Contents lists available at ScienceDirect

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

Note Bounding ℓ-edge-connectivity in edge-connectivity

Xiaoxia Lin^a, Keke Wang^b, Meng Zhang^c, Hong-Jian Lai^{d,*}

^a Teachers College, Jimei University, Xiamen, Fujian 361021, China

^b Department of Mathematics, Embry-Riddle Aeronautical University, Prescott, AZ 86301, USA

^c Department of Mathematics, University of North Georgia-Oconee, Watkinsville, GA 30677, USA

^d Department of Mathematics, West Virginia University, Morgantown, WV 26506, USA

ARTICLE INFO

Article history: Received 10 February 2022 Received in revised form 24 June 2022 Accepted 19 July 2022 Available online xxxx

Keywords: Edge-connectivity Edge-uniformly dense Circulant graphs Vertex transitive graphs Maximum subgraph edge-connectivity ℓ-edge-connectivity

ABSTRACT

For a connected graph *G*, let $\kappa'(G)$ be the edge-connectivity of *G*. The ℓ -edge-connectivity $\kappa'_{\ell}(G)$ of *G* with order $n \geq \ell$ is the minimum number of edges that are required to be deleted from *G* to produce a graph with at least ℓ components. It has been observed that while both $\kappa'(G)$ and $\kappa'_{\ell}(G)$ are related edge connectivity measures. In general, $\kappa'_{\ell}(G)$ cannot be upper bounded by a function of $\kappa'(G)$. Let $\overline{\kappa}'(G) = \max\{\kappa'(H) : H \subseteq G\}$ be the maximum subgraph edge-connectivity of *G*. We prove that for integers k', k and ℓ with $k' \geq k \geq 1$ and $\ell \geq 2$, each of the following holds.

(i) $\sup\{\kappa'_{\ell}(G):\kappa'(G)=k, \overline{\kappa}'(G)=k'\}=k+(\ell-2)k'.$ (ii) $\inf\{\kappa'_{\ell}(G):\kappa'(G)=k, \overline{\kappa}'(G)=k'\}=\frac{k\ell}{2}.$

© 2022 Published by Elsevier B.V.

1. The problem

Graphs in this paper are finite and loopless. Undefined terms and notations can be found in [2]. For a graph G, c(G) denotes the number of components of G. We write $H \subseteq G$ to mean H is a subgraph of G. For vertex subsets S and S' of a graph G, define

$$[S, S']_G = \{ uv \in E(G) : u \in S, \& v \in S' \}.$$

When *G* is understood from the context, we often use [S, S'] for $[S, S']_G$. Define $\partial_G(S) = [S, V(G) - S]$, and when $S = \{v\}$, we often write $\partial_G(v)$ for $\partial_G(\{v\})$. If *H* is a non-empty non-spanning subgraph of *G*, we often use $\partial_G(H)$ for $\partial_G(V(H))$. An **edge-cut** of a (not necessarily connected) graph *G* is an edge subset of the form $\partial_G(S)$, for some nonempty proper subset *S* of *V*(*G*). A minimal edge-cut of *G* is called a **bond**. The **edge-connectivity** $\kappa'(G)$ of a connected graph *G* is the minimum cardinality of an edge-cut of *G*.

Matula [8] initiated the study of edge-connectivity of subgraphs. He defined

 $\overline{\kappa}'(G) = \max_{H \subset G} \kappa'(H),$

and considered $\overline{\kappa}'(G)$ as a useful tool to investigate the cohesiveness of a network when modeled as a graph. Matula published a number of papers on the cohesiveness of networks, as seen in [8–10]. The extremal properties related to $\overline{\kappa}'(G)$ were investigated by Mader and others, which can be found in [5–7], among others. More generally, let f(G) denote

* Corresponding author.

E-mail addresses: lxx@jmu.edu.cn (X. Lin), wangk5@erau.edu (K. Wang), meng.zhang@ung.edu (M. Zhang), hjlai@math.wvu.edu, hjlai@math.wvu.edu (H.-J. Lai).

a density measure of *G*, one can define $\overline{f}(G) = \max \{f(H) : H \text{ is a subgraph of } G\}$. As indicated in [4], for certain network topology measures *f*, a network modeled as a graph *G* with $f(G) = \overline{f}(G)$ is considered as uniformly dense in the measure *f*, and is of particular interest to be investigated. Thus we define a graph *G* to be **edge-uniformly dense** if $\kappa'(G) = \overline{\kappa}'(G)$.

For an integer $\ell \ge 2$, Boesch and Chen [1] defined the ℓ -**edge-connectivity** $\kappa'_{\ell}(G)$ of a connected graph G of order $n \ge \ell$ to be the minimum number of edges that are required to be deleted from G to produce a graph with at least ℓ components. As when $\ell = 2$, $\kappa'_2(G) = \kappa'(G)$, the edge-connectivity of G, the notion $\kappa'_{\ell}(G)$ is often considered as a generalization of edge-connectivity. Boesch and Chen proved the following.

Theorem 1.1 (Boesch and Chen [1]). $\kappa'_{\ell}(K_n) = \frac{(\ell-1)(2n-\ell)}{2}$.

There have been quite a few studies on the behavior of $\kappa'_{\ell}(G)$, as seen in Oellermann's survey [11]. The following example indicates that, in general, $\kappa'_{\ell}(G)$ cannot be bounded above by a function of $\kappa'(G)$.

