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Abstract A jump digraph J(D) of a directed multigraph D has as its vertex set being A(D),

the set of arcs of D; where (a, b) is an arc of J(D) if and only if there are vertices u1, v1, u2, v2

in D such that a = (u1, v1), b = (u2, v2) and v1 6= u2. In this paper, we give a well characterized

directed multigraph families H1 and H2, and prove that a jump digraph J(D) of a directed

multigraph D is strongly connected if and only if D 6∈ H1. Specially, J(D) is weakly connected

if and only if D 6∈ H2. The following results are obtained: (i) There exists a family D of well-

characterized directed multigraphs such that strongly connected jump digraph J(D) of directed

multigraph is strongly trail-connected if and only if D 6∈ D. (ii) Every strongly connected jump

digraph J(D) of directed multigraph D is weakly trail-connected, and so is supereulerian. (iii)

Every weakly connected jump digraph J(D) of directed multigraph D has a spanning trail.

Keywords supereulerian digraph; line digraph; jump digraph; weakly trail-connected; strongly

trail-connected
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1. Introduction

A directed graph D consists of a non-empty finite set V (D) of elements called vertices and a

finite set A(D) of ordered pairs of distinct vertices called arcs. Parallel arcs mean pairs of arcs

with the same tail and the same head, loop is the arc whose head and tail coincide. A digraph

implies that we allow a digraph to have arcs with the same end-vertices, but we do not allow it to

contain parallel arcs or loops. When parallel arcs and loops are admissible we speak of directed

pseudographs; directed pseudographs without loops are directed multigraphs. An empty graph

is one with at least one vertex such that it does not have any arcs. For an arc a = (x, y), the

first vertex x is its tail denoted by t(a) and the second vertex y is its head denoted by h(a).

Undefined terms and notation will follow [1] and [2].

Let D = (V (D), A(D)) be a directed multigraph. A walk in D is an alternating sequence

W = x1a1x2 · · ·xk−1ak−1xk (1.1)
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with vertices xi (1 ≤ i ≤ k) and arcs aj = (xj , xj+1) (1 ≤ j ≤ k − 1) from D. We say that

W in (1.1) is a walk of D from vertex x1 to vertex xk, and we also say W is a walk of D

from arc a1 to arc ak−1, denoted by (x1, xk)-walk and (a1, ak−1)-walk, respectively. A trail is

a walk in which all arcs are distinct. If 1 ≤ i < j ≤ k, we define W [xi, xj ] to be the subtrail

xiaixi+1ai+1xi+2 · · ·xj−1aj−1xj . A trail W is an euler (or eulerian) trail if A(W ) = A(D),

V (W ) = V (D) and x1 = xk. If the vertices of W are distinct, W is a path. The length of

path is the number of arcs of path, a k-path is a path of length k with k + 1 vertices. If the

vertices x1, x2, . . . , xk−1 are distinct, k ≥ 2 and x1 = xk, W is a cycle. A k-cycle is a cycle

of length k. A cycle W is a hamiltonian cycle of D if V (W ) = V (D). If W is a (v, w)-trail

of D and (u, v), (w, z) ∈ A(D) − A(W ), then we use (u, v)W (w, z) to denote the (u, z)-trail of

D[A(W ) ∪ {(u, v), (w, z)}]. Subdigraphs (u, v)W and W (w, z) are similarly defined.

We often use G(D) for the underlying graph of D, the graph obtained from D by erasing all

orientation on the arcs of D. A directed multigraph D is strongly connected if for every pair x

and y of distinct vertices in D, there exists an (x, y)-walk and a (y, x)-walk in D. D is weakly

connected if G(D) is connected. If G(D) is not connected, then D is not connected. A directed

multigraph D is eulerian if itself is an euler trail. D is hamiltonian if D contains a hamiltonian

cycle. D is supereulerian ifD contains a spanning eulerian subdigraph, or equivalently, a spanning

closed trail. A directed multigraph D is weakly trail-connected if for any two vertices x and y of

D, D admits a spanning (x, y)-trail or a spanning (y, x)-trail, and D is strongly trail-connected

if for any two vertices x and y of D, D contains both a spanning (x, y)-trail and a spanning

(y, x)-trail (x = y is allowed).

When we consider the eulerian subdigraph problem, we will discuss whether the directed

multigraph D has a spanning trail, a spanning closed trail, or for any vertices x, y ∈ V (D),

there exists a spanning (x, y)-trail. The supereulerian problem in digraphs was considered by

Gutin [3]. In particular, Hong et al in [4] and Bang-Jensen and Maddaloni [5] presented several

best possible sufficient degree conditions for supereulerian digraphs. Additional researches on

supereulerian digraphs can be found in [6–9], among others. The weakly trail-connected and

strongly trail-connected problem were considered recently in [10–12].

A line digraph L(D) of a directed multigraph D has as its vertex set being A(D), the set of

arcs of D; where (a, b) is an arc of L(D) if and only if there are vertices u, v, w in D such that

a = (u, v) and b = (v, w) are in A(D). A jump digraph J(D) of a directed multigraph D has

as its vertex set being A(D), the set of arcs of D; where (a, b) is an arc of J(D) if and only if

there are vertices u1, v1, u2, v2 in D such that a = (u1, v1), b = (u2, v2) and v1 6= u2. A directed

multigraph D with |V (D)| = n and without parallel arcs is a complete digraph if for any two

distinct vertices u and v of D, we have (u, v), (v, u) ∈ A(D), denoted by K∗
n. An out-star is a

directed multigraph where there exists a common tail u to all arcs and an in-star is a directed

multigraph where there exists a common head v to all arcs. The complement D of a digraph D

is the digraph with vertex set V (D) in which there are two vertices u, v such that (u, v) ∈ A(D)
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if and only if (u, v) 6∈ A(D). We observe that complete digraph K∗
n has the following property:

For any u, v ∈ V (K∗
n), K

∗
n has a spanning (u, v)-trail. (1.2)

For subsets X,Y ⊆ V (D), define

(X,Y )D = {(x, y) ∈ A(D) : x ∈ X, y ∈ Y } and [X,Y ]D = (X,Y )G(D) = (X,Y )D ∪ (Y,X)D.

