

A Note on the Connectivity of Binary Matroids

Jun Yin ${ }^{1,2,3}$, Bofeng Huo ${ }^{4 \dagger}$, Hong-Jian Lai ${ }^{5}$

${ }^{1}$ School of Computer, Qinghai Normal University, Xining, Qinghai, 810008, P.R. of China
${ }^{2}$ Key Laboratory of Tibetan Information Processing and Machine Translation, Qinghai Province
${ }^{3}$ Key Laboratory of Tibetan Information Processing, Ministry of Education
${ }^{4}$ School of Mathematics and Statistics, Qinghai Normal University, Xining, Qinghai 810016, PRC
${ }^{5}$ Department of Mathematics, West Virginia University, Morgantown, WV 26506, USA

Submission Info	Abstract		
Communicated by Dimitri Volchenkov			
Received 14 September 2020			
Accepted 15 October 2020			In [J. Combinatorial Theory, Ser. B, 28 (1980), 305-359], Seymour intro-
:---			
duced the binary matroid 3-sums and proved that if a 3-connected binary			
matroid M is a 3-sum of matroids M_{1} and M_{2}, then each of M_{1} and M_{2} is			
Available online 1 October 2022			
isporphic to a proper minor of M. For a 3-connected binary matroid M			
expressed as a 3-sum of M_{1} and M_{2}, we show that in general, both M_{1} and			
M_{2} are 2-connected, and if M_{1} and M_{2} are simple matroids, then both M_{1}			
and M_{2} are also 3-connected.			
Keywords Matroid connectivity Binary matroids Matroid 3-sums			

1 Introduction

We consider finite binary matroids in this note. Undefined terms and notations can be found in [1]. Thus we use $r_{M}, c l_{M}, \mathscr{I}(M), \mathscr{B}(M)$ and $\mathscr{C}(M)$ to denote the rank function, the closure operator, the collections of independent sets, bases and circuits of a matroid M, respectively. If $X \subseteq E$, then M / X and $M \mid X$ denotes the matroid contractions, matroid restrictions, respectively. Define $M-X=M \mid(E-X)$. A cycle of a matroid is a disjoint union of circuits of M, and we use $\mathscr{C}_{0}(M)$ to denote the collection of all cycles of M. For sets X and Y, the symmetric difference of X and Y is defined as $X \triangle Y=(X \cup Y)-(X \cap Y)$. It is known (for example, Theorem 9.1.2 of [1],) that $\mathscr{C}_{0}(M)$ with the symmetric difference is a vector space over $G F(2)$, the 2 -element field.

Let $M_{1}=\left(E_{1}, \mathscr{I}_{1}\right)$ and $M_{2}=\left(E_{2}, \mathscr{I}_{2}\right)$ be binary matroids and $E=E_{1} \triangle E_{2}$. Seymour in [2] showed that there is a matroid $M_{1} \triangle M_{2}$ with ground set E with $\mathscr{C}_{0}(M)=\mathscr{C}_{0}\left(M_{1}\right) \triangle \mathscr{C}_{0}\left(M_{2}\right)$. Three special cases of $M_{1} \triangle M_{2}$ are introduced by Seymour ([2] and [3]) as follows.
(S1) If $E_{1} \cap E_{2}=\emptyset$ and $\left|E_{1}\right|,\left|E_{2}\right|<\left|E_{1} \triangle E_{2}\right|, M_{1} \triangle M_{2}$ is a $\mathbf{1}$-sum of M_{1} and M_{2}, denoted by $M_{1} \oplus M_{2}$. (S2) If $\left|E_{1} \cap E_{2}\right|=1$ and $E_{1} \cap E_{2}=\{p\}$, say, and p is not a loop or coloop of M_{1} or M_{2}, and $\left|E_{1}\right|,\left|E_{2}\right|<\left|E_{1} \triangle E_{2}\right|$,

[^0]

Fig. $1 M$ is a 3-sum of M_{1} and M_{2}.
$M_{1} \triangle M_{2}$ is a 2-sum of M_{1} and M_{2}, denoted by $M_{1} \oplus_{2} M_{2}$.
(S3) If $\left|E_{1} \cap E_{2}\right|=3$ and $E_{1} \cap E_{2}=Z$, and Z is a circuit of M_{1} and M_{2}, and Z includes no cocircuit of either M_{1} or M_{2}, and $\left|E_{1}\right|,\left|E_{2}\right|<\left|E_{1} \triangle E_{2}\right|, M_{1} \triangle M_{2}$ is a $\mathbf{3}$-sum of M_{1} and M_{2}, denoted by $M_{1} \oplus_{3} M_{2}$.

