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a b s t r a c t

A (k, r)-coloring of a graph G is a proper k-vertex coloring of G such that the neighbors
of each vertex of degree d will receive at least min{d, r} different colors. The r-hued
chromatic number, denoted by χr (G), is the smallest integer k for which a graph G has a
(k, r)-coloring. This article is intended to survey the recent developments on the studies
related to this r-hued colorings. Emphases are on the r-hued colorings of planar graphs,
graph families with forbidden minors, and sparse graphs, as well as on the comparison
between the r-hued chromatic number and the chromatic number of a graph, and the
sensitivity studies of the r-hued chromatic number. It also surveys other related results
on r-hued colorings and list r-hued colorings.
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1. Introduction

Graph coloring has been one of the most fascinating and motivating problems in graph theory. Many of the research
opics and methods have been developed by in the long journey of turning the four color conjecture into the four color
heorem. As commented by Tutte [131], ‘‘The Four Colour Theorem is the tip of the iceberg, the thin end of the wedge
nd the first cuckoo of spring’’. As of today, there have been many variations of graph coloring problems under intensive
tudies. Our objectives are to survey results and developments on the r-hued colorings of graphs.
Unless otherwise specified, graphs considered in this survey are simple undirected finite graphs. Terms and notation

ot defined in the survey will follow those in [18]. As in [18], δ(G), ∆(G), κ(G), κ ′(G) and χ (G) denote the minimum degree,
he maximum degree, the connectivity, the edge-connectivity, and the chromatic number of a graph G, respectively.
hroughout the survey, a cycle on n vertices is denoted by Cn and often referred as an n-cycle. The girth of G, denoted
y g(G), is the smallest n such that G has an n-cycle. For graph H and G, we write H ⊆ G to mean that H is a subgraph of
. The maximum average degree of a graph G is defined as

mad(G) = max
{∑

v∈V (H) dH (v)

|V (H)|
: H is a subgraph of G

}
. (1)

For a vertex v ∈ V (G), the neighborhood of v in G is NG(v) = {u ∈ V (G) : u is adjacent to v in G}. Vertices in NG(v) are
called neighbors of v.

We use N to denote the set of all positive integers, and often use elements in N as colors. Let 2N denote the collection
of subsets of N. For k ∈ N, define k = {1, 2, . . . , k}. The concept of r-hued coloring was first initiated in the dissertation
f Bruce Montgomery [110] and in the paper [89] for the special case when r = 2. In this early stage, a 2-hued coloring
s called a dynamic coloring. The first research paper on r-hued coloring for generic values of r appeared in [87], where
he r-hued coloring was called a conditional coloring. In later studies, the terminology has not been unified, but most
eople are using either r-hued colorings or r-dynamic colorings.
We present the formal definition of r-hued colorings of graphs. For an integer k > 0, if c : V (G) → k is a mapping,

nd if S ⊆ V (G), then define c(S) = {c(u) : u ∈ S}.

Definition 1.1. Let k and r be positive integers. A (k, r)-coloring of a graph G is a mapping c : V (G) → k satisfying both
he proper coloring condition (C1) and the r-hued coloring condition (C2), as follows:
C1) if u, v ∈ V (G) are adjacent in G, then c(u) ̸= c(v);
C2) for any v ∈ V (G), |c(NG(v))| ≥ min{|NG(v)|, r}.

Following [18], a mapping c : V (G) → k satisfying (C1) only is a proper k-coloring of G, and χ (G), the chromatic
umber of G, is the smallest integer k such that G has a proper k-coloring. Likewise, the r-hued chromatic number of G,
enoted by χr (G), is the smallest k such that G has a (k, r)-coloring. It follows from the definitions of χ (G) and χr (G) that
(G) = χ1(G), and so χr (G) can be viewed as a generalization of the classical graph coloring. Since any (k, i)-coloring of
is also a (k, j)-coloring of G for any integers i > j > 0, it has been firstly observed in [87] that

χ (G) = χ1(G) ≤ χ2(G) ≤ · · · ≤ χr−1(G) ≤ χr (G) ≤ · · · ≤ χ∆(G)(G) = χ∆(G)+1(G) = · · · . (2)

There is also a list coloring version of r-hued colorings. We follow [18] to define list colorings of graphs. A list of a
raph G is an assignment L : V (G) → 2N that assigns every v ∈ V (G) a list L(v) of colors available at v. An L-coloring is
mapping c : V (G) → N satisfying the proper coloring condition (C1) in Definition 1.1, and the following list coloring
ondition:
C3) c(v) ∈ L(v), for every v ∈ V (G).

If G has an L-coloring, then G is L-colorable. For an integer k ∈ N, a list L of a graph G is a k-list if |L(v)| = k for
ny v ∈ V (G). A graph G is k-list-colorable if for any k-list L of G, G is L-colorable. The smallest integer k such that G is

k-list-colorable is called the list chromatic number of G, and is denoted by χL(G).
The list 2-hued coloring of graphs is first introduced in [4], under the name of list dynamic coloring of graphs. In [30],

the list r-hued coloring of graphs for generic values of r is formally introduced. Let r ∈ N be an integer. For a given
assignment L : V (G) → 2N in a graph G, an (L, r)-coloring c is a mapping c : V (G) → N satisfying both (C1) and (C2) in
Definition 1.1, as well as the list coloring condition (C3). The list r-hued chromatic number, denoted by χL,r (G), is the
smallest integer k such that for any k-list L of G, G has an (L, r)-coloring. By definition,

χL(G) = χL,1(G) ≤ · · · ≤ χL,r−1(G) ≤ χL,r (G) ≤ · · · ≤ χL,∆(G)(G) = χL,∆(G)+1(G) = · · · . (3)

It also follows from the definitions that for every graph G and any positive integer r , one always has χ (G) ≤ χ (G).
r L,r
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The inequalities in (2) and (3) indicate that r-hued colorings and list r-hued colorings are closely related to the 2-
istance colorings of graphs, introduced by Kramer and Kramer [78,79], and the list 2-distance k-coloring of graphs,
espectively. For a graph G, a 2-distance k-coloring of G is a mapping c : V (G) → k satisfying (C1) and the following:
C4) If u, v ∈ V (G) are of distance 2 in G, then c(u) ̸= c(v).
he paper [80] is a very resourceful survey on 2-distance colorings of graphs.
The 2-distance chromatic number of G is the smallest integer k such that G has a 2-distance k-coloring. The list 2-

distance k-coloring and list 2-distance chromatic number of G can be similarly defined. It follows from the definitions
that for a graph G with maximum degree ∆(G), the 2-distance chromatic number of G equals χ∆(G)(G) and the list
2-distance chromatic number of G equals χL,∆(G)(G).

Another way to view 2-distance coloring of graphs is to consider the coloring of the powers of a graph. The square
of a graph G, denoted by G2, has V (G2) = V (G), where uv ∈ E(G2) if and only if the distance between u and v

in G is at most 2. By definition, χ (G2) = χ∆(G)(G) and χL(G2) = χL,∆(G)(G). For any integer ℓ > 0, the concept of
the square of a graph has been extended to the ℓth power of a graph G, denoted by Gℓ, which has V (Gℓ) = V (G),
where two vertices u and v are adjacent in Gℓ if and only if the distance between u and v in G is at most ℓ. There
have been intensive studies in 2-distance coloring of a graph G and in coloring the powers of a graph G, as seen
in [1,11,15,16,19–22,25,26,28,33,35–37,43–45,58,59,61,62,65,76–79,95,96,104,107,109,120,138–140,144], among others.

Another motivation of r-hued colorings of graphs arises from the communication problem in the deployment of multi-
agent systems in optimal reconfigurations of electric power networks. An agent is a computer system that is capable of
autonomous action in this environment in order to meet its designed objectives. Autonomy means that the components
in an environment function are solely under their own control. Using multiagent systems in optimal reconfigurations
of electric power networks in conjunction with graph algorithms has been widely applied in recent years, as seen
in [34,51,52,111,130], among others. In a graph modeling of an multiagent system deployed in an optimal reconfiguration
process of power networks, a graph model is formed to mimic the communicating and working relationship of the agents,
in which agents are modeled as vertices and two vertices are adjacent if the corresponding agents need to communicate
at work. In order to perform an optimal reconfiguration, each agent needs to acquire a certain but different kinds of
information from its neighboring agent sensors, and use the information to make its own decisions and to take actions. In
the modeling, agents are communicating in a wireless way. Each agent can receive signals with different frequencies but
can only have one emission frequency. It is required that neighboring agents must have different emission frequencies
and, for a fixed integer r > 0, every agent needs to receive at least r kinds of different information from its neighboring
agents, which are distinguished by their emission frequencies. This amounts to requiring that every agent must have
neighbors using at least r different emission frequencies. To assign emission frequencies to the agents, it is natural to
consider it as a graph r-hued coloring problem with emission frequencies being colors.

2. Basic properties

It is observed in [87] that for any graph G, the following always holds:

min{r, ∆(G)} + 1 ≤ χr (G) ≤ χL,r (G) ≤ |V (G)|. (4)

Thus, graphs reaching either inequalities in (4) would be of interest. Theorem 2.1 shows that all trees reach the lower
bound and all complete graphs reach the upper bound in (4).

Theorem 2.1 (Lai, Lin, Montgomery, Shui and Fan [87]). Each of the following holds:
(i) χr (Kn) = n.
(ii) Let n ≥ 3 be an integer and Cn be the cycle of order n. If r ≥ 2, then

χr (Cn) =

{ 5, if n = 5;
3, if n ≡ 0 (mod 3);
4, otherwise.

(iii) If G is a tree, then χr (G) = min{r, ∆(G)} + 1.
(iv) Suppose that m ≥ n ≥ 2, then χr (Km,n) = min{2r, n + m, r + n}.
v) If k ≥ r + 1, then χr (Ki1,...,ik ) = k.

The list coloring version of Theorem 2.1(ii) is straightforwardly extended by Akbari et al. in [4] when r = 2.

heorem 2.2 (Akbari, Ghanbari and Jahanbekam [4]). Let n ≥ 3 be an integer and Cn be the cycle of order n. Then

χL,2(Cn) =

{ 5, if n = 5;
3, if n ≡ 0 (mod 3);
4, otherwise.

Additional studies on conditions for a graph with the property χ (G) = |V (G)| are conducted in [87].
r
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heorem 2.3 (Lai, Lin, Montgomery, Shui and Fan [87]). Let G be a connected graph and |V (G)| = n. Each of the following
holds.
(i) For any r ≥ 2, χr (G) = |V (G)| if and only if any two nonadjacent vertices of G are adjacent to a vertex of degree at most r.
(ii) Let r > 0 be an integer. If χr (G) = |V (G)|, then either G = Kn or n ≤ r2+1. Furthermore, if G is incomplete with n = r2+1,
then G must be r-regular.

