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a b s t r a c t

For a connected graph G, let κ ′(G) be the edge-connectivity of G. The ℓ-edge-connectivity
κ ′

ℓ(G) of G with order n ≥ ℓ is the minimum number of edges that are required to be
deleted from G to produce a graph with at least ℓ components. It has been observed
that while both κ ′(G) and κ ′

ℓ(G) are related edge connectivity measures. In general, κ ′

ℓ(G)
cannot be upper bounded by a function of κ ′(G). Let κ ′(G) = max{κ ′(H) : H ⊆ G} be the
maximum subgraph edge-connectivity of G. We prove that for integers k′, k and ℓ with
k′

≥ k ≥ 1 and ℓ ≥ 2, each of the following holds.
(i) sup{κ ′

ℓ(G) : κ ′(G) = k, κ ′(G) = k′
} = k + (ℓ − 2)k′.

(ii) inf{κ ′

ℓ(G) : κ ′(G) = k, κ ′(G) = k′
} =

kℓ
2 .

© 2022 Published by Elsevier B.V.

1. The problem

Graphs in this paper are finite and loopless. Undefined terms and notations can be found in [2]. For a graph G, c(G)
denotes the number of components of G. We write H ⊆ G to mean H is a subgraph of G. For vertex subsets S and S ′ of a
raph G, define

[S, S ′
]G = {uv ∈ E(G) : u ∈ S, & v ∈ S ′

}.

hen G is understood from the context, we often use [S, S ′
] for [S, S ′

]G. Define ∂G(S) = [S, V (G) − S], and when S = {v},
we often write ∂G(v) for ∂G({v}). If H is a non-empty non-spanning subgraph of G, we often use ∂G(H) for ∂G(V (H)). An
dge-cut of a (not necessarily connected) graph G is an edge subset of the form ∂G(S), for some nonempty proper subset
of V (G). A minimal edge-cut of G is called a bond. The edge-connectivity κ ′(G) of a connected graph G is the minimum
ardinality of an edge-cut of G.
Matula [8] initiated the study of edge-connectivity of subgraphs. He defined

κ ′(G) = max
H⊂G

κ ′(H),

and considered κ ′(G) as a useful tool to investigate the cohesiveness of a network when modeled as a graph. Matula
published a number of papers on the cohesiveness of networks, as seen in [8–10]. The extremal properties related to
κ ′(G) were investigated by Mader and others, which can be found in [5–7], among others. More generally, let f (G) denote
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a density measure of G, one can define f (G) = max {f (H) : H is a subgraph of G}. As indicated in [4], for certain network
opology measures f , a network modeled as a graph G with f (G) = f (G) is considered as uniformly dense in the measure
f , and is of particular interest to be investigated. Thus we define a graph G to be edge-uniformly dense if κ ′(G) = κ ′(G).

For an integer ℓ ≥ 2, Boesch and Chen [1] defined the ℓ-edge-connectivity κ ′

ℓ(G) of a connected graph G of order
≥ ℓ to be the minimum number of edges that are required to be deleted from G to produce a graph with at least
components. As when ℓ = 2, κ ′

2(G) = κ ′(G), the edge-connectivity of G, the notion κ ′

ℓ(G) is often considered as a
eneralization of edge-connectivity. Boesch and Chen proved the following.

heorem 1.1 (Boesch and Chen [1]). κ ′

ℓ(Kn) =
(ℓ−1)(2n−ℓ)

2 .

There have been quite a few studies on the behavior of κ ′

ℓ(G), as seen in Oellermann’s survey [11]. The following
xample indicates that, in general, κ ′

ℓ(G) cannot be bounded above by a function of κ ′(G).

xample 1.2. Let k, ℓ, n be positive integers with n ≥ k+ ℓ ≥ k+ 2, and let G := G(n, ℓ, k) be a graph obtained from the
omplete graph Kn−1 by adding a new vertex v0 /∈ V (Kn−1) and by adding k new edges joining v0 to k distinct vertices in
n−1. As n ≥ k + ℓ, it is routine to verify that κ ′(G) = k. Suppose that X ⊆ E(G) is an edge subset such that G − X has ℓ
omponents G1,G2, . . . ,Gℓ with κ ′

ℓ(G) = |X |. By symmetry, we assume that v0 ∈ V (G1). If V (G1) = v0, then ∂G(v0) ⊆ X
and X ′

:= X − ∂G(v0) is an edge subset of Kn−1 with |X ′
| ≥ κ ′

ℓ−1(Kn−1). In this case, by Theorem 1.1,

|X | = |∂G(v0)| + |X ′
| ≥ k +

(ℓ − 2)(2n − ℓ + 1)
2

.