Example 1.2. Let k, ℓ, n be positive integers with $n \ge k + \ell \ge k + 2$, and let $G := G(n, \ell, k)$ be a graph obtained from the complete graph K_{n-1} by adding a new vertex $v_0 \notin V(K_{n-1})$ and by adding k new edges joining v_0 to k distinct vertices in K_{n-1} . As $n \ge k + \ell$, it is routine to verify that $\kappa'(G) = k$. Suppose that $X \subseteq E(G)$ is an edge subset such that G - X has ℓ components G_1, G_2, \ldots, G_ℓ with $\kappa'_\ell(G) = |X|$. By symmetry, we assume that $v_0 \in V(G_1)$. If $V(G_1) = v_0$, then $\partial_G(v_0) \subseteq X$ and $X' := X - \partial_G(v_0)$ is an edge subset of K_{n-1} with $|X'| \ge \kappa'_{\ell-1}(K_{n-1})$. In this case, by Theorem 1.1,

$$|X| = |\partial_G(v_0)| + |X'| \ge k + \frac{(\ell-2)(2n-\ell+1)}{2}.$$

If $|V(G_1)| \ge 2$, then we may assume that $\partial_G(v_0) \cap X = \emptyset$, and so $X \subseteq E(K_{n-1})$ with $|X| \ge \kappa'_{\ell}(K_{n-1})$. Thus by Theorem 1.1,

$$\kappa_{\ell}'(G) = |X| \ge \min\left\{k + \frac{(\ell-2)(2n-\ell+1)}{2}, \frac{(\ell-1)(2n-\ell-2)}{2}\right\}.$$

Since the number *n* can be arbitrarily large, we conclude that $\kappa'_{\ell}(G)$ cannot be bounded by a function of $\kappa'(G)$.

As uniformly dense networks are of application importance (see [4]), it is of interest to study whether $\kappa'_{\ell}(G)$ can be bounded by a function of $\kappa'(G)$ among all edge uniformly dense graphs. To investigate this problem, for given integers ℓ and k, and a family \mathcal{F} of connected graphs with order at least ℓ , we define

 $\Phi(\ell, k; \mathcal{F}) = \sup\{\kappa'_{\ell}(G) : G \in \mathcal{F}, \kappa'(G) = k\} \text{ and } \phi(\ell, k; \mathcal{F}) = \inf\{\kappa'_{\ell}(G) : G \in \mathcal{F}, \kappa'(G) = k\}.$

The main result of this paper is the following.

Theorem 1.3. Let ℓ and k be integers with $\ell > 1$ and $k \ge 1$, and \mathcal{G}^u be the family of all edge-uniformly dense graphs of order at least ℓ . Each of the following holds. (i) $\Phi(\ell, k; \mathcal{G}^u) = (\ell - 1)k$.

 $(i) \ \varphi(\ell, k; \mathcal{G}^u) = (\ell - \ell)$ $(ii) \ \phi(\ell, k; \mathcal{G}^u) = \frac{k\ell}{2}.$

In order to prove Theorem 1.3, we take a slightly more general approach to relax the edge-uniformly dense constraint by allowing bounded value of maximum subgraph edge-connectivity. Let ℓ , k, k' be integers with $\ell \ge 2$ and $k' > k \ge 1$ and $\mathcal{G}_{k'}$ denote the family of all connected graphs with order at least ℓ such that every graph $G \in \mathcal{G}_{k'}$ satisfies $\overline{\kappa'}(G) = k'$ and $\kappa'(G) = k$. As when k = k', we have $\mathcal{G}_k = \mathcal{G}^u$, Theorem 1.3 will be the special case of Theorem 1.4 when k = k'.

Theorem 1.4. Let ℓ and k be integers with $\ell \ge 2$ and $k \ge 1$, and \mathcal{G}_{ℓ} be the family of all connected graphs of order at least ℓ . Each of the following holds. (i) $\Phi(\ell, k; \mathcal{G}_{k'}) = k + (\ell - 2)k'$. (ii) $\phi(\ell, k; \mathcal{G}_{k'}) = \frac{k\ell}{2}$.

2. Proofs of the main results

A graph *G* is a trivial graph if it has at least one vertex and is edgeless. Throughout the rest of this paper, we let k', k, ℓ be integers with $k' \ge k > 0$ and $\ell \ge 2$. While it is known that $\kappa'(G) = \kappa'_2(G)$, we will continue using $\kappa'(G)$ instead of $\kappa'_2(G)$ in our discussions.

Lemma 2.1. Let G be a connected graph. Then for any subgraph H of G with $|V(H)| \ge \ell$, we have $(\ell - 2)\overline{\kappa}'(G) + \kappa'(H) \ge \kappa'_{\ell}(H)$.

Proof. Let *H* be a subgraph of *G* with $|V(H)| \ge \ell$. Pick a minimum edge-cut Z_1 of *H*. Assuming that for a fixed *j* with $1 \le j < \ell - 1, Z_j$ has been found. Then as $|V(H)| \ge \ell$, at least one component of $H - (\bigcup_{i=1}^{j} Z_i)$ is nontrivial. Fix one nontrivial component of $H - (\bigcup_{i=1}^{j} Z_i)$ and let Z_{j+1} be a minimum edge-cut of this nontrivial component. Thus we have generated a sequence $(Z_1, Z_2, \ldots, Z_{\ell-1})$ of subsets of *H*, such that $|Z_1| = \kappa'(H)$ and for each *i* with $2 \le i \le \ell - 1, |Z_i| \le \overline{\kappa}'(H) \le \overline{\kappa}'(G)$. Furthermore, by our choices of the Z_i 's, $H - (\bigcup_{i=1}^{\ell-1} Z_i)$ has exactly ℓ components. Thus $(\ell - 2)\overline{\kappa}'(G) + \kappa'(H) \ge \sum_{i=1}^{\ell-1} |Z_i| \ge \kappa'_{\ell}(H)$, which leads to Lemma 2.1.