In [89], the problem whether the difference between χ2(G) − χ (G) can be bounded was raised. Following [56], for
a graph G, the subdivision graph of G, denoted by S(G), is the graph obtained from G by subdividing each of its edges
exactly once (i.e. by replacing each edge by a path of length two). The new vertices are called the middle vertices of
S(G), and the other vertices are called the original vertices. It is shown in [89] that in any 2-hued coloring of S(Kn), all
he original vertices must be colored with mutually distinct colors, and since S(Kn) is bipartite, with the set of all middle
ertices and the set of all original vertices being the vertex bipartition, limn→∞ χ2(S(Kn))−χ (S(Kn)) = ∞. So even among
ipartite graphs G, the gap between χ2(G) − χ (G) is unbounded.
Determining χr (G) or χL,r (G) has always been the main objective in the study. Akbari et al. in [4] conjectured that for

ny graph G, one always has χL,2(G) = max{χL(G), χ2(G)}. This conjecture is disproved by Esperet in [50], who proved the
ollowing.

heorem 2.4 (Esperet [50]). Each of the following holds.
i) There exists a planar bipartite graph G with χL(G) = χ2(G) = 3 and χL,2(G) = 4.
ii) For any integer k ≥ 5, there exists a bipartite graph Gk with χL(Gk) = χ2(Gk) = 3 and χL,2(Gk) ≥ k.

In [50], Esperet utilized the subdivision graph S(G). He considered a (possibly improper) coloring of the edges of G such
hat the set of edges incident to any vertex of degree more than one contains at least two distinct colors. Define ch∗

2(G)
s the smallest integer k such that if every edge of G is given a list of k colors, G has such a coloring with the additional
roperty that every edge is assigned a color from its list. In [50], Esperet proved the following.

heorem 2.5 (Esperet [50]). For any graph G, χL,2(S(G)) ≤ max{χL(G), ch∗

2(G) + 2}. In particular, χL(G) ≤ χL,2(S(G)) ≤

ax{5, χL(G)}.

There are other elementary studies in [64,117], investigating the r-hued chromatic number of paths and cycles, and
epeating results are stated in Theorems 2.1–2.3.

.1. Brooks-type theorems and generic upper bounds

Brooks’ Theorem [24], see also Theorem 14.4 of [18] on graph colorings states that a connected graph G satisfies
(G) ≤ ∆(G) + 1, where equality holds if and only if G is a complete graph or an odd cycle. Upper bounds of the r-
ued chromatic number for generic graphs have also been intensively studied. The following is the first to appear in
ontgomery’s dissertation [110] as well as in [89].

heorem 2.6 (Lai, Montgomery and Poon [89]). Let G be a connected graph.
i) If G ̸= C5 and ∆(G) ≤ 3, then χ2(G) ≤ 4.
ii) If ∆(G) ≥ 4, then χ2(G) ≤ ∆(G) + 1.

Theorem 2.6 is straightforwardly extended to its list coloring version in [4] later.

heorem 2.7 (Akbari, Ghanbari and Jahanbekam [4]). Let G be a connected graph.
i) If G ̸= C5 and ∆(G) ≤ 3, then χL,2(G) ≤ 4.
ii) If ∆(G) ≥ 4, then χL,2(G) ≤ ∆(G) + 1.

The graphs reaching the upper bounds in either Theorem 2.6 or Theorem 2.7 seem to be difficult to be determined.
fforts in this direction have been made. Introduced by Hoffman and Singleton in [63], a Moore graph is a regular graph
f degree d and diameter k, for some positive integers d and k, whose number of vertices equals the upper bound

1 + d
k−1∑
i=0

(d − 1)i.

or a connected graph G, Lai et al. [87] proved that if ∆(G) ≤ r for any integer r ≥ 2, then χr (G) ≤ ∆(G) + r2 − r + 1.
ing et al. [42] found that the best upper bound can be achieved by a Moore graph when r = ∆(G). Lin and Wang [97,98]
mproved the results as follows, which seems to be the only result of this kind that has the extremal graphs determined.

heorem 2.8 (Lin [97], Lin and Wang [98]). Let G be a connected graph. χr (G) ≤ r∆(G) + 1, where the equality holds if and
nly if r = ∆(G) and G is a Moore graph.
Karpov [70] also proved the following Brooks’ Theorem type results.
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heorem 2.9 (Karpov [70]). Let G be a connected graph that does not have a vertex of degree 2. If ∆(G) ≥ 8, then χ2(G) ≤ ∆(G).

heorem 2.10 (Karpov [70]). Let d ≥ 8 be an integer. Each of the following holds.
i) If G = Kd+1 or G is a subdivision of a Kd+1, then χ2(G) = d + 1.
ii) If ∆(G) ≤ d, G ̸= Kd+1 and G is not a subdivision of Kd+1, then χ2(G) ≤ d.

.2. The r-hued chromatic number of certain graph families

Let k and n be positive integers with n > 2k. We use Zn to denote the set of integers modulo n as well as the
orresponding additive cyclic group. As in [18], the generalized Petersen graph Pk,n is the simple graph with vertices
1, x2, . . . , xn, y1, y2, . . . , yn, and edges xixi+1, yiyi+k, xiyi where i ∈ Zn. The graph P2,5 is known as the Petersen graph.
Li, Fan and Zhong [90] determined the best lower bound for the 3-hued chromatic number of the generalized Petersen

raphs. As every Pk,n is a 3-regular graph, by (4) and Theorem 2.8, it is known that 4 ≤ χ3(Pk,n) ≤ 10. By Theorem 2.8, and
s P2,5 is a Moore graph, the upper bound can be achieved by χ3(P2,5) = 10. Cranston and Kim [37] proved that except
or P2,5, the best upper bound for χ3(Pk,n) is 8.

heorem 2.11. For any positive integers k, n with n > 2k, each of the following holds.
i) (Li, Fan and Zhong [90]) χ3(Pk,n) ≥ 4 and the bound is best possible;
ii) (Cranston and Kim [37]) If k ̸= 2 or n ̸= 5, then χ3(Pk,n) ≤ 8 and the bound is best possible.

Following [18], a Halin graph is a graph H := T ∪ C , where T is a plane tree on at least four vertices in which no
ertex has degree two, and C is a cycle connecting the leaves of T in the cyclic order determined by the embedding of
. Thus, a Halin graph G is formed by an external cycle C and a tree T bounded inside the cycle. Liu and Zhang in [101]
irst introduced pseudo-Halin graphs, as a generalization of Halin graphs. A 2-connected planar graph G with δ(G) ≥ 3 is
pseudo-Halin graph if for some face f0 of G, G− E(f0) is a tree. Meng et al. [106] studied the 2-hued chromatic number
f all Pseudo-Halin graphs.

heorem 2.12 (Meng, Miao, Su and Li [106]). Let G be a pseudo-Halin graph. Then χ2(G) ≤ 4. Moreover, this bound is best
ossible.

Motivated by a list coloring theorem in [8], Akbari et al. in [5] proved the following result by constructing a
4, 2)-coloring for graphs satisfying the conditions in the theorem below.

heorem 2.13 (Akbari, Ghanbari, Jahanbekam and Jamaali [5]). Let G be a connected graph and ℓ ≥ 3 be an integer.
(i) If the length of every cycle is divisible by 3, then χ2(G) ≤ 3.
(ii) If G is not isomorphic to C5 and the length of every cycle of G is divisible by ℓ, then χ2(G) ≤ 4.

Yang et al. [139] studied r-hued chromatic numbers of powers of graphs, including paths, trees and cycles.

Theorem 2.14 (Yang, Deng and Shao [139]). Let k, ℓ,m, n be positive integers with n ≥ 3. Each of the following holds.
(i)

χ (P2
n ) = χ2(P2

n ) = 3.

χ3(P2
n ) =

{
3, if n = 3;
4, otherwise.

and for r ≥ 4,

χr (P2
n ) =

{ 3, if n = 3;
4, if n = 4;
5, otherwise.

(ii) If 3 ≤ ℓ ≤ n − 1, then χ (Pℓ
n ) = χ2(Pℓ

n ) = ℓ + 1.
(iii) If T is a tree with |V (T )| ≥ 5 and T ̸= Pn, then

χr (T 2) ≤

{
∆(T ) + 1, if r ≤ ∆(T );
∆(T ) + 2, if r = ∆(T ) + 1;
min{2∆(T ) + 1, r}, otherwise.

(iv) If m ≥ 3, then

χ (C2
m) = χ2(C2

m) =

{ 3, if m ≡ 0 (mod 3);
5, if m = 5;
4, otherwise.

χ3(C2
m) =

{ 3, if m = 3;
4, if m ̸∈ {3, 5, 6, 7, 11};

5, otherwise.
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nd for r ≥ 4,

χr (C2
m) =

⎧⎪⎨⎪⎩
m, if 3 ≤ m ≤ 9;
5, if m ≡ 0 (mod 5);
7, if m ∈ {13, 14, 19};
6, otherwise.

v)1 Let t be an integer. If m > ℓ + 1 ≥ 4 with m = k(ℓ + 1) + t and 0 ≤ t ≤ ℓ, then for 1 ≤ r ≤ 2,

χr (Cℓ
m) =

{
ℓ + 1 + ⌊

t
k⌋, if t ≡ 0 (mod k);

ℓ + 2 + ⌊
t
k⌋, otherwise.

The r-hued chromatic numbers of a number of special graphs were obtained by using elementary and straightforward
coloring constructions in [39,115–117,132]. Reddy and Iyer [115–117] studied a few classes of graphs, including the
windmill graphs, line graphs of windmill graphs, middle graphs of friendship graphs, middle graphs of a cycle, line graphs
of friendship graphs, middle graphs of complete k-partite graphs, middle graphs of a bipartite graph, squares of cycles,
among others. Dafik et al. [39] focused on the prism graphs, three-cyclical ladder graphs and circulant graphs, while Vivin
et al. [132] studied 2-hued chromatic numbers of the middle graphs, total graphs, central graphs of a cycle, a path or an
n-sunlet graph, respectively. They also proved a list of results on the 2-hued chromatic number of the Mycielskian graphs
of a cycle or a path, and line graphs of an n-sunlet graph. It is of interest to discover more general results on those graphs.

2.3. Complexity and algorithms

It is known ([GT4] of [54]) that determining if a graph is 3-colorable is an NP-complete problem. Thus, it is natural
to consider the complexity for r-hued colorings. Li and Zhou [94] and Li et al. [92] proved that the same could also be
said for generic r-hued colorings. In these papers, it is shown that (3,2)-colorability remains NP-complete when restricted
to planar bipartite graphs with maximum degree at most 3 and arbitrarily high girth. This differs considerably from the
well-known result that classical 3-colorability is polynomially solvable for graphs with maximum degree at most 3.

