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Abstract

In [J. Combinatorial Theory, Ser. B, 28 (1980), 305-359], Seymour intro-
duced the binary matroid 3-sums and proved that if a 3-connected binary
matroid M is a 3-sum of matroids M1 and M2, then each of M1 and M2 is
isomorphic to a proper minor of M. For a 3-connected binary matroid M
expressed as a 3-sum of M1 and M2, we show that in general, both M1 and
M2 are 2-connected, and if M1 and M2 are simple matroids, then both M1

andM2 are also 3-connected.

©2022 L&H Scientific Publishing, LLC. All rights reserved.

1 Introduction

We consider finite binary matroids in this note. Undefined terms and notations can be found in [1]. Thus

we use rM , clM, I (M), B(M) and C (M) to denote the rank function, the closure operator, the collections of
independent sets, bases and circuits of a matroid M, respectively. If X ⊆ E , then M/X and M|X denotes the

matroid contractions, matroid restrictions, respectively. Define M−X = M|(E−X). A cycle of a matroid is a

disjoint union of circuits of M, and we use C0(M) to denote the collection of all cycles of M. For sets X and

Y , the symmetric difference of X and Y is defined as X △Y = (X ∪Y)− (X ∩Y). It is known (for example,
Theorem 9.1.2 of [1],) that C0(M) with the symmetric difference is a vector space over GF(2), the 2-element
field.

Let M1 = (E1,I1) and M2 = (E2,I2) be binary matroids and E = E1△E2. Seymour in [2] showed that

there is a matroidM1△M2 with ground set E with C0(M) = C0(M1)△C0(M2). Three special cases ofM1△M2

are introduced by Seymour ( [2] and [3]) as follows.

(S1) If E1∩E2 = /0 and |E1|, |E2|< |E1△E2|, M1△M2 is a 1-sum of M1 and M2, denoted byM1⊕M2.

(S2) If |E1∩E2|= 1 and E1∩E2= {p}, say, and p is not a loop or coloop ofM1 orM2, and |E1|, |E2|< |E1△E2|,
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Fig. 1 M is a 3-sum ofM1 andM2.

M1△M2 is a 2-sum of M1 and M2, denoted by M1⊕2M2.

(S3) If |E1∩E2|= 3 and E1∩E2 = Z, and Z is a circuit of M1 and M2, and Z includes no cocircuit of either M1

or M2, and |E1|, |E2|< |E1△E2|,M1△M2 is a 3-sum of M1 and M2, denoted by M1⊕3M2.

The following is known for matroid 2-sums.

Lemma 1. (Proposition 7.1.22 of [1]) A 2-sum M = M1⊕2M2 is connected if and only if both M1 and M2 are

connected.

The similar conclusion may not be made for 3-sums of binary matroids. An example is presented in Figure

1, which is a slight modification of Figure 9.3 of [1]. In Figure 1, it is shown that while a binary matroid

M = M1⊕3M2 is 3-connected, one of the summandM1, as it contains a 2-circuit, is not 3-connected. Therefore,

it is of interests to determine natural conditions that would assure bothM1 andM2 are 3-connected when a binary

matroid M = M1⊕3M2 is 3-connected. The purpose of this research is to investigate such conditions. The main

result of this note is the following.

Theorem 2. Let M be a simple 3-connected binary matroid and M = M1⊕3 M2 is a 3-sum of two matroids.

Each of the followings holds.

(i) Both M1 and M2 are connected matroids.

(ii) If both M1 and M2 are simple, then each of M1 and M2 is 3-connected.

We present some preliminaries in Section 2 and prove the main result in Section 3.

2 Priliminaries

Following [1], the connectivity function λM(X) of a matroidM = (E,I ) satisfies λM(X) = r(X)+ r(E−X)−
r(M) = rM(X)+ rM∗(X)−|X | for any subset X ⊆ E(M). A partition (X ,E−X) of E is a k-separation of M if

both λ (X) < k and min{|X |, |E −X |} ≥ k. A subset X ⊂ E is a separator if (X ,E−X) is a 1-separation. A
matroid M is n-connected if M does not has a k-separation for any integer k ≤ n.

Lemma 3. (Proposition 2.1.11 of [1]) If C is a circuit and C∗ is a cocircuit of the matroid M, then |C∩C∗| 6= 1.

Lemma 4. (Lemmas 1.4.3 and 1.4.6 of [1]) Suppose X ⊆ E and x ∈ E.