The following is known for matroid 2 -sums.
Lemma 1. (Proposition 7.1 .22 of [1]) A 2-sum $M=M_{1} \oplus_{2} M_{2}$ is connected if and only if both M_{1} and M_{2} are connected.

The similar conclusion may not be made for 3 -sums of binary matroids. An example is presented in Figure 1, which is a slight modification of Figure 9.3 of [1]. In Figure 1, it is shown that while a binary matroid $M=M_{1} \oplus_{3} M_{2}$ is 3-connected, one of the summand M_{1}, as it contains a 2-circuit, is not 3-connected. Therefore, it is of interests to determine natural conditions that would assure both M_{1} and M_{2} are 3-connected when a binary matroid $M=M_{1} \oplus_{3} M_{2}$ is 3-connected. The purpose of this research is to investigate such conditions. The main result of this note is the following.

Theorem 2. Let M be a simple 3-connected binary matroid and $M=M_{1} \oplus_{3} M_{2}$ is a 3-sum of two matroids. Each of the followings holds.
(i) Both M_{1} and M_{2} are connected matroids.
(ii) If both M_{1} and M_{2} are simple, then each of M_{1} and M_{2} is 3-connected.

We present some preliminaries in Section 2 and prove the main result in Section 3.

2 Priliminaries

Following [1], the connectivity function $\lambda_{M}(X)$ of a matroid $M=(E, \mathscr{I})$ satisfies $\lambda_{M}(X)=r(X)+r(E-X)-$ $r(M)=r_{M}(X)+r_{M^{*}}(X)-|X|$ for any subset $X \subseteq E(M)$. A partition $(X, E-X)$ of E is a k-separation of M if both $\lambda(X)<k$ and $\min \{|X|,|E-X|\} \geq k$. A subset $X \subset E$ is a separator if $(X, E-X)$ is a 1-separation. A matroid M is n-connected if M does not has a k-separation for any integer $k \leq n$.

Lemma 3. (Proposition 2.1.11 of [1]) If C is a circuit and C^{*} is a cocircuit of the matroid M, then $\left|C \cap C^{*}\right| \neq 1$.
Lemma 4. (Lemmas 1.4.3 and 1.4.6 of [1]) Suppose $X \subseteq E$ and $x \in E$.
(i) If $X \in \mathscr{I}(M)$ and $X \cup x \notin \mathscr{I}(M)$, then $x \in \operatorname{cl}(X)$.
(ii) If $X \subseteq Y \subseteq E$, then $\operatorname{cl}(X) \subseteq \operatorname{cl}(Y)$.

Lemma 5. Let $M=(E, \mathscr{I})$ be a matroid and $X \subset E$ be a proper nonempty subset of E. The followings are equivalent:
(i) There exists a base B of M, such that $B \cap X \in \mathscr{B}(M \mid X)$ and $B-X \in \mathscr{B}(M-X)$.
(ii) For any two bases B_{1}, B_{2} of $M,\left|B_{1} \cap X\right|=\left|B_{2} \cap X\right|$. (Equivalently, $\left|B_{1}-X\right|=\left|B_{2}-X\right|$.)
(iii) X is a separator of matroid M.

Proof. (i) \Rightarrow (ii). Suppose there exists a base B of M such that $B \cap X \in \mathscr{B}(M \mid X)$ and $B-X \in \mathscr{B}(M-X)$. For any $B_{1}, B_{2} \in \mathscr{B}(M)$, and for $i \in\{1,2\}$, as $B_{i} \cap X \in \mathscr{I}(M \mid X)$ and $B_{i}-X \in \mathscr{B}(M-X)$, it follows that

$$
\begin{equation*}
\left|B_{i} \cap X\right| \leq|B \cap X| \text { and }\left|B_{i}-X\right| \leq|B-X| \tag{1}
\end{equation*}
$$

Thus

$$
\left|B_{i}\right|=\left|B_{i} \cap X\right|+\left|B_{i}-X\right| \leq|B \cap X|+|B-X|=|B| .
$$

