Spanning Eulerian Subdigraphs in Jump Digraphs

Juan LIU ${ }^{1}$, Hong YANG ${ }^{2}$, Hongjian LAI ${ }^{3}$, Xindong ZHANG ${ }^{4, *}$
1. College of Big Data Statistics, Guizhou University of Finance and Economics, Guizhou 550025, P. R. China;
2. College of Mathematics and System Sciences, Xinjiang University, Xinjiang 830046, P. R. China;
3. Department of Mathematics, West Virginia University, Morgantown 26506, USA;
4. School of Mathematical Sciences, Xinjiang Normal University, Xinjiang 830017, P. R. China

Abstract

A jump digraph $J(D)$ of a directed multigraph D has as its vertex set being $A(D)$, the set of arcs of D; where (a, b) is an arc of $J(D)$ if and only if there are vertices $u_{1}, v_{1}, u_{2}, v_{2}$ in D such that $a=\left(u_{1}, v_{1}\right), b=\left(u_{2}, v_{2}\right)$ and $v_{1} \neq u_{2}$. In this paper, we give a well characterized directed multigraph families \mathcal{H}_{1} and \mathcal{H}_{2}, and prove that a jump digraph $J(D)$ of a directed multigraph D is strongly connected if and only if $D \notin \mathcal{H}_{1}$. Specially, $J(D)$ is weakly connected if and only if $D \notin \mathcal{H}_{2}$. The following results are obtained: (i) There exists a family \mathcal{D} of wellcharacterized directed multigraphs such that strongly connected jump digraph $J(D)$ of directed multigraph is strongly trail-connected if and only if $D \notin \mathcal{D}$. (ii) Every strongly connected jump digraph $J(D)$ of directed multigraph D is weakly trail-connected, and so is supereulerian. (iii) Every weakly connected jump digraph $J(D)$ of directed multigraph D has a spanning trail.

Keywords supereulerian digraph; line digraph; jump digraph; weakly trail-connected; strongly trail-connected

MR(2020) Subject Classification 05C20; 05C38; 05C45

1. Introduction

A directed graph D consists of a non-empty finite set $V(D)$ of elements called vertices and a finite set $A(D)$ of ordered pairs of distinct vertices called arcs. Parallel arcs mean pairs of arcs with the same tail and the same head, loop is the arc whose head and tail coincide. A digraph implies that we allow a digraph to have arcs with the same end-vertices, but we do not allow it to contain parallel arcs or loops. When parallel arcs and loops are admissible we speak of directed pseudographs; directed pseudographs without loops are directed multigraphs. An empty graph is one with at least one vertex such that it does not have any arcs. For an arc $a=(x, y)$, the first vertex x is its tail denoted by $t(a)$ and the second vertex y is its head denoted by $h(a)$. Undefined terms and notation will follow [1] and [2].

Let $D=(V(D), A(D))$ be a directed multigraph. A walk in D is an alternating sequence

$$
\begin{equation*}
W=x_{1} a_{1} x_{2} \cdots x_{k-1} a_{k-1} x_{k} \tag{1.1}
\end{equation*}
$$

Received August 19, 2021; Accepted February 19, 2022
Supported by the National Natural Science Foundation of China (Grant Nos. 11761071; 11861068), Guizhou Key Laboratory of Big Data Statistical Analysis, China (Grant No. [2019]5103) and the Natural Science Foundation of Xinjiang Uygur Autonomous Region (Grant No. 2022D01E13).

* Corresponding author

E-mail address: liujuan1999@126.com (Juan LIU); liaoyuan1126@163.com (Xindong ZHANG)
with vertices $x_{i}(1 \leq i \leq k)$ and $\operatorname{arcs} a_{j}=\left(x_{j}, x_{j+1}\right)(1 \leq j \leq k-1)$ from D. We say that W in (1.1) is a walk of D from vertex x_{1} to vertex x_{k}, and we also say W is a walk of D from arc a_{1} to arc a_{k-1}, denoted by $\left(x_{1}, x_{k}\right)$-walk and (a_{1}, a_{k-1})-walk, respectively. A trail is a walk in which all arcs are distinct. If $1 \leq i<j \leq k$, we define $W\left[x_{i}, x_{j}\right]$ to be the subtrail $x_{i} a_{i} x_{i+1} a_{i+1} x_{i+2} \cdots x_{j-1} a_{j-1} x_{j}$. A trail W is an euler (or eulerian) trail if $A(W)=A(D)$, $V(W)=V(D)$ and $x_{1}=x_{k}$. If the vertices of W are distinct, W is a path. The length of path is the number of arcs of path, a k-path is a path of length k with $k+1$ vertices. If the vertices $x_{1}, x_{2}, \ldots, x_{k-1}$ are distinct, $k \geq 2$ and $x_{1}=x_{k}, W$ is a cycle. A k-cycle is a cycle of length k. A cycle W is a hamiltonian cycle of D if $V(W)=V(D)$. If W is a (v, w)-trail of D and $(u, v),(w, z) \in A(D)-A(W)$, then we use $(u, v) W(w, z)$ to denote the (u, z)-trail of $D[A(W) \cup\{(u, v),(w, z)\}]$. Subdigraphs $(u, v) W$ and $W(w, z)$ are similarly defined.

We often use $G(D)$ for the underlying graph of D, the graph obtained from D by erasing all orientation on the arcs of D. A directed multigraph D is strongly connected if for every pair x and y of distinct vertices in D, there exists an (x, y)-walk and a (y, x)-walk in D. D is weakly connected if $G(D)$ is connected. If $G(D)$ is not connected, then D is not connected. A directed multigraph D is eulerian if itself is an euler trail. D is hamiltonian if D contains a hamiltonian cycle. D is supereulerian if D contains a spanning eulerian subdigraph, or equivalently, a spanning closed trail. A directed multigraph D is weakly trail-connected if for any two vertices x and y of D, D admits a spanning (x, y)-trail or a spanning (y, x)-trail, and D is strongly trail-connected if for any two vertices x and y of D, D contains both a spanning (x, y)-trail and a spanning (y, x)-trail ($x=y$ is allowed).

When we consider the eulerian subdigraph problem, we will discuss whether the directed multigraph D has a spanning trail, a spanning closed trail, or for any vertices $x, y \in V(D)$, there exists a spanning (x, y)-trail. The supereulerian problem in digraphs was considered by Gutin [3]. In particular, Hong et al in [4] and Bang-Jensen and Maddaloni [5] presented several best possible sufficient degree conditions for supereulerian digraphs. Additional researches on supereulerian digraphs can be found in [6-9], among others. The weakly trail-connected and strongly trail-connected problem were considered recently in [10-12].

A line digraph $L(D)$ of a directed multigraph D has as its vertex set being $A(D)$, the set of arcs of D; where (a, b) is an arc of $L(D)$ if and only if there are vertices u, v, w in D such that $a=(u, v)$ and $b=(v, w)$ are in $A(D)$. A jump digraph $J(D)$ of a directed multigraph D has as its vertex set being $A(D)$, the set of arcs of D; where (a, b) is an arc of $J(D)$ if and only if there are vertices $u_{1}, v_{1}, u_{2}, v_{2}$ in D such that $a=\left(u_{1}, v_{1}\right), b=\left(u_{2}, v_{2}\right)$ and $v_{1} \neq u_{2}$. A directed multigraph D with $|V(D)|=n$ and without parallel arcs is a complete digraph if for any two distinct vertices u and v of D, we have $(u, v),(v, u) \in A(D)$, denoted by K_{n}^{*}. An out-star is a directed multigraph where there exists a common tail u to all arcs and an in-star is a directed multigraph where there exists a common head v to all arcs. The complement \bar{D} of a digraph D is the digraph with vertex set $V(D)$ in which there are two vertices u, v such that $(u, v) \in A(\bar{D})$
if and only if $(u, v) \notin A(D)$. We observe that complete digraph K_{n}^{*} has the following property:

$$
\begin{equation*}
\text { For any } u, v \in V\left(K_{n}^{*}\right), K_{n}^{*} \text { has a spanning }(u, v) \text {-trail. } \tag{1.2}
\end{equation*}
$$

For subsets $X, Y \subseteq V(D)$, define

$$
(X, Y)_{D}=\{(x, y) \in A(D): x \in X, y \in Y\} \text { and }[X, Y]_{D}=(X, Y)_{G(D)}=(X, Y)_{D} \cup(Y, X)_{D}
$$

If $X=\{x\}$ or $Y=\{y\}$, we often use $(x, Y)_{D}$ for $(X, Y)_{D}$ or $(X, y)_{D}$ for $(X, Y)_{D}$, respectively. Hence, $(x, y)_{D}=(\{x\},\{y\})_{D}$. For a vertex $v \in V(D)$, let $\partial_{D}^{+}(v)=(v, V(D)-v)_{D}$ and $\partial_{D}^{-}(v)=$ $(V(D)-v, v)_{D}$. Thus $d_{D}^{+}(v)=\left|\partial_{D}^{+}(v)\right|$ and $d_{D}^{-}(v)=\left|\partial_{D}^{-}(v)\right|$. If $B \subseteq A(D)$, then $D[B]$ is the subdigraph arc-induced by B of D with vertex set which are incident with at least one arc from B and arc set B. If $X \subseteq V(D)$, then $D[X]$ is the subdigraph vertex-induced by X with vertex set X and arc set, both end-vertices of which are in X.

Let M and M^{\prime} be two directed multigraphs. Throughout this paper, define $M \cup M^{\prime}$ to be the directed multigraph with $V\left(M \cup M^{\prime}\right)=V(M) \cup V\left(M^{\prime}\right)$ and $A\left(M \cup M^{\prime}\right)=A(M) \cup A\left(M^{\prime}\right)$.