If X = {x} or Y = {y}, we often use (x, Y )D for (X,Y )D or (X, y)D for (X,Y )D, respectively.

Hence, (x, y)D = ({x}, {y})D. For a vertex v ∈ V (D), let ∂+
D(v) = (v, V (D)− v)D and ∂−

D(v) =

(V (D) − v, v)D. Thus d+D(v) = |∂+
D(v)| and d−D(v) = |∂−

D(v)|. If B ⊆ A(D), then D[B] is the

subdigraph arc-induced by B of D with vertex set which are incident with at least one arc from

B and arc set B. If X ⊆ V (D), then D[X ] is the subdigraph vertex-induced by X with vertex

set X and arc set, both end-vertices of which are in X .

Let M and M ′ be two directed multigraphs. Throughout this paper, define M ∪M ′ to be

the directed multigraph with V (M ∪M ′) = V (M) ∪ V (M ′) and A(M ∪M ′) = A(M) ∪ A(M ′).

For jump graph problem, Wu and Meng [13] and Liu [14] discussed the hamiltonian and

pancyclic jump graph. Clique-transversal sets, clique-perfectness and planarity of jump graph

were considered in [15–17], but for jump digraph, there are few results. In this paper, we will

discuss the spanning eulerian subdigraph of jump digraph J(D) of a directed multigraph D. In

Section 2, we present a well characterized directed multigraph families H1 and H2, and prove

that a jump digraph J(D) of a directed multigraphD is strongly connected if and only if D 6∈ H1.

Specially, J(D) is weakly connected if and only if D 6∈ H2. In Section 3, we discuss the weakly

trail-connected and strongly trail-connected jump digraph of directed multigraph.

2. Strongly (weakly) connected jump digraphs

By the definitions of line digraph and jump digraph, we can obtain that J(D) is a complement

digraph of L(D), denoted by J(D) = L(D). We first state two useful results. Beineke [18]

characterized line digraph as follows:

Theorem 2.1 ([18]) Let H be a line digraph. If a1, a2 and a3 are any three arcs in H such that

h(a1) = h(a2) and t(a2) = t(a3), then there exists an arc a4 in H such that t(a4) = t(a1) and

h(a4) = h(a3).

Lemma 2.2 Let D be a directed multigraph, L(D) be the line digraph of D. And let a, b, c ∈

V (L(D)). Then each of the following holds.

(i) If (a, b), (a, c) ∈ A(L(D)), then (b, c), (c, b) 6∈ A(L(D)).

(ii) If (b, a), (c, a) ∈ A(L(D)), then (b, c), (c, b) 6∈ A(L(D)).

(iii) If (a, b), (c, a) ∈ A(L(D)), then (c, b) 6∈ A(L(D)).

Proof Let a = (u1, v1), b = (u2, v2), c = (u3, v3) ∈ A(D) = V (L(D)). By the definition of line

digraph of a directed multigraph, L(D) is a digraph, and so

L(D) does not contain loop. (2.1)
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If (a, b), (a, c) ∈ A(L(D)), by contradiction, assume first that (b, c) ∈ A(L(D)). Then by

the definition of line digraph, we may assume that v1 = u2, v1 = u3 and v2 = u3. Hence

v1 = v2 = u2 = u3, and so b is a loop of L(D), contrary to (2.1). Likewise, if (c, b) ∈ A(L(D)),

then a contradiction will be obtained similarly. Hence (b, c), (c, b) 6∈ A(L(D)). This proves (i).

If (b, a), (c, a) ∈ A(L(D)), by contradiction, assume first that (b, c) ∈ A(L(D)). Then by

the definition of line digraph, we may assume that v2 = u1, v3 = u1 and v2 = u3. Hence

v2 = v3 = u1 = u3, and so c is a loop of L(D), contrary to (2.1). Likewise, if (c, b) ∈ A(L(D)),

then a contradiction will be obtained similarly. Hence (b, c), (c, b) 6∈ A(L(D)). This proves (ii).

If (a, b), (c, a) ∈ A(L(D)), by contradiction, assume that (c, b) ∈ A(L(D)). Then by the

definition of line digraph, we may assume that v1 = u2, v3 = u1 and v3 = u2. Hence v1 = v3 =

u1 = u2, and so a is a loop of L(D), contrary to (2.1). Hence (c, b) 6∈ A(L(D)). This proves (iii).

This completes the proof of Lemma 2.2. 2

Since J(D) = L(D), it is routine to obtain the following corollary.

Corollary 2.3 Let D be a directed multigraph, L(D) and J(D) be the line digraph and the

jump digraph of D, respectively. Let a, b, c ∈ V (J(D)). Then each of the following holds.

(i) If (a, b), (a, c) 6∈ A(J(D)), then (b, c), (c, b) ∈ A(J(D)).

(ii) If (b, a), (c, a) 6∈ A(J(D)), then (b, c), (c, b) ∈ A(J(D)).

(iii) If (a, b), (c, a) 6∈ A(J(D)), then (c, b) ∈ A(J(D)).

The rest of this section is devoted to the characterization of strongly (weakly) connected

jump digraph. We start with an example.

u
xt1

x1 yt2

y1

z1 zt3
· · ·

···
···

...
...

· · · · · ·

· · · · · · · · ·· · ·

U1 U2

U3

ℓxt1
ℓ′y1

ℓx1
ℓ′yt2

ℓz1 ℓ′z1
ℓ′zt3

ℓzt3

Figure 1 The digraph family H.

Example 2.4 Let t1, t2 and t3 be three nonnegative integers. Let {u}, U1 = {x1, x2, . . . , xt1},

U2 = {y1, y2, . . . , yt2} and U3 = {z1, z2, . . . , zt3} be mutually disjoint vertex sets with t1+t2+t3 ≥

1. Let ℓxi
, ℓ′yj

, ℓzk and ℓ′zk with 1 ≤ i ≤ t1, 1 ≤ j ≤ t2 and 1 ≤ k ≤ t3 be nonnegative integers.