As $\left|B_{i}\right|=|B|$, we conclude that $\left|B_{1} \cap X\right|=|B \cap X|=\left|B_{2} \cap X\right|$.
(ii) \Rightarrow (iii). Assume that (ii) holds. Let $B_{X} \in \mathscr{B}(M \mid X)$ and $B_{E-X} \in \mathscr{B}(M-X)$. Augment B_{X} to a base $B_{1} \in \mathscr{B}(M)$ and augment B_{E-X} to a base $B_{2} \in \mathscr{B}(M)$. By (ii), $\lambda_{M}(X)=r_{M}(X)+r_{M}(E-X)-r(M)=\left|B_{X}\right|+\left|B_{E-X}\right|-\left|B_{1}\right|=$ 0 . As $X \notin\{\emptyset, E\}$, we have $\min \{|X|,|E-X|\} \geq 1$. By definition, X is a separator.
(iii) \Rightarrow (i). Let X be a separator of M. Then $r_{M}(X)+r_{M}(E-X)=r(M)$. Pick a $B_{X} \in \mathscr{B}(M \mid X)$ and augment B_{X} to a $B \in \mathscr{B}(M)$. Then as $B-X \in \mathscr{I}(M-X)$ and $|B-X|=|B|-|B \cap X|=r(M)-r_{M}(X)=r_{M}(E-X)$, it follows that $B \cap X=B_{X} \in \mathscr{B}(M \mid X)$ and $B-X \in \mathscr{B}(M-X)$.

3 Proof of theorem 2

Let M be a simple 3-connected binary matroid and $M=M_{1} \oplus_{3} M_{2}$. Then by Lemma 1, both M_{1} and M_{2} are 2-connected matroid. Assume now that for some $i \in\{1,2\}, M_{i}$ is simple. We are to show that M_{i} is 3 -connected.

Proof. Assume that M_{i} is a simple matroid. Let $Z=E\left(M_{1}\right) \cap E\left(M_{2}\right)=\left\{z_{1}, z_{2}, z_{3}\right\}$. By the definition of a binary 3-sum, $Z \in \mathscr{C}\left(M_{1}\right) \cap \mathscr{C}\left(M_{2}\right)$. For some $i \in\{1,2\}$, if $X \subseteq E\left(M_{i}\right)$, then we denote $Y=E\left(M_{i}\right)-X$ throughout the proof. If $X \cap Z=\emptyset$, then direct computing yields

$$
\begin{align*}
\lambda_{M_{i}}(X) & =r_{M_{i}}(X)+r_{M_{i}^{*}}(X)-|X|=r_{M_{i}-Z}(X)+r_{M_{i}^{*}-Z}(X)-|X| \tag{2}\\
& =r_{M-\left(E\left(M_{3-i}\right)-Z\right)}(X)+r_{M^{*}-\left(E\left(M_{3-i}\right)-Z\right)}(X)-|X| \\
& =r_{M}(X)+r_{M^{*}}(X)-|X|=\lambda_{M}(X) .
\end{align*}
$$

We argue by contradiction to show (i) and assume, for some $i \in\{1,2\}$, that M_{i} has a separator X. So $\min \{|X|,|Y|\} \geq 1$ and $\lambda_{M_{i}}(X)=0$.

Suppose first that $X \cap Z=\emptyset$. By (2) and $\lambda_{M_{i}}(X)=0$, it follows that X is a separator of M, contrary to the assumption that M is connected. Hence we must have $X \cap Z \neq \emptyset$. Similarly, we also have $Y \cap Z \neq \emptyset$.

By symmetry, we may assume that $\left\{z_{1}, z_{2}\right\} \subseteq X$ and $z_{3} \in Y$. Augment the independent set $\left\{z_{1}, z_{2}\right\}$ to be a base $B_{X} \in \mathscr{B}\left(M_{i} \mid X\right)$, and then augment B_{X} to be a base $B \in \mathscr{B}\left(M_{i}\right)$. As Z is a circuit, $z_{3} \notin B$, and so Z must be the fundamental circuit in $B \cup z_{3}$. It follows that $B^{\prime}=\left(B-z_{1}\right) \cup z_{3} \in \mathscr{B}\left(M_{i}\right)$ and $|B \cap X|=\left|B^{\prime} \cap X\right|+1$. By Lemma 5, X can not be a separator of M_{i}, contrary to the assumption. This proves Theorem 2(i).