For jump graph problem, Wu and Meng [13] and Liu [14] discussed the hamiltonian and pancyclic jump graph. Clique-transversal sets, clique-perfectness and planarity of jump graph were considered in [15-17], but for jump digraph, there are few results. In this paper, we will discuss the spanning eulerian subdigraph of jump digraph $J(D)$ of a directed multigraph D. In Section 2, we present a well characterized directed multigraph families \mathcal{H}_{1} and \mathcal{H}_{2}, and prove that a jump digraph $J(D)$ of a directed multigraph D is strongly connected if and only if $D \notin \mathcal{H}_{1}$. Specially, $J(D)$ is weakly connected if and only if $D \notin \mathcal{H}_{2}$. In Section 3, we discuss the weakly trail-connected and strongly trail-connected jump digraph of directed multigraph.

2. Strongly (weakly) connected jump digraphs

By the definitions of line digraph and jump digraph, we can obtain that $J(D)$ is a complement digraph of $L(D)$, denoted by $J(D)=\overline{L(D)}$. We first state two useful results. Beineke [18] characterized line digraph as follows:

Theorem 2.1 ([18]) Let H be a line digraph. If a_{1}, a_{2} and a_{3} are any three arcs in H such that $h\left(a_{1}\right)=h\left(a_{2}\right)$ and $t\left(a_{2}\right)=t\left(a_{3}\right)$, then there exists an arc a_{4} in H such that $t\left(a_{4}\right)=t\left(a_{1}\right)$ and $h\left(a_{4}\right)=h\left(a_{3}\right)$.

Lemma 2.2 Let D be a directed multigraph, $L(D)$ be the line digraph of D. And let $a, b, c \in$ $V(L(D))$. Then each of the following holds.
(i) If $(a, b),(a, c) \in A(L(D))$, then $(b, c),(c, b) \notin A(L(D))$.
(ii) If $(b, a),(c, a) \in A(L(D))$, then $(b, c),(c, b) \notin A(L(D))$.
(iii) If $(a, b),(c, a) \in A(L(D))$, then $(c, b) \notin A(L(D))$.

Proof Let $a=\left(u_{1}, v_{1}\right), b=\left(u_{2}, v_{2}\right), c=\left(u_{3}, v_{3}\right) \in A(D)=V(L(D))$. By the definition of line digraph of a directed multigraph, $L(D)$ is a digraph, and so

$$
\begin{equation*}
L(D) \text { does not contain loop. } \tag{2.1}
\end{equation*}
$$

If $(a, b),(a, c) \in A(L(D))$, by contradiction, assume first that $(b, c) \in A(L(D))$. Then by the definition of line digraph, we may assume that $v_{1}=u_{2}, v_{1}=u_{3}$ and $v_{2}=u_{3}$. Hence $v_{1}=v_{2}=u_{2}=u_{3}$, and so b is a loop of $L(D)$, contrary to (2.1). Likewise, if $(c, b) \in A(L(D))$, then a contradiction will be obtained similarly. Hence $(b, c),(c, b) \notin A(L(D))$. This proves (i).

If $(b, a),(c, a) \in A(L(D))$, by contradiction, assume first that $(b, c) \in A(L(D))$. Then by the definition of line digraph, we may assume that $v_{2}=u_{1}, v_{3}=u_{1}$ and $v_{2}=u_{3}$. Hence $v_{2}=v_{3}=u_{1}=u_{3}$, and so c is a loop of $L(D)$, contrary to (2.1). Likewise, if $(c, b) \in A(L(D))$, then a contradiction will be obtained similarly. Hence $(b, c),(c, b) \notin A(L(D))$. This proves (ii).

If $(a, b),(c, a) \in A(L(D))$, by contradiction, assume that $(c, b) \in A(L(D))$. Then by the definition of line digraph, we may assume that $v_{1}=u_{2}, v_{3}=u_{1}$ and $v_{3}=u_{2}$. Hence $v_{1}=v_{3}=$ $u_{1}=u_{2}$, and so a is a loop of $L(D)$, contrary to (2.1). Hence $(c, b) \notin A(L(D))$. This proves (iii). This completes the proof of Lemma 2.2.

Since $J(D)=\overline{L(D)}$, it is routine to obtain the following corollary.
Corollary 2.3 Let D be a directed multigraph, $L(D)$ and $J(D)$ be the line digraph and the jump digraph of D, respectively. Let $a, b, c \in V(J(D))$. Then each of the following holds.
(i) If $(a, b),(a, c) \notin A(J(D))$, then $(b, c),(c, b) \in A(J(D))$.
(ii) If $(b, a),(c, a) \notin A(J(D))$, then $(b, c),(c, b) \in A(J(D))$.
(iii) If $(a, b),(c, a) \notin A(J(D))$, then $(c, b) \in A(J(D))$.

The rest of this section is devoted to the characterization of strongly (weakly) connected jump digraph. We start with an example.

Figure 1 The digraph family \mathcal{H}.

Example 2.4 Let t_{1}, t_{2} and t_{3} be three nonnegative integers. Let $\{u\}, U_{1}=\left\{x_{1}, x_{2}, \ldots, x_{t_{1}}\right\}$, $U_{2}=\left\{y_{1}, y_{2}, \ldots, y_{t_{2}}\right\}$ and $U_{3}=\left\{z_{1}, z_{2}, \ldots, z_{t_{3}}\right\}$ be mutually disjoint vertex sets with $t_{1}+t_{2}+t_{3} \geq$ 1. Let $\ell_{x_{i}}, \ell_{y_{j}}^{\prime}, \ell_{z_{k}}$ and $\ell_{z_{k}}^{\prime}$ with $1 \leq i \leq t_{1}, 1 \leq j \leq t_{2}$ and $1 \leq k \leq t_{3}$ be nonnegative integers. We construct a directed multigraph family $\mathcal{H}=\mathcal{H}\left(t_{1}, t_{2}, t_{3}\right)$ such that a directed multigraph $D=D\left(t_{1}, t_{2}, t_{3}\right) \in \mathcal{H}$ if and only if $V(D)=\{u\} \cup U_{1} \cup U_{2} \cup U_{3}$ and $A(D)$ consists of exactly the
arcs described in (H1)-(H4) below. (See Figure 1 for an illustration.)
(H1) $D\left[U_{1}\right], D\left[U_{2}\right]$ and $D\left[U_{3}\right]$ are empty graphs.
(H2) For any $x_{i} \in U_{1}, y_{j} \in U_{2}$ and $z_{k} \in U_{3},\left(u, x_{i}\right),\left(y_{j}, u\right),\left(u, z_{k}\right),\left(z_{k}, u\right) \in A(D)$.
(H3) For any $x_{i} \in U_{1}, y_{j} \in U_{2}$ and $z_{k} \in U_{3},\left|\left(u, x_{i}\right)_{D}\right|=\ell_{x_{i}},\left|\left(y_{j}, u\right)_{D}\right|=\ell_{y_{j}}^{\prime},\left|\left(u, z_{k}\right)_{D}\right|=\ell_{z_{k}}$ and $\left|\left(z_{k}, u\right)_{D}\right|=\ell_{z_{k}}^{\prime}$.
(H4) $\left(u, U_{2}\right)_{D}=\emptyset,\left(U_{1}, u\right)_{D}=\emptyset,\left[U_{1}, U_{2}\right]_{D}=\emptyset,\left[U_{1}, U_{3}\right]_{D}=\emptyset$ and $\left[U_{2}, U_{3}\right]_{D}=\emptyset$.
Proposition 2.5 Let $D \in \mathcal{H}$ be a directed multigraph defined as in Example 2.4, and let $L(D)$ and $J(D)$ be the line digraph and the jump digraph of D, respectively, and let $B^{+}=\partial_{D}^{+}(u)$ and $B^{-}=\partial_{D}^{-}(u)$. With the notation used in Example 2.4, each of the following holds.
(i) $\left|B^{+}\right|=\sum_{i=1}^{t_{1}} \ell_{x_{i}}+\sum_{k=1}^{t_{3}} \ell_{z_{k}}$ and $\left|B^{-}\right|=\sum_{j=1}^{t_{2}} \ell_{y_{j}}^{\prime}+\sum_{k=1}^{t_{3}} \ell_{z_{k}}^{\prime}$.
(ii) $A(D)=B^{+} \cup B^{-}=V(L(D))=V(J(D))$.
(iii) $D\left[B^{+}\right]$is an out-star and $D\left[B^{-}\right]$is an in-star, $L(D)\left[B^{+}\right]$and $L(D)\left[B^{-}\right]$are empty graphs, and so $J(D)\left[B^{+}\right]$and $J(D)\left[B^{-}\right]$are complete digraphs.
(iv) For any $a \in B^{-}$and any $b \in B^{+},(a, b) \in A(L(D))$ and $\left(B^{-}, B^{+}\right)_{J(D)}=\emptyset$.
(v) $\left|\left(B^{+}, B^{-}\right)_{L(D)}\right|=\sum_{k=1}^{t_{3}} \ell_{z_{k}} \ell_{z_{k}}^{\prime}$ and $\left|\left(B^{+}, B^{-}\right)_{J(D)}\right|=\left(\sum_{i=1}^{t_{1}} \ell_{x_{i}}+\sum_{k=1}^{t_{3}} \ell_{z_{k}}\right)\left(\sum_{j=1}^{t_{2}} \ell_{y_{j}}^{\prime}+\right.$ $\left.\sum_{k=1}^{t_{3}} \ell_{z_{k}}^{\prime}\right)-\sum_{k=1}^{t_{3}} \ell_{z_{k}} \ell_{z_{k}}^{\prime}$.
(vi) If $B^{-}=\emptyset$ or $B^{+}=\emptyset$, then $J(D)$ is a complete digraph, and so $J(D)$ is strongly connected.
(vii) If $B^{-} \neq \emptyset$ and $B^{+} \neq \emptyset$, then $J(D)$ is not strongly connected. Specially, $J(D)$ is weakly connected if and only if $t_{1} \neq 0$ or $t_{2} \neq 0$ or $t_{3} \neq 1$.