If |V (G1)| ≥ 2, then we may assume that ∂G(v0) ∩ X = ∅, and so X ⊆ E(Kn−1) with |X | ≥ κ ′

ℓ(Kn−1). Thus by Theorem 1.1,

κ ′

ℓ(G) = |X | ≥ min
{
k +

(ℓ − 2)(2n − ℓ + 1)
2

,
(ℓ − 1)(2n − ℓ − 2)

2

}
.

Since the number n can be arbitrarily large, we conclude that κ ′

ℓ(G) cannot be bounded by a function of κ ′(G).

As uniformly dense networks are of application importance (see [4]), it is of interest to study whether κ ′

ℓ(G) can be
bounded by a function of κ ′(G) among all edge uniformly dense graphs. To investigate this problem, for given integers ℓ
and k, and a family F of connected graphs with order at least ℓ, we define

Φ(ℓ, k;F) = sup{κ ′

ℓ(G) : G ∈ F, κ ′(G) = k} and φ(ℓ, k;F) = inf{κ ′

ℓ(G) : G ∈ F, κ ′(G) = k}.

The main result of this paper is the following.

Theorem 1.3. Let ℓ and k be integers with ℓ > 1 and k ≥ 1, and Gu be the family of all edge-uniformly dense graphs of order
at least ℓ. Each of the following holds.
(i) Φ(ℓ, k; Gu) = (ℓ − 1)k.
(ii) φ(ℓ, k; Gu) =

kℓ
2 .

In order to prove Theorem 1.3, we take a slightly more general approach to relax the edge-uniformly dense constraint
y allowing bounded value of maximum subgraph edge-connectivity. Let ℓ, k, k′ be integers with ℓ ≥ 2 and k′ > k ≥ 1
nd Gk′ denote the family of all connected graphs with order at least ℓ such that every graph G ∈ Gk′ satisfies κ ′(G) = k′

nd κ ′(G) = k. As when k = k′, we have Gk = Gu, Theorem 1.3 will be the special case of Theorem 1.4 when k = k′.

heorem 1.4. Let ℓ and k be integers with ℓ ≥ 2 and k ≥ 1, and Gℓ be the family of all connected graphs of order at least ℓ.
Each of the following holds.
(i) Φ(ℓ, k; Gk′ ) = k + (ℓ − 2)k′.
(ii) φ(ℓ, k; Gk′ ) =

kℓ
2 .

2. Proofs of the main results

A graph G is a trivial graph if it has at least one vertex and is edgeless. Throughout the rest of this paper, we let k′, k, ℓ
e integers with k′

≥ k > 0 and ℓ ≥ 2. While it is known that κ ′(G) = κ ′

2(G), we will continue using κ ′(G) instead of κ ′

2(G)
in our discussions.

Lemma 2.1. Let G be a connected graph. Then for any subgraph H of G with |V (H)| ≥ ℓ, we have (ℓ−2)κ ′(G)+κ ′(H) ≥ κ ′

ℓ(H).

roof. Let H be a subgraph of G with |V (H)| ≥ ℓ. Pick a minimum edge-cut Z1 of H . Assuming that for a fixed j with
≤ j < ℓ−1, Zj has been found. Then as |V (H)| ≥ ℓ, at least one component of H−(∪j

i=1Zi) is nontrivial. Fix one nontrivial
omponent of H − (∪j

i=1Zi) and let Zj+1 be a minimum edge-cut of this nontrivial component. Thus we have generated a
sequence (Z1, Z2, . . . , Zℓ−1) of subsets of H , such that |Z1| = κ ′(H) and for each i with 2 ≤ i ≤ ℓ − 1, |Zi| ≤ κ ′(H) ≤ κ ′(G).
urthermore, by our choices of the Zi’s, H − (∪ℓ−1

i=1 Zi) has exactly ℓ components. Thus (ℓ − 2)κ ′(G) + κ ′(H) ≥
∑ℓ−1

i=1 |Zi| ≥
′ (H), which leads to Lemma 2.1. ■
ℓ
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Proposition 2.2 (Zhang et al. Theorem 2.5 of [12]). Suppose that G is a connected graph with |V (G)| ≥ ℓ. Then

κ ′

ℓ(G) ≥
ℓ

2
κ ′(G).