Theorem 2.15 (Li and Zhou [94]). For K1,3-free graphs G with ∆(G) = 3, (3, 2)-colorability is NP-complete.

Theorem 2.16 (Li, Yao, Zhou and Broersma [92]). Each of the following holds.
(i) For every fixed integers k and r with 2 ≤ r < k, (k, r)-colorability is NP-complete.
(ii) The problem (3, 2)-colorability remains NP-complete for planar bipartite graphs with maximum degree at most 3 and
arbitrarily high girth.
(iii) Within the class of graphs with ∆(G) = 3, it is NP-hard to determine whether χ2(G) = 3 or χ2(G) = 4.
(iv) The problem (3, 2)-colorability remains NP-complete when restricted to hamiltonian graphs with ∆(G) ≤ 6.
(v) The problem (3, 2)-colorability is NP-complete for planar hamiltonian graphs.

Nevertheless, heuristic and bionic algorithms for r-hued colorings have been investigated in [99], in which such
algorithms for generalized Petersen graphs and other family of graphs are presented.

3. Planar graphs and graphs with forbidden minors

The four color problem has been one of the most fascinating problems in graph theory. Even today, after the four
color problem has become the Four-Color Theorem, the interests on planar graph coloring problems continue to draw the
attention of many researchers. Determining best possible upper bounds of the r-hued chromatic number of planar graphs
is undoubtedly one of the most focused problems.

3.1. Planar graphs

Without turning to the Four-Color Theorem, Chen et al. [30] applied the Lebesgue distributions [113] to prove that for
a connected planar graph G, χL,2(G) ≤ 5 if ∆(G) ≤ 4; χL,2(G) ≤ 6; χ2(G) ≤ 5 and in which the bound of χ2(G) is sharp
as χ2(C5) = 5. They also conjectured that C5 is the only planar graph G with χ2(G) = 5. With a smart application of the
Four-Color Theorem, this conjecture was proved by Kim et al. in [72], and they also improved the results by Chen et al.
as follows.

Theorem 3.1 (Kim, Lee and Park [72]). Let G be a connected planar graph. Each of the following holds.
(i) If G ̸= C5, then χ2(G) ≤ 4.
(ii) χL,2(G) ≤ 5.

1 The results from [139] are summarized in (v) by authors.
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By (4), if r ≥ 2, then χr (G) = 2 for a connected graph G if and only if G = K2. Theorem 3.1 indicates that if G is
a connected planar graph other than C5, then χ2(G) ≤ 4. Therefore, characterizing planar graphs G with χ2(G) = 3 and
χ2(G) = 4 would be of interest. In general, for any integer r ≥ 2, the problem of characterizing all graphs G with χr (G) = 3
remains to be investigated. However, as indicated in Theorems 2.15 and 2.16, such problems will be very difficult. Thus,
for some common and well-attended graph families F , characterizing all graphs G in F with χr (G) = 3 seems quite
nteresting. For values r ≥ 2, it is of interest to determine the smallest integers p(r) and pL(r) such that for any graph
in F , χr (G) ≤ p(r) and χL,r (G) ≤ pL(r). In particular, when F denotes the family of all planar graphs, there have been
any researches towards this end, as seen in the following.

heorem 3.2. Let G be a connected planar graph. Each of the following holds.
i) (Qi, Li and Li [114]) χ3(G) ≤ 12.
ii) (Thomassen [129]) If G is a cubic graph, then χ3(G) ≤ 7. Moreover, The upper bound 7 cannot be replaced by 6.
iii) (Loeb, Mahoney, Reiniger and Wise [102]) χ3(G) ≤ χL,3(G) ≤ 10.
iv) (Asayama, Kawasaki, Kim, Nakamoto and Ozeki [12]) If G is a planar triangulation, then χ3(G) ≤ 5. The bound is best
ossible.

For a cubic graph G, utilizing χ3(G) = χ (G2), Thomassen’s proof of Theorem 3.2(ii) is based on a decomposition method:
olor the vertices of the planar cubic graph by two colors, red and blue, such that the induced subgraph of the square-graph
y blue vertices is 3-colorable, and the induced subgraph of the square-graph by red vertices is planar and hence by the
our-Color Theorem, is 4-colorable.
As a common extension of Theorem 3.2 (iii) and (iv), Gu et al. [55] considered planar near-triangulations. A planar

ear-triangulation is a planar graph with a plane embedding in which all bounded faces are 3-cycles.

heorem 3.3 (Gu, Kim, Ma and Shi [55]). If G is a planar near-triangulation, then χL,3(G) ≤ 6.

A graph G is called subcubic if ∆(G) ≤ 3. The following conjecture is proposed.

onjecture 3.4 (Dvor̆ák, S̆krekovski and Tancer [46]). Let G be a planar subcubic graph. If G is triangle-free, then χ∆(G) ≤ 6.

It is indicated in [46] that the upper bound in Conjecture 3.4 is tight, as shown by the example in Fig. 1.

Fig. 1. An example for Conjecture 3.4.

For generic values of r , a number of results have also been obtained. Some results on bounded girth conditions can be
ound in Table 1 on sparse graphs.

heorem 3.5 (Song and Lai [123]). Let r ≥ 8 be an integer, and G be a planar graph. Then χr (G) ≤ 2r + 16.

As χ∆(G)(G) = χ (G2), a number of researches on r-hued colorings are motivated by the coloring of the square graph.
There have been lots of researches on the study of χ∆(G)(G) for a planar graph G. In 2003, Wang and Lih [134] proposed
a conjecture that for every integer k ≥ 5, there exists an integer ∆k such that for any planar graph G, if g(G) ≥ k and
∆(G) ≥ ∆k, then χ∆(G)(G) ≤ ∆(G) + 1, which is known to be false for k = 5, 6, and is solved with k ≥ 7. Some efforts
on this conjecture are summarized in the Table 2. The following theorem concludes some results not summarized in the
table. Dvor̆ák et al. [45], Borodin and Ivanova [20,21], and Yancey [138] made further advances towards Wang and Lih’s
conjecture.

Theorem 3.6. Let G be a planar graph. Each of the following holds.
(i) (Dvor̆ák, Král, Nejedlý and S̆krekovski [45]) If g(G) ≥ 6 and ∆(G) ≥ 8821, then χ∆(G)(G) ≤ ∆(G) + 2.
(ii) (Borodin and Ivanova [20]) If g(G) ≥ 6 and ∆(G) ≥ 18, then χ∆(G)(G) ≤ ∆(G) + 2.
(iii) (Borodin and Ivanova [21]) If g(G) ≥ 6 and ∆(G) ≥ 36, then χL,∆(G)(G) ≤ ∆(G) + 2.
(iv) (Yancey [138]) If g(G) ≥ 5 and ∆(G) ≥ 63, 500, then χL,∆(G)(G) ≤ ∆(G) + 6.
(v) (Borodin, Glebov, Ivanova, Neutroeva and Tashkinov [19]) For each integer D ≥ 2, there exists a planar graph GD with girth
6, ∆(GD) = D and χD(GD) ≥ D + 2.

As suggested by Theorem 3.6(i), Dvor̆ák et al. [45] presented a revised version of Wang and Lih’s conjecture.
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Table 1
This table summarizes the results on r-hued chromatic numbers of the sparse graphs with bounded
girths. As an example, line 8 and column r +1 is interpreted as ‘‘for a graph G with girth at least 8 and
r ≥ 9, we have χr (G) ≤ r + 1, and this statement is verified for planar graphs only’’.
g(G) χr

r + 1 r + 2 r + 3 r + 4 r + 5 r + 10

3 – r = 2 [72]a r = 2 [30,72]d r = 2 [73]d,e
4 –
5 r ≥ 15 [143,146]d,e all r [143]d,e

6 r ≥ 3 [74,124]c,d

7 r = 2 [73]d,e r = 3 [74]e

8 r ≥ 9 [86]d r = 2 [32,73]b,e
9 r ≥ 8 [145] r = 3 [74]
10 r ≥ 6 [145]
11
12 r ≥ 5 [145] r = 3 [32]
13
14 r = 3 [32]

aResults are verified for G ̸= C5 .
bResults are verified for G that has no C5-component.
cThe bound is best possible for r = 3.
dResults are verified for planar graphs only.
eResults are verified for list hued chromatic numbers as well.

Table 2
This table summarizes the results on ∆-hued chromatic numbers of the sparse graphs with bounded girths. As an example, line 8
and column ∆ + 1 is interpreted as ‘‘for a graph G with girth at least 8 and ∆(G) ≥ 9, we have χr (G) ≤ ∆(G)+ 1, and this statement
is verified for planar graphs only’’.
g(G) χ∆

∆ + 1 ∆ + 2 ∆ + 3 ∆ + 4 ∆ + 5 ∆ + 6 ∆ + 8

3 – ∆ = 3 [58,129]a
4 –
5 – ∆ ≥ 107 [15]a,b ∆ ≥ 339 [44]a ∆ ≥ 12 [26]a,b All ∆ [43,147]a

6 – ∆ ≥ 17 [17]a ∆ ≥ 9 [26]a,b 4 ≤ ∆ ≤ 7 [28]a ∆ = 5 [25]
7 ∆ ≥ 16 [65]a,b ∆ = 5 [25]

∆ ≤ 4 [36]a,b
8 ∆ ≥ 9 [86]a ∆ = 5 [25]
9 ∆ ≥ 8 [16] ∆ = 5 [25] ∆ = 4 [36,37]a,b

10 ∆ ≥ 6 [16,65] ∆ = 3 [46]b

11 ∆ ≥ 6 [65]a,b ∆ = 4 [36]a,b

12 ∆ ≥ 5 [16] ∆ = 5 [22]a,b ∆ = 3 [22] a,b

13 ∆ = 5 [65]a,b

14 ∆ ≥ 4 [16] ∆ = 3 [46]b

aResults are verified for planar graphs only.
bResults are verified for list hued chromatic numbers as well.

Conjecture 3.7. There exists an integer k such that if G is a planar graph with g(G) ≥ 5 and ∆(G) ≥ k, then χ∆(G)(G) ≤

(G) + 2.

This conjecture is recently proved by Bonamy et al. [15].

heorem 3.8 (Bonamy, Cranston and Postle [15]). There exists an integer k = 1, 7302
+ 1 = 2, 992, 901 such that if G is a

planar graph with g(G) ≥ 5 and ∆(G) ≥ k, then χL,∆(G)(G) ≤ ∆(G) + 2.

