

Discontinuity, Nonlinearity, and Complexity

https://lhscientificpublishing.com/Journals/DNC-Default.aspx

A Note on the Connectivity of Binary Matroids

Jun Yin^{1,2,3}, Bofeng Huo^{4†}, Hong-Jian Lai⁵

- ¹ School of Computer, Qinghai Normal University, Xining, Qinghai, 810008, P.R. of China
- ² Key Laboratory of Tibetan Information Processing and Machine Translation, Qinghai Province
- ³ Key Laboratory of Tibetan Information Processing, Ministry of Education
- ⁴ School of Mathematics and Statistics, Qinghai Normal University, Xining, Qinghai 810016, PRC
- ⁵ Department of Mathematics, West Virginia University, Morgantown, WV 26506, USA

Submission Info

Communicated by Dimitri Volchenkov Received 14 September 2020 Accepted 15 October 2020 Available online 1 October 2022

Keywords

Matroid connectivity
Binary matroids
Matroid 3-sums

Abstract

In [J. Combinatorial Theory, Ser. B, 28 (1980), 305-359], Seymour introduced the binary matroid 3-sums and proved that if a 3-connected binary matroid M is a 3-sum of matroids M_1 and M_2 , then each of M_1 and M_2 is isomorphic to a proper minor of M. For a 3-connected binary matroid M expressed as a 3-sum of M_1 and M_2 , we show that in general, both M_1 and M_2 are 2-connected, and if M_1 and M_2 are simple matroids, then both M_1 and M_2 are also 3-connected.

©2022 L&H Scientific Publishing, LLC. All rights reserved.

1 Introduction

We consider finite binary matroids in this note. Undefined terms and notations can be found in [1]. Thus we use r_M , cl_M , $\mathscr{I}(M)$, $\mathscr{B}(M)$ and $\mathscr{C}(M)$ to denote the rank function, the closure operator, the collections of independent sets, bases and circuits of a matroid M, respectively. If $X \subseteq E$, then M/X and M|X denotes the matroid contractions, matroid restrictions, respectively. Define M-X=M|(E-X). A **cycle** of a matroid is a disjoint union of circuits of M, and we use $\mathscr{C}_0(M)$ to denote the collection of all cycles of M. For sets X and Y, the **symmetric difference** of X and Y is defined as $X \triangle Y = (X \cup Y) - (X \cap Y)$. It is known (for example, Theorem 9.1.2 of [1],) that $\mathscr{C}_0(M)$ with the symmetric difference is a vector space over GF(2), the 2-element field.

Let $M_1 = (E_1, \mathscr{I}_1)$ and $M_2 = (E_2, \mathscr{I}_2)$ be binary matroids and $E = E_1 \triangle E_2$. Seymour in [2] showed that there is a matroid $M_1 \triangle M_2$ with ground set E with $\mathscr{C}_0(M) = \mathscr{C}_0(M_1) \triangle \mathscr{C}_0(M_2)$. Three special cases of $M_1 \triangle M_2$ are introduced by Seymour ([2] and [3]) as follows.

(S1) If $E_1 \cap E_2 = \emptyset$ and $|E_1|, |E_2| < |E_1 \triangle E_2|, M_1 \triangle M_2$ is a **1-sum** of M_1 and M_2 , denoted by $M_1 \oplus M_2$. (S2) If $|E_1 \cap E_2| = 1$ and $|E_1| \cap |E_2| = \{p\}$, say, and $|E_1|$ is not a loop or coloop of $|E_1|$ or $|E_2|$, and $|E_1|$, $|E_2|$ is $|E_1| \cap |E_2|$.

Email address: bofenghuo@163.com

ISSN 2164-6376, eISSN 2164-6414/\$-see front materials © 2022 L&H Scientific Publishing, LLC. All rights reserved. DOI:10.5890/DNC.2022.09.004

[†]Corresponding author.

Fig. 1 M is a 3-sum of M_1 and M_2 .

 $M_1 \triangle M_2$ is a **2-sum** of M_1 and M_2 , denoted by $M_1 \oplus_2 M_2$.

(S3) If $|E_1 \cap E_2| = 3$ and $E_1 \cap E_2 = Z$, and Z is a circuit of M_1 and M_2 , and Z includes no cocircuit of either M_1 or M_2 , and $|E_1|, |E_2| < |E_1 \triangle E_2|, M_1 \triangle M_2$ is a **3-sum** of M_1 and M_2 , denoted by $M_1 \oplus_3 M_2$.

The following is known for matroid 2-sums.

Lemma 1. (Proposition 7.1.22 of [1]) A 2-sum $M = M_1 \oplus_2 M_2$ is connected if and only if both M_1 and M_2 are connected.

