ jEðH0Þj þ jEðH2Þj þ ðk � 1Þ[ jEðH1Þj þ jEðH2Þj þ ðk � 1Þ ¼ jEðGÞj,
contrary to the fact that G 2 MMðn; k; ‘Þ. This proves the lemma. h

Lemma 3.5 Let G 2 Eðn; k; ‘Þ, and r, s be nonnegative integers such that n ¼
sð‘� 1Þ þ r with 0� r� ‘� 2. Each of the following holds.
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(i) Suppose that 2ðk � 1Þ\‘� 1 and r\2ðk � 1Þ. Then G 2 MMðn; k; ‘Þ if

and only if G 2 ½Km1
;Km2

; . . .;Kmrþs
�‘k�1 such that jfi : mi ¼ ‘� 1gj ¼ s

and jfj : mj ¼ 1gj ¼ r.
(ii) Suppose that 2ðk � 1Þ\‘� 1 and r[ 2ðk � 1Þ. Then G 2 MMðn; k; ‘Þ if

and only if G 2 ½Km1
;Km2

; . . .;Kmsþ1
�‘k�1 such that jfi : mi ¼ ‘� 1gj ¼ s

and jfj : mj ¼ rgj ¼ 1.

(iii) Suppose that 2ðk � 1Þ\‘� 1 and r ¼ 2ðk � 1Þ. Then G 2 MMðn; k; ‘Þ if

and only if either G 2 ½Km1
;Km2

; . . .;Kmsþ1
�‘k�1 such that jfi : mi ¼ ‘�

1gj ¼ s and jfj : mj ¼ rgj ¼ 1 or G 2 ½Km1
;Km2

; :::;Kmrþs
�‘k�1 such that jfi :

mi ¼ ‘� 1gj ¼ s and jfj : mj ¼ 1gj ¼ r.

(iv) Suppose that 2ðk � 1Þ[ ‘� 1. Then G 2 MMðn; k; ‘Þ if and only if G 2
½Km1

;Km2
; . . .; Kmn�‘þ2

�‘k�1 such that jfi : mi ¼ ‘� 1gj ¼ 1 and

jfj : mj ¼ 1gj ¼ n� ‘þ 1.

(v) Suppose that 2ðk � 1Þ ¼ ‘� 1. Then G 2 MMðn; k; ‘Þ if and only if G 2
½Km1

;Km2
; . . .; Kmn�t‘þ2t

�‘k�1 such that for some t 2 f1; 2; . . .; s� 1g, jfi :
mi ¼ ‘� 1gj ¼ t and jfj : mj ¼ 1gj ¼ n� t‘þ t.

Proof By Corollary 3.2 and Theorem 1.2, it suffices to prove the only if part in each

of the conclusions of this lemma.

Let G 2 MMðn; k; ‘Þ. If n ¼ ‘, by Lemma 3.1, G 2 ½K‘�1;K1�‘k�1, and so the

lemma holds. Assume that n[ ‘ and the lemma holds for smaller values of n. By

Lemma 3.1, G 2 ½H1;H2�‘k�1 where for each i 2 f1; 2g, Hi is a complete graph or Hi

is an edge-maximal ðk; ‘Þ-graph. By symmetry, set n1 ¼ jVðH1Þj and n2 ¼ jVðH2Þj
with n1 � n2. For each i 2 f1; 2g, let ni ¼ sið‘� 1Þ þ ri where si, ri are nonnegative

integers and 0� ri � ‘� 2.

Case 1 ‘� 1[ 2ðk � 1Þ[ r1 þ r2.

We shall show that in this case, Lemma 3.5(i) holds. Then s ¼ s1 þ s2 and

r ¼ r1 þ r2. We justify the lemma with discussions for different values of n1. If

n1 ¼ 1, then s1 ¼ 0, r1 ¼ 1, r2 � 2ðk � 1Þ � 1\‘� 1 and n2 � ‘. By Lemma 3.1,

we conclude that H1 ¼ K1 and H2 2 MMðn2; k; ‘Þ. By induction, H2 2
½Km1

;Km2
; :::;Kmr2þs2

�‘k�1 such that jfi : mi ¼ ‘� 1gj ¼ s2 and jfj : mj ¼ 1gj ¼ r2.