While Theorem 3.8 almost closes the chapter of Wang and Lih’s conjecture and Conjecture 3.7, it would be interesting
o know for each integer r > 0, the optimal values of g(r), D(r) and h(r) such that if G is a planar graph with g(G) ≥ g(r)
nd ∆(G) ≥ D(r), then χr (G) ≤ h(r). The same can also be considered for the list r-hued colorings of planar graphs. Some
elated results can be found in Table 1.

.2. Graphs with forbidden minors

Let K be a graph without isolated vertices. A graph G contains K as a minor (or a topological minor, respectively) if
is the contraction of a subgraph of G (or if G contains a subgraph isomorphic to a subdivision of K , respectively). The
uratowski’s Theorem [85] has the following form.

heorem 3.9 (Kuratowski [85], Wagner [133], Harary and Tutte [57]). A graph G is planar if and only if G has no minor
somorphic to a K or a K .
5 3,3
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Thus, graphs that do not have a K5 minor constitute a graph family properly containing all planar graphs. Utilizing the
result in Theorem 3.1, (therefore, using the Four-Color Theorem), and the structural characterization of graphs without a
K5 minor by Wagner [133], Theorem 3.1 has been extended by Kim et al. in [71].

Theorem 3.10 (Kim, Lee and Oum [71]). If G is a connected graph without a K5 minor and if G ̸= C5, then χ2(G) ≤ 4.

For a generic clique minor and a topological clique minor, Kim et al. in [71] obtained the following results.

Theorem 3.11 (Kim, Lee and Oum [71]). For any integer t ≥ 2, the following hold.
(i) If G contains no Kt topological minor, then χ2(G) ≤ 10t2 + 2.
ii) If G contains no Kt minor, then χ2(G) ≤ ⌊64t

√
log2 t⌋ + 3.

3.3. Wegner’s conjecture

Wegner [135] posed the following conjecture, originally stated for 2-distance colorings, which has drawn the attention
of many researchers.

Conjecture 3.12 (Wegner [135]). If G is a planar graph, then

χ∆(G)(G) =

{
∆(G) + 5, if 4 ≤ ∆(G) ≤ 7;
⌊3∆(G)/2⌋ + 1, if ∆(G) ≥ 8.

There are several studies towards Conjecture 3.12.

heorem 3.13. Let G be a planar graph with ∆ = ∆(G). Then each of the following holds.
i) (Zhu and Bu [144]) If ∆ ≤ 5, then χ∆(G) ≤ 20.
ii) (Zhu and Bu [144]) If ∆ ≥ 6, then χ∆(G) ≤ 5∆ − 7.
iii) (Molloy and Salavatipour [109]) If ∆ ≥ 241, then χ∆(G) ≤ ⌈5∆/3⌉ + 25.
iv) (Molloy and Salavatipour [109]) χ∆(G) ≤ ⌈5∆/3⌉ + 78.
v) (Havet, Heuvel, McDiarmid and Reed [59]) If ∆ ≥ 8, then χ∆(G) ≤ 3∆(1 + o(1))/2.
vi) (Zhu, Chen, Miao and Lv [147]) If ∆ ≥ 26 and G does not have a 4-cycle, then χ∆(G) ≤ ⌊3∆/2⌋ + 1.

Lih et al. [96] proved that Conjecture 3.12 holds for graphs without K4-minors. Define

K (r) =

{
r + 3, if 2 ≤ r ≤ 3;
⌊3r/2⌋ + 1, if r ≥ 4.

he function K (r) is used in the following theorems.

heorem 3.14 (Lih, Wang and Zhu [96]). Let G be a K4-minor free graph. Then

χ∆(G)(G) ≤ K (∆(G)).

Utilizing a structural theorem in [96], a number of results have been obtained. In 2006, Theorem 3.14 was generalized
o list ∆-hued coloring by Hetherington and Woodall [61]. In 2014, Song et al. [122] studied the general r and extended
heorem 3.14 from r = ∆(G) to arbitrary values of r . In another paper, Kostochka et al. [76] sharpened the bound in
heorem 3.14.

heorem 3.15. Let G be a K4-minor free graph with ∆ = ∆(G), and r ≥ 2 be an integer. Each of the following holds.
i) (Hetherington and Woodall [61]) χL,∆(G) ≤ K (∆).
ii) (Song, Fan, Chen, Sun and Lai [122]) χr (G) ≤ K (r) and χL,r (G) ≤ K (r) + 1.
iii) (Kostochka, Özkahya and Woodall [76]) If ∆ ≥ 6 and G2 does not contain a complete subgraph on ⌊3∆/2⌋ + 1 vertices,
hen χ∆(G) ≤ ⌊3∆/2⌋.

Chen et al. extended Theorem 3.14 and Theorem 3.15(ii) in [31]. Let H be a graph. If J is a graph obtained from H by
(possibly empty) sequence of edge subdivisions, then we call J an H-subdivision. Thus by definition, if ∆(H) ≤ 3, then
contains an H-minor if and only if G contains an H-subdivision. For an integer n ≥ 4, define K4(n) to be the collection
f all non-isomorphic K4-subdivision on n vertices. For a collection K of graphs, define

EX(K) = {G : G does not have a minor isomorphic to a member in K}.

y definition, for each n ≥ 4, we have

EX({K4}) ⊆ · · · ⊆ EX(K4(n)) ⊆ EX(K4(n + 1)) ⊆ · · · . (5)

nd for each fixed integer n ≥ 4, EX(K4(n)) contains all graphs with order less than n. Hence
⋃

∞

n=4 EX(K4(n)) contains all
raphs. The following is a result on the graphs in EX(K (7)).
4
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heorem 3.16 (Chen, Fan, Lai, Song and Xu [31]). Let r ≥ 2 be an integer. If G ∈ EX(K4(7)) and G ̸∼= K6, then χr (G) ≤ K (r).

Recently, Wei et al. [136] investigate the r-hued list coloring version of Theorem 3.16 and obtained the following.

heorem 3.17 (Wei, Liu, Xiong and Lai [136]). Let r ≥ 2 be an integer. If G ∈ EX(K4(7)) and G ̸∼= K6, then χL,r (G) ≤ K (r)+1.

Motivated by Theorem 3.15, the following conjecture is presented.

onjecture 3.18 (Song, Fan, Chen, Sun and Lai [122]). Let r be a positive integer. If G is a planar graph, then χr (G) ≤ f (r),
here

f (r) =

{ r + 3, if 1 ≤ r ≤ 2;
r + 5, if 3 ≤ r ≤ 7;
⌊3r/2⌋ + 1, if r ≥ 8.

We believe there is also a list r-hued coloring version of Conjecture 3.18, which is left for us to pursue further. Note
hat Conjecture 3.18 is valid for r ∈ {1, 2}, as when r = 1, this is equivalent to the Four-Color Theorem, and when r = 2,
his has been proved by Chen et al. in [30] and in Theorem 3.1. For other values of r , the conjecture is open.

For r ≥ 8, the following example indicates that the upper bound in Conjecture 3.18 could not be relaxed. The graph
n Fig. 2 was first introduced in [135].

Fig. 2. G(p, 1) with r = 2p, mad(G(p, 1)) = 4 −
2
p and χr (G(p, 1)) =

3r
2 .

Song, Lai and Wu [125] showed that there exists an infinite sequence of fractional number qr with 3 ≤ qr < 4 and
limr→∞ qr = 4, such that for any even integer r > 0, there exists a planar graph G satisfying that mad(G) ≤ qr , ∆(G) ≥ r
nd χr (G) ≥

3r
2 . Such a graph can be constructed as follows.

Let s ≥ 1 and p ≥ 2 be integers. For i = 1, . . . , s, let Ji be a graph with

V (Ji) = {ui
1, v

i
1, w

i
1, u

i
2, u

i
3, . . . , u

i
p, v

i
2, v

i
3, . . . , v

i
p, w

i
2, w

i
3, . . . , w

i
p},

and
E(Ji) = {ui

1v
i
1, v

i
1w

i
1, w

i
1u

i
1} ∪ {ui

1u
i
j, u

i
1v

i
j, v

i
1u

i
j, v

i
1w

i
j, w

i
1w

i
j, w

i
1v

i
j : 2 ≤ j ≤ p}.

Obtain a graph G(p, s) from the disjoint union of J1, J2, . . . , Js by identifying w1
p, w

2
p, . . . , w

s
p into one vertex wp.

The graphs in Fig. 2 and Fig. 3 are examples for s = 1 and s = 2, respectively. The following observations justify the
conclusions of the graph stated by Song et al. in [125].

Proposition 3.19. Let s ≥ 1 and p ≥ 2 be integers. The graph G(p, s) satisfies each of the followings:
(i) ∆(G(p, s)) = max{2p, 2s}.
(ii) 4 −

2
p ≤ mad(G(p, s)) < 4.

(iii) If r = 2p, then χr (G(p, s)) ≥
3r
2 .

roof. We shall use the notation in Fig. 3 to facilitate our arguments. Direct computation yields Proposition 3.19(i). Let
, n ≥ 1 be two integers. Straightforward algebraic manipulations lead to that if m

n < 4, then

m
n

<
m + 4
n + 1

< 4. (6)

Let G = G(p, s) and H be a subgraph of G with the maximum average degree among all subgraphs of G. Thus H is an
induced subgraph of G with |E(H)| > 0. Hence we may assume that E(H) ∩ E(J1) ̸= ∅. By inspection, (for example, using
Fig. 2), we note that 2|E(H)|

|V (H)| < 4. By symmetry and as H is an induced subgraph, we may assume that either w1
1u

1
1 ∈ E(H) or

w1v1
∈ E(H). Suppose that w1u1

∈ E(H), by (6), adding a vertex of degree 2 will strictly increase the average degree to H ,
1 2 1 1
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hen H is not of the maximum average degree. Hence we must have w1
1v

1
1 ∈ E(H). Again by (6), all the vertices of degree

in J1 must also be in V (H), which implies that J1 ⊆ H , and so wp ∈ V (H). We now consider the case that w1
1v

1
2 ∈ E(H).

y (6), we must have w1
1u

1
1 ∈ E(H) since H is of the maximum average degree. Similar to the prior case, w1

1v
1
1 must be

ontained in E(H) and consequently, all the vertices of degree 2 in J1 must also be in V (H). Therefore, J1 ⊆ H , and thus
p ∈ V (H). Likewise, if for some i with 1 < i ≤ s, we have E(H) ∩ E(Ji) ̸= ∅, then we must also have Ji ⊆ H . Hence we
ssume that H ∼= G(p, t) for some t with 1 ≤ t ≤ s such that H ∩ Ji = Ji for 1 ≤ i ≤ t and H ∩ Ji = {wp} for t < i ≤ s (see
n example in Fig. 3 when t = 2). The average degree of H is

2t(6p − 3)
t(3p − 1) + 1

,

which is an increasing function in t . As 2|E(H)|
|V (H)| is maximized among all subgraphs of G, we must have t = s and so

H = G(p, s).