Proposition 2.2 (*Zhang et al. Theorem 2.5 of* [12]). Suppose that G is a connected graph with $|V(G)| \ge \ell$. Then

$$\kappa'_{\ell}(G) \geq rac{\ell}{2}\kappa'(G).$$

Proof. Let *X* be an edge subset of E(G) such that G - X has components G_1, G_2, \ldots, G_ℓ with $|X| = \kappa'_\ell(G)$. Thus for each *i* with $1 \le i \le \ell$, $|\partial_G(V(G_i))| \ge \kappa'(G)$ and $2\kappa'_\ell(G) = 2|X| = \sum_{i=1}^\ell |\partial_G(V(G_i))| \ge \ell\kappa'(G)$. This proves the proposition.

By combining Lemma 2.1 (with H = G) and Proposition 2.2, we conclude that for any connected graph G with $|V(G)| \ge \ell$,

$$(\ell-2)\overline{\kappa}'(G) + \kappa'(G) \ge \kappa'_{\ell}(G) \ge \frac{\ell}{2}\kappa'(G).$$
(1)

2.1. Proof of Theorem 1.4(i)

To prove Theorem 1.4(i), we shall show, for given integers $k' \ge k \ge 1$ and $\ell \ge 2$, the existence of infinitely many graphs *G* with $\kappa'(G) = k$, and $\overline{\kappa}'(G) = k'$ such that the upper bound in (1) will be reached. In this subsection, we shall construct an infinite family of graphs satisfying the expected edge-connectivity constraints and reaching the upper bound in (1), which implies Theorem 1.4(i). The following is the main result.

Proposition 2.3. For any integers k', k, ℓ with $\ell \ge k'+1 > 2$ and $k' \ge k$, there exists an infinite graph family $\mathcal{F}_1 = \mathcal{F}_1(\ell, k', k)$ such that for any graph $H \in \mathcal{F}_1$, each of the following holds. (i) (Example 1 and Theorem 1 of [5]) If k' = k, then H is edge-uniformly dense with $\kappa'(H) = k$. (ii) $\overline{\kappa}'(H) = k'$ and $\kappa'(H) = k$. (iii) $\kappa'_{\ell}(H) = (\ell - 2)\overline{\kappa}'(H) + \kappa'(H)$.

Proof. We are to construct this family of graphs to justify Proposition 2.3. For an integer $m \ge 1$, define mG to be the disjoint union of m copies of G. Hence 1G = G. Following [2], for two vertex disjoint graphs G, G', let $G \lor G'$ denote the **join** of G and G', which is a graph with vertex set $V(G) \cup V(G')$ and edge set $E(G) \cup E(G') \cup \{uv : u \in V(G), v \in V(G')\}$. Extending a graph construction idea in [5], we construct the following graph family. For any integers k', k and n with n > k + 1, let $H_0 \cong K_{k'}$ be a complete graph with vertex set $V(H_0) = \{v_1, v_2, \ldots, v_{k'}\}$ and let the vertex set of $(n - k)K_1$ be $W := \{w_1, w_2, \ldots, w_{n-k}\}$. Define

$$H(k'; n-k) = (H_0 \lor (n-k)K_1) - \{w_1v_j : k+1 \le j \le k'\}.$$
(2)

When k' = k, H(k'; n - k) is precisely the same graph H(k, n - k) constructed in [5]. We are to prove (ii) and (iii) of the proposition. Define

$$N_0 = \max\left\{2\ell + k, \,\ell + 2k' + k, \,5\ell + k - 7\right\}.$$
(3)

and $\mathcal{F}_1 = \{H(k'; n-k) : k' \ge k, \ell \ge k+1 > 2, n \ge N_0\}$. To prove (ii), we assume that k' > k as otherwise we may turn to (i). Randomly pick a member $H \in \mathcal{F}_1$. By the definition of \mathcal{F}_1 , $\partial_H(w_1)$ is the only edge cut in H of size k, and so $\kappa'(H) = k$. Now let H' be a subgraph of H with $\overline{\kappa}'(H) = \kappa'(H')$. If $\kappa'(H') > k'$, then as every vertex in W has degree at most k' in H, we conclude that $V(H') \cap W = \emptyset$. Hence H' is a subgraph of H_0 , a complete graph of order k'. This implies that $k' < \kappa'(H') \le k' - 1$, a contradiction. This implies that $\overline{\kappa}'(H) = \kappa'(H') \le k'$. On the other hand, H contains $K_{k'+1}$ as a subgraph, and so $\overline{\kappa}'(H) \ge \kappa'(K_{k'+1}) \ge k'$, implying that $\overline{\kappa}'(H) = k'$. This proves (ii).