It follows that Lemma 3.5(i) must hold.

Assume that n1 ¼ ‘� 1. Then s1 ¼ 1, r1 ¼ 0, r2 ¼ r\2ðk � 1Þ and n2 � ‘� 1.

By Lemma 3.1, H1 ¼ K‘�1 and either H2 ¼ K‘�1 or H2 2 MMðn2; k; ‘Þ. In the case

when H2 2 MMðn2; k; ‘Þ, by induction, H2 2 ½Km1
;Km2

; :::;Kmr2þs2
�‘k�1 such that

jfi : mi ¼ ‘� 1gj ¼ s2 and jfj : mj ¼ 1gj ¼ r2. Hence Lemma 3.5(i) holds again in

either case of H2.

Now assume that n1 � ‘. Then n2 � n1 � ‘. By Lemma 3.1, H1 2 MMðn1; k; ‘Þ
and H2 2 MMðn2; k; ‘Þ. By induction, for each t 2 f1; 2g, Ht 2
½Km1

;Km2
; :::;Kmriþsi

�‘k�1 such that jfi : mi ¼ ‘� 1gj ¼ si and jfj : mj ¼ 1gj ¼ ri. If

follows that Lemma 3.5(i) holds in this case also.
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Finally we assume that 2� n1 � ‘� 2. If n2 � ‘� 1, then by Lemma 3.1, we

conclude that both H1 ¼ Kn1
and H2 ¼ Kn2

. Direct computation yields that

Uðn; k; ‘Þ ¼ jEðGÞj ¼ jEðH1Þj þ jEðH2Þj þ k � 1 ¼ n1ðn1 � 1Þ
2

þ n2ðn2 � 1Þ
2

þ k � 1\Uðn; k; ‘Þ;
ð10Þ

a contradiction. Hence we must have n2 � ‘. By Lemma 3.1, H1 ¼ Kn1
and

H2 2 MMðn2; k; ‘Þ. Once again, direct computation shows that the contradiction of

(10) is obtained. This completes the proof for Case 3.1.

Case 2 ‘� 1[ r1 þ r2 [ 2ðk � 1Þ.
We shall show that in this case, Lemma 3.5(ii) holds. Thus s ¼ s1 þ s2 and

r ¼ r1 þ r2. Assume that r1r2 6¼ 0. By Lemmas 3.1 and 3.4, for each i 2 f1; 2g,

either Hi ¼ Kri and jEðHiÞj ¼ riðri�1Þ
2

, or Hi 2 MMðn1; k; ‘Þ and

jEðHiÞj ¼ Uðni; k; ‘Þ. Direct computation yields that

Uðn; k; ‘Þ ¼ jEðGÞj ¼ jEðH1Þj þ jEðH2Þj þ k � 1\Uðn; k; ‘Þ, a contradiction.

Therefore, we must have r1r2 ¼ 0, and so we may assume that r1 ¼ 0 and

r2 [ 2ðk � 1Þ. By Lemmas 3.1 and 3.4, for each i 2 f1; 2g, either Hi ¼ K‘�1 or

Hi 2 MMðni; k; ‘Þ. By induction, if H1 2 MMðn1; k; ‘Þ, then H1 2
½Km1

;Km2
; :::;Kmr1þs1

�‘k�1 such that jfi : mi ¼ ‘� 1gj ¼ s1 and jfj : mj ¼ 1gj ¼ r1,

and H2 satisfies the conclusions of Lemma 3.5(ii). This implies that Lemma 3.5(ii)

must hold, and completes the proof for Case 2.

Case 3 r1 þ r2 ¼ 2ðk � 1Þ\‘� 1.