Proof. Let X be an edge subset of E(G) such that G − X has components G1,G2, . . . ,Gℓ with |X | = κ ′

ℓ(G). Thus for each i
with 1 ≤ i ≤ ℓ, |∂G(V (Gi))| ≥ κ ′(G) and 2κ ′

ℓ(G) = 2|X | =
∑ℓ

i=1 |∂G(V (Gi))| ≥ ℓκ ′(G). This proves the proposition. ■

By combining Lemma 2.1 (with H = G) and Proposition 2.2, we conclude that for any connected graph G with
|V (G)| ≥ ℓ,

(ℓ − 2)κ ′(G) + κ ′(G) ≥ κ ′

ℓ(G) ≥
ℓ

2
κ ′(G). (1)

2.1. Proof of Theorem 1.4(i)

To prove Theorem 1.4(i), we shall show, for given integers k′
≥ k ≥ 1 and ℓ ≥ 2, the existence of infinitely many

graphs G with κ ′(G) = k, and κ ′(G) = k′ such that the upper bound in (1) will be reached. In this subsection, we shall
construct an infinite family of graphs satisfying the expected edge-connectivity constraints and reaching the upper bound
in (1), which implies Theorem 1.4(i). The following is the main result.

Proposition 2.3. For any integers k′, k, ℓ with ℓ ≥ k′
+1 > 2 and k′

≥ k, there exists an infinite graph family F1 = F1(ℓ, k′, k)
such that for any graph H ∈ F1, each of the following holds.
(i) (Example 1 and Theorem 1 of [5]) If k′

= k, then H is edge-uniformly dense with κ ′(H) = k.
(ii) κ ′(H) = k′ and κ ′(H) = k.
(iii) κ ′

ℓ(H) = (ℓ − 2)κ ′(H) + κ ′(H).

roof. We are to construct this family of graphs to justify Proposition 2.3. For an integer m ≥ 1, define mG to be the
isjoint union of m copies of G. Hence 1G = G. Following [2], for two vertex disjoint graphs G,G′, let G ∨ G′ denote the

join of G and G′, which is a graph with vertex set V (G) ∪ V (G′) and edge set E(G) ∪ E(G′) ∪ {uv : u ∈ V (G), v ∈ V (G′)}.
xtending a graph construction idea in [5], we construct the following graph family. For any integers k′, k and n with

n > k + 1, let H0 ∼= Kk′ be a complete graph with vertex set V (H0) = {v1, v2, . . . , vk′} and let the vertex set of (n − k)K1
be W := {w1, w2, . . . , wn−k}. Define

H(k′
; n − k) = (H0 ∨ (n − k)K1) − {w1vj : k + 1 ≤ j ≤ k′

}. (2)

When k′
= k, H(k′

; n − k) is precisely the same graph H(k, n − k) constructed in [5]. We are to prove (ii) and (iii) of the
proposition. Define

N0 = max
{
2ℓ + k, ℓ + 2k′

+ k, 5ℓ + k − 7
}
. (3)

nd F1 = {H(k′
; n − k) : k′

≥ k, ℓ ≥ k + 1 > 2, n ≥ N0}. To prove (ii), we assume that k′ > k as otherwise we may
urn to (i). Randomly pick a member H ∈ F1. By the definition of F1, ∂H (w1) is the only edge cut in H of size k, and so
′(H) = k. Now let H ′ be a subgraph of H with κ ′(H) = κ ′(H ′). If κ ′(H ′) > k′, then as every vertex in W has degree at
ost k′ in H , we conclude that V (H ′) ∩ W = ∅. Hence H ′ is a subgraph of H0, a complete graph of order k′. This implies

hat k′ < κ ′(H ′) ≤ k′
− 1, a contradiction. This implies that κ ′(H) = κ ′(H ′) ≤ k′. On the other hand, H contains Kk′+1 as a

ubgraph, and so κ ′(H) ≥ κ ′(Kk′+1) ≥ k′, implying that κ ′(H) = k′. This proves (ii).
It remains to prove (iii). Let X ⊆ E(H) be an edge subset such that H−X has at least ℓ components and that |X | = κ ′

ℓ(H).
By (1), it suffices to show that

|X | ≥ (ℓ − 2)k′
+ k.