(i) If X ∈I (M) and X ∪ x /∈I (M), then x ∈ cl(X).
(ii) If X ⊆Y ⊆ E, then cl(X)⊆ cl(Y ).
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Lemma 5. Let M = (E,I ) be a matroid and X ⊂ E be a proper nonempty subset of E. The followings are

equivalent:

(i) There exists a base B of M, such that B∩X ∈B(M|X) and B−X ∈B(M−X).
(ii) For any two bases B1, B2 of M, |B1∩X |= |B2∩X |. (Equivalently, |B1−X |= |B2−X |.)
(iii) X is a separator of matroid M.

Proof. (i)⇒ (ii). Suppose there exists a base B of M such that B∩X ∈B(M|X) and B−X ∈B(M−X). For
any B1,B2 ∈B(M), and for i ∈ {1,2}, as Bi∩X ∈I (M|X) and Bi−X ∈B(M−X), it follows that

|Bi∩X | ≤ |B∩X | and |Bi−X | ≤ |B−X |. (1)

Thus

|Bi|= |Bi∩X |+ |Bi−X | ≤ |B∩X |+ |B−X |= |B|.

As |Bi|= |B|, we conclude that |B1∩X |= |B∩X |= |B2∩X |.

(ii)⇒ (iii). Assume that (ii) holds. Let BX ∈B(M|X) and BE−X ∈B(M−X). Augment BX to a base B1 ∈B(M)
and augment BE−X to a base B2 ∈B(M). By (ii), λM(X) = rM(X)+rM(E−X)−r(M)= |BX |+ |BE−X|−|B1|=
0. As X /∈ { /0,E}, we have min{|X |, |E−X |} ≥ 1. By definition, X is a separator.

(iii) ⇒ (i). Let X be a separator of M. Then rM(X)+ rM(E −X) = r(M). Pick a BX ∈B(M|X) and augment
BX to a B ∈B(M). Then as B−X ∈I (M−X) and |B−X |= |B|− |B∩X |= r(M)− rM(X) = rM(E−X), it
follows that B∩X = BX ∈B(M|X) and B−X ∈B(M−X). �

3 Proof of theorem 2

Let M be a simple 3-connected binary matroid and M = M1⊕3 M2. Then by Lemma 1, both M1 and M2 are

2-connected matroid. Assume now that for some i ∈ {1,2},Mi is simple. We are to show thatMi is 3-connected.

Proof. Assume thatMi is a simple matroid. Let Z = E(M1)∩E(M2) = {z1,z2,z3}. By the definition of a binary
3-sum, Z ∈ C (M1)∩C (M2). For some i ∈ {1,2}, if X ⊆ E(Mi), then we denote Y = E(Mi)−X throughout the

proof. If X ∩Z = /0, then direct computing yields

λMi
(X) = rMi

(X)+ rM∗
i
(X)−|X |= rMi−Z(X)+ rM∗

i −Z(X)−|X | (2)

= rM−(E(M3−i)−Z)(X)+ rM∗−(E(M3−i)−Z)(X)−|X |

= rM(X)+ rM∗(X)−|X |= λM(X).

We argue by contradiction to show (i) and assume, for some i ∈ {1,2}, that Mi has a separator X . So

min{|X |, |Y |} ≥ 1 and λMi
(X) = 0.

Suppose first that X ∩Z = /0. By (2) and λMi
(X) = 0, it follows that X is a separator of M, contrary to the

assumption that M is connected. Hence we must have X ∩Z 6= /0. Similarly, we also have Y ∩Z 6= /0.

By symmetry, we may assume that {z1,z2} ⊆ X and z3 ∈ Y . Augment the independent set {z1,z2} to be a
base BX ∈B(Mi|X), and then augment BX to be a base B ∈B(Mi). As Z is a circuit, z3 6∈ B, and so Z must

be the fundamental circuit in B∪ z3. It follows that B′ = (B− z1)∪ z3 ∈B(Mi) and |B∩X |= |B′∩X |+ 1. By
Lemma 5, X can not be a separator of Mi, contrary to the assumption. This proves Theorem 2(i).

To show (ii), we assume that both M1 and M2 are simple, to show that for each i ∈ {1,2}, and for arbitrarily
chosen proper nonempty subset X ⊂ E(Mi) with Y = E(Mi)−X , satisfying min{|X |, |Y |} ≥ 2, we always have
λMi

(X)≥ 2.
Claim 1. If X ∩Z = /0, then λMi

(X)≥ 2.
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By contradiction, assume that X ∩Z = /0 and λMi
< 2. By (2), we have λM(X) = λMi

(X)< 2, and |E(M)−
X | ≥ |Y −Z|+ |E(M3−i)−Z| ≥ 2. It follows that (X ,E(M)−X) is a 2-separation of M, contrary to the assump-

tion that M is 3-connected. This proves Claim 1.