The similar conclusion may not be made for 3-sums of binary matroids. An example is presented in Figure 1, which is a slight modification of Figure 9.3 of [1]. In Figure 1, it is shown that while a binary matroid $M = M_1 \oplus_3 M_2$ is 3-connected, one of the summand M_1 , as it contains a 2-circuit, is not 3-connected. Therefore, it is of interests to determine natural conditions that would assure both M_1 and M_2 are 3-connected when a binary matroid $M = M_1 \oplus_3 M_2$ is 3-connected. The purpose of this research is to investigate such conditions. The main result of this note is the following.

Theorem 2. Let M be a simple 3-connected binary matroid and $M = M_1 \oplus_3 M_2$ is a 3-sum of two matroids. Each of the followings holds.

- (i) Both M_1 and M_2 are connected matroids.
- (ii) If both M_1 and M_2 are simple, then each of M_1 and M_2 is 3-connected.

We present some preliminaries in Section 2 and prove the main result in Section 3.

2 Priliminaries

Following [1], the **connectivity function** $\lambda_M(X)$ of a matroid $M = (E, \mathscr{I})$ satisfies $\lambda_M(X) = r(X) + r(E - X) - r(M) = r_M(X) + r_{M^*}(X) - |X|$ for any subset $X \subseteq E(M)$. A partition (X, E - X) of E is a k-separation of M if both $\lambda(X) < k$ and $\min\{|X|, |E - X|\} \ge k$. A subset $X \subset E$ is a **separator** if (X, E - X) is a 1-separation. A matroid M is n-connected if M does not has a k-separation for any integer $k \le n$.

Lemma 3. (Proposition 2.1.11 of [1]) If C is a circuit and C^* is a cocircuit of the matroid M, then $|C \cap C^*| \neq 1$.

Lemma 4. (Lemmas 1.4.3 and 1.4.6 of [1]) Suppose $X \subseteq E$ and $x \in E$.

- (i) If $X \in \mathcal{I}(M)$ and $X \cup x \notin \mathcal{I}(M)$, then $x \in cl(X)$.
- (ii) If $X \subseteq Y \subseteq E$, then $cl(X) \subseteq cl(Y)$.

Lemma 5. Let $M = (E, \mathcal{I})$ be a matroid and $X \subset E$ be a proper nonempty subset of E. The followings are equivalent:

- (i) There exists a base B of M, such that $B \cap X \in \mathcal{B}(M|X)$ and $B X \in \mathcal{B}(M X)$.
- (ii) For any two bases B_1 , B_2 of M, $|B_1 \cap X| = |B_2 \cap X|$. (Equivalently, $|B_1 X| = |B_2 X|$.)
- (iii) X is a separator of matroid M.

Proof. (i) \Rightarrow (ii). Suppose there exists a base B of M such that $B \cap X \in \mathcal{B}(M|X)$ and $B - X \in \mathcal{B}(M - X)$. For any $B_1, B_2 \in \mathcal{B}(M)$, and for $i \in \{1, 2\}$, as $B_i \cap X \in \mathcal{I}(M|X)$ and $B_i - X \in \mathcal{B}(M - X)$, it follows that

$$|B_i \cap X| \le |B \cap X| \text{ and } |B_i - X| \le |B - X|. \tag{1}$$

Thus

$$|B_i| = |B_i \cap X| + |B_i - X| \le |B \cap X| + |B - X| = |B|.$$

As $|B_i| = |B|$, we conclude that $|B_1 \cap X| = |B \cap X| = |B_2 \cap X|$.

(ii) \Rightarrow (iii). Assume that (ii) holds. Let $B_X \in \mathcal{B}(M|X)$ and $B_{E-X} \in \mathcal{B}(M-X)$. Augment B_X to a base $B_1 \in \mathcal{B}(M)$ and augment B_{E-X} to a base $B_2 \in \mathcal{B}(M)$. By (ii), $\lambda_M(X) = r_M(X) + r_M(E-X) - r(M) = |B_X| + |B_{E-X}| - |B_1| = 0$. As $X \notin \{\emptyset, E\}$, we have $\min\{|X|, |E-X|\} \ge 1$. By definition, X is a separator.

(iii) \Rightarrow (i). Let X be a separator of M. Then $r_M(X) + r_M(E - X) = r(M)$. Pick a $B_X \in \mathcal{B}(M|X)$ and augment B_X to a $B \in \mathcal{B}(M)$. Then as $B - X \in \mathcal{I}(M - X)$ and $|B - X| = |B| - |B \cap X| = r(M) - r_M(X) = r_M(E - X)$, it follows that $B \cap X = B_X \in \mathcal{B}(M|X)$ and $B - X \in \mathcal{B}(M - X)$.