It remains to prove (iii). Let $X \subseteq E(H)$ be an edge subset such that H-X has at least ℓ components and that $|X| = \kappa'_{\ell}(H)$. By (1), it suffices to show that

$$|X| \ge (\ell - 2)k' + k.$$

As $|X| = \kappa'_{\ell}(H)$, H - X must have exactly ℓ components $H_1, H_2, \ldots, H_{\ell}$. Since $\ell \ge k' + 1$ and $|V(H_0)| = k'$, without loss of generality, we may assume that $V(H_1) \cap V(H_0) = \emptyset$. This implies that $V(H_1) \subseteq W$ and $|V(H_1)| = 1$. Therefore, there must be at least one of H_i 's that consists of only one vertex in W. Without loss of generality, we assume that for some integer s with $1 \le s \le \ell$ such that

every H_i with $s \leq j \leq \ell$ consists of a single vertex in W,

(4)

and the H_i 's ($s \le j \le \ell$) are so labeled that

$$|\partial_H(V(H_s))| \ge |\partial_H(V(H_{s+1}))| \ge \cdots \ge |\partial_H(V(H_\ell))|,$$

and that every $H_{j'}$ with $1 \le j' \le s - 1$ satisfies $V(H_{j'}) \cap V(H_0) \ne \emptyset$. Depending on whether an H_i contains a vertex in W or not, we further partitioned H_1, \ldots, H_{s-1} into two parts and assume that there exists an integer s' < s such that

for any $H_t \in \{H_1, ..., H_{s'-1}\}, V(H_t) \cap W = \emptyset$,

(5)

and

for any
$$H_t \in \{H_{s'}, \dots, H_{s-1}\}, V(H_t) \cap W \neq \emptyset.$$
 (6)

Thus for any *j* with $1 \le j \le \ell$, $\partial_H(V(H_j)) \subseteq X$. By (2) and (4), we conclude that for any H_j with $s \le j \le \ell$,

$$k \le |\partial_H(V(H_\ell))| \le k' = |\partial_H(V(H_j))|, \text{ where } s \le j \le \ell - 1.$$
(7)

By (5), for any *j* with $1 \le j \le s' - 1$, H_j is a subgraph of $H_0 \cong K_{k'}$. By (2), every vertex in this H_j must be adjacent to every vertex in *W*, and so we conclude that for any H_j with $1 \le j \le s' - 1$,

$$|\partial_{H}(V(H_{j}))| = |[V(H_{j}), W]_{H}| + |\partial_{H_{0}}(V(H_{j}))| = (n-k)|V(H_{j})| + |\partial_{H_{0}}(V(H_{j}))|.$$
(8)

Fix an index j with $s' \le j \le s - 1$, let $W_j = W \cap V(H_j)$, and $H'_j = H_j - W_j$. Thus H'_j is a subgraph of $H_0 \cong K_{k'}$. By (2), we have, for any H_j with $s' \le j \le s - 1$,

$$|\partial_{H}(V(H_{j}))| = |[W_{j}, V(H_{0}) - V(H_{j}')]_{H}| + |\partial_{H_{0}}(V(H_{j}'))| + |[V(H_{j}'), W - W_{j}]_{H}|.$$
(9)

To estimate X, we set

$$X_{1} = \bigcup_{j=s}^{\ell} \partial_{H}(V(H_{j})),$$

$$X_{2}' = \bigcup_{j=s'}^{s-1} [W_{j}, V(H_{0}) - V(H_{j}')]_{H} \text{ and } X_{2}'' = \bigcup_{j=s'}^{s-1} \partial_{H_{0}}(V(H_{j}')),$$

$$X_{3}' = \bigcup_{j=1}^{s'-1} [V(H_{j}), W]_{H} \text{ and } X_{3}'' = \bigcup_{j=1}^{s'-1} \partial_{H_{0}}(V(H_{j})),$$

$$X'' = X_{2}'' \cup X_{2}''.$$
(10)

Thus $X = X_1 \cup X'_2 \cup X''_2 \cup X''_3 \cup X''_3$. Note that some of these sets defined in (10) could be empty. Recall that $\ell \ge s \ge 2$. If s = 2, then $H_1 = H_0 \cong K_k$ and so $X'_3 = [V(H_1), W]_H = \partial_H(H_1), X'_2 = X''_2 = X''_3 = \emptyset$. Thus $X = X_1 = X'_3$, and so by (7), $\kappa'_\ell(H) = |X| \ge (\ell - 2)k' + k$. This, together with (1), implies (iii). Hence in the following we always assume that s > 2.

By their definitions in (10), X_1 , X'_2 , and X'' are mutually edge-disjoint, and each of X_1 and X'_2 is an edge-disjoint union, and $X'_3 \subseteq X_1 \cup X'_2$, whereas X'' is an edge subset of $H_0 \cong K_{k'}$ such that $H_0 - X''$ has s - 1 components. This gives us a way to apply (7), (8), (9) and Theorem 1.1 to estimate X, as follows.

$$\begin{aligned} |X| &= |X_1| + |X'_2| + |X''| \\ &\geq \sum_{j=s}^{\ell} |\partial_H(V(H_j))| + \sum_{j=s'}^{s-1} |[W_j, V(H_0) - V(H'_j)]_H| + \kappa'_{s-1}(K_{k'}) \\ &\geq (\ell - s)k' + k + \epsilon + \sum_{j=s'}^{s-1} |W_j| \cdot |V(H_0) - V(H'_j)| + \frac{(s-2)(2k'-s+1)}{2}, \end{aligned}$$
(11)

where

$$\epsilon = \begin{cases} k' - k & \text{if } |\partial_H(V(H_\ell))| = k' \\ 0 & \text{if } |\partial_H(V(H_\ell))| = k. \end{cases}$$

Let $n' = \sum_{j=s'}^{s-1} |W_j|$. Then by (2), $n' = (n-k) - (\ell - s + 1)$. Without loss of generality, we may assume that $|V(H'_{s'})| \ge |V(H'_{s'+1})| \ge \cdots \ge |V(H'_{s-1})|$.