As |X | = κ ′

ℓ(H), H − X must have exactly ℓ components H1,H2, . . . ,Hℓ. Since ℓ ≥ k′
+ 1 and |V (H0)| = k′, without loss of

generality, we may assume that V (H1) ∩ V (H0) = ∅. This implies that V (H1) ⊆ W and |V (H1)| = 1. Therefore, there must
be at least one of Hi’s that consists of only one vertex in W . Without loss of generality, we assume that for some integer
s with 1 ≤ s ≤ ℓ such that

every Hj with s ≤ j ≤ ℓ consists of a single vertex in W , (4)

and the Hj’s (s ≤ j ≤ ℓ) are so labeled that

|∂H (V (Hs))| ≥ |∂H (V (Hs+1))| ≥ · · · ≥ |∂H (V (Hℓ))|,

and that every Hj′ with 1 ≤ j′ ≤ s − 1 satisfies V (Hj′ ) ∩ V (H0) ̸= ∅. Depending on whether an Hi contains a vertex in W
or not, we further partitioned H1, . . . ,Hs−1 into two parts and assume that there exists an integer s′ < s such that

for any H ∈ {H , . . . ,H ′ }, V (H ) ∩ W = ∅, (5)
t 1 s −1 t
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and

for any Ht ∈ {Hs′ , . . . ,Hs−1}, V (Ht ) ∩ W ̸= ∅. (6)

Thus for any j with 1 ≤ j ≤ ℓ, ∂H (V (Hj)) ⊆ X . By (2) and (4), we conclude that for any Hj with s ≤ j ≤ ℓ,

k ≤ |∂H (V (Hℓ))| ≤ k′
= |∂H (V (Hj))|, where s ≤ j ≤ ℓ − 1. (7)

By (5), for any j with 1 ≤ j ≤ s′ − 1, Hj is a subgraph of H0 ∼= Kk′ . By (2), every vertex in this Hj must be adjacent to every
ertex in W , and so we conclude that for any Hj with 1 ≤ j ≤ s′ − 1,

|∂H (V (Hj))| = |[V (Hj),W ]H | + |∂H0 (V (Hj))| = (n − k)|V (Hj)| + |∂H0 (V (Hj))|. (8)

ix an index j with s′ ≤ j ≤ s − 1, let Wj = W ∩ V (Hj), and H ′

j = Hj − Wj. Thus H ′

j is a subgraph of H0 ∼= Kk′ . By (2), we
ave, for any Hj with s′ ≤ j ≤ s − 1,

|∂H (V (Hj))| = |[Wj, V (H0) − V (H ′

j )]H | + |∂H0 (V (H ′

j ))| + |[V (H ′

j ),W − Wj]H |. (9)

o estimate X , we set

X1 =
ℓ

∪
j=s

∂H (V (Hj)), (10)

X ′

2 =
s−1
∪
j=s′

[Wj, V (H0) − V (H ′

j )]H and X ′′

2 =
s−1
∪
j=s′

∂H0 (V (H ′

j )),

X ′

3 =
s′−1
∪
j=1

[V (Hj),W ]H and X ′′

3 =
s′−1
∪
j=1

∂H0 (V (Hj)),

X ′′
= X ′′

2 ∪ X ′′

3 .

hus X = X1 ∪ X ′

2 ∪ X ′′

2 ∪ X ′

3 ∪ X ′′

3 . Note that some of these sets defined in (10) could be empty. Recall that ℓ ≥ s ≥ 2. If
= 2, then H1 = H0 ∼= Kk and so X ′

3 = [V (H1),W ]H = ∂H (H1), X ′

2 = X ′′

2 = X ′′

3 = ∅. Thus X = X1 = X ′

3, and so by (7),
′

ℓ(H) = |X | ≥ (ℓ − 2)k′
+ k. This, together with (1), implies (iii). Hence in the following we always assume that s > 2.

By their definitions in (10), X1, X ′

2, and X ′′ are mutually edge-disjoint, and each of X1 and X ′

2 is an edge-disjoint union,
nd X ′

3 ⊆ X1 ∪ X ′

2, whereas X ′′ is an edge subset of H0 ∼= Kk′ such that H0 − X ′′ has s− 1 components. This gives us a way
o apply (7), (8), (9) and Theorem 1.1 to estimate X , as follows.

|X | = |X1| + |X ′

2| + |X ′′
| (11)

≥

ℓ∑
j=s

|∂H (V (Hj))| +

s−1∑
j=s′

|[Wj, V (H0) − V (H ′

j )]H | + κ ′

s−1(Kk′ )

≥ (ℓ − s)k′
+ k + ϵ +

s−1∑
j=s′

|Wj| · |V (H0) − V (H ′

j )| +
(s − 2)(2k′

− s + 1)
2

,

where

ϵ =

{
k′

− k if |∂H (V (Hℓ))| = k′

0 if |∂H (V (Hℓ))| = k.