Proof By $D \in \mathcal{H}$ and Example 2.4, $\partial_{D}^{+}(u)=\left(u, U_{1}\right)_{D} \cup\left(u, U_{3}\right)_{D}$ and $\partial_{D}^{-}(u)=\left(U_{2}, u\right)_{D} \cup\left(U_{3}, u\right)_{D}$, hence $\left|B^{+}\right|=\left|\left(u, U_{1}\right)_{D} \cup\left(u, U_{3}\right)_{D}\right|=\sum_{i=1}^{t_{1}} \ell_{x_{i}}+\sum_{k=1}^{t_{3}} \ell_{z_{k}}$ and $\left|B^{-}\right|=\left|\left(U_{2}, u\right)_{D} \cup\left(U_{3}, u\right)_{D}\right|=$ $\sum_{j=1}^{t_{2}} \ell_{y_{j}}^{\prime}+\sum_{k=1}^{t_{3}} \ell_{z_{k}}^{\prime}$. Since $V(D)=\{u\} \cup U_{1} \cup U_{2} \cup U_{3}$, and by Example 2.4, we have $A(D)=$ $B^{+} \cup B^{-}=V(L(D))=V(J(D))$. Thus (i) and (ii) hold.

Since $B^{+}=\partial_{D}^{+}(u)$ and $B^{-}=\partial_{D}^{-}(u)$, it follows that $D\left[B^{+}\right]$is an out-star and $D\left[B^{-}\right]$is an in-star, and so $L(D)\left[B^{+}\right]$and $L(D)\left[B^{-}\right]$are empty graphs. Since $J(D)=\overline{L(D)}$, it follows that $J(D)\left[B^{+}\right]$and $J(D)\left[B^{-}\right]$are complete digraphs. Thus (iii) holds.

For any $a \in B^{-}$and any $b \in B^{+}$, let $a=(x, u)$ and $b=(u, y)$ with $x \in U_{2} \cup U_{3}$ and $y \in U_{1} \cup U_{3}$. Then $(a, b) \in A(L(D))$. Since $J(D)=\overline{L(D)}$, we have $(a, b) \notin A(J(D))$, and so $\left(B^{-}, B^{+}\right)_{J(D)}=\emptyset$. Thus (iv) holds.

Since $\left(u, \underline{\left.U_{3}\right)_{D}} \subset B^{+}\right.$and $\left(U_{3}, u\right)_{D} \subset B^{-}$, we have $\left|\left(B^{+}, B^{-}\right)_{L(D)}\right|=\sum_{k=1}^{t_{3}} \ell_{z_{k}} \ell_{z_{k}}^{\prime}$. Since $J(D)=\overline{L(D)}$, we have $\left|\left(B^{+}, B^{-}\right)_{J(D)}\right|=\left(\sum_{i=1}^{t_{1}} \ell_{x_{i}}+\sum_{k=1}^{t_{3}} \ell_{z_{k}}\right)\left(\sum_{j=1}^{t_{2}} \ell_{y_{j}}^{\prime}+\sum_{k=1}^{t_{3}} \ell_{z_{k}}^{\prime}\right)-$ $\sum_{k=1}^{t_{3}} \ell_{z_{k}} \ell_{z_{k}}^{\prime}$. Thus (v) holds.

If $B^{-}=\emptyset$, then $t_{2}=0$ and $t_{3}=0$. Since $D \in \mathcal{H}$ and $t_{1}+t_{2}+t_{3} \geq 1$, we have $t_{1} \geq$ $1, B^{+} \neq \emptyset$ and $V(D)=\{u\} \cup U_{1}$. By (ii), we have $A(D)=B^{+}$, and so $D=D\left[B^{+}\right]$. By (iii), $J(D)=J\left(D\left[B^{+}\right]\right)=J(D)\left[B^{+}\right]$is a complete digraph, and so $J(D)$ is strongly connected. If $B^{+}=\emptyset$, then $t_{1}=0$ and $t_{3}=0$. Since $D \in \mathcal{H}$ and $t_{1}+t_{2}+t_{3} \geq 1$, it follows that $t_{2} \geq 1, B^{-} \neq \emptyset$ and $V(D)=\{u\} \cup U_{2}$. By (ii), we have $A(D)=B^{-}$, and so $D=D\left[B^{-}\right]$. By
(iii), $J(D)=J\left(D\left[B^{-}\right]\right)=J(D)\left[B^{-}\right]$is a complete digraph, and so $J(D)$ is strongly connected. Thus (vi) holds.

If $B^{-} \neq \emptyset$ and $B^{+} \neq \emptyset$, then by (iv), $\left(B^{-}, B^{+}\right)_{J(D)}=\emptyset$, and so $J(D)$ is not strongly connected. Specially, if $t_{1}=0, t_{2}=0$ and $t_{3}=1$, then $\sum_{i=1}^{t_{1}} \ell_{x_{i}}=0, \sum_{j=1}^{t_{2}} \ell_{y_{j}}^{\prime}=0, \ell_{z_{1}} \geq 1$ and $\ell_{z_{1}}^{\prime} \geq 1$. By (v),

$$
\begin{aligned}
\left|\left(B^{+}, B^{-}\right)_{J(D)}\right| & =\left(\sum_{i=1}^{t_{1}} \ell_{x_{i}}+\sum_{k=1}^{t_{3}} \ell_{z_{k}}\right)\left(\sum_{j=1}^{t_{2}} \ell_{y_{j}}^{\prime}+\sum_{k=1}^{t_{3}} \ell_{z_{k}}^{\prime}\right)-\sum_{k=1}^{t_{3}} \ell_{z_{k}} \ell_{z_{k}}^{\prime} \\
& =\sum_{k=1}^{t_{3}} \ell_{z_{k}} \sum_{k=1}^{t_{3}} \ell_{z_{k}}^{\prime}-\sum_{k=1}^{t_{3}} \ell_{z_{k}} \ell_{z_{k}}^{\prime} \\
& =\ell_{z_{1}} \ell_{z_{1}}^{\prime}-\ell_{z_{1}} \ell_{z_{1}}^{\prime}=0
\end{aligned}
$$

Hence $\left(B^{+}, B^{-}\right)_{J(D)}=\emptyset$. By (iv), and so $J(D)$ is not connected.
Next, we will assume that $t_{1} \neq 0$ or $t_{2} \neq 0$ or $t_{3} \neq 1$ to prove that $J(D)$ is weakly connected. If $t_{1} \geq 1$, then $\sum_{i=1}^{t_{1}} \ell_{x_{i}} \geq 1$. Since $B^{-} \neq \emptyset$, by (i), $\sum_{j=1}^{t_{2}} \ell_{y_{j}}^{\prime}+\sum_{k=1}^{t_{3}} \ell_{z_{k}}^{\prime} \geq 1$. If $\sum_{k=1}^{t_{3}} \ell_{z_{k}}^{\prime}=0$, then $\sum_{j=1}^{t_{2}} \ell_{y_{j}}^{\prime} \geq 1$ and $\sum_{k=1}^{t_{3}} \ell_{z_{k}}=0$. By (v),

$$
\left|\left(B^{+}, B^{-}\right)_{J(D)}\right|=\left(\sum_{i=1}^{t_{1}} \ell_{x_{i}}+\sum_{k=1}^{t_{3}} \ell_{z_{k}}\right)\left(\sum_{j=1}^{t_{2}} \ell_{y_{j}}^{\prime}+\sum_{k=1}^{t_{3}} \ell_{z_{k}}^{\prime}\right)-\sum_{k=1}^{t_{3}} \ell_{z_{k}} \ell_{z_{k}}^{\prime}=\sum_{i=1}^{t_{1}} \ell_{x_{i}} \sum_{j=1}^{t_{2}} \ell_{y_{j}}^{\prime} \geq 1
$$

and so $\left(B^{+}, B^{-}\right)_{J(D)} \neq \emptyset$. By (iii), $J(D)$ is weakly connected. If $\sum_{k=1}^{t_{3}} \ell_{z_{k}}^{\prime} \geq 1$, then $\sum_{k=1}^{t_{3}} \ell_{z_{k}} \geq$ 1. Since $\sum_{k=1}^{t_{3}} \ell_{z_{k}} \sum_{k=1}^{t_{3}} \ell_{z_{k}}^{\prime} \geq \sum_{k=1}^{t_{3}} \ell_{z_{k}} \ell_{z_{k}}^{\prime}$, by (v),

$$
\begin{aligned}
\left|\left(B^{+}, B^{-}\right)_{J(D)}\right| & =\left(\sum_{i=1}^{t_{1}} \ell_{x_{i}}+\sum_{k=1}^{t_{3}} \ell_{z_{k}}\right)\left(\sum_{j=1}^{t_{2}} \ell_{y_{j}}^{\prime}+\sum_{k=1}^{t_{3}} \ell_{z_{k}}^{\prime}\right)-\sum_{k=1}^{t_{3}} \ell_{z_{k}} \ell_{z_{k}}^{\prime} \\
& \geq\left(\sum_{i=1}^{t_{1}} \ell_{x_{i}}+\sum_{k=1}^{t_{3}} \ell_{z_{k}}\right) \sum_{k=1}^{t_{3}} \ell_{z_{k}}^{\prime}-\sum_{k=1}^{t_{3}} \ell_{z_{k}} \sum_{k=1}^{t_{3}} \ell_{z_{k}}^{\prime} \\
& \geq \sum_{i=1}^{t_{1}} \ell_{x_{i}} \sum_{k=1}^{t_{3}} \ell_{z_{k}}^{\prime} \geq 1
\end{aligned}
$$