3 Proof of theorem 2

Let M be a simple 3-connected binary matroid and $M = M_1 \oplus_3 M_2$. Then by Lemma 1, both M_1 and M_2 are 2-connected matroid. Assume now that for some $i \in \{1,2\}$, M_i is simple. We are to show that M_i is 3-connected.

Proof. Assume that M_i is a simple matroid. Let $Z = E(M_1) \cap E(M_2) = \{z_1, z_2, z_3\}$. By the definition of a binary 3-sum, $Z \in \mathcal{C}(M_1) \cap \mathcal{C}(M_2)$. For some $i \in \{1, 2\}$, if $X \subseteq E(M_i)$, then we denote $Y = E(M_i) - X$ throughout the proof. If $X \cap Z = \emptyset$, then direct computing yields

$$\lambda_{M_{i}}(X) = r_{M_{i}}(X) + r_{M_{i}^{*}}(X) - |X| = r_{M_{i}-Z}(X) + r_{M_{i}^{*}-Z}(X) - |X|$$

$$= r_{M-(E(M_{3-i})-Z)}(X) + r_{M^{*}-(E(M_{3-i})-Z)}(X) - |X|$$

$$= r_{M}(X) + r_{M^{*}}(X) - |X| = \lambda_{M}(X).$$
(2)

We argue by contradiction to show (i) and assume, for some $i \in \{1,2\}$, that M_i has a separator X. So $\min\{|X|,|Y|\} \ge 1$ and $\lambda_{M_i}(X) = 0$.

Suppose first that $X \cap Z = \emptyset$. By (2) and $\lambda_{M_i}(X) = 0$, it follows that X is a separator of M, contrary to the assumption that M is connected. Hence we must have $X \cap Z \neq \emptyset$. Similarly, we also have $Y \cap Z \neq \emptyset$.

By symmetry, we may assume that $\{z_1, z_2\} \subseteq X$ and $z_3 \in Y$. Augment the independent set $\{z_1, z_2\}$ to be a base $B_X \in \mathcal{B}(M_i|X)$, and then augment B_X to be a base $B \in \mathcal{B}(M_i)$. As Z is a circuit, $z_3 \notin B$, and so Z must be the fundamental circuit in $B \cup z_3$. It follows that $B' = (B - z_1) \cup z_3 \in \mathcal{B}(M_i)$ and $|B \cap X| = |B' \cap X| + 1$. By Lemma 5, X can not be a separator of M_i , contrary to the assumption. This proves Theorem 2(i).

To show (ii), we assume that both M_1 and M_2 are simple, to show that for each $i \in \{1,2\}$, and for arbitrarily chosen proper nonempty subset $X \subset E(M_i)$ with $Y = E(M_i) - X$, satisfying $\min\{|X|, |Y|\} \ge 2$, we always have $\lambda_{M_i}(X) \ge 2$.

Claim 1. If $X \cap Z = \emptyset$, then $\lambda_{M_i}(X) \geq 2$.

By contradiction, assume that $X \cap Z = \emptyset$ and $\lambda_{M_i} < 2$. By (2), we have $\lambda_M(X) = \lambda_{M_i}(X) < 2$, and $|E(M) - X| \ge |Y - Z| + |E(M_{3-i}) - Z| \ge 2$. It follows that (X, E(M) - X) is a 2-separation of M, contrary to the assumption that M is 3-connected. This proves Claim 1.

By Claim 1 and by symmetry, we may assume that both $X \cap Z \neq \emptyset$ and $Y \cap Z \neq \emptyset$. Thus we may again assume that $\{z_1, z_2\} \subseteq X$ and $z_3 \in Y$. Augment the independent set $\{z_1, z_2\}$ to be a base $B_X \in \mathcal{B}(M_i|X)$, and then augment B_X to be a base $B \in \mathcal{B}(M_i)$. As $z_3 \notin B$, Z must be the fundamental circuit in $B \cup z_3$, and so $B' = (B - z_1) \cup z_3 \in \mathcal{B}(M_i)$ with

$$|B \cap X| = |B' \cap X| + 1. \tag{3}$$

Claim 2. $r_{M_i}(Y) \ge 2$ and $r_{M_i^*}(Y) \ge 2$.