We construct a directed multigraph family H = H(t1, t2, t3) such that a directed multigraph

D = D(t1, t2, t3) ∈ H if and only if V (D) = {u}∪U1 ∪U2 ∪U3 and A(D) consists of exactly the
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arcs described in (H1)–(H4) below. (See Figure 1 for an illustration.)

(H1) D[U1], D[U2] and D[U3] are empty graphs.

(H2) For any xi ∈ U1, yj ∈ U2 and zk ∈ U3, (u, xi), (yj , u), (u, zk), (zk, u) ∈ A(D).

(H3) For any xi ∈ U1, yj ∈ U2 and zk ∈ U3, |(u, xi)D| = ℓxi
, |(yj , u)D| = ℓ′yj

, |(u, zk)D| = ℓzk

and |(zk, u)D| = ℓ′zk .

(H4) (u, U2)D = ∅, (U1, u)D = ∅, [U1, U2]D = ∅, [U1, U3]D = ∅ and [U2, U3]D = ∅.

Proposition 2.5 Let D ∈ H be a directed multigraph defined as in Example 2.4, and let L(D)

and J(D) be the line digraph and the jump digraph of D, respectively, and let B+ = ∂+
D(u) and

B− = ∂−
D(u). With the notation used in Example 2.4, each of the following holds.

(i) |B+| =
∑t1

i=1 ℓxi
+
∑t3

k=1 ℓzk and |B−| =
∑t2

j=1 ℓ
′
yj

+
∑t3

k=1 ℓ
′
zk
.

(ii) A(D) = B+ ∪B− = V (L(D)) = V (J(D)).

(iii) D[B+] is an out-star and D[B−] is an in-star, L(D)[B+] and L(D)[B−] are empty

graphs, and so J(D)[B+] and J(D)[B−] are complete digraphs.

(iv) For any a ∈ B− and any b ∈ B+, (a, b) ∈ A(L(D)) and (B−, B+)J(D) = ∅.

(v) |(B+, B−)L(D)| =
∑t3

k=1 ℓzkℓ
′
zk

and |(B+, B−)J(D)| = (
∑t1

i=1 ℓxi
+
∑t3

k=1 ℓzk)(
∑t2

j=1 ℓ
′
yj
+

∑t3
k=1 ℓ

′
zk
)−

∑t3
k=1 ℓzkℓ

′
zk
.

(vi) If B− = ∅ or B+ = ∅, then J(D) is a complete digraph, and so J(D) is strongly

connected.

(vii) If B− 6= ∅ and B+ 6= ∅, then J(D) is not strongly connected. Specially, J(D) is weakly

connected if and only if t1 6= 0 or t2 6= 0 or t3 6= 1.

Proof ByD ∈ H and Example 2.4, ∂+
D(u) = (u, U1)D∪(u, U3)D and ∂−

D(u) = (U2, u)D∪(U3, u)D,

hence |B+| = |(u, U1)D ∪ (u, U3)D| =
∑t1

i=1 ℓxi
+

∑t3
k=1 ℓzk and |B−| = |(U2, u)D ∪ (U3, u)D| =

∑t2
j=1 ℓ

′
yj

+
∑t3

k=1 ℓ
′
zk
. Since V (D) = {u} ∪ U1 ∪ U2 ∪ U3, and by Example 2.4, we have A(D) =

B+ ∪B− = V (L(D)) = V (J(D)). Thus (i) and (ii) hold.

Since B+ = ∂+
D(u) and B− = ∂−

D(u), it follows that D[B+] is an out-star and D[B−] is an

in-star, and so L(D)[B+] and L(D)[B−] are empty graphs. Since J(D) = L(D), it follows that

J(D)[B+] and J(D)[B−] are complete digraphs. Thus (iii) holds.

For any a ∈ B− and any b ∈ B+, let a = (x, u) and b = (u, y) with x ∈ U2 ∪ U3 and

y ∈ U1 ∪ U3. Then (a, b) ∈ A(L(D)). Since J(D) = L(D), we have (a, b) 6∈ A(J(D)), and so

(B−, B+)J(D) = ∅. Thus (iv) holds.

Since (u, U3)D ⊂ B+ and (U3, u)D ⊂ B−, we have |(B+, B−)L(D)| =
∑t3

k=1 ℓzkℓ
′
zk
. S-

ince J(D) = L(D), we have |(B+, B−)J(D)| = (
∑t1

i=1 ℓxi
+

∑t3
k=1 ℓzk)(

∑t2
j=1 ℓ

′
yj

+
∑t3

k=1 ℓ
′
zk
) −

∑t3
k=1 ℓzkℓ

′
zk
. Thus (v) holds.

If B− = ∅, then t2 = 0 and t3 = 0. Since D ∈ H and t1 + t2 + t3 ≥ 1, we have t1 ≥

1, B+ 6= ∅ and V (D) = {u} ∪ U1. By (ii), we have A(D) = B+, and so D = D[B+]. By

(iii), J(D) = J(D[B+]) = J(D)[B+] is a complete digraph, and so J(D) is strongly connected.

If B+ = ∅, then t1 = 0 and t3 = 0. Since D ∈ H and t1 + t2 + t3 ≥ 1, it follows that

t2 ≥ 1, B− 6= ∅ and V (D) = {u} ∪ U2. By (ii), we have A(D) = B−, and so D = D[B−]. By
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(iii), J(D) = J(D[B−]) = J(D)[B−] is a complete digraph, and so J(D) is strongly connected.

Thus (vi) holds.

If B− 6= ∅ and B+ 6= ∅, then by (iv), (B−, B+)J(D) = ∅, and so J(D) is not strongly

connected. Specially, if t1 = 0, t2 = 0 and t3 = 1, then
∑t1

i=1 ℓxi
= 0,

∑t2
j=1 ℓ

′
yj

= 0, ℓz1 ≥ 1 and

ℓ′z1 ≥ 1. By (v),

|(B+, B−)J(D)| =
(

t1
∑

i=1

ℓxi
+

t3
∑

k=1

ℓzk

)(

t2
∑

j=1

ℓ′yj
+

t3
∑

k=1

ℓ′zk

)

−
t3
∑

k=1

ℓzkℓ
′
zk

=

t3
∑

k=1

ℓzk

t3
∑

k=1

ℓ′zk −
t3
∑

k=1

ℓzkℓ
′
zk

=ℓz1ℓ
′
z1

− ℓz1ℓ
′
z1

= 0.