Fig. 3. An example of G(p, 2).

As p ≥ 2 and s ≥ 1, with qs =
2s(6p−3)
s(3p−1)+1 , Proposition 3.19(ii) follows from the fact that

3 ≤ 4 −
2
p

≤ qs =
2s(6p − 3)

s(3p − 1) + 1
≤

2s(6p − 3)
s(3p − 1)

=
2(6p − 3)
(3p − 1)

<
2(6p − 2)
3p − 1

= 4.

It remains to justify Proposition 3.19(iii). Let r = 2p. Suppose that G(p, s) has a (k, r)-coloring c : V (G(p, s)) → k =

{1, 2, . . . , k}. Let G = G(p, s). Since NG(u1
1) = {v1

1, w
1
1, u

1
2, u

1
3, . . . , u

1
p , v

1
2, v

1
3, . . . , v

1
p}, it follows by r = 2p that |c(NG(u1

1))| =

p. Similarly, |c(NG(v1
1))| = |c(NG(w1

1))| = 2p. It follows that |c(V (J1))| = |V (J1)| = 3p, and so k ≥ |c(V (J1))| = 3p =
3r
2 . ■

For large values of r , Zhu et al. in [148], and Bu and Wang in [27] studied the r-hued coloring problem of planar graphs
without cycles of fixed length.

Theorem 3.20. Let G be a planar graph and r be an integer.
(i) (Zhu, Gu, Sheng and Lv [148]) If r ≥ 3 and G does not have cycles of length from 4 to 9, then χr (G) ≤ r + 5.
(ii) (Bu and Wang [27]) If G does not have 4,5-cycles and not have 3-cycle that intersects with i-cycles, i = {3, 6, 7}, then
χr (G) ≤ r + 5, where r ≥ 3.
(iii) (Bu and Wang [27]) If r ≥ 13 and G does not have 3, 4, 8-cycles, then χr (G) ≤ r + 5.

3.4. Graphs on surfaces

As planar graphs are graphs that can be embedded on the sphere, it is natural to follow the foot steps of Heawood [60]
to consider the coloring problem of graphs that can be embedded in other 2-manifolds. Following the definition in [137],
the genus of a surface obtained by adding handles to a sphere is the number of handles added; we use Sγ for the surface
of genus γ . The genus of a graph G, denoted γ (G), is the minimum γ such that G embeds on Sγ .

For graphs embedded on surfaces with higher genera, some results have been obtained. Using Lebesgue edge-
distributions, Chen et al. [30] proved a 2-hued version of Heawood’s Theorem. With discharge arguments, Loeb et al. [102]
obtained an upper bound for any integer r ≥ 2. Using an approach similar to that in [59], Amini et al. [11] proved a more
general result for graphs embedded in any surface.

Theorem 3.21. Let G be a connected graph embedded in the surface S with genus γ .
(i) (Amini, Esperet and van den Heuvel [11]) For any real number ϵ > 0, there exists a constant c(S, ϵ) such that for any
c ≥ c(S, ϵ), if ∆(G) ≤ c, then χL,∆(G) ≤ ( 32 + ϵ)c.
(ii) (Chen, Fan, Lai, Song and Sun [30]) If G is a graph, then χL,2(G) ≤

1
2 (7 +

√
1 + 48γ (G)).

iii) (Loeb, Mahoney, Reiniger and Wise [102]) If γ ≤ 2, then χr (G) ≤ (r+1)(γ+5)+3. If γ ≥ 3, then χr (G) ≤ (r+1)(2γ+2)+3.
iv) (Loeb, Mahoney, Reiniger and Wise [102]) If S is a torus, then χ3(G) ≤ χL,3(G) ≤ 10, and this bound is sharp for toroidal
raphs.
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.5. Outer planar graphs and k-planar graphs

A graph G is an outerplanar graph if G has a plane embedding in such a way that every vertex is on the exterior cycle.
Based on the structures of outerplanar graphs, Lih and Wang [95] studied χ∆(G)(G) for an outerplanar graph G. Later, Lih
nd Wang’s results have been improved by Agnarsson and Halldórsson [1] and Hetherington and Woodall [62].

heorem 3.22. Let G be an outerplanar graph with ∆ = ∆(G). Then each of the following holds.
i) (Lih and Wang [95]) If ∆ ≥ 3, then χ∆(G) ≤ ∆ + 2.
ii) (Lih and Wang [95]) If ∆ ≥ 7, then χ∆(G) ≤ ∆ + 1.
iii) (Agnarsson and Halldórsson [1]) If ∆ = 6, then χ∆(G) = 7.

A maximal outerplanar graph is an outerplanar graph with maximum possible edges for a given number of vertices.
uo [104] proved the following.

heorem 3.23 (Luo [104]). If G is a maximal outerplanar graph with ∆ = ∆(G), then ∆ + 1 ≤ χ∆(G) ≤ ∆ + 2.

As an analogue to Kuratowski’s Theorem, it is known in [29] that outerplanar graphs are precisely the graphs that do
ot have a minor isomorphic to K4 or to K2,3.

heorem 3.24 (Hetherington and Woodall [62]). Let G be a K2,3-minor-free graph with ∆ = ∆(G). Then each of the following
olds.
i) If ∆ ≥ 3, then ∆ + 1 ≤ χ∆(G) ≤ χL,∆(G) ≤ ∆ + 2, and these inequalities are sharp for 3 ≤ ∆ ≤ 5, even for outerplanar
raphs.
ii) If ∆ ≥ 6, then χ∆(G) = χL,∆(G) = ∆ + 1.

Utilizing the structural results in [20], a related result is proved by Civan et al. [35].

heorem 3.25 (Civan, Deniz and Yetim [35]). Let ℓ ≥ 1 be an integer and G be a K4-minor-free graph. If G contains no subgraph
somorphic to K2,ℓ, then χ∆(G)(G) ≤ ∆(G) + ℓ.

Outerplanar graphs form a special class of planar graphs, while k-planar graphs are generalizations of planar graphs.
or a given integer k ≥ 0, a graph G is k-planar if G can be drawn in the plane so that each edge is crossed at most k
imes. Therefore, by definition, planar graphs are 0-planar. An outer-k-planar graph is a graph admitting a drawing in
he plane for which all vertices belong to the outer face of the drawing and there are at most k crossings on each edge.

The r-hued colorings of outer-1-planar graphs and 1-planar graphs are studied in [93,141], in which Li and Zhang
roved the following.

heorem 3.26. Let G be a graph.
i) (Li and Zhang [93]) If G is outer-1-planar, then χL,3(G) ≤ 6.
ii) (Zhang and Li [141]) If G is 1-planar, then χL,2(G) ≤ 11.

Similarly to Conjecture 3.18, it is of interest to seek, for given nonnegative integers k and r , the smallest integers h(k, r)
nd hL(k, r) such that for any k-planar graph G, χr (G) ≤ h(k, r) and χL,r (G) ≤ hL(k, r). In this sense, Conjecture 3.18 is
iming at determining h(0, r). In [141], Zhang and Li proposed to study h(1, 2) and hL(1, 2). As it is known that K6 is
-planar and K7 is 2-planar but not 1-planar, 6 is a lower bound of h(1, r) and hL(1, r) and 7 is a lower bound of h(2, r)
nd hL(2, r). The values and the behavior of h(k, r) and hL(k, r) are far from being understood.

. Sparse graphs

One of the hot research topics is to determine the r-hued chromatic number χr (G) and the list r-hued chromatic
umber χL,r (G), for a graph G with mad(G) bounded by a small constant. The methods used to study such problems are
ostly focused on the discharging method. While this study is of interest of its own, it is often motivated by Wegner’s
onjecture (Conjecture 3.12). The observation below, following from Euler’s formula, is commonly observed for a planar
raph.

bservation 4.1. Let G be a planar graph. Then (mad(G) − 2)(g(G) − 2) < 4.

Observation 4.1 describes, for a planar graph G, a relationship between the girth g(G) and the maximum average degree
ad(G), as partially illustrated in Table 3.
As shown in (4), for any graph G, one has χL,r (G) ≥ χr (G) ≥ min{r, ∆(G)} + 1. Many studies in the r-hued colorings of

parse graphs are focused on results suggesting that the r-hued chromatic number or the list r-hued chromatic number
re bounded by r + c0 for some small constant c0. Many of such studies have also been surveyed in Table 1 for generic
-hued colorings and in Table 2 for ∆-hued colorings.
Yancey [138] and Bonamy et al. [16] studied the upper bounds for the 2-distance chromatic number and the list 2-

istance chromatic number for graphs with maximum average degree bounded by small rational numbers, and with or
ithout sufficiently large maximum degrees.
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Table 3
The relationship between the girth g(G) and the maximum average degree mad(G).
g(G) ≥ 4 5 6 7 8 9 10 11 12 13 14

mad(G) < 4 10
3 3 14

5
8
3

18
7

5
2

22
9

12
5

26
11

7
3

Theorem 4.2 (Yancey [138]). Let c be a fixed number such that c ≥ 3. If G is a graph such that mad(G) < 4 −
4

c+1 − ϵ for
ome 4

c(c+1) > ϵ > 0, then χL,∆(G)(G) ≤ max{∆(G) + c, 16c2ϵ−2
}.

heorem 4.3 (Bonamy, Lévêque and Pinlou [16]). There exists a function f such that for ϵ > 0, every graph with mad(G) <
14/5 − ϵ and ∆(G) ≥ f (ϵ) satisfies χ∆(G)(G) ≤ ∆(G) + 1.

Theorem 4.4 (Bonamy, Lévêque and Pinlou [16]). For any sufficiently small real number ϵ > 0, there exists an integer h(ϵ)
uch that every graph G with mad(G) < 4 − ϵ satisfies χL,∆(G)(G) ≤ ∆(G) + h(ϵ).

By Theorem 2.1(iii), all forests are (r + 1, r)-colorable. As forests are of maximum average degree at most 2, this
bservation, together with Theorems 4.3 and 4.4, and with Conjectures 3.12 and 3.18, leads to the following problems,
hich are proposed in [125].

roblem 4.5. For any real number x > 0, is there a smallest integer f (x) such that, when r ≥ f (x), every graph G with
ad(G) < x satisfies χr (G) ≤ r + 1?

roblem 4.6. Determine the set X of positive real numbers such that x ∈ X if and only if there exists an integer h(x), for
very graph G with mad(G) < x, we have χr (G) ≤ r + h(x) for all sufficiently large r .