Suppose first that $|V(H'_{s'})| \leq \frac{k'}{2}$. Then for any j with $s' \leq j \leq s - 1$, we have $|V(H_0) - V(H'_j)| = k' - |V(H'_j)| \geq \frac{k'}{2}$. By (3), we have $n \geq 2\ell + k$. This, together with $\ell \geq s > 2$, implies that $n' = n - k - \ell + s - 1 \geq 2s - 2$. Hence by (11), we have

$$\begin{aligned} |X| &\ge (\ell - s)k' + k + \epsilon + \sum_{j=s'}^{s-1} |W_j| \cdot |V(H_0) - V(H'_j)| + \frac{(s-2)(2k'-s+1)}{2} \\ &\ge (\ell - s)k' + k + \epsilon + \frac{k'}{2} \sum_{j=s'}^{s-1} |W_j| + \frac{(s-2)(2k'-s+1)}{2} \\ &= (\ell - s)k' + k + \epsilon + \frac{k'n'}{2} + \frac{(s-2)(2k'-s+1)}{2} \end{aligned}$$

$$\geq (\ell - s)k' + k + \epsilon + \frac{k'(2s - 2)}{2} + \frac{(s - 2)(2k' - s + 1)}{2} \\ > (\ell - s)k' + k + \epsilon + k'(s - 1) + \frac{(s - 2)(2k' - s + 1)}{2} > (\ell - 2)k' + k.$$

Hence in the following, we may assume that $|V(H'_{s'})| > \frac{k'}{2}$.

Case 2.4. $|W_{s'}| \ge \frac{n'}{2}$.

By (2), every vertex in $W_{s'}$ is adjacent to every vertex in $V(H_0) - V(H_{s'})$. As $H_1, H_2, \ldots, H_{s'-1}, H_{s'+1}, \ldots, H_{s-1}$ are vertex disjoint subgraphs of H_0 , it follows that

$$|V(H_0) - V(H_{s'})| = \sum_{j=1}^{s'-1} |V(H_j')| + \sum_{j=s'+1}^{s-1} |V(H_j')| \ge s - 2.$$

By (11) and by (3), we have $n \ge 2k' + k + \ell$, and so $n' \ge 2k'$.

$$\begin{split} |X| &\geq (\ell - s)k' + k + \epsilon + \sum_{j=s'}^{s-1} |W_j| \cdot |V(H_0) - V(H_j')| + \frac{(s-2)(2k'-s+1)}{2} \\ &\geq (\ell - s)k' + k + \epsilon + |W_{s'}| \cdot |V(H_0) - V(H_{s'})| + \frac{(s-2)(2k'-s+1)}{2} \\ &\geq (\ell - s)k' + k + \epsilon + \frac{n'}{2}(s-2) + \frac{(s-2)(2k'-s+1)}{2} \\ &= (\ell - s)k' + k + \epsilon + \frac{2k'}{2}(s-2) + \frac{(s-2)(2k'-s+1)}{2} \\ &> (\ell - s)k' + k + \epsilon + (s-2)k' \geq (\ell - 2)k' + k. \end{split}$$

Case 2.5. $|W_{s'}| < \frac{n'}{2}$.

Since $|V(H'_{s'})| > \frac{k'}{2}$, it follows that for any j with $s' + 1 \le j \le s - 1$, $|V(H'_j)| \le \sum_{i=s'+1}^{s-1} |V(H'_i)| = |V(H_0)| - |V(H'_{s'})| < \frac{k'}{2}$. As $|W_{s'}| < \frac{n'}{2}$, we have $\sum_{j=s'+1}^{s-1} |W_j| = n' - |W_{s'}| > \frac{n'}{2}$. By (3), $n \ge 5\ell + k - 7$ and so $n' = n - k - \ell + s - 1 \ge 4\ell - 8 \ge 4(s - 2)$. Thus by (11), we have

$$\begin{aligned} |X| &\geq (\ell - s)k' + k + \epsilon + \sum_{j=s'}^{s-1} |W_j| \cdot |V(H_0) - V(H'_j)| + \frac{(s-2)(2k'-s+1)}{2} \\ &> (\ell - s)k' + k + \epsilon + \frac{k'}{2} \sum_{j=s'+1}^{s-1} |W_j| = (\ell - s)k' + k + \epsilon + \frac{k'(n' - |W_{s'}|)}{2} \\ &> (\ell - s)k' + k + \epsilon + \frac{kn'}{4} \geq (\ell - s)k' + k + k'(s-2) = (\ell - 2)k' + k. \end{aligned}$$

As we always have $|X| \ge (\ell - 2)k' + k$, by (1), we prove Proposition 2.3.

2.2. Proof of Theorem 1.4(ii)

To prove Theorem 1.4(ii), we shall show, for given integers $k' \ge k \ge 1$ and $\ell \ge 2$, the existence of infinitely many graphs *G* with $\kappa'(G) = k$, and $\overline{\kappa}'(G) = k'$ such that the lower bound in (1) will be reached. Following [3], we introduce circulant graphs and some definitions for constructing graphs to be used in our arguments.