Let n′
=

∑s−1
j=s′ |Wj|. Then by (2), n′

= (n − k) − (ℓ − s + 1). Without loss of generality, we may assume that

|V (H ′

s′ )| ≥ |V (H ′

s′+1)| ≥ · · · ≥ |V (H ′

s−1)|.

Suppose first that |V (H ′

s′ )| ≤
k′
2 . Then for any j with s′ ≤ j ≤ s − 1, we have |V (H0) − V (H ′

j )| = k′
− |V (H ′

j )| ≥
k′
2 . By (3),

e have n ≥ 2ℓ + k. This, together with ℓ ≥ s > 2, implies that n′
= n − k − ℓ + s − 1 ≥ 2s − 2. Hence by (11), we have

|X | ≥ (ℓ − s)k′
+ k + ϵ +

s−1∑
j=s′

|Wj| · |V (H0) − V (H ′

j )| +
(s − 2)(2k′

− s + 1)
2

≥ (ℓ − s)k′
+ k + ϵ +

k′

2

s−1∑
j=s′

|Wj| +
(s − 2)(2k′

− s + 1)
2

= (ℓ − s)k′
+ k + ϵ +

k′n′

+
(s − 2)(2k′

− s + 1)

2 2
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≥ (ℓ − s)k′
+ k + ϵ +

k′(2s − 2)
2

+
(s − 2)(2k′

− s + 1)
2

> (ℓ − s)k′
+ k + ϵ + k′(s − 1) +

(s − 2)(2k′
− s + 1)

2
> (ℓ − 2)k′

+ k.

ence in the following, we may assume that |V (H ′

s′ )| > k′
2 .

Case 2.4. |Ws′ | ≥
n′

2 .

By (2), every vertex in Ws′ is adjacent to every vertex in V (H0)− V (Hs′ ). As H1,H2, . . . ,Hs′−1, Hs′+1, ...,Hs−1 are vertex
disjoint subgraphs of H0, it follows that

|V (H0) − V (Hs′ )| =

s′−1∑
j=1

|V (H ′

j )| +

s−1∑
j=s′+1

|V (H ′

j )| ≥ s − 2.

By (11) and by (3), we have n ≥ 2k′
+ k + ℓ, and so n′

≥ 2k′.

|X | ≥ (ℓ − s)k′
+ k + ϵ +

s−1∑
j=s′

|Wj| · |V (H0) − V (H ′

j )| +
(s − 2)(2k′

− s + 1)
2

≥ (ℓ − s)k′
+ k + ϵ + |Ws′ | · |V (H0) − V (Hs′ )| +

(s − 2)(2k′
− s + 1)

2

≥ (ℓ − s)k′
+ k + ϵ +

n′

2
(s − 2) +

(s − 2)(2k′
− s + 1)

2

= (ℓ − s)k′
+ k + ϵ +

2k′

2
(s − 2) +

(s − 2)(2k′
− s + 1)

2
> (ℓ − s)k′

+ k + ϵ + (s − 2)k′
≥ (ℓ − 2)k′

+ k.

Case 2.5. |Ws′ | < n′

2 .

Since |V (H ′

s′ )| > k′
2 , it follows that for any j with s′ + 1 ≤ j ≤ s− 1, |V (H ′

j )| ≤
∑s−1

i=s′+1 |V (H ′

i )| = |V (H0)| − |V (H ′

s′ )| < k′
2 .

s |Ws′ | < n′

2 , we have
∑s−1

j=s′+1 |Wj| = n′
−|Ws′ | > n′

2 . By (3), n ≥ 5ℓ+k−7 and so n′
= n−k−ℓ+s−1 ≥ 4ℓ−8 ≥ 4(s−2).