The example in Proposition 3.19 indicates that sup{x ∈ X } ≤ 4 in Problem 4.6. The following example suggests that
n Problem 4.5, f (x) does not exist for any x ≥ 3.

xample 4.7. There exists an infinite sequence of fractional number qr with 7
3 ≤ qr < 3 and limr→∞ qr = 3, such that

or any integer r ≥ 3, there exists a graph G satisfying that mad(G) ≤ qr , ∆(G) ≥ r and χr (G) ≥ r + 2. Such graphs can be
onstructed as follows. Let s ≥ 1 and t ≥ 1 be integers. For i = 1, . . . , s, let Ji be a graph with

V (Ji) = {wi
1, w

i
2, w

i
3, w

i
4, x

i
1, x

i
2, . . . , x

i
t , y

i
1, y

i
2, . . . , y

i
t},

nd
E(Ji) = {wi

1w
i
3, w

i
2w

i
3, w

i
1w

i
4, w

i
2w

i
4} ∪ {wi

1x
i
j, x

i
jy

i
j, y

i
jw

i
2 : 1 ≤ j ≤ t}.

btain a graph G(s, t) from the disjoint union of J1, J2, . . . , Js by identifying w1
1, w

2
1, . . . , w

s
1 into one vertex w1. The graph

n Fig. 4 is an example for s = 2. Then we have the following observations which justify the conclusions stated in this
xample.
i) ∆(G(s, t)) = s(t + 2);
ii) 7

3 ≤ mad(G(s, t)) =
2s(3t+4)
s(2t+3)+1 < 3;

(iii) If r = t + 2, then χr (G(s, t)) ≥ r + 2.

Proof. Direct computation yields Example 4.7(i). In the following, we utilize the notation of Fig. 4 in our arguments. Let
m, n ≥ 1 be positive integers. If m

n < 3, then direct computation yields that

m
n

<
m + 6
n + 2

< 3. (7)

Let G = G(s, t) and H be a subgraph of Gwith the maximum average degree among all subgraphs of G. Then H is an induced
subgraph with |E(H)| > 0, and so we may assume that E(H)∩ E(J1) ̸= ∅. By inspection, 2|E(H)|

|V (H)| < 3 and w1, w
1
2 ∈ V (H). As

is a subgraph of G with the maximum average degree, we must have w1
3, w

1
4 ∈ V (H). By (7), for all 1 ≤ j ≤ t , we must

ave x1j , y
1
j ∈ V (H). Thus J1 ⊆ H . Likewise, if for some i with 1 < i ≤ s, we have E(H) ∩ E(Ji) ̸= ∅, then we must have

i ⊆ H . Therefore, we may assume that for k with 1 ≤ k ≤ s, we have H ∼= G(k, t) such that H ∩ Ji = Ji for 1 ≤ i ≤ k and
∩ Ji = {w1} for k < i ≤ s (see an example in Fig. 4 when k = 2). It follows that the average degree of H is

2k(3t + 4)
k(2t + 3) + 1

,

hich is an increasing function in k. By the maximality of 2|E(H)|
|V (H)| , we must have k = s and so H = G(s, t).

As s ≥ 1 and t ≥ 1, Example 4.7(ii) follows from the fact that
7

≤
2(3t + 4)

≤
2s(3t + 4)

≤
2s(3t + 4)

=
2(3t + 4)

<
6t + 9

= 3.

3 2t + 4 s(2t + 3) + 1 s(2t + 3) (2t + 3) 2t + 3
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Fig. 4. An example of G(2, t).

To justify Example 4.7(iii), we assume, by contradiction, that G(s, t) has an (r + 1, r)-coloring c : V (G(s, t)) → r + 1 =

1, 2, . . . , r, r + 1}. Let G = G(s, t). Since NG(w1
2) = {w1

3, w
1
4, y

1
1, y

1
2, ..., y

1
t }, it follows by r = t + 2 that c(NG(w1

2)∪ {w1
2}) =

r + 1. Since |c(NG(w1
3))| = 2, we have c(w1) /∈ {c(w1

2), c(w
1
3), c(w

1
4)}. For each j with 1 ≤ j ≤ t , as |c(NG(x1j ))| = 2, we have

(w1) ̸= c(y1j ). It follows that c(w1) /∈ c(NG(w1
2)∪{w1

2}) = r + 1, contrary to the assumption that c is an (r+1, r)-coloring.
his proves Example 4.7(iii). ■

Motivated by Theorems 4.3 and 4.4, Song et al. [125] investigated Problems 4.5 and 4.6 and obtained the following
esult.

heorem 4.8 (Song, Lai and Wu [125]).
(i) For any fraction q < 14/5, there exists an integer R = R(q) such that for each r ≥ R, every graph G with maximum average
egree q is list (r + 1, r)-colorable.

(ii) For any sufficiently small real number ϵ > 0, there exists an integer h = h(ϵ) such that every graph G with maximum
verage degree 4 − ϵ satisfies χL,r (G) ≤ r + h(ϵ).

. The comparison between χr and χ

As χ1(G) = χ (G) is the classical chromatic number, it is naturally of interest to study the difference between χr (G) and
(G), and how this difference behaves. Such studies were first initiated in [87,110]. The following example arises from
he ideas in [87,110].

xample 5.1. For an integer n > r ≥ 2, let
(n
r

)
be the set of all r-subsets of n. We construct a bipartite graph G(n, r)

ith vertex bipartition (X, Y ) with X = n and Y =
(n
r

)
, where for any x ∈ X and y ∈ Y , xy ∈ E(G(n, r)) if and only if

∈ y. When r = 2, this is a subdivision of the complete graph Kn, denoted by SKn, is formed from Kn by subdividing
very edge of Kn exactly once. As G(n, r) is bipartite, χ (G(n, r)) = 2. However, as every vertex y ∈ Y has degree r in
(n, r), any (k, r)-coloring of G(n, r) must color the vertices in X with n different colors. It follows that for any fixed r ,
imn→∞ χr (G(n, r)) − χ (G(n, r)) = ∞. Thus the gap between χr (G) and χ (G), among all graphs, can be arbitrarily large.

Nevertheless, the next result, extending an idea from [9], indicates that, in an Erdös and Rényi random graph
odel [48,49], one observes that almost all graphs G satisfy χr (G) = χ (G). It has been observed in Lemma 3.1 of [87],
s well as by Sun and Ma [127], that if any vertex of degree greater than one is in a triangle, then χ2(G) = χ (G). This
bservation can be extended and utilized to show the following.

roposition 5.2. Let Gp(n) be the probability space of all labeled simple graph on n vertices with each edge occurring
ndependently with probability p, where 0 < p < 1 is a constant. Then in Gp(n), almost all graphs G satisfying χr (G) = χ (G).

roof. Note that if G is a graph in which every vertex lies in a subgraph of G isomorphic to Kr+1, then any proper coloring
f G is an r-hued coloring of G. Therefore, it suffices to show that almost all graphs G have the property that every vertex
ies in a subgraph of G isomorphic to Kr+1. Define A(r) to be the event that every vertex lies in a subgraph of G isomorphic
o Kr+1. By definition, it suffices to show that

lim Prob(A(r)) = 1.

n→∞
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Let r > 0 be an integer and p be a real number with 0 < p < 1. Assume that n ≥ r + 1. Pick any G ∈ Gp(n). For each
ertex v ∈ V (G), partition V (G − v) into parts V1, V2, . . . , Vs, Vs+1, where

s = ⌊
n − 1

r
⌋, |Vi| = r for 1 ≤ i ≤ s, and Vs+1 = V (G) − ({v} ∪ (∪s

i=1Vi)).

For each fixed v and i with 1 ≤ i ≤ s, define an event in Gp(n) by

Av,i := {G ∈ Gp(n) : G[Vi ∪ {v}] ∼= Kr+1}.

By the definition of Gp(n), we have

Prob(Av,i) = p(
r+1
2 ).

Define
Bv = ∩

s
i=1Av,i.

Then Bv occurs if and only if none of the subgraphs G[Vi ∪ {v}] is isomorphic to Kr+1, for any i with 1 ≤ i ≤ s. By the
ndependence, and as the Vi’s are disjoint,

Prob(Bv) =

s∏
i=1

(
1 − Prob(Av,i)

)
=

(
1 − p(

r+1
2 )

)s
.

Call a vertex v ∈ V (G) bad if G ∈ Bv , or if Bv occurs. (This is because when Bv occurs, a proper coloring of G may
not have r-different colors appearing in NG(v).) Thus ∪v∈V (G)Bv means there might be at least one bad vertex in G. Let
B(r) = ∪v∈V (G)Bv . Then B(r) represents the event that none of the vertices is bad. This implies that when G ∈ B(r), every
ertex of G lies in a Kr+1 of G. Hence B(r) ⊆ A(r).

1 ≥ Prob(A(r)) ≥ Prob(B(r)) = 1 − Prob(∪v∈V (G)Bv)

≥ 1 −

∑
v∈V (G)

Prob(Bv)

= 1 − n
(
1 − p(

r+1
2 )

)s

As s ≈
n
r when n is sufficiently large, from Calculus, we have, for each fixed r ,

lim
n→∞

n
(
1 − p(

r+1
2 )

) n
r

= 0,

we conclude that
lim
n→∞

Prob(A(r)) = 1.

his completes the proof of the proposition. ■

.1. Bounding the difference χr (G) − χ (G) in general graphs

Efforts have been made to investigate the difference between χr (G) and χ (G). The concept of normal graphs is proposed
n [87,91,110]. For positive integers r and s, a graph G is (r, s)-normal if χr (G)−χ (G) ≤ s. For r ≥ 2, an (r, 0)-normal graph
s called an r-normal graph in [87,110], and when r = 2, it is simply called a normal graph in [87,110]. We say that
set of vertices are independent (or, alternatively, stable) if there is no edge between these vertices. In a graph G, the

ndependent number (also called the stability number), α(G), is the size of a largest independent set of G. A dominating
et of a graph G is a set T ⊆ V (G) such that every vertex not in T is joined to at least one vertex of T . The domination
umber, γ (G), is the number of vertices in a smallest dominating set of G. A set T ⊆ V (G) is called a total dominating set
n G if, for every vertex v ∈ V (G), there is at least one vertex u ∈ T adjacent to v. The total domination number, γt (G),
s the number of vertices in a smallest total dominating set of G. The set T ⊂ V (G) is called a double total dominating
et if T and its complement V (G) \ T are both total dominating sets.
The following summarizes the studies on (r, 0)-normal graphs.

heorem 5.3 (Lai, Lin, Montgomery, Shui and Fan [87]). Let G be a connected graph and |V (G)| = n.
i) A graph G is (r, 0)-normal for all r ≥ 2 if and only if G is a complete graph or an odd cycle of length a multiple of three.
ii) If δ(G) ≥ ⌊(r − 1)n/r⌋ + 1, then G is (r, 0)-normal. The lower bound on δ(G) is best possible.

heorem 5.4. Let G be a graph with |V (G)| = n and let L(G) denote the line graph of G.
i) (Sun and Ma [127]) If G is simple, α(G) = 2 and ∆(G) ≤ n − 5, then G is (2, 0)-normal.
ii) (Sun and Ma [127]) For any u, v ∈ V (G), and uv ∈ E(G), if d(v) + d(u) > n, then G is (2, 0)-normal.
iii) (Sun and Ma [127]) Let G be connected and {v1, v2, . . . , vr} ⊂ V (G) be any vertex set of G. If

∑r
i=1 d(vi) > n(r − 1), then
is (r, 0)-normal.
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heorem 5.5 (Liu and Sun [100]). Let G be a graph with |V (G)| = n. Then G is a (3, 0)-normal graph if one of the following
holds.
(i) For any x, y ∈ V (G) with xy ∈ E(G), d(x) + d(y) ≥ n + 2, and G does not contain an even cycle without a chord as an
induced subgraph.
(ii) ∆(G) ≤ ⌈

n−3α(G)
α(G)−1 − 1⌉.