We shall show that in this case, Lemma 3.5(iii) holds. Then r ¼ r1 þ r2 ¼
2ðk � 1Þ and s1 þ s2 ¼ s. Assume first that r1r2 6¼ 0. Then both r1\2ðk � 1Þ and

r2\2ðk � 1Þ. By induction, for each i 2 f1; 2g, Hi satisfies the conclusion of

Lemma 3.5(i). It follows that G also satisfies the conclusion of Lemma 3.5(iii).

Hence we may assume that r1 ¼ 0 and r2 ¼ 2ðk � 1Þ. By Lemmas 3.1 and 3.4, we

conclude that either H1 ¼ K‘�1 or H1 2 MMðn1; k; ‘Þ, and H2 2 MMðn2; k; ‘Þ.
By induction, H1 satisfies the conclusions of Lemma 3.5(i) and H2 satisfies the

conclusions of Lemma 3.5(iii). It follows that G satisfies the conclusions of Lemma

3.5(iii).

Case 4 2ðk � 1Þ\‘� 1� r1 þ r2.

In this case, s[ s1 þ s2. By Lemmas 3.1 and 3.4, for each i 2 f1; 2g, either

Hi ¼ Kri or Hi 2 MMðni; k; ‘Þ and so jEðHiÞj ¼ Uðni; k; ‘Þ. By induction and direct

computation, we conclude that Uðn; k; ‘Þ ¼ jEðGÞj ¼ jEðH1Þj þ jEðH2Þj þ k�
1\Uðn; k; ‘Þ, a contradiction. Hence this case cannot occur.

Case 5 2ðk � 1Þ[ ‘� 1.

We shall show that in this case, Lemma 3.5(iv) holds. Assume first that n1 � ‘.
Then n2 � n1 � ‘. By Lemma 3.4, for each i 2 f1; 2g, Hi 2 MMðni; k; ‘Þ and so

jEðHiÞj ¼ Uðni; k; ‘Þ. Direct computations shows that Uðn; k; ‘Þ ¼ jEðGÞj ¼
j
P2

i¼1 EðHiÞj þ ðk � 1Þ ¼
P2

i¼1 Uðni; k; ‘Þ þ k � 1\Uðn; k; ‘Þ, a contradiction.

Hence n1\‘.
If n1 ¼ 1, then n2 � ‘. By Lemma 3.4, H2 2 MMðn2; k; ‘Þ, and so by induction,
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H2 satisfies the conclusion of Lemma 3.5(iv). As n ¼ n2 þ 1, this implies that

G satisfies the conclusion of Lemma 3.5(iv). Next we assume that 2� n1 � ‘� 1

and n2 � ‘. By Lemma 3.1 and 3.4, H1 ¼ Kn1
and H2 2 MMðn2; k; ‘Þ. Thus by

direct computation, Uðn; k; ‘Þ ¼ jEðGÞj ¼ n1ðn1�1Þ
2

þ Uðn2; k; ‘Þ þ k � 1\Uðn; k; ‘Þ,
a contradiction. Therefore we may assume that 2� n1 � ‘� 1 and n2 � ‘� 1. by

Lemma 3.1, we have H1 ¼ Kn1
and H2 ¼ Kn2

. Direct computation shows the con-

tradiction of (10) is obtained. This completes the proof for this case.

Case 6 2ðk � 1Þ ¼ ‘� 1.

We shall show that in this case, Lemma 3.5(v) holds. Suppose first that

n1 � ‘� 1. Then n2 � n1 � ‘� 1, and s� s1 þ s2. By Lemma 3.1 and 3.4, for each

i 2 f1; 2g, Hi 2 MMðni; k; ‘Þ and so jEðHiÞj ¼ Uðni; k; ‘Þ. By induction, there

exist integers t1 and t2 with ti 2 f1; 2; :::; si � 1g, such that Hi satisfies the con-

clusion of Lemma 3.5(v). Let t ¼ t1 þ t2. Then t�ðs1 � 1Þ þ ðs2 � 1Þ� s� 1. This

implies that G also satisfies the conclusion of Lemma 3.5(v). Hence we assume that

n1\‘� 1.