Hence (B+, B−)J(D) = ∅. By (iv), and so J(D) is not connected.

Next, we will assume that t1 6= 0 or t2 6= 0 or t3 6= 1 to prove that J(D) is weakly connected.

If t1 ≥ 1, then
∑t1

i=1 ℓxi
≥ 1. Since B− 6= ∅, by (i),

∑t2
j=1 ℓ

′
yj

+
∑t3

k=1 ℓ
′
zk

≥ 1. If
∑t3

k=1 ℓ
′
zk

= 0,

then
∑t2

j=1 ℓ
′
yj

≥ 1 and
∑t3

k=1 ℓzk = 0. By (v),

|(B+, B−)J(D)| =
(

t1
∑

i=1

ℓxi
+

t3
∑

k=1

ℓzk

)(

t2
∑

j=1

ℓ′yj
+

t3
∑

k=1

ℓ′zk

)

−
t3
∑

k=1

ℓzkℓ
′
zk

=

t1
∑

i=1

ℓxi

t2
∑

j=1

ℓ′yj
≥ 1,

and so (B+, B−)J(D) 6= ∅. By (iii), J(D) is weakly connected. If
∑t3

k=1 ℓ
′
zk

≥ 1, then
∑t3

k=1 ℓzk ≥

1. Since
∑t3

k=1 ℓzk
∑t3

k=1 ℓ
′
zk

≥
∑t3

k=1 ℓzkℓ
′
zk
, by (v),

|(B+, B−)J(D)| =
(

t1
∑

i=1

ℓxi
+

t3
∑

k=1

ℓzk

)(

t2
∑

j=1

ℓ′yj
+

t3
∑

k=1

ℓ′zk

)

−
t3
∑

k=1

ℓzkℓ
′
zk

≥
(

t1
∑

i=1

ℓxi
+

t3
∑

k=1

ℓzk

)

t3
∑

k=1

ℓ′zk −
t3
∑

k=1

ℓzk

t3
∑

k=1

ℓ′zk

≥
t1
∑

i=1

ℓxi

t3
∑

k=1

ℓ′zk ≥ 1.

Thus (B+, B−)J(D) 6= ∅. By (iii), J(D) is weakly connected.

If t2 ≥ 1, then
∑t2

j=1 ℓ
′
yj

≥ 1. Since B+ 6= ∅, by (i),
∑t1

i=1 ℓxi
+
∑t3

k=1 ℓzk ≥ 1. If
∑t3

k=1 ℓzk = 0,

then
∑t1

i=1 ℓxi
≥ 1 and

∑t3
k=1 ℓ

′
zk

= 0. By (v),

|(B+, B−)J(D)| =
(

t1
∑

i=1

ℓxi
+

t3
∑

k=1

ℓzk

)(

t2
∑

j=1

ℓ′yj
+

t3
∑

k=1

ℓ′zk

)

−
t3
∑

k=1

ℓzkℓ
′
zk

=

t1
∑

i=1

ℓxi

t2
∑

j=1

ℓ′yj
≥ 1,

and so (B+, B−)J(D) 6= ∅. By (iii), J(D) is weakly connected. If
∑t3

k=1 ℓzk ≥ 1, then
∑t3

k=1 ℓ
′
zk

≥

1. Since
∑t3

k=1 ℓzk
∑t3

k=1 ℓ
′
zk

≥
∑t3

k=1 ℓzkℓ
′
zk
, it follows by (v),

|(B+, B−)J(D)| =
(

t1
∑

i=1

ℓxi
+

t3
∑

k=1

ℓzk

)(

t2
∑

j=1

ℓ′yj
+

t3
∑

k=1

ℓ′zk

)

−
t3
∑

k=1

ℓzkℓ
′
zk

≥
t3
∑

k=1

ℓzk

(

t2
∑

j=1

ℓ′yj
+

t3
∑

k=1

ℓ′zk

)

−
t3
∑

k=1

ℓzk

t3
∑

k=1

ℓ′zk
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≥
t3
∑

k=1

ℓzk

t2
∑

j=1

ℓ′yj
≥ 1,

and so (B+, B−)J(D) 6= ∅. By (iii), J(D) is weakly connected.

Assume that t3 = 0. Since B+ 6= ∅ and B− 6= ∅, by (i),
∑t1

i=1 ℓxi
≥ 1 and

∑t2
j=1 ℓ

′
yj

≥ 1, and

by (v),

|(B+, B−)J(D)| =
t1
∑

i=1

ℓxi

t2
∑

j=1

ℓ′yj
≥ 1.

Thus (B+, B−)J(D) 6= ∅. By (iii), J(D) is weakly connected.

If t3 ≥ 2, then
∑t3

k=1 ℓzk
∑t3

k=1 ℓ
′
zk

>
∑t3

k=1 ℓzkℓ
′
zk

and by (v),

|(B+, B−)J(D)| =
(

t1
∑

i=1

ℓxi
+

t3
∑

k=1

ℓzk

)(

t2
∑

j=1

ℓ′yj
+

t3
∑

k=1

ℓ′zk

)

−
t3
∑

k=1

ℓzkℓ
′
zk

≥
t3
∑

k=1

ℓzk

t3
∑

k=1

ℓ′zk −
t3
∑

k=1

ℓzkℓ
′
zk

≥ 1.

It follows (B+, B−)J(D) 6= ∅. By (iii), and so J(D) is weakly connected. Thus (vii) holds. 2

Definition 2.6 Let H be the directed multigraph family as defined in Example 2.4. Define

two directed multigraph families as follows. Let H1 = {D(t1, t2, t3) ∈ H : with t1 + t3 ≥ 1 and

t2 + t3 ≥ 1} and let H2 = H(0, 0, 1).