.2. Bounding the difference χr (G) − χ (G) in regular graphs

In the case of regular graphs, Montgomery [110] conjectured the following:

onjecture 5.6 (Montgomery [110]). If G is a regular graph, then G is (2, 2)-normal.

Ahadi et al. [3] generalized the conjecture as below.

onjecture 5.7 (Ahadi, Akbari, Dehghan and Ghanbari [3]). For a graph G with no isolated vertex, G is (2, ⌈∆(G)
δ(G) ⌉+1)-normal.

onjecture 5.8 (Ahadi, Akbari, Dehghan and Ghanbari [3]). Let G be a regular graph and χ (G) ≥ 4, then G is (2, 0)-normal.

However, Conjecture 5.7 and Conjecture 5.8 were disproved by Alishahi in [10] by constructing two counterexamples.
Conjecture 5.6 was also settled negatively by Jahanbekam, Kim, O and West in [66]. Nevertheless, there are many results
showing that the difference of χ2(G) − χ (G) can be bounded by functions involving parameters of the graph G. Thus for
generic values of r ≥ 2, determining sharp upper bounds for the differences χr (G) − χ (G) and χL,r (G) − χ (G) in terms of
other characteristics of the graph becomes an interesting problem. Authors in [7] define a graph G to be strongly k-regular
if there are parameters k, λ and µ such that G is k-regular, every adjacent pair of vertices has λ common neighbors, and
every nonadjacent pair of vertices has µ common neighbors.

Theorem 5.9. Let G be a graph.
(i) (Akbari, Ghanbari and Jahanbekam [5]) If G is bipartite and regular, then G is (2, 2)-normal.
(ii) (Akbari, Ghanbari and Jahanbekam [7]) If G is strongly regular and G /∈ {C4, C5, Kk,k}, then G is (2, 1)-normal.
(iii) (Alishahi [9]) If G is regular, then χ2(G) ≤ 2χ (G).
(iv) (Dehghan and Ahadi [41]) If G is regular, then G is (2, ⌈α(G)/2⌉ + 1)-normal.

Theorem 5.10 (Dehghan and Ahadi [41]). Let G be a graph, α′(G) and ω(G) be the matching number and the clique number
of G.
(i) If G is a regular graph, then G is (2, 2⌊log2(α(G))⌋ + 3)-normal.
(ii) In general, if G is a graph, then G is (2, 2 + min{α′(G), α(G)+ω(G)

2 })-normal.

Utilizing the 2-colorability (the Property B) of a hypergraph and the Lovász Local Lemma [47,105], Alishahi proved the
following results on the comparing χ2(G) and χ (G) in [9].

heorem 5.11 (Alishahi [9]). Let G be a k-regular graph. Each of the following holds.
i) G is (2, ⌊14.06 ln k⌋ + 1)-normal.
ii) Let ϵ be a positive constant. For any large enough k, χ2(G) ≤ χL,2(G) ≤ ⌈(1 + ϵ)χL(G)⌉.

In the same paper, Alishahi advanced the study and obtained the following interesting results, upper bounding the
-hued chromatic number of a graph G by the chromatic numbers of two subgraphs of G, induced by a total dominating
et and its complement, respectively.

heorem 5.12 (Alishahi [9]). Let G be a graph.
i) If e(∆(G)2 − ∆(G) + 2) ≤ 2δ(G) and there exists a total dominating set T ⊆ V (G), then χ2(G) ≤ χ (G[V \ T ]) + 2χ (G[T ]).
ii) If G has a double total dominating set T ⊂ V (G), then χ2(G) ≤ χ (G[V \ T ]) + χ (G[T ]).

Additional and arguably stronger results were later obtained by Alishahi in [10], Taherkhani in [128], and Jahanbekam
t al. in [66].

heorem 5.13. Let G be a graph.
i) (Alishahi [10]) If χ (G) ≥ 4 and e(∆(G)2 − ∆(G) + 2) ≤ 2δ(G), then G is (2, α(G2))-normal.
ii) (Alishahi [10]) If G is a k-regular graph with diameter 2, k ≥ 4 and e(∆(G)2 − ∆(G) + 1) ≤ 2δ(G), then G is (2, 1)-normal.
iii) (Alishahi [10]) If G is k-regular with no induced C4, then for any k ≥ 35, G is (2, 2⌈4 ln k + 1⌉)-normal.
iv) (Taherkhani [128]) If G is k-regular with k ≥ 3, then G is (2, ⌈5.437 ln k + 2.721⌉)-normal.

heorem 5.14 (Jahanbekam, Kim, O and West [66]). Let G be a graph. Each of the following holds.
i) If G is k-regular with k ≥ (3 + x)r ln r, where x −

2 ln ln r
ln r is a small positive constant, then χr (G) ≤ rχ (G).

ii) If G has diameter 2, then G is (2, 2)-normal. The equality holds only for complete bipartite graphs and C5.
iii) If G has diameter 3, then χ (G) ≤ 3χ (G). This bound is sharp.
2
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The next example shown in [66] indicates that for infinitely many r , there is an r-regular graph G such that χr (G) >
1.37744χ (G).

xample 5.15 (Jahanbekam, Kim, O and West [66]). Let
(n
t

)
be the set of all t-element subsets of a set n. Let K (n, t) be the

neser graph with

V (K (n, t)) =

(
n
t

)
,

where two vertices in v, w ∈ V (K (n, t)) are adjacent if and only if v ∩ w = ∅. Thus every v ∈ V (K (n, t)) is adjacent to(n−t
t

)
other vertices.

Let n = 3t−1, r =
(n−t

t

)
, and G = K (3t−1, t). Then G is r-regular with diameter 2. This forces χr (G) = |V (G)| =

(3t−1
t

)
.

But by [13,103], χ (G) = n − 2t + 2 = t + 1.
Applying Stirling’s Formula to get

χr (G)
rχ (G)

≈

2
3

(3t
t

)
(t+1)

2

(2t
t

) ≈
1
t

√
4
3

(
27
16

)t

.

Set this ratio to be rx, where r ≈
4t

2
√

π t
, and take logarithms on both sides to get t lg( 2716 ) = (1 + o(1))tx lg(4), leading to

x =
lg(27)−4

2 > 0.37744. Thus, χr (G) > r1.37744χ (G).

Ahadi et al. took an interesting approach in [3]. They defined for a graph G,

k∗(G) =

{ 2, if χ (G) = 2;
1, if χ (G) ∈ {3, 4, 5};
0, otherwise.

and proved the theorem below indicating that the parameter k∗ is a good descriptor in such studies.

Theorem 5.16 (Ahadi, Akbari, Dehghan and Ghanbari [3]). Let G be a graph with |V (G)| = n and k∗(G) = k∗. Each of the
following holds.
(i) G is (2, γ (G) + k∗)-normal.
(ii) If G is non-bipartite, then G is (2,max{0, α(G) − δ(G) + 1 + k∗

})-normal.
(iii) If G is non-bipartite, then G is (2, n − α(G) + 1 + k∗)-normal.

In 2017, Bowler et al. disproved Conjecture 5.6 in [23] by showing that the bound of χ2(G) ≤ 2χ (G) is sharp. They
ngeniously constructed regular graphs G with χ (G) = n and χ2(G) = 2n for each integer n ≥ 2. They also proved the
ollowing result.

heorem 5.17 (Bowler, Erde, Lehner, Merker, Pitz and Stavropoulos [23]). For all natural numbers r, n, δ ≥ 2, there exists a
-regular graph G with k > δ, χ (G) = n and χr (G) = rχ (G).

.3. Bounding the difference χr (G) − χ (G) in graphs with forbidden induced subgraphs

There are always some attempts to extend the study of the vertex r-hued coloring to its edge-coloring version. An
nitial idea to start is to define the r-hued chromatic index by χr (L(G)), where L(G) denotes the line graph of G. As it is
ell known that line graphs do not have an induced K1,3 as a subgraph [14,56,118], this motivates the investigation of
-hued coloring in graphs with a forbidden induced subgraph.
Let H be a graph. A graph G is H-free if G does not have an induced subgraph isomorphic to H . A number of results

ave been advanced in this direction for K1,k-free graphs, with k ≥ 3.

heorem 5.18 (Lai, Lin, Montgomery, Shui and Fan [87]). Let G be a K1,3-free graph. Each of the following holds.
i) G is (2, 2)-normal.
ii) If G is connected, then χ2(G) = χ (G) + 2 if and only if G is a cycle of length 5 or of even length not a multiple of 3.

heorem 5.19 (Gao, Sun, Song and Lai [53]). Let G be a graph. A vertex u ∈ V (G) in a graph G is called the unique middle
ertex if dG(u) = 2, NG(u) = {v1, v2} with dG(v1) ≥ 3 and dG(v2) ≥ 3. Each of the following holds.
i) If G is K1,3-free with χ (G) ≥ 4, and there is no unique middle vertex in G, then G is (2, 0)-normal.
ii) If G be K1,4-free, then χ2(G) ≤ 2χ (G).
iii) For a positive integer n ≥ 2, if G does not have a subgraph isomorphic to a cycle of length 2n, then χ2(G) ≤ 2χ (G).

heorem 5.20 (Li and Lai [91]). Let G be a K1,3-free graph. Then χ3(G) ≤ χL,3(G) ≤ max{χ (G) + 3, 7}. These bounds are best
ossibles.