If n1 ¼ 1, then H1 ¼ K1 and n2 � ‘. By Lemma 3.1 and 3.4, H2 2 MMðn2; k; ‘Þ.
By induction, H2 satisfies the conclusion of Lemma 3.5(v). As H1 ¼ K1, G also

satisfies the conclusion of Lemma 3.5(v). Finally we assume that 2� n1 � ‘� 2, and

so H1 ¼ Kn1
. If n2 � ‘� 1, then by Lemma 3.1, H2 ¼ Kn2

, and so the contradiction

of (10) is obtained. Hence we must have n2 � ‘. By induction, and by Lemma 3.1

and 3.4, H2 2 MMðn2; k; ‘Þ, whence direct computation yields

Uðn; k; ‘Þ ¼ jEðGÞj ¼ n1ðn1�1Þ
2

þ Uðn2; k; ‘Þ þ k � 1\Uðn; k; ‘Þ, a contradiction.

This completes the proof of the lemma. h

3.2 The Edge-Maximal ðk,‘)-Graphs with Minimum Sizes

In this subsection, we will determine the structures of graphs in SMðn; k; ‘Þ.

Lemma 3.6 Let G 2 Eðn; k; ‘Þ and s; r� 0 be integers satisfying n ¼ sð‘� 1Þ þ r

with 0� r� ‘� 2. Let q1 ¼ b n

k þ 1
c and q2 ¼ bn� ‘

k þ 1
c. Each of the following holds.

(i) Suppose that ‘� n\2k þ 2. Then G 2 SMðn; k; ‘Þ if and only if G 2
½Km1

;Km2
; . . .; Kmn�‘þ2

�‘k�1 such that jfi : mi ¼ ‘� 1gj ¼ 1 and

jfj : mj ¼ 1gj ¼ n� ‘þ 1.

(ii) Suppose that ‘� 2k þ 2� n. Then G 2 SMðn; k; ‘Þ if and only if G 2
½Km1

;Km2
; . . .; Kmn�q1k

�‘k�1 such that jfi : mi ¼ k þ 1gj ¼ q1 and

jfj : mj ¼ 1gj ¼ n� q1ðk þ 1Þ.
(iii) Suppose that for some integer t[ 0, n� ‘ ¼ 2t� 2k þ 3. Then G 2

SMðn; k; ‘Þ if and only if G 2 ½Km1
;Km2

; . . .;Kmn�‘�q2kþ2
�‘k�1 such that

jfi : mi ¼ tgj ¼ 2, jfi0 : mi0 ¼ k þ 1gj ¼ q2 and jfj : mj ¼ 1gj ¼ n� ‘

�q2ðk þ 1Þ.
(iv) Suppose that for some integer t[ 0, n� ‘ ¼ 2t þ 1� 2k þ 3. Then G 2

SMðn; k; ‘Þ if and only if G 2 ½Km1
;Km2

; . . .;Kmn�‘�q2kþ2
�‘k�1 such that
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jfi : mi ¼ tgj ¼ jfi0 : mi0 ¼ t þ 1gj ¼ 1, jfi00 : mi00 ¼ k þ 1gj ¼ q2 and

jfj : mj ¼ 1gj ¼ n� ‘� q2ðk þ 1Þ.

Proof By Corollary 3.2 and Theorem 1.4, it suffices to prove the only if part in each

of the conclusions of this lemma. In the different relationships among n, ‘ and k
below, we always assume that G 2 SMðn; k; ‘Þ. We shall argue by induction on n to

prove the lemma.

(i) Suppose that ‘� n\2k þ 2. If n ¼ ‘, then by Lemma 3.1, G 2
½Kl�1;K1�‘k�1 and so Lemma 3.6(i) holds. Assume that n[ ‘. By

Theorem 1.4(i) that G has a vertex v of degree k � 1 such that

G� v 2 SMðn� 1; k; ‘Þ. By induction, G� v 2 ½Km1
;Km2

; :::;

Kmðn�1Þ�‘þ2
�‘k�1 such that jfi : mi ¼ ‘� 1gj ¼ 1 and jfj : mj ¼ 1gj ¼ ðn�

1Þ �‘þ 1. This implies that G satisfies the conclusion of Lemma 3.6(i).