Definition 2.6. Let ℓ , n be integers with $\ell \ge 2$ and n > 1 and denote the additive cyclic group as $\mathbb{Z}_n = \{0, 1, 2, ..., n-1\}$. (i) Let $S \subseteq \mathbb{Z}_n - \{0\}$ be a subset such that for an element $a \in \mathbb{Z}_n$, $a \in S$ if and only if $-a \in S$, where -a is the additive inverse of a. Define the **circulant graph** $C(\mathbb{Z}_n, S)$ to be the graph with vertex set \mathbb{Z}_n , where $ij \in C(\mathbb{Z}_n, S)$ if and only if $i - j \in S$. The set S is called its **connection set**. Using the definition of Cayley graphs in [3], circulant graphs are Cayley graphs.

(ii) Let *G* and *J* be vertex disjoint graphs and let $v \in V(G)$ be a vertex which is adjacent to (not necessarily distinct) vertices v_1, v_2, \ldots, v_d with edges $e_i = vv_i$, $1 \le i \le d$. Let u_1, u_2, \ldots, u_d be (not necessarily distinct) vertices in *J*. Define a graph G(v; J) from the disjoint union of $(G - v) \cup J$ by adding edges $\{u_iv_i : 1 \le i \le d\}$. As the choices of u_i 's and v_j 's are not unique, G(v; J) represents a family of graphs. For simplicity, we shall use G(v; J) to denote any graph in the family, and say that we blow up the vertex v to the graph *J*.

(iii) Let *G* be a graph with distinct vertices z_1, z_2, \ldots, z_ℓ , and let J_1, J_2, \ldots, J_ℓ be mutually vertex disjoint graphs, each of which is also disjoint from *G*. Let $G(z_1, z_2, \ldots, z_\ell; J_1, J_2, \ldots, J_\ell)$ denote the family of graphs obtained by, for each *i* with $1 \le i \le \ell$, blowing up the vertex z_i to the graph J_i . When there is no need to emphasize the vertices z_1, z_2, \ldots, z_ℓ , we often use $G(J_1, J_2, \ldots, J_\ell)$ for $G(z_1, z_2, \ldots, z_\ell; J_1, J_2, \ldots, J_\ell)$. For notational simplicity, we shall use $G(J_1, J_2, \ldots, J_\ell)$ to denote any member in the family.

To prove Theorem 1.4(ii), we need a few more tools for the construction of the needed graph families. A graph G is **vertex transitive** if the automorphism group of G acts transitively on V(G).

Lemma 2.7. Let *G* be a connected graph. Each of the following holds.

(i) (Theorem 3.1.2, [3]) Cayley graphs are vertex transitive. As circulant graphs are Cayley graphs, all circulant graphs are vertex transitive.

(ii) (Lemma 3.3.3, [3]) If G is vertex transitive, then G is a regular graph with $\kappa'(G) = \delta(G)$.

(iii) Every vertex transitive graph is edge-uniformly dense.

(iv) Suppose that G and J are two vertex disjoint edge-uniformly dense graphs with $\kappa'(G) = \kappa'(J) = k$. Then G(v; J) is also edge-uniformly dense with $\kappa'(G(v; J)) = k$.

(v) Suppose that $G, J_1, J_2, ..., J_\ell$ are mutually vertex disjoint edge-uniformly dense graphs with $V(G) = \{u_1, u_2, ..., u_n\}$ such that $n \ge \ell$, and let j be an integer with $1 \le j \le \ell$. If $\kappa'(G) = \kappa'(J_1) = \cdots = \kappa'(J_j) = k$, then $G(u_1, u_2, ..., u_j; J_1, J_2, ..., J_j)$ is also edge-uniformly dense with $\kappa'(G(u_1, u_2, ..., u_j; J_1, J_2, ..., J_j)) = k$.

Proof. Let *G* be a vertex transitive graph with $d = \kappa'(G)$. Then *G* is *d*-regular. Let $H \subseteq G$ be a subgraph with $\overline{\kappa}'(G) = \kappa'(H)$. If H = G, then *G* is edge-uniformly dense. Assume that *H* is a proper subgraph of *G*. Since *G* is connected and *d*-regular, $\kappa'(H) \leq \delta(H) < d$, and so $\kappa'(G) \leq \overline{\kappa}'(G) = \kappa'(H) < d = \kappa'(G)$, a contradiction. Thus *G* must be edge-uniformly dense. This justifies (iii).

Now suppose that *G* and *J* are edge-uniformly dense with $\kappa'(G) = \kappa'(J) = k$, and let $v \in V(G)$ be a vertex. First we explain that $\kappa'(G(v;J)) = \kappa'(G)$. Observe that $\kappa'(G(v;J)) \le \kappa'(G(v;J)/J) = \kappa'(G) = k$. Thus to show $\kappa'(G(v;J)) = \kappa'(G)$, it suffices to show that every edge cut of G(v;J) has size at least *k*. Let *X* be a minimal edge cut of G(v;J). If $X \cap E(J) = \emptyset$, then $X \subseteq E(G)$ is an edge cut of *G*, whence $|X| \ge k$. Now assume that $X \cap E(J) \ne \emptyset$. Since *X* is minimal, $X \cap E(J)$ must be an edge cut of *J*, and so $|X| \ge |X \cap E(J)| \ge \kappa'(J) = k$. Thus we must have $\kappa'(G(v;J)) = \kappa'(G) = k$.