Let $y \in Y - z_3$ be an element. By Theorem 2(i), $\{y\}$ is not a separator of M_i , and so $1 \le \lambda_{M_i}(y) = r_{M_i}(y) + r_{M_i^*}(y) - |y| \le 1 + 1 - 1 = 1$, forcing $\lambda_{M_i}(y) = r_{M_i}(y) = r_{M_i^*}(y) = 1$. Since Z is a circuit of M_i , it follows by Lemma 3 that $\{z_3, y\}$ is coindependent in M_i . Since M_i is simple matroid, $\{z_3, y\}$ is independent in M_i . This proves that $r_{M_i}(Y) \ge |\{z_3, y\}| \ge 2$ and $r_{M_i^*}(Y) \ge |\{z_3, y\}| \ge 2$, and so Claim 2 holds.

If |Y| = 2, then by Claim 2, we have $\dot{\lambda}_{M_i}(X) = \lambda_{M_i}(Y) = r_{M_i}(Y) + r_{M_i^*}(Y) - |Y| = 2 + 2 - 2 = 2$, a contradiction. Therefore, throughout the rest of the arguments, we assume that $|Y| \ge 3$.

Claim 3. $B' \cap Y \notin \mathcal{B}(M_i|Y)$.

By contradiction, assume that $B' \cap Y \in \mathcal{B}(M_i|Y)$. Let $Y' = Y - z_3$ and $X' = E(M_i) - Y'$. Then $X' = X \cup z_3$, $|Y'| \ge 2$ and $Y' \subseteq E(M_i) - Z$. By rank function properties, we have

$$r_{M_i}(Y') \le r_{M_i}(Y) \le r_{M_i}(Y') + 1 \text{ and } r_{M_i}(Y) - 1 \le r_{M_i}(Y') \le r_{M_i}(Y).$$
 (4)

Since $Z \in \mathscr{C}(M_i)$ and $Z - X = \{z_3\}$, it follows that $r_{M_i}(X \cup \{z_3\}) = r_{M_i}(X) = |B_X| = |B \cap X|$. This, together with (4) and $\lambda_{M_i}(Y') = r_{M_i}(X') + r_{M_i}(Y') - r(M_i)$, implies that

$$r_{M_i}(X) + r_{M_i}(Y) - 1 - r(M_i) \le \lambda_{M_i}(Y') \le r_{M_i}(X) + r_{M_i}(Y) - r(M_i). \tag{5}$$

As $r_{M_i}(X) = |B \cap X|$, $r_{M_i}(Y) = |B' \cap Y|$ and $r(M_i) = |B| = |B'|$, and by (3), we have $r_{M_i}(X) + r_{M_i}(Y) - r(M_i) = |B \cap X| + |B' \cap Y| - |B'| = |B \cap X| - |B' \cap X| = 1$. This, together with (5), implies that $0 \le \lambda_{M_i}(Y') \le 1$. On the other hand, by $Y' \subseteq E(M_i) - Z$ and by Claim 1, we have $\lambda_{M_i}(Y') \ge 2$. It is a contradiction. This proves Claim 3.

By Claim 3, and as $|Y| \ge 3$. there exists an element $y' \in Y - B'$, such that the fundamental circuit $C_{M_i}(y', B')$ in $B' \cup y'$ contains elements not in Y, and so $C_{M_i}(y', B') \cap X \ne \emptyset$. Let $x \in C_{M_i}(y, B') \cap X$. Then $B'' = (B' - x) \cup y \in \mathscr{B}(M_i)$, and $|B'' \cap X| = |B' \cap X| - 1 = |B \cap X| - 2$. It follows that

$$r(M_i) = |B''| = |B'' \cap X| + |B'' \cap Y| = |B \cap X| - 2 + |B'' \cap Y|$$

= $r_{M_i}(X) - 2 + |B'' \cap Y| \le r_{M_i}(X) - 2 + r_{M_i}(Y)$.

Thus $\lambda_{M_i}(X) \ge 2$. It follows that M_i does not have any 2-separations and so M_i is 3-connected. This completes the proof.

Acknowledgment

This research is supported by the Nature Science Funds of China (Nos. 11961055, 11801296, 11261047, 11771039 and 11771443), by the Nature Science Foundation from Qinghai Province (Nos. 2017-ZJ-949Q and 2017-ZJ-Y21).

References

- [1] Oxley, J.G. (2011), Matroid theory, Oxford university Press, New York.
- [2] Seymour, P.D. (1980), Decomposition of regular matroids, J. Combin. Theory, Ser. B, 28 305-359.
- [3] Seymour, P.D. (1981), Matroids and multicommodity flows, European J. Combin. Theory Ser. B., 2 257-290.
- [4] Bondy, J.A. and Murty, U.S.R. (2008), Graph Theory, Springer.

Copyright of Interdisciplinary Journal of Discontinuity, Nonlinearity & Complexity is the property of L&H Scientific Publishing, LLC and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use.