Theorem 2.7 Let H1 and H2 be two directed multigraph families as defined in Definition 2.6

and J(D) be a jump digraph of directed multigraph D. Then J(D) is strongly connected if and

only if D 6∈ H1, and J(D) is weakly connected if and only if D 6∈ H2.

Proof If D ∈ H1, then by Proposition 2.5 (i) and Example 2.4, |B+| =
∑t1

i=1 ℓxi
+
∑t3

k=1 ℓzk ≥

t1 + t3 ≥ 1 and |B−| =
∑t2

j=1 ℓ
′
yj

+
∑t3

k=1 ℓ
′
zk

≥ t2 + t3 ≥ 1, by Proposition 2.5 (vii), J(D) is

not strongly connected, a contradiction. Hence assume that J(D) is not strongly connected, we

want to prove that D ∈ H1. Since J(D) is not strongly connected, it follows that V (J(D)) can

be partitioned into two nonempty vertex-disjoint subsets B1 and B2 such that (B2, B1)J(D) = ∅.

Since J(D) = L(D), we have

for any a ∈ B1 and b ∈ B2, (b, a) ∈ A(L(D)). (2.2)

By Lemma 2.2 (i) and (ii), L(D)[B1] and L(D)[B2] are empty graphs. Let B1 = {a1, a2, . . . , ak1
}

and B2 = {b1, b2, . . . , bk2
}, by (2.2), for any ai ∈ B1 and bj ∈ B2, we can let ai = (u, xi)

and bj = (yj , u). As B1 ∪ B2 = A(D). By (2.2), we can obtain that B1 = ∂+
D(u) 6= ∅ and

B2 = ∂−
D(u) 6= ∅, and so D ∈ H1, a contradiction. Hence J(D) is strongly connected if and only

if D 6∈ H1.

Since J(D) is strongly connected if and only if D 6∈ H1, it follows that J(D) is not strongly

connected if and only if D ∈ H1. Specially, by Proposition 2.5 (vii), J(D) is weakly connected if

and only if t1 6= 0 or t2 6= 0 or t3 6= 1, and so J(D) is weakly connected if and only if D 6∈ H2.

This completes the proof of the theorem. 2
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3. Spanning eulerian subdigraphs in jump digraphs

In this section, we will identify a directed multigraph family D, and use it to prove our main

results. We start with a definition.

Definition 3.1 Let ℓ ≥ 1 be a positive integer, and let U = {x, y, z1, z2} be a set of vertices,

a = (z1, x) and b = (y, z2) (z1 = z2 is allowed) and let Cℓ = {ci = (x, y) : 1 ≤ i ≤ ℓ} be a set of ℓ

parallel arcs. Define a directed multigraph D(ℓ) with V (D(ℓ)) = U and A(D(ℓ)) = {a, b} ∪ Cℓ,

and D to be a family of directed multigraphs by D = {D(ℓ) : ℓ ≥ 1}. (See Figures 2 and 3 for

illustrations.)

z1(z2)

x y

a b

c1

c2

...

cℓ

a b

c1 c2 cℓ
· · ·

a b

c1 c2 cℓ
· · ·

K∗
ℓ

D(ℓ) L(D(ℓ)) J(D(ℓ))

Figure 2 z1 = z2

z1 z2

x y

a b

c1

c2

...

cℓ

a b

c1 c2 cℓ
· · ·

a b

c1 c2 cℓ
· · ·

K∗
ℓ

D(ℓ) L(D(ℓ)) J(D(ℓ))

Figure 3 z1 6= z2

By Definition 3.1 and by the definitions of line digraph and jump digraph, we have the

following.

The line digraph L(D(ℓ)) of D(ℓ) is a digraph with

V (L(D(ℓ))) = {a, b, c1, c2, . . . , cℓ},

A(L(D(ℓ))) =

{

{(b, a)} ∪ {(a, ci), (ci, b) : 1 ≤ i ≤ ℓ}, if z1 = z2,

{(a, ci), (ci, b) : 1 ≤ i ≤ ℓ}, if z1 6= z2.

The jump digraph J(D(ℓ)) of D(ℓ) is a digraph with

V (J(D(ℓ))) = {a, b, c1, c2, . . . , cℓ},
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A(J(D(ℓ))) =























{(a, b)} ∪ {(ci, a), (b, ci) : 1 ≤ i ≤ ℓ} ∪ {(ci, cj), (cj , ci) : 1 ≤ i 6= j ≤ ℓ},

if z1 = z2,

{(a, b), (b, a)} ∪ {(ci, a), (b, ci) : 1 ≤ i ≤ ℓ} ∪ {(ci, cj), (cj , ci) : 1 ≤ i 6= j ≤ ℓ},

if z1 6= z2.

By the definition of D, we have the following proposition.

Proposition 3.2 Let D(ℓ) ∈ D be a directed multigraph as defined in Definition 3.1 and let

H1 be a directed multigraph family as defined in Definition 2.6, and let L(D(ℓ)) and J(D(ℓ)) be

the line digraph and the jump digraph of D(ℓ), respectively. Then each of the following holds.

(i) D(ℓ) 6∈ H1, and so J(D(ℓ)) is strongly connected.

(ii) J(D(ℓ)) is weakly trail-connected.

(iii) J(D(ℓ)) is not strongly trail-connected.

(iv) If there exists a directed multigraph H such that J(H) ∼= J(D(ℓ)), then H ∼= D(ℓ).

Proof Let H be a directed multigraph family as defined in Example 2.4. By the definitions of

D(ℓ) and H, we have D(ℓ) 6∈ H and H1 ⊂ H. Hence D(ℓ) 6∈ H1. By Theorem 2.7, J(D(ℓ)) is

strongly connected. Hence (i) holds.

Since Cℓ = {c1, c2, . . . , cℓ} and J(D(ℓ))[Cℓ] is a complete digraph, by (1.2), J(D(ℓ))[Cℓ]

contains a spanning closed trail T1 and a spanning (c1, c2)-trail T(c1,c2). For any two vertices

a1, a2 ∈ V (J(D(ℓ))), we want to prove that J(D(ℓ)) has either a spanning (a1, a2)-trail or a

spanning (a2, a1)-trail.