Next, we shall show that $\overline{\kappa}'(G(v;J)) = \kappa'(G) = k$. Suppose that H is a subgraph of G(v;J) with $\overline{\kappa}'(G(v;J)) = \kappa'(H)$. If $E(H) \cap E(J) = \emptyset$, then H is a subgraph of G(v;J)/J = G. As G is edge-uniformly dense, we have $\overline{\kappa}'(G(v;J)) = \kappa'(H) \le \kappa'(G(v;J)/J) = \kappa'(G)$. Thus we may assume that $E(H) \cap E(J) \neq \emptyset$. Let J_1, J_2, \ldots, J_ℓ be the connected components of the edge induced subgraph $J[E(H) \cap E(J)]$.

If $\ell \ge 2$, then add a set W of new edges that connects the connected components J_1, J_2, \ldots, J_ℓ so that, in the graph H + W obtained by adding the edges in W to H, $(H + W)[W \cup (\cup_{i=1}^{\ell} E(J_i))]$ is a connected graph. (If $\ell = 1$, then let $W = \emptyset$.) As we are adding edges to H, we have $\kappa'(H + W) \ge \kappa'(H)$. By definition, we have $(H + W)/[W \cup (\cup_{i=1}^{\ell} E(J_i))] = (H \cup J)/J$, which is a subgraph of G(v; J)/J = G. It follows that

$$k = \overline{\kappa}'(G) \ge \kappa'((H \cup J)/J) \ge \kappa'((H + W)/[W \cup (\bigcup_{i=1}^{\ell} E(J_i))]) \ge \kappa'(H + W) \ge \kappa'(H)$$

Since $\kappa'(H) = \overline{\kappa}'(G(v;J)) \ge \kappa'(G(v;J)) = \kappa'(G) = k$, we conclude that we always have $\overline{\kappa}'(G(v;J)) = \kappa'(G) = k$. This proves (iv).

The conclusion (v) follows from Definition 2.6 and Lemma 2.7(iv), arguing by induction on *j*.

Lemma 2.8. Suppose that h and k are two integers with h > k > 0, and G and J are two vertex disjoint graphs with $k = \kappa'(G) \le \overline{\kappa}'(G) \le h$ and $\kappa'(J) = h$. Then each of the following holds. (i) G(v; J) satisfies with $\overline{\kappa}'(G(v; J)) \ge h$. (ii) If J is uniformly dense, then $\overline{\kappa}'(G(v; J)) = h$.

Proof. By Definition 2.6, *J* is a subgraph of G(v; J) and so $\overline{\kappa}'(G(v; J)) \ge \kappa'(J) = h$. Hence (i) holds. It suffices to show (ii). Let *H* be a subgraph of G(v; J) with $\kappa'(H) = \overline{\kappa}'(G(v; J))$. As $\kappa'(J) = h$, we may assume that $H \neq J$. Assume first that $E(H) \cap E(J) = \emptyset$. Then by Definition 2.6, *H* is a subgraph of G(v; J)/J = G. Hence

$$h = \kappa'(J) \le \overline{\kappa}'(G(v;J)) = \kappa'(H) \le \overline{\kappa}'(G) \le h,$$

forcing $\overline{\kappa}'(G(v;J)) = h$. Hence we assume that $E(H) \cap E(J) \neq \emptyset$. Let J_1, J_2, \ldots, J_ℓ denote the connected components of $H[E(H) \cap E(J)]$, the edge induced subgraph in H. Let W be a set of new edges such that in the graph H + W obtained by adding the edges in W to H, $(H + W)[W \cup (\bigcup_{i=1}^{\ell} E(J_i))]$ is a connected graph. Again we have

$$\kappa'(H) \le \kappa'(H+W) \le \kappa'((H+W)/[W \cup (\cup_{i=1}^{\ell} E(J_i))]) = \kappa'((H \cup J)/J).$$

As $(H \cup J)/J$ is a subgraph of G(v; J)/J = G, it follows that

 $h = \kappa'(J) \le \overline{\kappa}'(G(v;J)) = \kappa'(H) \le \kappa'((H \cup J)/J) \le \overline{\kappa}'(G) \le h,$

and so we also have $\overline{\kappa}'(G(v; J)) = h$. This proves (ii).

Let ℓ , k and k' be integers with $\ell > 3$ and k' > k > 2, we are to construct a graph family $\mathcal{G}(\ell, k', k)$ with some of the desirable properties to facilitate our justification for Theorem 1.4(ii).

Example 2.9. Suppose that ℓ and k are given integers such that for some integer s > 1, $\ell = (k + 1)s$. Let $S \subset \mathbb{Z}_{\ell}$ be the subset $S = \{s, 2s, \dots, (k-1)s, ks\}$. Then as $\ell = (k+1)s$, for any $a \in S$, we also have $-a \in S$. Thus $G = C(\mathbb{Z}_{\ell}, S)$ satisfies the following properties. (i) *G* is *k*-regular with $\kappa'(G) = k$.

(ii) $\kappa'_{\ell}(G) = \frac{k\ell}{2}$.

Proof. By Definition 2.6, the degree of vertex in G is equal to |S| = k. By Lemma 2.7(ii), G is a k-regular graph with $\kappa'(G) = k$. It remains to show (ii). Since $|V(G)| = \ell$, it follows that $\kappa'_{\ell}(G) = |E(G)| = \frac{1}{2} \sum_{v \in V(G)} d_G(v) = \frac{k\ell}{2}$.