To show (ii), we assume that both M_{1} and M_{2} are simple, to show that for each $i \in\{1,2\}$, and for arbitrarily chosen proper nonempty subset $X \subset E\left(M_{i}\right)$ with $Y=E\left(M_{i}\right)-X$, satisfying $\min \{|X|,|Y|\} \geq 2$, we always have $\lambda_{M_{i}}(X) \geq 2$.
Claim 1. If $X \cap Z=\emptyset$, then $\lambda_{M_{i}}(X) \geq 2$.

By contradiction, assume that $X \cap Z=\emptyset$ and $\lambda_{M_{i}}<2$. By (2), we have $\lambda_{M}(X)=\lambda_{M_{i}}(X)<2$, and $\mid E(M)-$ $X\left|\geq|Y-Z|+\left|E\left(M_{3-i}\right)-Z\right| \geq 2\right.$. It follows that $(X, E(M)-X)$ is a 2-separation of M, contrary to the assumption that M is 3-connected. This proves Claim 1.

By Claim 1 and by symmetry, we may assume that both $X \cap Z \neq \emptyset$ and $Y \cap Z \neq \emptyset$. Thus we may again assume that $\left\{z_{1}, z_{2}\right\} \subseteq X$ and $z_{3} \in Y$. Augment the independent set $\left\{z_{1}, z_{2}\right\}$ to be a base $B_{X} \in \mathscr{B}\left(M_{i} \mid X\right)$, and then augment B_{X} to be a base $B \in \mathscr{B}\left(M_{i}\right)$. As $z_{3} \notin B, Z$ must be the fundamental circuit in $B \cup z_{3}$, and so $B^{\prime}=\left(B-z_{1}\right) \cup z_{3} \in \mathscr{B}\left(M_{i}\right)$ with

$$
\begin{equation*}
|B \cap X|=\left|B^{\prime} \cap X\right|+1 \tag{3}
\end{equation*}
$$

Claim 2. $r_{M_{i}}(Y) \geq 2$ and $r_{M_{i}^{*}}(Y) \geq 2$.
Let $y \in Y-z_{3}$ be an element. By Theorem 2(i), $\{y\}$ is not a separator of M_{i}, and so $1 \leq \lambda_{M_{i}}(y)=r_{M_{i}}(y)+$ $r_{M_{i}^{*}}(y)-|y| \leq 1+1-1=1$, forcing $\lambda_{M_{i}}(y)=r_{M_{i}}(y)=r_{M_{i}^{*}}(y)=1$. Since Z is a circuit of M_{i}, it follows by Lemma 3 that $\left\{z_{3}, y\right\}$ is coindependent in M_{i}. Since M_{i} is simple matroid, $\left\{z_{3}, y\right\}$ is independent in M_{i}. This proves that $r_{M_{i}}(Y) \geq\left|\left\{z_{3}, y\right\}\right| \geq 2$ and $r_{M_{i}^{*}}(Y) \geq\left|\left\{z_{3}, y\right\}\right| \geq 2$, and so Claim 2 holds.

If $|Y|=2$, then by Claim 2, we have $\lambda_{M_{i}}(X)=\lambda_{M_{i}}(Y)=r_{M_{i}}(Y)+r_{M_{i}^{*}}(Y)-|Y|=2+2-2=2$, a contradiction. Therefore, throughout the rest of the arguments, we assume that $|Y| \geq 3$.
Claim 3. $B^{\prime} \cap Y \notin \mathscr{B}\left(M_{i} \mid Y\right)$.
By contradiction, assume that $B^{\prime} \cap Y \in \mathscr{B}\left(M_{i} \mid Y\right)$. Let $Y^{\prime}=Y-z_{3}$ and $X^{\prime}=E\left(M_{i}\right)-Y^{\prime}$. Then $X^{\prime}=X \cup z_{3}$, $\left|Y^{\prime}\right| \geq 2$ and $Y^{\prime} \subseteq E\left(M_{i}\right)-Z$. By rank function properties, we have

$$
\begin{equation*}
r_{M_{i}}\left(Y^{\prime}\right) \leq r_{M_{i}}(Y) \leq r_{M_{i}}\left(Y^{\prime}\right)+1 \text { and } r_{M_{i}}(Y)-1 \leq r_{M_{i}}\left(Y^{\prime}\right) \leq r_{M_{i}}(Y) \tag{4}
\end{equation*}
$$