Suppose that a1 = a2. Since a, b 6∈ Cℓ, we have (a, b) 6∈ A(J(D(ℓ))[Cℓ]). Thus

(a, b)(b, c1)T(c1,c2)(c2, a)

is a spanning closed trail of J(D(ℓ)).

Assume now that a1 6= a2. If {a1, a2} = {a, b}, then (a1, c1)T(c1,c2)(c2, a2) is a spanning

(a1, a2)-trail of J(D(ℓ)) when a1 = b and a2 = a, and (a2, c1)T(c1,c2)(c2, a1) is a spanning (a2, a1)-

trail of J(D(ℓ)) when a1 = a and a2 = b. If a1, a2 ∈ Cℓ, then (a2, a)(a, b)(b, a1)∪T1 is a spanning

(a2, a1)-trail of J(D(ℓ)). If a1 = a and a2 ∈ Cℓ, then (a1, b)(b, a2)∪T1 is a spanning (a1, a2)-trail

of J(D(ℓ)). Likewise, if a1 ∈ Cℓ and a2 = a, then J(D(ℓ)) has a spanning (a2, a1)-trail. If a1 = b

and a2 ∈ Cℓ, then T1 ∪ (a2, a)(a, a1) is a spanning (a2, a1)-trail of J(D(ℓ)). Likewise, if a1 ∈ Cℓ

and a2 = b, then J(D(ℓ)) has a spanning (a1, a2)-trail. Hence, J(D(ℓ)) is weakly trail-connected.

Thus (ii) holds.

Since J(D(ℓ)) does not contain spanning (a, b)-trail, it follows that J(D(ℓ)) is not strongly

trail-connected. Thus (iii) holds.

If there exists a directed multigraph H such that J(H) ∼= J(D(ℓ)), then L(H) ∼= L(D(ℓ)).

Let V (L(H)) = {a′, b′, c′1, c
′
2, . . . , c

′
ℓ}. As L(H) ∼= L(D(ℓ)), we have

A(L(H)) =

{

{(b′, a′)} ∪ {(a′, c′i), (c
′
i, b

′) : 1 ≤ i ≤ ℓ}, if h(b′) = t(a′),

{(a′, c′i), (c
′
i, b

′) : 1 ≤ i ≤ ℓ}, if h(b′) 6= t(a′).

By the definition of line digraph, we may assume that a′ = (z′1, x
′) and b′ = (y′, z′2)(z

′
1 = z′2
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is allowed) and denote C′
ℓ = {c′i = (x′, y′) : 1 ≤ i ≤ ℓ}. Hence V (H) = {z′1, z

′
2, x

′, y′} and

A(H) = V (L(H)) = {a′, b′, c′1, c
′
2, . . . , c

′
ℓ}. Thus H ∼= D(ℓ), and so (iv) holds. This completes

the proof of Proposition 3.2. 2

Theorem 3.3 Let J(D) be a jump digraph of directed multigraph D and J(D) be strongly

connected, and let D be a directed multigraph family as defined in Definition 3.1. Then J(D) is

strongly trail-connected if and only if D 6∈ D.

Proof If D ∈ D, then by Proposition 3.2 (iii), J(D) is not strongly trail-connected. Hence we

may assume that D 6∈ D to prove that J(D) is strongly trail-connected.

We argue by contradiction and assume that there exist two vertices a, b ∈ V (J(D)) such that

J(D) does not have a spanning (a, b)-trail. Let

T = a1a2 · · · at is an (a, b)-trail of J(D) with |V (T )|

is maximum, where a1 = a and at = b. (3.1)

Since no spanning (a, b)-trail exists in J(D), we have V (J(D))− V (T ) 6= ∅.

If there exist a vertex c ∈ V (J(D))−V (T ) and a vertex ai ∈ V (T ) such that (c, ai), (ai, c) ∈

A(J(D)), then

T ′′ = T ∪ {(c, ai), (ai, c)}

is an (a, b)-trail of J(D) with |V (T ′′)| > |V (T )|, contrary to (3.1). Hence assume that for any

vertex c ∈ V (J(D)) − V (T ) and any vertex ai ∈ V (T ),

|[c, ai]J(D)| ≤ 1. (3.2)

Next, we consider two cases in the following.

Case 1. There exists a vertex c ∈ V (J(D)) − V (T ) such that

(c, V (T ))J(D) = ∅ or (V (T ), c)J(D) = ∅.

Assume first that (c, V (T ))J(D) = ∅, by Corollary 2.3 (i),

for any two distinct vertices ai, aj ∈ V (T ), (ai, aj), (aj , ai) ∈ A(J(D)). (3.3)

Since J(D) is strongly connected, there exist two vertices c′, c′′ ∈ V (J(D)) − V (T ) such that

(V (T ), c′)J(D) 6= ∅ and (c′′, V (T ))J(D) 6= ∅. Since J(D) is strongly connected, it follows that

J(D) has a (c′, c′′)-trail T1 = c1c2 · · · cq, where c1 = c′ and cq = c′′. If V (T1)∩V (T ) = ∅, then let

T ′ := T1; if V (T1) ∩ V (T ) 6= ∅, then let q1 be a minimum integer such that cq1 ∈ V (T1)− V (T )

and (cq1 , V (T ))J(D) 6= ∅, hence let T ′ := T1[c1, cq1 ] and c′′ := cq1 . Thus J(D) has a (c′, c′′)-trail

T ′ satisfying V (T ′) ∩ V (T ) = ∅. Let at1 , at2 ∈ V (T ) such that (at1 , c
′), (c′′, at2) ∈ A(J(D)).