Thus $\left(B^{+}, B^{-}\right)_{J(D)} \neq \emptyset$. By (iii), $J(D)$ is weakly connected.
If $t_{2} \geq 1$, then $\sum_{j=1}^{t_{2}} \ell_{y_{j}}^{\prime} \geq 1$. Since $B^{+} \neq \emptyset$, by (i), $\sum_{i=1}^{t_{1}} \ell_{x_{i}}+\sum_{k=1}^{t_{3}} \ell_{z_{k}} \geq 1$. If $\sum_{k=1}^{t_{3}} \ell_{z_{k}}=0$, then $\sum_{i=1}^{t_{1}} \ell_{x_{i}} \geq 1$ and $\sum_{k=1}^{t_{3}} \ell_{z_{k}}^{\prime}=0$. By (v),

$$
\left|\left(B^{+}, B^{-}\right)_{J(D)}\right|=\left(\sum_{i=1}^{t_{1}} \ell_{x_{i}}+\sum_{k=1}^{t_{3}} \ell_{z_{k}}\right)\left(\sum_{j=1}^{t_{2}} \ell_{y_{j}}^{\prime}+\sum_{k=1}^{t_{3}} \ell_{z_{k}}^{\prime}\right)-\sum_{k=1}^{t_{3}} \ell_{z_{k}} \ell_{z_{k}}^{\prime}=\sum_{i=1}^{t_{1}} \ell_{x_{i}} \sum_{j=1}^{t_{2}} \ell_{y_{j}}^{\prime} \geq 1
$$

and so $\left(B^{+}, B^{-}\right)_{J(D)} \neq \emptyset$. By (iii), $J(D)$ is weakly connected. If $\sum_{k=1}^{t_{3}} \ell_{z_{k}} \geq 1$, then $\sum_{k=1}^{t_{3}} \ell_{z_{k}}^{\prime} \geq$ 1. Since $\sum_{k=1}^{t_{3}} \ell_{z_{k}} \sum_{k=1}^{t_{3}} \ell_{z_{k}}^{\prime} \geq \sum_{k=1}^{t_{3}} \ell_{z_{k}} \ell_{z_{k}}^{\prime}$, it follows by (v),

$$
\begin{aligned}
\left|\left(B^{+}, B^{-}\right)_{J(D)}\right| & =\left(\sum_{i=1}^{t_{1}} \ell_{x_{i}}+\sum_{k=1}^{t_{3}} \ell_{z_{k}}\right)\left(\sum_{j=1}^{t_{2}} \ell_{y_{j}}^{\prime}+\sum_{k=1}^{t_{3}} \ell_{z_{k}}^{\prime}\right)-\sum_{k=1}^{t_{3}} \ell_{z_{k}} \ell_{z_{k}}^{\prime} \\
& \geq \sum_{k=1}^{t_{3}} \ell_{z_{k}}\left(\sum_{j=1}^{t_{2}} \ell_{y_{j}}^{\prime}+\sum_{k=1}^{t_{3}} \ell_{z_{k}}^{\prime}\right)-\sum_{k=1}^{t_{3}} \ell_{z_{k}} \sum_{k=1}^{t_{3}} \ell_{z_{k}}^{\prime}
\end{aligned}
$$

$$
\geq \sum_{k=1}^{t_{3}} \ell_{z_{k}} \sum_{j=1}^{t_{2}} \ell_{y_{j}}^{\prime} \geq 1
$$

and so $\left(B^{+}, B^{-}\right)_{J(D)} \neq \emptyset$. By (iii), $J(D)$ is weakly connected.
Assume that $t_{3}=0$. Since $B^{+} \neq \emptyset$ and $B^{-} \neq \emptyset$, by (i), $\sum_{i=1}^{t_{1}} \ell_{x_{i}} \geq 1$ and $\sum_{j=1}^{t_{2}} \ell_{y_{j}}^{\prime} \geq 1$, and by (v),

$$
\left|\left(B^{+}, B^{-}\right)_{J(D)}\right|=\sum_{i=1}^{t_{1}} \ell_{x_{i}} \sum_{j=1}^{t_{2}} \ell_{y_{j}}^{\prime} \geq 1 .
$$

Thus $\left(B^{+}, B^{-}\right)_{J(D)} \neq \emptyset$. By (iii), $J(D)$ is weakly connected.
If $t_{3} \geq 2$, then $\sum_{k=1}^{t_{3}} \ell_{z_{k}} \sum_{k=1}^{t_{3}} \ell_{z_{k}}^{\prime}>\sum_{k=1}^{t_{3}} \ell_{z_{k}} \ell_{z_{k}}^{\prime}$ and by (v),

$$
\begin{aligned}
\left|\left(B^{+}, B^{-}\right)_{J(D)}\right| & =\left(\sum_{i=1}^{t_{1}} \ell_{x_{i}}+\sum_{k=1}^{t_{3}} \ell_{z_{k}}\right)\left(\sum_{j=1}^{t_{2}} \ell_{y_{j}}^{\prime}+\sum_{k=1}^{t_{3}} \ell_{z_{k}}^{\prime}\right)-\sum_{k=1}^{t_{3}} \ell_{z_{k}} \ell_{z_{k}}^{\prime} \\
& \geq \sum_{k=1}^{t_{3}} \ell_{z_{k}} \sum_{k=1}^{t_{3}} \ell_{z_{k}}^{\prime}-\sum_{k=1}^{t_{3}} \ell_{z_{k}} \ell_{z_{k}}^{\prime} \geq 1 .
\end{aligned}
$$

It follows $\left(B^{+}, B^{-}\right)_{J(D)} \neq \emptyset$. By (iii), and so $J(D)$ is weakly connected. Thus (vii) holds.
Definition 2.6 Let \mathcal{H} be the directed multigraph family as defined in Example 2.4. Define two directed multigraph families as follows. Let $\mathcal{H}_{1}=\left\{D\left(t_{1}, t_{2}, t_{3}\right) \in \mathcal{H}\right.$: with $t_{1}+t_{3} \geq 1$ and $\left.t_{2}+t_{3} \geq 1\right\}$ and let $\mathcal{H}_{2}=\mathcal{H}(0,0,1)$.

Theorem 2.7 Let \mathcal{H}_{1} and \mathcal{H}_{2} be two directed multigraph families as defined in Definition 2.6 and $J(D)$ be a jump digraph of directed multigraph D. Then $J(D)$ is strongly connected if and only if $D \notin \mathcal{H}_{1}$, and $J(D)$ is weakly connected if and only if $D \notin \mathcal{H}_{2}$.

Proof If $D \in \mathcal{H}_{1}$, then by Proposition 2.5 (i) and Example 2.4, $\left|B^{+}\right|=\sum_{i=1}^{t_{1}} \ell_{x_{i}}+\sum_{k=1}^{t_{3}} \ell_{z_{k}} \geq$ $t_{1}+t_{3} \geq 1$ and $\left|B^{-}\right|=\sum_{j=1}^{t_{2}} \ell_{y_{j}}^{\prime}+\sum_{k=1}^{t_{3}} \ell_{z_{k}}^{\prime} \geq t_{2}+t_{3} \geq 1$, by Proposition $2.5($ vii $), J(D)$ is not strongly connected, a contradiction. Hence assume that $J(D)$ is not strongly connected, we want to prove that $D \in \mathcal{H}_{1}$. Since $J(D)$ is not strongly connected, it follows that $V(J(D))$ can be partitioned into two nonempty vertex-disjoint subsets B_{1} and B_{2} such that $\left(B_{2}, B_{1}\right)_{J(D)}=\emptyset$. Since $J(D)=\overline{L(D)}$, we have

$$
\begin{equation*}
\text { for any } a \in B_{1} \text { and } b \in B_{2},(b, a) \in A(L(D)) \text {. } \tag{2.2}
\end{equation*}
$$

By Lemma 2.2 (i) and (ii), $L(D)\left[B_{1}\right]$ and $L(D)\left[B_{2}\right]$ are empty graphs. Let $B_{1}=\left\{a_{1}, a_{2}, \ldots, a_{k_{1}}\right\}$ and $B_{2}=\left\{b_{1}, b_{2}, \ldots, b_{k_{2}}\right\}$, by (2.2), for any $a_{i} \in B_{1}$ and $b_{j} \in B_{2}$, we can let $a_{i}=\left(u, x_{i}\right)$ and $b_{j}=\left(y_{j}, u\right)$. As $B_{1} \cup B_{2}=A(D)$. By (2.2), we can obtain that $B_{1}=\partial_{D}^{+}(u) \neq \emptyset$ and $B_{2}=\partial_{D}^{-}(u) \neq \emptyset$, and so $D \in \mathcal{H}_{1}$, a contradiction. Hence $J(D)$ is strongly connected if and only if $D \notin \mathcal{H}_{1}$.

Since $J(D)$ is strongly connected if and only if $D \notin \mathcal{H}_{1}$, it follows that $J(D)$ is not strongly connected if and only if $D \in \mathcal{H}_{1}$. Specially, by Proposition $2.5($ vii), $J(D)$ is weakly connected if and only if $t_{1} \neq 0$ or $t_{2} \neq 0$ or $t_{3} \neq 1$, and so $J(D)$ is weakly connected if and only if $D \notin \mathcal{H}_{2}$. This completes the proof of the theorem.

3. Spanning eulerian subdigraphs in jump digraphs

In this section, we will identify a directed multigraph family \mathcal{D}, and use it to prove our main results. We start with a definition.