Thus by (11), we have

|X | ≥ (ℓ − s)k′
+ k + ϵ +

s−1∑
j=s′

|Wj| · |V (H0) − V (H ′

j )| +
(s − 2)(2k′

− s + 1)
2

> (ℓ − s)k′
+ k + ϵ +

k′

2

s−1∑
j=s′+1

|Wj| = (ℓ − s)k′
+ k + ϵ +

k′(n′
− |Ws′ |)
2

> (ℓ − s)k′
+ k + ϵ +

kn′

4
≥ (ℓ − s)k′

+ k + k′(s − 2) = (ℓ − 2)k′
+ k.

s we always have |X | ≥ (ℓ − 2)k′
+ k, by (1), we prove Proposition 2.3. ■

.2. Proof of Theorem 1.4(ii)

To prove Theorem 1.4(ii), we shall show, for given integers k′
≥ k ≥ 1 and ℓ ≥ 2, the existence of infinitely many

raphs G with κ ′(G) = k, and κ ′(G) = k′ such that the lower bound in (1) will be reached. Following [3], we introduce
circulant graphs and some definitions for constructing graphs to be used in our arguments.

Definition 2.6. Let ℓ, n be integers with ℓ ≥ 2 and n > 1 and denote the additive cyclic group as Zn = {0, 1, 2, . . . , n−1}.
(i) Let S ⊆ Zn − {0} be a subset such that for an element a ∈ Zn, a ∈ S if and only if −a ∈ S, where −a is the additive
inverse of a. Define the circulant graph C(Zn, S) to be the graph with vertex set Zn, where ij ∈ C(Zn, S) if and only if
i − j ∈ S. The set S is called its connection set. Using the definition of Cayley graphs in [3], circulant graphs are Cayley
graphs.
(ii) Let G and J be vertex disjoint graphs and let v ∈ V (G) be a vertex which is adjacent to (not necessarily distinct) vertices
v1, v2, . . . , vd with edges ei = vvi, 1 ≤ i ≤ d. Let u1, u2, . . . , ud be (not necessarily distinct) vertices in J . Define a graph
G(v; J) from the disjoint union of (G − v) ∪ J by adding edges {uivi : 1 ≤ i ≤ d}. As the choices of ui’s and vj’s are not
unique, G(v; J) represents a family of graphs. For simplicity, we shall use G(v; J) to denote any graph in the family, and
say that we blow up the vertex v to the graph J .
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(iii) Let G be a graph with distinct vertices z1, z2, . . . , zℓ, and let J1, J2, . . . , Jℓ be mutually vertex disjoint graphs, each of
which is also disjoint from G. Let G(z1, z2, . . . , zℓ; J1, J2, . . . , Jℓ) denote the family of graphs obtained by, for each i with
1 ≤ i ≤ ℓ, blowing up the vertex zi to the graph Ji. When there is no need to emphasize the vertices z1, z2, . . . , zℓ, we
often use G(J1, J2, . . . , Jℓ) for G(z1, z2, . . . , zℓ; J1, J2, . . . , Jℓ). For notational simplicity, we shall use G(J1, J2, . . . , Jℓ) to denote
any member in the family.

To prove Theorem 1.4(ii), we need a few more tools for the construction of the needed graph families. A graph G is
vertex transitive if the automorphism group of G acts transitively on V (G).

Lemma 2.7. Let G be a connected graph. Each of the following holds.
(i) (Theorem 3.1.2, [3]) Cayley graphs are vertex transitive. As circulant graphs are Cayley graphs, all circulant graphs are vertex
transitive.
(ii) (Lemma 3.3.3, [3]) If G is vertex transitive, then G is a regular graph with κ ′(G) = δ(G).
(iii) Every vertex transitive graph is edge-uniformly dense.
(iv) Suppose that G and J are two vertex disjoint edge-uniformly dense graphs with κ ′(G) = κ ′(J) = k. Then G(v; J) is also
edge-uniformly dense with κ ′(G(v; J)) = k.
(v) Suppose that G, J1, J2, . . . , Jℓ are mutually vertex disjoint edge-uniformly dense graphs with V (G) = {u1, u2, . . . , un} such
that n ≥ ℓ, and let j be an integer with 1 ≤ j ≤ ℓ. If κ ′(G) = κ ′(J1) = · · · = κ ′(Jj) = k, then G(u1, u2, . . . , uj; J1, J2, . . . , Jj) is
also edge-uniformly dense with κ ′(G(u1, u2, . . . , uj; J1, J2, . . . , Jj)) = k.

Proof. Let G be a vertex transitive graph with d = κ ′(G). Then G is d-regular. Let H ⊆ G be a subgraph with κ ′(G) = κ ′(H).
f H = G, then G is edge-uniformly dense. Assume that H is a proper subgraph of G. Since G is connected and d-regular,
κ ′(H) ≤ δ(H) < d, and so κ ′(G) ≤ κ ′(G) = κ ′(H) < d = κ ′(G), a contradiction. Thus G must be edge-uniformly dense. This
justifies (iii).