Next, we consider (c′′, at1), if (c
′′, at1) ∈ A(J(D)), then

T ′′ = T ∪ {(at1 , c
′), (c′′, at1)} ∪ T ′

is an (a, b)-trail of J(D) with |V (T ′′)| > |V (T )|, contrary to (3.1); if (c′′, at1) 6∈ A(J(D)),

then at1 6= at2 . By (c, V (T ))J(D) = ∅ and (c′′, at2) ∈ A(J(D)), we have c 6= c′′. Since
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(c, at1), (c, at2), (c
′′, at1) 6∈ A(J(D)) and J(D) = L(D), we have (c, at1), (c, at2), (c′′, at1) ∈

A(L(D)). By Lemma 2.1, (c′′, at2) ∈ A(L(D)), and so (c′′, at2) 6∈ A(J(D)), a contrary to

(c′′, at2) ∈ A(J(D)). Likewise, if (V (T ), c)J(D) = ∅, then a contradiction will be obtained simi-

larly.

Case 2. For any vertex c ∈ V (J(D))− V (T ), (c, V (T ))J(D) 6= ∅ and (V (T ), c)J(D) 6= ∅.

Let V (J(D))−V (T ) = {c1, c2, . . . , cℓ}. For any ci ∈ V (J(D))−V (T ), note that (ci, V (T ))J(D)

6= ∅ and (V (T ), ci)J(D) 6= ∅. Let ti1 be a minimum integer and ti2 be a maximum integer such

that (ati1 , ci), (ci, ati2 ) ∈ A(J(D)). Thus ci uniquely determines the pair of integers {ti1 , ti2}.

Moreover, the choices of ti1 and ti2 imply that (a1, ci), (a2, ci), . . . , (ati1−1, ci) 6∈ A(J(D)) and

(ci, ati2+1), (ci, ati2+2), . . . , (ci, at) 6∈ A(J(D)). By Corollary 2.3 (ii), we have

for any two distinct vertices aℓ1 , aℓ2 ∈ {a1, . . . , ati1−1}, (aℓ1 , aℓ2), (aℓ2 , aℓ1) ∈ A(J(D)), (3.4)

and by Corollary 2.3 (i), we have

for any two distinct vertices aj1 , aj2 ∈ {ati2+1, . . . , at}, (aj1 , aj2), (aj2 , aj1) ∈ A(J(D)). (3.5)

By (3.2), we can obtain that ti1 6= ti2 . Next, we consider two subcases in the following.

Subcase 2.1. There exists a vertex ci ∈ V (J(D)) − V (T ) such that ti1 < ti2 .

If there exists a vertex aj ∈ {ati1+1, ati1+2, . . . , ati2−1} such that (aj , ci) ∈ A(J(D)), then by

(3.2), we have (ci, aj) 6∈ A(J(D)). Hence aj 6= ati2 , and so let ati1 := aj . If there exists a vertex

aj′ ∈ {ati1+1, ati1+2, . . . , ati2−1} such that (ci, aj′ ) ∈ A(J(D)), then by (3.2), we have (aj′ , ci) 6∈

A(J(D)). Hence aj′ 6= ati1 , and so let ati2 := aj′ . Thus, for any ak ∈ {ati1+1, ati1+2, . . . , ati2−1},

(ci, ak), (ak, ci) 6∈ A(J(D)), by (3.2), we can obtain that (ci, ati1 ), (ati2 , ci) 6∈ A(J(D)). By Corol-

lary 2.3 (i), we have for any two distinct vertices ak1
, ak2

∈ {ati1 , ati1+1, . . . , ati2−1}, (ak1
, ak2

),

(ak2
, ak1

) ∈ A(J(D)). Hence

for any vertex ak ∈ {ati1+1, ati1+1, . . . , ati2−1}, (ati1 , ak), (ak, ati1 ) ∈ A(J(D)). (3.6)

Let A = V (T ) − (V (T [a1, ati1 ]) ∪ V (T [ati2 , at])), hence A ⊆ {ati1+1, ati1+1, . . . , ati2−1}. Thus,

by (3.6), we have

T ′′ = T [a1, ati1 ](ati1 , ci)(ci, ati2 )T [ati2 , at] ∪
⋃

a∈A

{(a, ati1 ), (ati1 , a)}

is an (a, b)-trail of J(D) with |V (T ′′)| > |V (T )|, contrary to (3.1).

Subcase 2.2. For any vertex ci ∈ V (J(D))− V (T ), ti1 > ti2 .

By (3.2), we can obtain that

(ci, ati1 ), (ati2 , ci) 6∈ A(J(D)). (3.7)

If {a1, a2, . . . , ati2−1} 6= ∅, then there exists a vertex a ∈ {a1, a2, . . . , ati2−1} such that

a 6= ati2 . Since ti1 > ti2 , and ti1 is a minimum integer and ti2 is a maximum integer such

that (ati1 , ci), (ci, ati2 ) ∈ A(J(D)), we can obtain that a1 6= ati1 , at 6= ati2 , a 6= ati1 and

(ci, at), (a, ci) 6∈ A(J(D)). By (3.7) and Corollary 2.3 (iii), we have (ati2 , at), (a, ati1 ), (ati2 , ati1 ) ∈

A(J(D)). Since a 6= ati2 , we have (ati2 , at) 6= (a, ati1 ). By (3.4), for any ak ∈ A′, we have

(ak, ati2 ), (ati2 , ak) ∈ A(J(D)), where A′ = {a2, a3, . . . , ati1−1} − {ati2}. And by (3.5), for any
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ak′ ∈ A′′, we have (ak′ , ati1 ), (ati1 , ak′) ∈ A(J(D)), where A′′ = {ati1+1, ati1+2, . . . , at−1}.

Next, we consider vertices a1 and a. If a1 = a, then

T ′′ =(a1, ati1 )(ati1 , ci)(ci, ati2 )(ati2 , at) ∪
⋃

ak∈A′

{(ak, ati2 ), (ati2 , ak)}

∪
⋃

ak′∈A′′

{(ak′ , ati1 ), (ati1 , ak′)}

is an (a, b)-trail of J(D) with |V (T ′′)| > |V (T )|, contrary to (3.1). Hence we assume that a1 6= a.