Definition 3.1 Let $\ell \geq 1$ be a positive integer, and let $U=\left\{x, y, z_{1}, z_{2}\right\}$ be a set of vertices, $a=\left(z_{1}, x\right)$ and $b=\left(y, z_{2}\right)\left(z_{1}=z_{2}\right.$ is allowed) and let $C_{\ell}=\left\{c_{i}=(x, y): 1 \leq i \leq \ell\right\}$ be a set of ℓ parallel arcs. Define a directed multigraph $D(\ell)$ with $V(D(\ell))=U$ and $A(D(\ell))=\{a, b\} \cup C_{\ell}$, and \mathcal{D} to be a family of directed multigraphs by $\mathcal{D}=\{D(\ell): \ell \geq 1\}$. (See Figures 2 and 3 for illustrations.)

$D(\ell)$

Figure $2 z_{1}=z_{2}$

Figure $3 z_{1} \neq z_{2}$
By Definition 3.1 and by the definitions of line digraph and jump digraph, we have the following.

The line digraph $L(D(\ell))$ of $D(\ell)$ is a digraph with

$$
\begin{aligned}
& V(L(D(\ell)))=\left\{a, b, c_{1}, c_{2}, \ldots, c_{\ell}\right\}, \\
& A(L(D(\ell)))= \begin{cases}\{(b, a)\} \cup\left\{\left(a, c_{i}\right),\left(c_{i}, b\right): 1 \leq i \leq \ell\right\}, & \text { if } z_{1}=z_{2}, \\
\left\{\left(a, c_{i}\right),\left(c_{i}, b\right): 1 \leq i \leq \ell\right\}, & \text { if } z_{1} \neq z_{2}\end{cases}
\end{aligned}
$$

The jump digraph $J(D(\ell))$ of $D(\ell)$ is a digraph with

$$
V(J(D(\ell)))=\left\{a, b, c_{1}, c_{2}, \ldots, c_{\ell}\right\}
$$

$A(J(D(\ell)))=\left\{\begin{array}{c}\{(a, b)\} \cup\left\{\left(c_{i}, a\right),\left(b, c_{i}\right): 1 \leq i \leq \ell\right\} \cup\left\{\left(c_{i}, c_{j}\right),\left(c_{j}, c_{i}\right): 1 \leq i \neq j \leq \ell\right\}, \\ \text { if } z_{1}=z_{2}, \\ \{(a, b),(b, a)\} \cup\left\{\left(c_{i}, a\right),\left(b, c_{i}\right): 1 \leq i \leq \ell\right\} \cup\left\{\left(c_{i}, c_{j}\right),\left(c_{j}, c_{i}\right): 1 \leq i \neq j \leq \ell\right\}, \\ \text { if } z_{1} \neq z_{2} .\end{array}\right.$
By the definition of \mathcal{D}, we have the following proposition.
Proposition 3.2 Let $D(\ell) \in \mathcal{D}$ be a directed multigraph as defined in Definition 3.1 and let \mathcal{H}_{1} be a directed multigraph family as defined in Definition 2.6, and let $L(D(\ell))$ and $J(D(\ell))$ be the line digraph and the jump digraph of $D(\ell)$, respectively. Then each of the following holds.
(i) $D(\ell) \notin \mathcal{H}_{1}$, and so $J(D(\ell))$ is strongly connected.
(ii) $J(D(\ell))$ is weakly trail-connected.
(iii) $J(D(\ell))$ is not strongly trail-connected.
(iv) If there exists a directed multigraph H such that $J(H) \cong J(D(\ell))$, then $H \cong D(\ell)$.

Proof Let \mathcal{H} be a directed multigraph family as defined in Example 2.4. By the definitions of $D(\ell)$ and \mathcal{H}, we have $D(\ell) \notin \mathcal{H}$ and $\mathcal{H}_{1} \subset \mathcal{H}$. Hence $D(\ell) \notin \mathcal{H}_{1}$. By Theorem 2.7, $J(D(\ell))$ is strongly connected. Hence (i) holds.

Since $C_{\ell}=\left\{c_{1}, c_{2}, \ldots, c_{\ell}\right\}$ and $J(D(\ell))\left[C_{\ell}\right]$ is a complete digraph, by (1.2), J(D($)$)[C $\left.C_{\ell}\right]$ contains a spanning closed trail T_{1} and a spanning $\left(c_{1}, c_{2}\right)$-trail $T_{\left(c_{1}, c_{2}\right)}$. For any two vertices $a_{1}, a_{2} \in V(J(D(\ell)))$, we want to prove that $J(D(\ell))$ has either a spanning $\left(a_{1}, a_{2}\right)$-trail or a spanning (a_{2}, a_{1})-trail.

Suppose that $a_{1}=a_{2}$. Since $a, b \notin C_{\ell}$, we have $(a, b) \notin A\left(J(D(\ell))\left[C_{\ell}\right]\right)$. Thus

$$
(a, b)\left(b, c_{1}\right) T_{\left(c_{1}, c_{2}\right)}\left(c_{2}, a\right)
$$

is a spanning closed trail of $J(D(\ell))$.
Assume now that $a_{1} \neq a_{2}$. If $\left\{a_{1}, a_{2}\right\}=\{a, b\}$, then $\left(a_{1}, c_{1}\right) T_{\left(c_{1}, c_{2}\right)}\left(c_{2}, a_{2}\right)$ is a spanning $\left(a_{1}, a_{2}\right)$-trail of $J(D(\ell))$ when $a_{1}=b$ and $a_{2}=a$, and $\left(a_{2}, c_{1}\right) T_{\left(c_{1}, c_{2}\right)}\left(c_{2}, a_{1}\right)$ is a spanning $\left(a_{2}, a_{1}\right)$ trail of $J(D(\ell))$ when $a_{1}=a$ and $a_{2}=b$. If $a_{1}, a_{2} \in C_{\ell}$, then $\left(a_{2}, a\right)(a, b)\left(b, a_{1}\right) \cup T_{1}$ is a spanning $\left(a_{2}, a_{1}\right)$-trail of $J(D(\ell))$. If $a_{1}=a$ and $a_{2} \in C_{\ell}$, then $\left(a_{1}, b\right)\left(b, a_{2}\right) \cup T_{1}$ is a spanning $\left(a_{1}, a_{2}\right)$-trail of $J(D(\ell))$. Likewise, if $a_{1} \in C_{\ell}$ and $a_{2}=a$, then $J(D(\ell))$ has a spanning (a_{2}, a_{1})-trail. If $a_{1}=b$ and $a_{2} \in C_{\ell}$, then $T_{1} \cup\left(a_{2}, a\right)\left(a, a_{1}\right)$ is a spanning $\left(a_{2}, a_{1}\right)$-trail of $J(D(\ell))$. Likewise, if $a_{1} \in C_{\ell}$ and $a_{2}=b$, then $J(D(\ell))$ has a spanning $\left(a_{1}, a_{2}\right)$-trail. Hence, $J(D(\ell))$ is weakly trail-connected. Thus (ii) holds.

Since $J(D(\ell))$ does not contain spanning (a, b)-trail, it follows that $J(D(\ell))$ is not strongly trail-connected. Thus (iii) holds.

If there exists a directed multigraph H such that $J(H) \cong J(D(\ell))$, then $L(H) \cong L(D(\ell))$. Let $V(L(H))=\left\{a^{\prime}, b^{\prime}, c_{1}^{\prime}, c_{2}^{\prime}, \ldots, c_{\ell}^{\prime}\right\}$. As $L(H) \cong L(D(\ell))$, we have

$$
A(L(H))= \begin{cases}\left\{\left(b^{\prime}, a^{\prime}\right)\right\} \cup\left\{\left(a^{\prime}, c_{i}^{\prime}\right),\left(c_{i}^{\prime}, b^{\prime}\right): 1 \leq i \leq \ell\right\}, & \text { if } h\left(b^{\prime}\right)=t\left(a^{\prime}\right) \\ \left\{\left(a^{\prime}, c_{i}^{\prime}\right),\left(c_{i}^{\prime}, b^{\prime}\right): 1 \leq i \leq \ell\right\}, & \text { if } h\left(b^{\prime}\right) \neq t\left(a^{\prime}\right)\end{cases}
$$

By the definition of line digraph, we may assume that $a^{\prime}=\left(z_{1}^{\prime}, x^{\prime}\right)$ and $b^{\prime}=\left(y^{\prime}, z_{2}^{\prime}\right)\left(z_{1}^{\prime}=z_{2}^{\prime}\right.$
is allowed) and denote $C_{\ell}^{\prime}=\left\{c_{i}^{\prime}=\left(x^{\prime}, y^{\prime}\right): 1 \leq i \leq \ell\right\}$. Hence $V(H)=\left\{z_{1}^{\prime}, z_{2}^{\prime}, x^{\prime}, y^{\prime}\right\}$ and $A(H)=V(L(H))=\left\{a^{\prime}, b^{\prime}, c_{1}^{\prime}, c_{2}^{\prime}, \ldots, c_{\ell}^{\prime}\right\}$. Thus $H \cong D(\ell)$, and so (iv) holds. This completes the proof of Proposition 3.2.

Theorem 3.3 Let $J(D)$ be a jump digraph of directed multigraph D and $J(D)$ be strongly connected, and let \mathcal{D} be a directed multigraph family as defined in Definition 3.1. Then $J(D)$ is strongly trail-connected if and only if $D \notin \mathcal{D}$.

Proof If $D \in \mathcal{D}$, then by Proposition 3.2 (iii), $J(D)$ is not strongly trail-connected. Hence we may assume that $D \notin \mathcal{D}$ to prove that $J(D)$ is strongly trail-connected.