By Claim 1 and by symmetry, we may assume that both X ∩ Z 6= /0 and Y ∩ Z 6= /0. Thus we may again

assume that {z1,z2} ⊆ X and z3 ∈ Y . Augment the independent set {z1,z2} to be a base BX ∈B(Mi|X), and
then augment BX to be a base B ∈ B(Mi). As z3 /∈ B, Z must be the fundamental circuit in B∪ z3, and so

B′ = (B− z1)∪ z3 ∈B(Mi) with
|B∩X |= |B′∩X |+1. (3)

Claim 2. rMi
(Y )≥ 2 and rM∗

i
(Y )≥ 2.

Let y ∈ Y − z3 be an element. By Theorem 2(i), {y} is not a separator of Mi, and so 1 ≤ λMi
(y) = rMi

(y)+
rM∗

i
(y)− |y| ≤ 1+ 1− 1 = 1, forcing λMi

(y) = rMi
(y) = rM∗

i
(y) = 1. Since Z is a circuit of Mi, it follows by

Lemma 3 that {z3,y} is coindependent in Mi. Since Mi is simple matroid, {z3,y} is independent in Mi. This

proves that rMi
(Y )≥ |{z3,y}| ≥ 2 and rM∗

i
(Y )≥ |{z3,y}| ≥ 2, and so Claim 2 holds.

If |Y |= 2, then by Claim 2, we have λMi
(X) = λMi

(Y ) = rMi
(Y )+ rM∗

i
(Y )−|Y |= 2+2−2= 2, a contradic-

tion. Therefore, throughout the rest of the arguments, we assume that |Y | ≥ 3.
Claim 3. B′∩Y 6∈B(Mi|Y ).

By contradiction, assume that B′∩Y ∈B(Mi|Y ). Let Y
′ = Y − z3 and X ′ = E(Mi)−Y ′. Then X ′ = X ∪ z3,

|Y ′| ≥ 2 and Y ′ ⊆ E(Mi)−Z. By rank function properties, we have

rMi
(Y ′)≤ rMi

(Y )≤ rMi
(Y ′)+1 and rMi

(Y )−1≤ rMi
(Y ′)≤ rMi

(Y ). (4)

Since Z ∈ C (Mi) and Z−X = {z3}, it follows that rMi
(X ∪{z3}) = rMi

(X) = |BX |= |B∩X |. This, together with
(4) and λMi

(Y ′) = rMi
(X ′)+ rMi

(Y ′)− r(Mi), implies that

rMi
(X)+ rMi

(Y )−1− r(Mi)≤ λMi
(Y ′)≤ rMi

(X)+ rMi
(Y )− r(Mi). (5)

As rMi
(X) = |B∩X |, rMi

(Y ) = |B′∩Y | and r(Mi) = |B|= |B
′|, and by (3), we have rMi

(X)+ rMi
(Y )− r(Mi) =

|B∩X |+ |B′∩Y |− |B′| = |B∩X |− |B′∩X |= 1. This, together with (5), implies that 0 ≤ λMi
(Y ′) ≤ 1. On the

other hand, by Y ′ ⊆ E(Mi)−Z and by Claim 1, we have λMi
(Y ′)≥ 2. It is a contradiction. This proves Claim 3.

By Claim 3, and as |Y | ≥ 3. there exists an element y′ ∈Y −B′, such that the fundamental circuit CMi
(y′,B′)

in B′∪y′ contains elements not in Y , and soCMi
(y′,B′)∩X 6= /0. Let x ∈CMi

(y,B′)∩X . Then B′′ = (B′−x)∪y ∈
B(Mi), and |B

′′∩X |= |B′∩X |−1= |B∩X |−2. It follows that

r(Mi) = |B′′|= |B′′∩X |+ |B′′∩Y |= |B∩X |−2+ |B′′∩Y |

= rMi
(X)−2+ |B′′∩Y | ≤ rMi

(X)−2+ rMi
(Y ).

Thus λMi
(X)≥ 2. It follows that Mi does not have any 2-separations and so Mi is 3-connected. This completes

the proof. �
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