(ii) Suppose that ‘� 2k þ 2� n. If n ¼ 2k þ 2, then by Theorem 1.4(ii), G 2
½Kkþ1;Kkþ1�‘k�1 and so Lemma 3.6(ii) holds. Assume that n[ 2k þ 2. Then

by Theorem 1.4(ii), G 2 ½H1;H2�‘k�1 for some graphs H1;H2 such that, for

each i 2 f1; 2g either Hi 2 fK1;Kkþ1g [ SMðn; k; ‘Þ and jVðHiÞj 2 f1; k þ
1g or jVðHiÞj � 2k þ 2 and bjVðH1Þj

kþ1
c þ bjVðH2Þj

kþ1
c ¼ b n

kþ1
c ¼ q1. Let jVðH1Þj ¼

n1 and jVðH2Þj ¼ n2. If ni 2 f1; k þ 1g, then Hi ¼ Kni . If ni [ k þ 1, then

by induction with q1;i ¼ b ni
k þ 1

cðk þ 1Þ, Hi 2 ½Km1
;Km2

; . . .;Kmni�q1;ik
�‘k�1

such that jfi : mi ¼ k þ 1gj ¼ q1;i and jfj : mj ¼ 1gj ¼ ni � q1;iðk þ 1Þ.
This, together with q1;1 þ q1;2 ¼ q1, implies that G 2
½Km1

;Km2
; . . .;Kmn�q1k

�‘k�1 such that jfi : mi ¼ k þ 1gj ¼ q1 and

jfj : mj ¼ 1gj ¼ n� q1ðk þ 1Þ, and so Lemma 3.6(ii) follows.

(iii) Suppose that for some integer t[ 0, n� ‘ ¼ 2t� 2k þ 3. If n ¼ ‘, then by

Theorem 1.4(iii), G 2 ½Kt;Kt�‘k�1, and so Lemma 3.6(iii) holds. Assume

that n[ ‘. Then by Theorem 1.4(iii), G 2 ½H1;H2�‘k�1 for some graphs

H1;H2 such that H1 2 fK1;Kkþ1g, H2 2 SMðjVðH2Þj; k; ‘Þ with

jVðH2Þj � 2t, and bjVðH1Þj
kþ1

c þ bjVðH2Þj�2t
kþ1

c ¼ bn�2t
kþ1

c ¼ q2. Define

jVðH2Þj ¼ n2; and q2;2 ¼ bn2 � 2t

k þ 1
cðk þ 1Þ: ð11Þ

By induction, H2 2 ½Km1
;Km2

; . . .;Kmn2�‘�q2;2kþ2
�‘k�1 such that

jfi : mi ¼ tgj ¼ 2, jfi0 : mi0 ¼ k þ 1gj ¼ q2;2 and jfj : mj ¼ 1gj ¼ n2 � ‘

�q2;2ðk þ 1Þ. This, together with bjVðH1Þj
kþ1

c þ q2;2 ¼ q2, implies that Lemma

3.6(iii) must hold.

(iv) Suppose that for some integer t[ 0, n� ‘ ¼ 2t þ 1� 2k þ 3. If n ¼ ‘, then

by Theorem 1.4(iii), G 2 ½Kt;Ktþ1�‘k�1, and so Lemma 3.6(iv) holds.

Assume that n[ ‘. Then by Theorem 1.4(iv), G 2 ½H1;H2�‘k�1 for some

graphs H1 and H2 such that H1 2 fK1;Kkþ1g, H2 2 SMðjVðH2Þj; k; ‘Þ with
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jVðH2Þj � 2t þ 1, and bjVðH1Þj
kþ1