We argue by contradiction and assume that there exist two vertices $a, b \in V(J(D))$ such that $J(D)$ does not have a spanning (a, b)-trail. Let

$$
\begin{gather*}
T=a_{1} a_{2} \cdots a_{t} \text { is an }(a, b) \text {-trail of } J(D) \text { with }|V(T)| \\
\text { is maximum, where } a_{1}=a \text { and } a_{t}=b . \tag{3.1}
\end{gather*}
$$

Since no spanning (a, b)-trail exists in $J(D)$, we have $V(J(D))-V(T) \neq \emptyset$.
If there exist a vertex $c \in V(J(D))-V(T)$ and a vertex $a_{i} \in V(T)$ such that $\left(c, a_{i}\right),\left(a_{i}, c\right) \in$ $A(J(D))$, then

$$
T^{\prime \prime}=T \cup\left\{\left(c, a_{i}\right),\left(a_{i}, c\right)\right\}
$$

is an (a, b)-trail of $J(D)$ with $\left|V\left(T^{\prime \prime}\right)\right|>|V(T)|$, contrary to (3.1). Hence assume that for any vertex $c \in V(J(D))-V(T)$ and any vertex $a_{i} \in V(T)$,

$$
\begin{equation*}
\left|\left[c, a_{i}\right]_{J(D)}\right| \leq 1 \tag{3.2}
\end{equation*}
$$

Next, we consider two cases in the following.
Case 1. There exists a vertex $c \in V(J(D))-V(T)$ such that

$$
(c, V(T))_{J(D)}=\emptyset \text { or }(V(T), c)_{J(D)}=\emptyset
$$

Assume first that $(c, V(T))_{J(D)}=\emptyset$, by Corollary $2.3(\mathrm{i})$,

$$
\begin{equation*}
\text { for any two distinct vertices } a_{i}, a_{j} \in V(T),\left(a_{i}, a_{j}\right),\left(a_{j}, a_{i}\right) \in A(J(D)) \text {. } \tag{3.3}
\end{equation*}
$$

Since $J(D)$ is strongly connected, there exist two vertices $c^{\prime}, c^{\prime \prime} \in V(J(D))-V(T)$ such that $\left(V(T), c^{\prime}\right)_{J(D)} \neq \emptyset$ and $\left(c^{\prime \prime}, V(T)\right)_{J(D)} \neq \emptyset$. Since $J(D)$ is strongly connected, it follows that $J(D)$ has a $\left(c^{\prime}, c^{\prime \prime}\right)$-trail $T_{1}=c_{1} c_{2} \cdots c_{q}$, where $c_{1}=c^{\prime}$ and $c_{q}=c^{\prime \prime}$. If $V\left(T_{1}\right) \cap V(T)=\emptyset$, then let $T^{\prime}:=T_{1}$; if $V\left(T_{1}\right) \cap V(T) \neq \emptyset$, then let q_{1} be a minimum integer such that $c_{q_{1}} \in V\left(T_{1}\right)-V(T)$ and $\left(c_{q_{1}}, V(T)\right)_{J(D)} \neq \emptyset$, hence let $T^{\prime}:=T_{1}\left[c_{1}, c_{q_{1}}\right]$ and $c^{\prime \prime}:=c_{q_{1}}$. Thus $J(D)$ has a $\left(c^{\prime}, c^{\prime \prime}\right)$-trail T^{\prime} satisfying $V\left(T^{\prime}\right) \cap V(T)=\emptyset$. Let $a_{t_{1}}, a_{t_{2}} \in V(T)$ such that $\left(a_{t_{1}}, c^{\prime}\right),\left(c^{\prime \prime}, a_{t_{2}}\right) \in A(J(D))$. Next, we consider $\left(c^{\prime \prime}, a_{t_{1}}\right)$, if $\left(c^{\prime \prime}, a_{t_{1}}\right) \in A(J(D))$, then

$$
T^{\prime \prime}=T \cup\left\{\left(a_{t_{1}}, c^{\prime}\right),\left(c^{\prime \prime}, a_{t_{1}}\right)\right\} \cup T^{\prime}
$$

is an (a, b)-trail of $J(D)$ with $\left|V\left(T^{\prime \prime}\right)\right|>|V(T)|$, contrary to (3.1); if ($\left.c^{\prime \prime}, a_{t_{1}}\right) \notin A(J(D))$, then $a_{t_{1}} \neq a_{t_{2}}$. By $(c, V(T))_{J(D)}=\emptyset$ and $\left(c^{\prime \prime}, a_{t_{2}}\right) \in A(J(D))$, we have $c \neq c^{\prime \prime}$. Since
$\left(c, a_{t_{1}}\right),\left(c, a_{t_{2}}\right),\left(c^{\prime \prime}, a_{t_{1}}\right) \notin A(J(D))$ and $J(D)=\overline{L(D)}$, we have $\left(c, a_{t_{1}}\right),\left(c, a_{t_{2}}\right),\left(c^{\prime \prime}, a_{t_{1}}\right) \in$ $A(L(D))$. By Lemma 2.1, $\left(c^{\prime \prime}, a_{t_{2}}\right) \in A(L(D))$, and so $\left(c^{\prime \prime}, a_{t_{2}}\right) \notin A(J(D))$, a contrary to $\left(c^{\prime \prime}, a_{t_{2}}\right) \in A(J(D))$. Likewise, if $(V(T), c)_{J(D)}=\emptyset$, then a contradiction will be obtained similarly.

Case 2. For any vertex $c \in V(J(D))-V(T),(c, V(T))_{J(D)} \neq \emptyset$ and $(V(T), c)_{J(D)} \neq \emptyset$.
Let $V(J(D))-V(T)=\left\{c_{1}, c_{2}, \ldots, c_{\ell}\right\}$. For any $c_{i} \in V(J(D))-V(T)$, note that $\left(c_{i}, V(T)\right)_{J(D)}$ $\neq \emptyset$ and $\left(V(T), c_{i}\right)_{J(D)} \neq \emptyset$. Let $t_{i_{1}}$ be a minimum integer and $t_{i_{2}}$ be a maximum integer such that $\left(a_{t_{i_{1}}}, c_{i}\right),\left(c_{i}, a_{t_{i_{2}}}\right) \in A(J(D))$. Thus c_{i} uniquely determines the pair of integers $\left\{t_{i_{1}}, t_{i_{2}}\right\}$. Moreover, the choices of $t_{i_{1}}$ and $t_{i_{2}}$ imply that $\left(a_{1}, c_{i}\right),\left(a_{2}, c_{i}\right), \ldots,\left(a_{t_{i_{1}-1}}, c_{i}\right) \notin A(J(D))$ and $\left(c_{i}, a_{t_{i_{2}}+1}\right),\left(c_{i}, a_{t_{i_{2}}+2}\right), \ldots,\left(c_{i}, a_{t}\right) \notin A(J(D))$. By Corollary 2.3 (ii), we have
for any two distinct vertices $a_{\ell_{1}}, a_{\ell_{2}} \in\left\{a_{1}, \ldots, a_{t_{i_{1}}-1}\right\},\left(a_{\ell_{1}}, a_{\ell_{2}}\right),\left(a_{\ell_{2}}, a_{\ell_{1}}\right) \in A(J(D))$,
and by Corollary 2.3 (i), we have
for any two distinct vertices $a_{j_{1}}, a_{j_{2}} \in\left\{a_{t_{i_{2}}+1}, \ldots, a_{t}\right\},\left(a_{j_{1}}, a_{j_{2}}\right),\left(a_{j_{2}}, a_{j_{1}}\right) \in A(J(D))$.
By (3.2), we can obtain that $t_{i_{1}} \neq t_{i_{2}}$. Next, we consider two subcases in the following.
Subcase 2.1. There exists a vertex $c_{i} \in V(J(D))-V(T)$ such that $t_{i_{1}}<t_{i_{2}}$.
If there exists a vertex $a_{j} \in\left\{a_{t_{i_{1}+1}}, a_{t_{i_{1}}+2}, \ldots, a_{t_{i_{2}-1}}\right\}$ such that $\left(a_{j}, c_{i}\right) \in A(J(D))$, then by (3.2), we have $\left(c_{i}, a_{j}\right) \notin A(J(D))$. Hence $a_{j} \neq a_{t_{i_{2}}}$, and so let $a_{t_{i_{1}}}:=a_{j}$. If there exists a vertex $a_{j^{\prime}} \in\left\{a_{t_{i_{1}+1}}, a_{t_{i_{1}}+2}, \ldots, a_{t_{i_{2}}-1}\right\}$ such that $\left(c_{i}, a_{j^{\prime}}\right) \in A(J(D))$, then by (3.2), we have $\left(a_{j^{\prime}}, c_{i}\right) \notin$ $A(J(D))$. Hence $a_{j^{\prime}} \neq a_{t_{i_{1}}}$, and so let $a_{t_{i_{2}}}:=a_{j^{\prime}}$. Thus, for any $a_{k} \in\left\{a_{t_{i_{1}}+1}, a_{t_{i_{1}}+2}, \ldots, a_{t_{i_{2}}-1}\right\}$, $\left(c_{i}, a_{k}\right),\left(a_{k}, c_{i}\right) \notin A(J(D))$, by (3.2), we can obtain that $\left(c_{i}, a_{t_{i_{1}}}\right),\left(a_{t_{i_{2}}}, c_{i}\right) \notin A(J(D))$. By Corollary 2.3 (i), we have for any two distinct vertices $a_{k_{1}}, a_{k_{2}} \in\left\{a_{t_{i_{1}}}, a_{t_{i_{1}}+1}, \ldots, a_{t_{i_{2}}-1}\right\},\left(a_{k_{1}}, a_{k_{2}}\right)$, $\left(a_{k_{2}}, a_{k_{1}}\right) \in A(J(D))$. Hence

$$
\begin{equation*}
\text { for any vertex } a_{k} \in\left\{a_{t_{i_{1}}+1}, a_{t_{i_{1}}+1}, \ldots, a_{t_{i_{2}}-1}\right\},\left(a_{t_{i_{1}}}, a_{k}\right),\left(a_{k}, a_{t_{i_{1}}}\right) \in A(J(D)) \tag{3.6}
\end{equation*}
$$