Now suppose that G and J are edge-uniformly dense with κ ′(G) = κ ′(J) = k, and let v ∈ V (G) be a vertex. First we
explain that κ ′(G(v; J)) = κ ′(G). Observe that κ ′(G(v; J)) ≤ κ ′(G(v; J)/J) = κ ′(G) = k. Thus to show κ ′(G(v; J)) = κ ′(G), it
suffices to show that every edge cut of G(v; J) has size at least k. Let X be a minimal edge cut of G(v; J). If X ∩ E(J) = ∅,
then X ⊆ E(G) is an edge cut of G, whence |X | ≥ k. Now assume that X ∩ E(J) ̸= ∅. Since X is minimal, X ∩ E(J) must be
an edge cut of J , and so |X | ≥ |X ∩ E(J)| ≥ κ ′(J) = k. Thus we must have κ ′(G(v; J)) = κ ′(G) = k.

Next, we shall show that κ ′(G(v; J)) = κ ′(G) = k. Suppose that H is a subgraph of G(v; J) with κ ′(G(v; J)) = κ ′(H).
f E(H) ∩ E(J) = ∅, then H is a subgraph of G(v; J)/J = G. As G is edge-uniformly dense, we have κ ′(G(v; J)) = κ ′(H) ≤
′(G(v; J)/J) = κ ′(G). Thus we may assume that E(H) ∩ E(J) ̸= ∅. Let J1, J2, . . . , Jℓ be the connected components of the
dge induced subgraph J[E(H) ∩ E(J)].
If ℓ ≥ 2, then add a set W of new edges that connects the connected components J1, J2, . . . , Jℓ so that, in the graph

+W obtained by adding the edges in W to H , (H +W )[W ∪ (∪ℓ
i=1E(Ji))] is a connected graph. (If ℓ = 1, then let W = ∅.)

As we are adding edges to H , we have κ ′(H + W ) ≥ κ ′(H). By definition, we have (H + W )/[W ∪ (∪ℓ
i=1E(Ji))] = (H ∪ J)/J ,

which is a subgraph of G(v; J)/J = G. It follows that

k = κ ′(G) ≥ κ ′((H ∪ J)/J) ≥ κ ′((H + W )/[W ∪ (∪ℓ
i=1E(Ji))]) ≥ κ ′(H + W ) ≥ κ ′(H).

ince κ ′(H) = κ ′(G(v; J)) ≥ κ ′(G(v; J)) = κ ′(G) = k, we conclude that we always have κ ′(G(v; J)) = κ ′(G) = k. This proves
iv).

The conclusion (v) follows from Definition 2.6 and Lemma 2.7(iv), arguing by induction on j. ■

emma 2.8. Suppose that h and k are two integers with h > k > 0, and G and J are two vertex disjoint graphs with
= κ ′(G) ≤ κ ′(G) ≤ h and κ ′(J) = h. Then each of the following holds.

(i) G(v; J) satisfies with κ ′(G(v; J)) ≥ h.
ii) If J is uniformly dense, then κ ′(G(v; J)) = h.

Proof. By Definition 2.6, J is a subgraph of G(v; J) and so κ ′(G(v; J)) ≥ κ ′(J) = h. Hence (i) holds. It suffices to show
ii). Let H be a subgraph of G(v; J) with κ ′(H) = κ ′(G(v; J)). As κ ′(J) = h, we may assume that H ̸= J . Assume first that
(H) ∩ E(J) = ∅. Then by Definition 2.6, H is a subgraph of G(v; J)/J = G. Hence

h = κ ′(J) ≤ κ ′(G(v; J)) = κ ′(H) ≤ κ ′(G) ≤ h,

forcing κ ′(G(v; J)) = h. Hence we assume that E(H) ∩ E(J) ̸= ∅. Let J1, J2, . . . , Jℓ denote the connected components of
[E(H) ∩ E(J)], the edge induced subgraph in H . Let W be a set of new edges such that in the graph H + W obtained by
dding the edges in W to H , (H + W )[W ∪ (∪ℓ

i=1E(Ji))] is a connected graph. Again we have

κ ′(H) ≤ κ ′(H + W ) ≤ κ ′((H + W )/[W ∪ (∪ℓ
i=1E(Ji))]) = κ ′((H ∪ J)/J).