c þ bjVðH2Þj�2t�1

kþ1
c ¼ bn�2t�1

kþ1
c ¼ q2. Define n2

and q2;2 as in (11). By induction, H2 2 ½Km1
;Km2

; . . .;Kmn2�‘�q2;2kþ2
�‘k�1 such

that jfi : mi ¼ tgj ¼ jfi0 : mi0 ¼ k þ 1gj ¼ 1, jfi00 : mi00 ¼ k þ 1gj ¼ q2;2

and jfj : mj ¼ 1gj ¼ n2 � ‘� q2;2ðk þ 1Þ. This, together with

bjVðH1Þj
kþ1

c þ q2;2 ¼ q2, implies that Lemma 3.6(iv) must hold. This completes

the proof of the lemma. h

4 The Main Results

We now present and prove the main results in this section. Recall that the digraph

families MAðn; k; ‘Þ and SAðn; k; ‘Þ, and the functions Fðn; k; ‘Þ and f ðn; k; ‘Þ are

defined in (2).

Theorem 4.1 Let n; k; ‘ be integers with n� ‘� k þ 2� 5, and s; r� 0 be integers
satisfying n ¼ sð‘� 1Þ þ r with 0� r� ‘� 2. Then

Fðn; k; ‘Þ ¼

sð‘� 1Þð‘� 2Þ
2

þ ðs� 1 þ rÞðk � 1Þ þ nðn� 1Þ
2

if r\2ðk � 1Þ\‘� 1,

sð‘� 1Þð‘� 2Þ
2

þ sðk � 1Þ þ rðr � 1Þ
2

þ nðn� 1Þ
2

if 2ðk � 1Þ\‘� 1 and r[ 2ðk � 1Þ,

sð‘� 1Þð‘� 2Þ
2

þ sðk � 1Þ þ rðr � 1Þ
2

þ nðn� 1Þ
2

if r ¼ 2ðk � 1Þ\‘� 1,

sð‘� 1Þð‘� 2Þ
2

þ ðn� ‘þ 1Þðk � 1Þ þ nðn� 1Þ
2

if 2ðk � 1Þ[ ‘� 1,

sð‘� 1Þð‘� 2Þ
2

þ ðn� ‘þ 1Þðk � 1Þ þ nðn� 1Þ
2

if 2ðk � 1Þ ¼ ‘� 1.

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

Furthermore, a digraph D is in MAðn; k; ‘Þ if and only if one of the following holds.

(i) r\2ðk � 1Þ\‘� 1, and D 2 ½K�
m1
;K�

m2
; . . .;K�

mn�‘þ2
�‘k�1 such that jfi : mi ¼

‘� 1gj ¼ 1 and jfj : mj ¼ 1gj ¼ n� ‘þ 1.

(ii) 2ðk � 1Þ\‘� 1 and r[ 2ðk � 1Þ, and D 2 ½K�
m1
;K�

m2
; . . .;K�

msþ1
�‘k�1 such

that jfi : mi ¼ ‘� 1gj ¼ s and jfj : mj ¼ rgj ¼ 1.

(iii) r ¼ 2ðk � 1Þ\‘� 1, and either D 2 ½K�
m1
;K�

m2
; . . .;K�

msþ1
�‘k�1 such that jfi :

mi ¼ ‘� 1gj ¼ s and jfj : mj ¼ rgj ¼ 1; or D 2 ½K�
m1
;K�

m2
; . . .;K�

msþr
�‘k�1

such that jfi : mi ¼ ‘� 1gj ¼ s and jfj : mj ¼ 1gj ¼ r.

(iv) 2ðk � 1Þ[ ‘� 1, and D 2 ½K�
m1
;K�

m2
; . . .;K�

mn�‘þ2
�‘k�1 such that jfi : mi ¼

‘� 1gj ¼ 1 and jfj : mj ¼ 1gj ¼ n� ‘þ 1.