Let $A=V(T)-\left(V\left(T\left[a_{1}, a_{t_{i_{1}}}\right]\right) \cup V\left(T\left[a_{t_{i_{2}}}, a_{t}\right]\right)\right)$, hence $A \subseteq\left\{a_{t_{i_{1}}+1}, a_{t_{i_{1}}+1}, \ldots, a_{t_{i_{2}}-1}\right\}$. Thus, by (3.6), we have

$$
T^{\prime \prime}=T\left[a_{1}, a_{t_{i_{1}}}\right]\left(a_{t_{i_{1}}}, c_{i}\right)\left(c_{i}, a_{t_{i_{2}}}\right) T\left[a_{t_{i_{2}}}, a_{t}\right] \cup \bigcup_{a \in A}\left\{\left(a, a_{t_{i_{1}}}\right),\left(a_{t_{i_{1}}}, a\right)\right\}
$$

is an (a, b)-trail of $J(D)$ with $\left|V\left(T^{\prime \prime}\right)\right|>|V(T)|$, contrary to (3.1).
Subcase 2.2. For any vertex $c_{i} \in V(J(D))-V(T), t_{i_{1}}>t_{i_{2}}$.
By (3.2), we can obtain that

$$
\begin{equation*}
\left(c_{i}, a_{t_{i_{1}}}\right),\left(a_{t_{i_{2}}}, c_{i}\right) \notin A(J(D)) \tag{3.7}
\end{equation*}
$$

If $\left\{a_{1}, a_{2}, \ldots, a_{t_{i_{2}}-1}\right\} \neq \emptyset$, then there exists a vertex $a \in\left\{a_{1}, a_{2}, \ldots, a_{t_{i_{2}}-1}\right\}$ such that $a \neq a_{t_{i_{2}}}$. Since $t_{i_{1}}>t_{i_{2}}$, and $t_{i_{1}}$ is a minimum integer and $t_{i_{2}}$ is a maximum integer such that $\left(a_{t_{i_{1}}}, c_{i}\right),\left(c_{i}, a_{t_{i_{2}}}\right) \in A(J(D))$, we can obtain that $a_{1} \neq a_{t_{i_{1}}}, a_{t} \neq a_{t_{i_{2}}}, a \neq a_{t_{i_{1}}}$ and $\left(c_{i}, a_{t}\right),\left(a, c_{i}\right) \notin A(J(D))$. By (3.7) and Corollary 2.3 (iii), we have $\left(a_{t_{i_{2}}}, a_{t}\right),\left(a, a_{t_{i_{1}}}\right),\left(a_{t_{i_{2}}}, a_{t_{i_{1}}}\right) \in$ $A(J(D))$. Since $a \neq a_{t_{i_{2}}}$, we have $\left(a_{t_{i_{2}}}, a_{t}\right) \neq\left(a, a_{t_{i_{1}}}\right)$. By (3.4), for any $a_{k} \in A^{\prime}$, we have $\left(a_{k}, a_{t_{i_{2}}}\right),\left(a_{t_{i_{2}}}, a_{k}\right) \in A(J(D))$, where $A^{\prime}=\left\{a_{2}, a_{3}, \ldots, a_{t_{i_{1}}-1}\right\}-\left\{a_{t_{i_{2}}}\right\}$. And by (3.5), for any
$a_{k^{\prime}} \in A^{\prime \prime}$, we have $\left(a_{k^{\prime}}, a_{t_{i_{1}}}\right),\left(a_{t_{i_{1}}}, a_{k^{\prime}}\right) \in A(J(D))$, where $A^{\prime \prime}=\left\{a_{t_{i_{1}}+1}, a_{t_{i_{1}}+2}, \ldots, a_{t-1}\right\}$.
Next, we consider vertices a_{1} and a. If $a_{1}=a$, then

$$
\begin{aligned}
T^{\prime \prime}= & \left(a_{1}, a_{t_{i_{1}}}\right)\left(a_{t_{i_{1}}}, c_{i}\right)\left(c_{i}, a_{t_{i_{2}}}\right)\left(a_{t_{i_{2}}}, a_{t}\right) \cup \bigcup_{a_{k} \in A^{\prime}}\left\{\left(a_{k}, a_{t_{i_{2}}}\right),\left(a_{t_{i_{2}}}, a_{k}\right)\right\} \\
& \cup \bigcup_{a_{k^{\prime}} \in A^{\prime \prime}}\left\{\left(a_{k^{\prime}}, a_{t_{i_{1}}}\right),\left(a_{t_{i_{1}}}, a_{k^{\prime}}\right)\right\}
\end{aligned}
$$

is an (a, b)-trail of $J(D)$ with $\left|V\left(T^{\prime \prime}\right)\right|>|V(T)|$, contrary to (3.1). Hence we assume that $a_{1} \neq a$. By (3.4), $\left(a_{1}, a\right) \in A(J(D))$, and so $\left(a_{1}, a\right) \neq\left(a, a_{t_{i_{1}}}\right)$. If $\left(a_{1}, a\right) \neq\left(a_{t_{i_{2}}}, a_{t}\right)$, then

$$
\begin{aligned}
T^{\prime \prime}= & \left(a_{1}, a\right)\left(a, a_{t_{i_{1}}}\right)\left(a_{t_{i_{1}}}, c_{i}\right)\left(c_{i}, a_{t_{i_{2}}}\right)\left(a_{t_{i_{2}}}, a_{t}\right) \cup \bigcup_{a_{k} \in A^{\prime}}\left\{\left(a_{k}, a_{t_{i_{2}}}\right),\left(a_{t_{i_{2}}}, a_{k}\right)\right\} \\
& \cup \bigcup_{a_{k^{\prime}} \in A^{\prime \prime}}\left\{\left(a_{k^{\prime}}, a_{t_{i_{1}}}\right),\left(a_{t_{i_{1}}}, a_{k^{\prime}}\right)\right\}
\end{aligned}
$$

is an (a, b)-trail of $J(D)$ with $\left|V\left(T^{\prime \prime}\right)\right|>|V(T)|$, contrary to (3.1). If $\left(a_{1}, a\right)=\left(a_{t_{i_{2}}}, a_{t}\right)$, then $a_{1}=a_{t_{i_{2}}}$ and $a=a_{t}$. Since $a \neq a_{t_{i_{1}}}$, we have $\left(a_{1}, a_{t}\right) \neq\left(a_{t_{i_{2}}}, a_{t_{i_{1}}}\right)$. Thus

$$
\begin{aligned}
T^{\prime \prime}= & \left(a_{1}, a_{t}\right)\left(a_{1}, a_{t_{i_{1}}}\right)\left(a_{t_{i_{1}}}, c_{i}\right)\left(c_{i}, a_{1}\right) \cup \bigcup_{a_{k} \in A^{\prime}}\left\{\left(a_{k}, a_{t_{i_{2}}}\right),\left(a_{t_{i_{2}}}, a_{k}\right)\right\} \\
& \cup \bigcup_{a_{k^{\prime}} \in A^{\prime \prime}}\left\{\left(a_{k^{\prime}}, a_{t_{i_{1}}}\right),\left(a_{t_{i_{1}}}, a_{k^{\prime}}\right)\right\}
\end{aligned}
$$

is an (a, b)-trail of $J(D)$ with $\left|V\left(T^{\prime \prime}\right)\right|>|V(T)|$, contrary to (3.1).
Likewise, if $\left\{a_{t_{i_{1}}+1}, a_{t_{i_{1}}+2}, \ldots, a_{t}\right\} \neq \emptyset$, then a contradiction will be obtained similarly.
Hence assume that $t_{i_{2}}=1$ and $t_{i_{1}}=t$. If $A^{\prime \prime \prime}=\left\{a_{t_{i_{2}}+1}, a_{t_{i_{2}}+2}, \ldots, a_{t_{i_{1}-1}}\right\} \neq \emptyset$, then let $a^{\prime} \in\left\{a_{t_{i_{2}}+1}, a_{t_{i_{2}}+2}, \ldots, a_{t_{i_{1}}-1}\right\}$. As $t_{i_{1}}$ is a minimum integer and $t_{i_{2}}$ is a maximum integer such that $\left(a_{t_{i_{1}}}, c_{i}\right),\left(c_{i}, a_{t_{i_{2}}}\right) \in A(J(D))$, we can obtain that $a^{\prime} \neq a_{t_{i_{1}}}, a^{\prime} \neq a_{t_{i_{2}}}$ and $\left(a^{\prime}, c_{i}\right),\left(c_{i}, a^{\prime}\right) \notin$ $A(J(D))$. By (3.2), we have $\left(c_{i}, a_{t_{i_{1}}}\right),\left(a_{t_{i_{2}}}, c_{i}\right) \notin A(J(D))$. By Corollary 2.3 (iii), we have $\left(a_{t_{i_{2}}}, a^{\prime}\right),\left(a^{\prime}, a_{t_{i_{1}}}\right),\left(a_{t_{i_{2}}}, a_{t_{i_{1}}}\right) \in A(J(D))$. By (3.4), for any $a_{k} \in A^{\prime \prime \prime},\left(a_{t_{i_{2}}}, a_{k}\right),\left(a_{k}, a_{t_{i_{2}}}\right) \in$ $A(J(D))$. Thus

$$
T^{\prime \prime}=\left(a_{1}, a_{t}\right)\left(a_{t}, c_{i}\right)\left(c_{i}, a_{1}\right)\left(a_{1}, a^{\prime}\right)\left(a^{\prime}, a_{t}\right) \cup \bigcup_{a_{k} \in A^{\prime \prime \prime}-\left\{a^{\prime}\right\}}\left\{\left(a_{k}, a_{t_{i_{2}}}\right),\left(a_{t_{i_{2}}}, a_{k}\right)\right\}
$$

is an (a, b)-trail of $J(D)$ with $\left|V\left(T^{\prime \prime}\right)\right|>|V(T)|$, contrary to (3.1).
Hence we may assume that $t=2, a_{t_{i_{2}}}=a_{1}$ and $a_{t_{i_{1}}}=a_{2}$. Thus

$$
\begin{equation*}
V(J(D))=\left\{a_{1}, a_{2}, c_{1}, c_{2}, \ldots, c_{\ell}\right\} \tag{3.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\text { for any } c_{i} \in V(J(D))-V(T),\left[a_{1}, c_{i}\right]_{J(D)}=\left\{\left(c_{i}, a_{1}\right)\right\} \text { and }\left[a_{2}, c_{i}\right]_{J(D)}=\left\{\left(a_{2}, c_{i}\right)\right\} \text {. } \tag{3.9}
\end{equation*}
$$