As (H ∪ J)/J is a subgraph of G(v; J)/J = G, it follows that

h = κ ′(J) ≤ κ ′(G(v; J)) = κ ′(H) ≤ κ ′((H ∪ J)/J) ≤ κ ′(G) ≤ h,

and so we also have κ ′(G(v; J)) = h. This proves (ii). ■
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Let ℓ, k and k′ be integers with ℓ ≥ 3 and k′
≥ k ≥ 2, we are to construct a graph family G(ℓ, k′, k) with some of the

desirable properties to facilitate our justification for Theorem 1.4(ii).

Example 2.9. Suppose that ℓ and k are given integers such that for some integer s > 1, ℓ = (k + 1)s. Let S ⊆ Zℓ be the
ubset S = {s, 2s, . . . , (k − 1)s, ks}. Then as ℓ = (k + 1)s, for any a ∈ S, we also have −a ∈ S. Thus G = C(Zℓ, S) satisfies
he following properties.
i) G is k-regular with κ ′(G) = k.
ii) κ ′

ℓ(G) =
kℓ
2 .

Proof. By Definition 2.6, the degree of vertex in G is equal to |S| = k. By Lemma 2.7(ii), G is a k-regular graph with
′(G) = k. It remains to show (ii). Since |V (G)| = ℓ, it follows that κ ′

ℓ(G) = |E(G)| =
1
2

∑
v∈V (G) dG(v) =

kℓ
2 . ■

emma 2.10 (Theorem 1 and Corollary 3 of [5]). Let k ≥ 2 be an integer. For any integer n ≥ k+1, there exist edge-uniformly
ense graphs H with |V (H)| = n and κ ′(H) = κ ′(H) = k.

Proposition 2.11. Suppose that ℓ, k′ and k are given integers with k′
≥ k ≥ 1 and ℓ ≥ 2. There exists an infinite family

G(ℓ, k′, k) of graphs such that for any H ∈ G(ℓ, k′, k), we have the following properties.
(i) κ ′(G) = k and κ ′(G) = k′.
(ii) κ ′

ℓ(G) =
kℓ
2 .

Proof. Suppose that ℓ, k′ and k are given with the indicated relations. By Example 2.9, there exists a graph C(Zℓ, S) such
hat it satisfies Example 2.9(i) and (ii) with

V (C(Zℓ, S)) = {u1, u2, . . . , uℓ}.

ick an integer j with 1 ≤ j ≤ ℓ. By Lemma 2.10, there exist edge-uniformly dense graphs J1, J2, . . . , Jj such that
κ ′(Ji) = κ ′(Ji) = k, for each iwith 1 ≤ i ≤ j; and edge-uniformly dense graphs Jj+1, Jj+2, . . . , Jℓ such that κ ′(Ji′ ) = κ ′(Ji′ ) = k′,
or each i′ with j + 1 ≤ i′ ≤ ℓ. Define

G1 = C(Zℓ, S)(u1, u2, . . . , uj; J1, J2, . . . , Jj) (12)

as in Definition 2.6(iii). By Lemma 2.7(v), G1 is edge-uniformly dense with κ ′(G1) = k. We can view uj+1, . . . , uℓ as vertices
in G1. Using the notation in Definition 2.6, let

G = G1(uj+1, . . . , uℓ; Jj+1, Jj+2, . . . , Jℓ). (13)

By Lemma 2.8 and arguing by induction on ℓ − j, we conclude that κ ′(G) = k and κ ′(G) = k′, and so G satisfies
roposition 2.11(i).
We shall show that G satisfies Proposition 2.11(ii). By Definition 2.6(iii), (12) and (13), we have

G/(J1 ∪ J2 ∪ · · · ∪ Jℓ) = C(Zℓ, S).

Thus by Example 2.9(ii), κ ′

ℓ(G) ≤ κ ′

ℓ(C(Zℓ, S)) =
kℓ
2 . By (1), we much have κ ′

ℓ(G) =
kℓ
2 , which implies Proposition 2.11(ii).

Let G(ℓ, k′, k) denote the graph family of graphs G constructed in the steps above. Then every graph G ∈ G(ℓ, k′, k)
atisfies Proposition 2.11(i) and (ii). Hence Proposition 2.11 follows. ■

By (1) and Proposition 2.11, we conclude that Theorem 1.4(ii) must hold. This completes the proof of the theorem.
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