(v) 2ðk � 1Þ ¼ ‘� 1, and for some integer t with 1� t� s, D 2
½K�

m1
;K�

m2
; . . .;K�

mn�t‘þ2t
�‘k�1 such that for some integer t 2 f1; 2; . . .; s� 1g,

jfi : mi ¼ ‘� 1gj ¼ t and jfj : mj ¼ 1gj ¼ n� t‘þ t.
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Theorem 4.2 Let n; k; ‘ be integers with n� ‘� k þ 2� 5, and s; r� 0 be integers

satisfying n ¼ sð‘� 1Þ þ r with 0� r� ‘� 2. Define q1 ¼ b n

k þ 1
c and

q2 ¼ bn� ‘

k þ 1
c. Then

f ðn; k; ‘Þ ¼

ð‘� 1Þð‘� 2Þ
2

þ ðn� ‘þ 1Þðk � 1Þ þ nðn� 1Þ
2

if ‘� n\2k þ 2,

ðn� 1Þðk � 1Þ � b n

k þ 1
c k

2 � 3k

2
þ nðn� 1Þ

2
if ‘� 2k þ 2� n,

ðn� 2t þ 1Þðk � 1Þ þ tðt � 1Þ � bn� 2t

k þ 1
c k

2 � 3k

2
þ nðn� 1Þ

2
if n� ‘ ¼ 2t� 2k þ 3,

ðn� 2tÞðk � 1Þ þ t2 � bn� 2t � 1

k þ 1
c k

2 � 3k

2
þ nðn� 1Þ

2
if n� ‘ ¼ 2t þ 1� 2k þ 3.

8>>>>>>>>>>><
>>>>>>>>>>>:

Furthermore, a digraph D is in SAðn; k; ‘Þ if and only if one of the following holds.

(i) ‘� n\2k þ 2, and D 2 ½K�
m1
;K�

m2
; . . .;K�

mn�‘þ2
�‘k�1 such that jfi : mi ¼ ‘�

1gj ¼ 1 and jfj : mj ¼ 1gj ¼ n� ‘þ 1.

(ii) ‘� 2k þ 2� n, and D 2 ½K�
m1
;K�

m2
; . . .;K�

mn�q1k
�‘k�1 such that jfi : mi ¼ k þ

1gj ¼ q1 and jfj : mj ¼ 1gj ¼ n� q1ðk þ 1Þ.
(iii) n� l ¼ 2t� 2k þ 3, and D 2 ½K�

m1
;K�

m2
; . . .;K�

mn�‘�q2kþ2
�‘k�1 such that

jfi : mi ¼ tgj ¼ 2, jfi0 : mi0 ¼ k þ 1gj ¼ q2 and

jfj : mj ¼ 1gj ¼ n� ‘� q2ðk þ 1Þ.
(iv) n� l ¼ 2t þ 1� 2k þ 3, and D 2 ½K�

m1
;K�

m2
; . . .;K�

mn�‘�q2kþ2
�‘k�1 such that

jfi : mi ¼ tgj ¼ jfi0 : mi0 ¼ t þ 1gj ¼ 1, jfi00 : mi00 ¼ k þ 1gj ¼ q2 and

jfj : mj ¼ 1gj ¼ n� ‘� q2ðk þ 1Þ.

Proof of Theorems 4.1 and 4.2 Let D 2 Aðn; k; ‘Þ. By Corollary 2.5, there exist

integers r[ 0 and m1, m2, . . ., mr satisfying (8) such that D 2 ½K�
m1
; . . .;K�

mr
�‘k�1. Let

G ¼ fðDÞ be the corresponding graph of D. By Lemma 3.3, G 2 Eðn; k; lÞ.
Suppose that D 2 MAðn; k; ‘Þ. We claim that G 2 MMðn; k; ‘Þ. If not, then

there must be a graph G0 2 MMðn; k; ‘Þ with jEðG0Þj[ jEðGÞj. Let D0 2 f�1ðG0Þ
be an associate digraph of G0. Then by Lemma 3.3, jAðDÞj\jAðD0Þj, contrary to the

assumption that D 2 MAðn; k; ‘Þ. With a similar argument, we conclude that

D 2 MAðn; k; ‘Þ if and only if ð12Þ

D 2 SAðn; k; ‘Þ if and only if ð13Þ

Thus Theorem 4.1 follows from (12), Theorem 1.2 and Lemma 3.5; and Theo-

rem 4.2 follows from (13), Theorem 1.4 and Lemma 3.6. h
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