Since $Z \in \mathscr{C}\left(M_{i}\right)$ and $Z-X=\left\{z_{3}\right\}$, it follows that $r_{M_{i}}\left(X \cup\left\{z_{3}\right\}\right)=r_{M_{i}}(X)=\left|B_{X}\right|=|B \cap X|$. This, together with (4) and $\lambda_{M_{i}}\left(Y^{\prime}\right)=r_{M_{i}}\left(X^{\prime}\right)+r_{M_{i}}\left(Y^{\prime}\right)-r\left(M_{i}\right)$, implies that

$$
\begin{equation*}
r_{M_{i}}(X)+r_{M_{i}}(Y)-1-r\left(M_{i}\right) \leq \lambda_{M_{i}}\left(Y^{\prime}\right) \leq r_{M_{i}}(X)+r_{M_{i}}(Y)-r\left(M_{i}\right) \tag{5}
\end{equation*}
$$

As $r_{M_{i}}(X)=|B \cap X|, r_{M_{i}}(Y)=\left|B^{\prime} \cap Y\right|$ and $r\left(M_{i}\right)=|B|=\left|B^{\prime}\right|$, and by (3), we have $r_{M_{i}}(X)+r_{M_{i}}(Y)-r\left(M_{i}\right)=$ $|B \cap X|+\left|B^{\prime} \cap Y\right|-\left|B^{\prime}\right|=|B \cap X|-\left|B^{\prime} \cap X\right|=1$. This, together with (5), implies that $0 \leq \lambda_{M_{i}}\left(Y^{\prime}\right) \leq 1$. On the other hand, by $Y^{\prime} \subseteq E\left(M_{i}\right)-Z$ and by Claim 1, we have $\lambda_{M_{i}}\left(Y^{\prime}\right) \geq 2$. It is a contradiction. This proves Claim 3 .

By Claim 3, and as $|Y| \geq 3$. there exists an element $y^{\prime} \in Y-B^{\prime}$, such that the fundamental circuit $C_{M_{i}}\left(y^{\prime}, B^{\prime}\right)$ in $B^{\prime} \cup y^{\prime}$ contains elements not in Y, and so $C_{M_{i}}\left(y^{\prime}, B^{\prime}\right) \cap X \neq \emptyset$. Let $x \in C_{M_{i}}\left(y, B^{\prime}\right) \cap X$. Then $B^{\prime \prime}=\left(B^{\prime}-x\right) \cup y \in$ $\mathscr{B}\left(M_{i}\right)$, and $\left|B^{\prime \prime} \cap X\right|=\left|B^{\prime} \cap X\right|-1=|B \cap X|-2$. It follows that

$$
\begin{aligned}
r\left(M_{i}\right) & =\left|B^{\prime \prime}\right|=\left|B^{\prime \prime} \cap X\right|+\left|B^{\prime \prime} \cap Y\right|=|B \cap X|-2+\left|B^{\prime \prime} \cap Y\right| \\
& =r_{M_{i}}(X)-2+\left|B^{\prime \prime} \cap Y\right| \leq r_{M_{i}}(X)-2+r_{M_{i}}(Y) .
\end{aligned}
$$

Thus $\lambda_{M_{i}}(X) \geq 2$. It follows that M_{i} does not have any 2 -separations and so M_{i} is 3 -connected. This completes the proof.

Acknowledgment

This research is supported by the Nature Science Funds of China (Nos. 11961055, 11801296, 11261047, 11771039 and 11771443), by the Nature Science Foundation from Qinghai Province (Nos. 2017-ZJ-949Q and 2017-ZJ-Y21).

References

[1] Oxley, J.G. (2011), Matroid theory, Oxford university Press, New York.
[2] Seymour, P.D. (1980), Decomposition of regular matroids, J. Combin. Theory, Ser. B, 28 305-359.
[3] Seymour, P.D. (1981), Matroids and multicommodity flows, European J. Combin. Theory Ser. B., 2 257-290.
[4] Bondy, J.A. and Murty, U.S.R. (2008), Graph Theory, Springer.

Copyright of Interdisciplinary Journal of Discontinuity, Nonlinearity \& Complexity is the property of L\&H Scientific Publishing, LLC and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use.

[^0]: ${ }^{\dagger}$ Corresponding author.
 Email address: bofenghuo@163.com