By (3.4), (a1, a) ∈ A(J(D)), and so (a1, a) 6= (a, ati1 ). If (a1, a) 6= (ati2 , at), then

T ′′ =(a1, a)(a, ati1 )(ati1 , ci)(ci, ati2 )(ati2 , at) ∪
⋃

ak∈A′

{(ak, ati2 ), (ati2 , ak)}

∪
⋃

ak′∈A′′

{(ak′ , ati1 ), (ati1 , ak′)}

is an (a, b)-trail of J(D) with |V (T ′′)| > |V (T )|, contrary to (3.1). If (a1, a) = (ati2 , at), then

a1 = ati2 and a = at. Since a 6= ati1 , we have (a1, at) 6= (ati2 , ati1 ). Thus

T ′′ =(a1, at)(a1, ati1 )(ati1 , ci)(ci, a1) ∪
⋃

ak∈A′

{(ak, ati2 ), (ati2 , ak)}

∪
⋃

ak′∈A′′

{(ak′ , ati1 ), (ati1 , ak′)}

is an (a, b)-trail of J(D) with |V (T ′′)| > |V (T )|, contrary to (3.1).

Likewise, if {ati1+1, ati1+2, . . . , at} 6= ∅, then a contradiction will be obtained similarly.

Hence assume that ti2 = 1 and ti1 = t. If A′′′ = {ati2+1, ati2+2, . . . , ati1−1} 6= ∅, then let

a′ ∈ {ati2+1, ati2+2, . . . , ati1−1}. As ti1 is a minimum integer and ti2 is a maximum integer such

that (ati1 , ci), (ci, ati2 ) ∈ A(J(D)), we can obtain that a′ 6= ati1 , a
′ 6= ati2 and (a′, ci), (ci, a

′) 6∈

A(J(D)). By (3.2), we have (ci, ati1 ), (ati2 , ci) 6∈ A(J(D)). By Corollary 2.3 (iii), we have

(ati2 , a
′), (a′, ati1 ), (ati2 , ati1 ) ∈ A(J(D)). By (3.4), for any ak ∈ A′′′, (ati2 , ak), (ak, ati2 ) ∈

A(J(D)). Thus

T ′′ = (a1, at)(at, ci)(ci, a1)(a1, a
′)(a′, at) ∪

⋃

ak∈A′′′−{a′}

{(ak, ati2 ), (ati2 , ak)}

is an (a, b)-trail of J(D) with |V (T ′′)| > |V (T )|, contrary to (3.1).

Hence we may assume that t = 2, ati2 = a1 and ati1 = a2. Thus

V (J(D)) = {a1, a2, c1, c2, . . . , cℓ}, (3.8)

and

for any ci ∈ V (J(D))− V (T ), [a1, ci]J(D) = {(ci, a1)} and [a2, ci]J(D) = {(a2, ci)}. (3.9)

By (3.9), for any two distinct vertices ci, cj ∈ V (J(D)) − V (T ), we have (a1, ci), (a1, cj) 6∈

A(J(D)). By Corollary 2.3 (i), (ci, cj), (cj , ci) ∈ A(J(D)). Thus

J(D)[V (J(D)) − V (T )] is a complete digraph. (3.10)

Since (a1, a2) ∈ A(J(D)), by (3.8)–(3.10), we can obtain that J(D) ∼= J(D(ℓ)). By Proposition
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3.2 (iv), D ∼= D(ℓ), and so D ∈ D, a contradiction. Hence J(D) is strongly trail-connected. 2

Theorem 3.4 Every strongly connected jump digraph J(D) of a directed multigraph D is

weakly trail-connected.

Proof Let D be a directed multigraph family as defined in Definition 3.1. By Theorem 3.3, if

D 6∈ D, then J(D) is strongly trail-connected, and so J(D) is weakly trail-connected; if D ∈ D,

by Proposition 3.2 (ii), J(D) is weakly trail-connected. Hence every strongly connected jump

digraph J(D) of directed multigraph D is weakly trail-connected. 2

Theorem 3.5 Every weakly connected jump digraph J(D) of a directed multigraph D has a

spanning trail.

Proof If J(D) is weakly connected but is not strongly connected, then by Theorem 2.7, D ∈ H1

and D 6∈ H2. So B+ 6= ∅ and B− 6= ∅ and, t1 6= 0 or t2 6= 0 or t3 6= 1. Hence
∑t1

i=1 ℓxi
6= 0

or
∑t2

j=1 ℓ
′
yj

6= 0 or,
∑t3

k=1 ℓzk 6= 1 and
∑t3

k=1 ℓ
′
zk

6= 1. If t3 = 0, since B+ 6= ∅ and B− 6= ∅, by

Proposition 2.5 (i), we can obtain that
∑t1

i=1 ℓxi
≥ 1 and

∑t2
j=1 ℓyj

≥ 1. By Proposition 2.5 (v),

we have

|(B+, B−)J(D)| =
(

t1
∑

i=1

ℓxi
+

t3
∑

k=1

ℓzk

)(

t2
∑

j=1

ℓ′yj
+

t3
∑

k=1

ℓ′zk

)

−
t3
∑

k=1

ℓzkℓ
′
zk

=
(

t1
∑

i=1

ℓxi

)(

t2
∑

j=1

ℓ′yj

)

≥ 1.

If t3 ≥ 2, then (
∑t3

k=1 ℓzk)(
∑t3

k=1 ℓ
′
zk
) >

∑t3
k=1 ℓzkℓ

′
zk
. By Proposition 2.5 (v),

|(B+, B−)J(D)| =
(

t1
∑

i=1

ℓxi
+

t3
∑

k=1

ℓzk

)(

t2
∑

j=1

ℓ′yj
+

t3
∑

k=1

ℓ′zk

)

−
t3
∑

k=1

ℓzkℓ
′
zk

≥
(

t3
∑

k=1

ℓzk

)(

t3
∑

k=1

ℓ′zk

)

−
t3
∑

k=1

ℓzkℓ
′
zk

≥ 1.

Thus, (B+, B−)J(D) 6= ∅. Let a ∈ B+ and b ∈ B− such that (a, b) ∈ A(J(D)). By Proposition

2.5 (iii), J(D)[B+] and J(D)[B−] are complete digraphs, by (1.2), J(D)[B+] has a spanning

closed trail T1 and J(D)[B−] has a spanning closed trail T2. Thus

T1 ∪ (a, b) ∪ T2

is a spanning trail of J(D). 2
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