By (3.9), for any two distinct vertices $c_{i}, c_{j} \in V(J(D))-V(T)$, we have $\left(a_{1}, c_{i}\right),\left(a_{1}, c_{j}\right) \notin$ $A(J(D))$. By Corollary $2.3(\mathrm{i}),\left(c_{i}, c_{j}\right),\left(c_{j}, c_{i}\right) \in A(J(D))$. Thus

$$
\begin{equation*}
J(D)[V(J(D))-V(T)] \text { is a complete digraph. } \tag{3.10}
\end{equation*}
$$

Since $\left(a_{1}, a_{2}\right) \in A(J(D))$, by (3.8)-(3.10), we can obtain that $J(D) \cong J(D(\ell))$. By Proposition
3.2 (iv), $D \cong D(\ell)$, and so $D \in \mathcal{D}$, a contradiction. Hence $J(D)$ is strongly trail-connected.

Theorem 3.4 Every strongly connected jump digraph $J(D)$ of a directed multigraph D is weakly trail-connected.

Proof Let \mathcal{D} be a directed multigraph family as defined in Definition 3.1. By Theorem 3.3, if $D \notin \mathcal{D}$, then $J(D)$ is strongly trail-connected, and so $J(D)$ is weakly trail-connected; if $D \in \mathcal{D}$, by Proposition 3.2 (ii), $J(D)$ is weakly trail-connected. Hence every strongly connected jump digraph $J(D)$ of directed multigraph D is weakly trail-connected.

Theorem 3.5 Every weakly connected jump digraph $J(D)$ of a directed multigraph D has a spanning trail.

Proof If $J(D)$ is weakly connected but is not strongly connected, then by Theorem 2.7, $D \in \mathcal{H}_{1}$ and $D \notin \mathcal{H}_{2}$. So $B^{+} \neq \emptyset$ and $B^{-} \neq \emptyset$ and, $t_{1} \neq 0$ or $t_{2} \neq 0$ or $t_{3} \neq 1$. Hence $\sum_{i=1}^{t_{1}} \ell_{x_{i}} \neq 0$ or $\sum_{j=1}^{t_{2}} \ell_{y_{j}}^{\prime} \neq 0$ or, $\sum_{k=1}^{t_{3}} \ell_{z_{k}} \neq 1$ and $\sum_{k=1}^{t_{3}} \ell_{z_{k}}^{\prime} \neq 1$. If $t_{3}=0$, since $B^{+} \neq \emptyset$ and $B^{-} \neq \emptyset$, by Proposition 2.5 (i), we can obtain that $\sum_{i=1}^{t_{1}} \ell_{x_{i}} \geq 1$ and $\sum_{j=1}^{t_{2}} \ell_{y_{j}} \geq 1$. By Proposition $2.5(\mathrm{v})$, we have

$$
\begin{aligned}
\left|\left(B^{+}, B^{-}\right)_{J(D)}\right| & =\left(\sum_{i=1}^{t_{1}} \ell_{x_{i}}+\sum_{k=1}^{t_{3}} \ell_{z_{k}}\right)\left(\sum_{j=1}^{t_{2}} \ell_{y_{j}}^{\prime}+\sum_{k=1}^{t_{3}} \ell_{z_{k}}^{\prime}\right)-\sum_{k=1}^{t_{3}} \ell_{z_{k}} \ell_{z_{k}}^{\prime} \\
& =\left(\sum_{i=1}^{t_{1}} \ell_{x_{i}}\right)\left(\sum_{j=1}^{t_{2}} \ell_{y_{j}}^{\prime}\right) \geq 1 .
\end{aligned}
$$

If $t_{3} \geq 2$, then $\left(\sum_{k=1}^{t_{3}} \ell_{z_{k}}\right)\left(\sum_{k=1}^{t_{3}} \ell_{z_{k}}^{\prime}\right)>\sum_{k=1}^{t_{3}} \ell_{z_{k}} \ell_{z_{k}}^{\prime}$. By Proposition $2.5(\mathrm{v})$,

$$
\begin{aligned}
\left|\left(B^{+}, B^{-}\right)_{J(D)}\right| & =\left(\sum_{i=1}^{t_{1}} \ell_{x_{i}}+\sum_{k=1}^{t_{3}} \ell_{z_{k}}\right)\left(\sum_{j=1}^{t_{2}} \ell_{y_{j}}^{\prime}+\sum_{k=1}^{t_{3}} \ell_{z_{k}}^{\prime}\right)-\sum_{k=1}^{t_{3}} \ell_{z_{k}} \ell_{z_{k}}^{\prime} \\
& \geq\left(\sum_{k=1}^{t_{3}} \ell_{z_{k}}\right)\left(\sum_{k=1}^{t_{3}} \ell_{z_{k}}^{\prime}\right)-\sum_{k=1}^{t_{3}} \ell_{z_{k}} \ell_{z_{k}}^{\prime} \geq 1 .
\end{aligned}
$$

Thus, $\left(B^{+}, B^{-}\right)_{J(D)} \neq \emptyset$. Let $a \in B^{+}$and $b \in B^{-}$such that $(a, b) \in A(J(D))$. By Proposition 2.5 (iii), $J(D)\left[B^{+}\right]$and $J(D)\left[B^{-}\right]$are complete digraphs, by (1.2), J(D)[$\left.B^{+}\right]$has a spanning closed trail T_{1} and $J(D)\left[B^{-}\right]$has a spanning closed trail T_{2}. Thus

$$
T_{1} \cup(a, b) \cup T_{2}
$$

is a spanning trail of $J(D)$.
Acknowledgements We thank the referees for their time and comments.

References

[1] J. BANG-JENSEN, G. GUTIN. Digraphs: Theory, Algorithms and Applications. 2nd Edition. SpringerVerlag, London, 2009.
[2] J. A. BONDY, U. S. R. MURTY. Graph Theory. Springer, New York, 2008.
[3] G. GUTIN. Cycles and paths in directed graphs. PhD thesis, School of Mathematics, Tel Aviv University, 1993.
[4] Yanmei HONG, Hongjian LAI, Qinghai LIU. Supereulerian digraphs. Discrete Math., 2014, 330(6): 87-95.
[5] J. BANG-JENSEN, A. MADDALONI. Sufficient conditions for a digraph to be supereulerian. J. Graph Theory, 2015, 79(1): 8-20.
[6] M. J. ALFEGARI, Hongjian LAI. Supereulerian digraphs with large arc-strong connectivity. J. Graph Theory, 2016, 81(4): 393-402.
[7] M. J. ALFEGARI, Hongjian LAI, Jinquan XU. Locally dense supereulerian digraphs. Discrete Appl. Math., 2018, 238(31): 24-31.
[8] Feng LIU, Zengxian TIAN, Deming LI. Supereulerian locally semicomplete multipartite digraphs. International J. Math. Combin., 2017, 2: 123-128.
[9] Xindong ZHANG, Juan LIU, Lan WANG, et al. Supereulerian bipartite digraphs. J. Graph Theory, 2018, 89(1): 64-75.
[10] J. BANG-JENSEN, H. DÉPRÉS, A. YEO. Spanning eulerian subdigraphs avoiding k prescribed arcs in tournaments. Discrete Math., 2020, 343(12): 112129, 7 pp.
[11] Juan LIU, Qinghai LIU, Xindong ZHANG, et al. Trail-connected tournaments. Appl. Math. Comput., 2021, 389: Paper No. 125595, 5 pp.
[12] Juan LIU, Hong YANG, Hongjian LAI, et al. Symmetric core and spanning trails in directed networks. Discrete Math., 2021, 344(11): Paper No. 112584, 10 pp.
[13] Baoyindureng WU, Jixiang MENG. Hamiltonian jump graphs. Discrete Math., 2004, 289(1-3): 95-106.
[14] Jiping LIU. A characterization of pancyclic complements of line graphs. Discrete Math., 2005, 299(1-3): 172-179.
[15] T. ANDREAE, M. SCHUGHART. Clique-transversal sets of line graphs and complements of line graphs. Discrete Math., 1991, 88(1): 11-20.
[16] F. BONOMO, G. DURÁN, M. D. SAFE, et al. Clique-perfectness of complements of line graphs. Discrete Appl. Math., 2015, 186(11): 19-44.
[17] H. HEVİA, D. VANDERJAGT, P. ZHANG. On the planarity of jump graphs. Discrete Math., 2000, 220(1-3): 119-129.
[18] L. W. BEINEKE. On Derived Graphs and Digraphs. Beitrage zur Graphentheorie. Teubner, Leipzig, 1968.