Lemma 2.10 (Theorem 1 and Corollary 3 of [5]). Let k > 2 be an integer. For any integer n > k + 1, there exist edge-uniformly dense graphs H with |V(H)| = n and $\kappa'(H) = \overline{\kappa}'(H) = k$.

Proposition 2.11. Suppose that ℓ , k' and k are given integers with k' > k > 1 and $\ell > 2$. There exists an infinite family $\mathcal{G}(\ell, k', k)$ of graphs such that for any $H \in \mathcal{G}(\ell, k', k)$, we have the following properties. (i) $\kappa'(G) = k$ and $\overline{\kappa}'(G) = k'$. (ii) $\kappa'_{\ell}(G) = \frac{k\ell}{2}$.

Proof. Suppose that ℓ , k' and k are given with the indicated relations. By Example 2.9, there exists a graph $C(\mathbb{Z}_{\ell}, S)$ such that it satisfies Example 2.9(i) and (ii) with

$$V(C(\mathbb{Z}_{\ell}, S)) = \{u_1, u_2, \ldots, u_{\ell}\}.$$

Pick an integer j with $1 \le j \le \ell$. By Lemma 2.10, there exist edge-uniformly dense graphs J_1, J_2, \ldots, J_i such that $\kappa'(J_i) = \overline{\kappa}'(J_i) = k$, for each i with $1 \le i \le j$; and edge-uniformly dense graphs $J_{i+1}, J_{i+2}, \ldots, J_\ell$ such that $\kappa'(J_{i'}) = \overline{\kappa}'(J_{i'}) = k'$, for each i' with $i + 1 < i' < \ell$. Define

$$G_1 = C(\mathbb{Z}_{\ell}, S)(u_1, u_2, \dots, u_j; J_1, J_2, \dots, J_j)$$
(12)

as in Definition 2.6(iii). By Lemma 2.7(v), G_1 is edge-uniformly dense with $\kappa'(G_1) = k$. We can view u_{i+1}, \ldots, u_ℓ as vertices in *G*₁. Using the notation in Definition 2.6, let

$$G = G_1(u_{j+1}, \dots, u_\ell; J_{j+1}, J_{j+2}, \dots, J_\ell).$$
(13)

By Lemma 2.8 and arguing by induction on $\ell - i$, we conclude that $\kappa'(G) = k$ and $\overline{\kappa}'(G) = k'$, and so G satisfies Proposition 2.11(i).

We shall show that G satisfies Proposition 2.11(ii). By Definition 2.6(iii), (12) and (13), we have

 $G/(I_1 \cup I_2 \cup \cdots \cup I_\ell) = C(\mathbb{Z}_\ell, S).$

Thus by Example 2.9(ii), $\kappa'_{\ell}(G) \leq \kappa'_{\ell}(C(\mathbb{Z}_{\ell}, S)) = \frac{k\ell}{2}$. By (1), we much have $\kappa'_{\ell}(G) = \frac{k\ell}{2}$, which implies Proposition 2.11(ii). Let $\mathcal{G}(\ell, k', k)$ denote the graph family of graphs *G* constructed in the steps above. Then every graph $G \in \mathcal{G}(\ell, k', k)$ satisfies Proposition 2.11(i) and (ii). Hence Proposition 2.11 follows.

By (1) and Proposition 2.11, we conclude that Theorem 1.4(ii) must hold. This completes the proof of the theorem.

Acknowledgment

The research of Xiaoxia Lin is support in part by the National Natural Science Foundation of China (Grant No. 11871246).

References

- [1] F.T. Boesch, S. Chen, A generalization of line conectivity and optimally invulnerable graphs, SIAM J. Appl. Math. 34 (1978) 657-665.
- [2] J.A. Bondy, U.S.R. Murty, Graph Theory, Springer, New York, 2008.
- [3] C. Godsil, G. Royle, Algebraic Graph Theory, Springer, New York, 2001.
- [4] A.M. Hobbs, Survivability of networks under attack, in: John G. Michaels, Kenneth H. Rosen (Eds.), Applications of Discrete Mathematics, 1991, pp. 332-353.
- [5] H.-J. Lai, The size of strength-maximal graphs, J. Graph Theory 14 (1990) 187-197.
- [6] H.-J. Lai, C.-Q. Zhang, Edge-maximal (k, l)-graphs, J. Graph Theory 18 (1994) 227-240.
- [7] D. Mader, Minimale n-fach kantenzusammenhängende graphen, Math. Ann. 191 (1971) 21–28.
 [8] D.W. Matula, The cohesive strength of graphs, in: The Many Facets of Graph Theory, Springer-Verlag, Berlin, 1969, pp. 215–221.
- [9] D.W. Matula, K-components, clusters, and slicings in graphs, SIAM J. Appl. Math. 22 (1972) 21-28.
- [10] D.W. Matula, Subgraph connectivity numbers of a graph, in: A. Dold, B. Eckmann (Eds.), in: Lecture Notes in Mathematics, vol. 642, Springer, New York, 1976, pp. 371-383.
- [11] O.R. Oellermann, Explorations into graph connectivity, Not. S. Afr. Math. Soc. 20 (1988) 117-151.
- [12] L. Zhang, K. Hennayake, H.-J. Lai, Y. Shao, A lower bound of the *l*-edge-connectivity and optimal graphs, J. Combin. Math. Combin. 66 (2008) 79-95.