In [3], Ahadi et al. showed that if G is a P4-free graph, then G is (2, 2)-normal. This has been generalized to all values

f r , and partially extended to P5-free graphs in [88].
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heorem 5.21 (Lai, Lv and Xu [88]). Let G be a connected graph. Each of the following holds.
(i) If G is P4-free, then G is (r, 2(r − 1))-normal. Furthermore, a P4-free graph G satisfies χr (G) − χ (G) = 2(r − 1) if and only
f G = Ks,t with min{s, t} ≥ r.
(ii) If G is a bipartite P5-free graph, then χr (G) ≤ rχ (G).
iii) If G is P5-free, then χ2(G) ≤ 2χ (G).

An infinite family of graphs described in the example below indicates that the upper bounds in Theorem 5.21 would
e best possible. We include the discussions on these examples in [88] for completeness.

xample 5.22 (Lai, Lv and Xu [88]). Let k ≥ 2 and r ≥ 1 be integers. For positive integers n1, n2, . . . , nk, (ni ≥ r, i =

, 2, . . . , k), let K = Kn1,n2,...,nk denote a complete k-partite graph such that the k partite vertex sets are V1, V2, . . . , Vk

ith |Vi| = ni for 1 ≤ i ≤ k. Let U = {u1, u2, . . . , uk} be a set of vertices with U ∩ V (K ) = ∅; and let n =
∑k

i=1 ni + k.
btain a graph G = G(n, k, r) from K and U by joining ui to every vertex in Vi but not to any other vertices, for each i
ith 1 ≤ i ≤ k. Thus, n = |V (K )| + |U | = |V (G)|. Let F be the collection of all graphs G(n, k, r) for some values n, k, r
ith n ≥ k ≥ r ≥ 1.

Proposition 5.23 indicates that every graph G ∈ F satisfies χr (G) = rχ (G).

roposition 5.23 (Lai, Lv and Xu [88]). For any graph G ∈ F , each of the following holds.
i) χ (G) = ω(G) = k.
ii) χr (G) = rk.
iii) G is P5-free.

roof. Let G ∈ F . Then for some integers n, k and r , we have G = G(n, k, r). We shall use the same notations above. For
ach i with 1 ≤ i ≤ k, fix a vertex wi ∈ Vi; and let W = {w1, w2, . . . , wk}. Since K is a complete k-partite graph, G[W ] is

isomorphic to Kk.
(i) By definition of G, G[W ] is a k-clique of G and so χ (G) ≥ ω(G) = k. Let c : V (G) → [k] be so defined that c(Vi) = i

and c(ui) = i + 1 (mod k). Since K is a k-partite graph, each Vi is a stable set; since NG(ui) = Vi, it follows that c is a
proper k-coloring of G. This proves (i).

(ii) Suppose that ℓ = χr (G) and let c : V (G) → [ℓ] be a (k, r)-coloring of G. Since G[W ] is isomorphic to Kk, we may
assume that for each i with 1 ≤ i ≤ k, c(wi) = i.

Fix an i with 1 ≤ i ≤ k. Since ni ≥ r and NG(ui) = Vi, there must be a vertex subset Zi ⊆ Vi such that |c(Zi)| = |Zi| = r .
Randomly pick a vertex zi ∈ Zi, and let Z = {z1, z2, . . . , zk}. As K is a complete k-partite graph, G[Z] is isomorphic to Kk
and so |c(Z)| = k. It follows that ℓ ≥ |c(∪k

i=1Zi)| = rk.
To justify (ii), it suffices to present a (rk, r)-coloring of G. Construct a mapping c : V (G) → [rk] as follows. For 1 ≤ i ≤ k,

define c(Vi) = {(i − 1)r + 1, (i − 1)r + 2, . . . , (i − 1)r + r} and c(ui) = (i − 1)r + r + 1. As K is a complete k-partite graph
with k ≥ r , the restriction of c to V (K ) is a (rk, r)-coloring. Since NG(ui) = Vi, and since |c(Vi)| = r , it follows that c is
indeed a (rk, r)-coloring. This proves that ℓ = χr (G) ≤ rk, and so completes the proof of (ii).

(iii) Let P = x1x2x3...xt be a longest induced path in G. Since K is a complete k-partite graph, and since P is induced, we
must have |V (P) ∩ V (K )| ≤ 3 and |V (P) ∩ V (K )| = 3 if and only if V (P) ∩ V (K ) = {xi−1, xi, xi+1} for some i with 1 < i < 5
such that xi−1 and xi+1 are in the same partite set of K . If xi−1 and xi+1 are both in a Vj, then we must have t = 3 and
P = xi−1xixi+1 since N(uj) = Vj. If |V (P) ∩ V (K )| = 2, then as P is a longest induced path, V (P)∩V (K ) = {xi−1, xi}. We may
assume, without lot of generality, that xi−1 ∈ V1 and xi ∈ V2. It follows that P = u1xi−1xiu2. Hence in any case, |V (P)| ≤ 4
and so G must be P5-free. ■

Example 5.22 and Proposition 5.23 lead to the following Problem.

Problem 5.24 (Lai, Lv and Xu [88]). For integers k > 0, r ≥ 2 and t ≥ 4, determine a best possible function f (k, r, t)
such that for every connected Pt-free graph G with χ (G) = k, we have χr (G) ≤ f (k, r, t). More specifically, is there a best
possible value c = c(r, t) such that for every connected Pt-free graph G, we have χr (G) ≤ c(r, t)χ (G)? In particular, does
this equation c(r, 5) = 5 hold?

6. Products of graphs

There have been different kinds of products of graphs, as well as other graphical operations forming new graphs from
some input graphs. It is of interest to study the relationship between the chromatic number of the inputting graphs and

that of the resulting graph, as seen in the survey of Klavžar [75].
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.1. Cartesian product

For two graphs G and H , the Cartesian product of G and H , denoted by G□H , has vertex set V (G) × V (H), where
u1, v1) and (u2, v2) are adjacent if and only if either u1 = u2 and v1v2 ∈ E(H), or v1 = v2 and u1u2 ∈ E(G). The problem
f determining the r-hued chromatic number of the Cartesian product of graphs has attracted lots of attention. Akbari
t al. in [6] started studying r-hued colorings of Cartesian products of paths and cycles. Since the maximum degree is 4
or these graphs, χr (G) = χ4(G) when r ≥ 4. Jahanbekam et al. [66], O [112] and Kang et al. [69] proved the cases when
≤ r ≤ 4.

heorem 6.1 (Akbari, Ghanbari and Jahanbekam [6]). For natural numbers m and n, each of the following holds.
i) If m, n ≥ 2, then χ2(Pm□Pn) = 4.
ii) If m ≥ 3, then

χ2(Cm□Pn) =

{
χ2(Cm), if n = 1;
3, if m ≡ 0 (mod 3);
4, otherwise.

iii) If m, n ≥ 3, then

χ2(Cm□Cn) =

{
3, if mn ≡ 0 (mod 3);
4, otherwise.

heorem 6.2. For natural numbers m and n, m, n ≥ 2, each of the following holds.
i) (Jahanbekam, Kim, O and West [66])

χ3(Pm□Pn) =

{ 4, if min{m, n} = 2;
4, if m and n are both even;
5, if m, n are not both even and mn ̸≡ 2 (mod 4).

χ4(Pm□Pn) =

{
4, if min{m, n} = 2;
5, otherwise.

ii) (Kang, Müller and West [69]) If mn ≡ 2 (mod 4), then χ3(Pm□Pn) = 5.

heorem 6.3. For natural numbers m, n ≥ 3, each of the following holds.
i) (Jahanbekam, Kim, O and West [66], and O [112]) For m ≤ n (mod 4),

χ3(Cm□Cn)

{
= 4, if m ≡ 0 (mod 4) and n ≡ t (mod 4) for t ∈ {0, 1, 2};
≤ 5, if m ≡ s (mod 4) and n ≡ 3 (mod 4) for s ∈ {0, 1};
≤ 6, otherwise.

ii) (O [112]) 5 ≤ χ4(Cm□Cn) ≤ 9.
iii) (O [112]) χ4(Cm□Cn) = 5 when m ≡ 0 (mod 5) and n ≡ 0 (mod 5).
iv) (O [112]) χ4(C3□C3) = 9.

The r-hued chromatic numbers of Cartesian product of a path and its square are studied by Shao and Zuo [121].

heorem 6.4 (Shao and Zuo [121]). Let m, n ≥ 3 be integers. Then

χ3(P2
m□Pn) =

{ 6, if m ∈ {3, 5};
5, if m = 7;
4, otherwise.

χ4(P2
m□Pn) =

{
7, if m ∈ {5, 6, 7}, or both m = 4 and n is odd;
6, otherwise.

and for r ≥ 5,

χr (P2
m□Pn) =

{
6, if m = 3;
7, otherwise.

Kaliraj et al. [68] studied 2-hued chromatic numbers of Cartesian product of complete graphs and wheels.

Theorem 6.5 (Kaliraj, Kumar and Vivin [68]).
(i) For positive integers t and s,

χ2(Kt□Ks) =

{
4, if t = s = 2;
max(t, s), otherwise.

(ii) For positive integers s ≥ 2 and n,

χ2(Kn□K1,s) =

{ 3, if n = 1;
4, if n = 2;

n, otherwise.
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iii) For positive integers ℓ ≥ 4 and n, χ2(Wℓ□Kn) = max{χ2(Wℓ), χ2(Kn)}.

.2. Tensor product

For two graphs G and H , the tensor product of G and H (sometimes is called direct product, Kronecker product,
ategorical product, cardinal product, relational product, weak direct product or conjunction), denoted by G×H , has
he vertex set as the Cartesian product V (G)×V (H), where (u1, v1) and (u2, v2) are adjacent if and only if u1u2 ∈ E(G) and
1v2 ∈ E(H). Deepa et al. [40] recently obtained several results on the r-hued chromatic numbers of the tensor product
f a path with either a path or a cycle as follows.

heorem 6.6 (Deepa, Venkatachalam and Falcón [40]). Let m, n and r be positive integers with m, n ≥ 3. Each of the following
olds.
i)

χr (Pm × Pn) =

{ 2, if r = 1;
4, if r ∈ {2, 3};
5, otherwise.

ii)

χr (Pm × Cn) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2, if r = 1;
3, if r = 2 and n = 3t, for some t ≥ 1;

4, if

{ r = 2 and n ̸= 3t, for all t ≥ 1;
r = 3 and n ∈ {3t, 6t + 1, 6t + 2, 6t + 5}, for some t ≥ 1;
r = 3 and n ∈ {6t + 4}, for some t ≥ 2;

5, if

{ r = 3 and n ∈ {4, 5, 10}, for all t ≥ 1;
r ≥ 4 and n = 5t, for some t ≥ 1;
r ≥ 4, m ∈ {3, 4} and n ̸∈ {3, 4, 6, 7, 8, 14};

6, if
{

r ≥ 4, m ∈ {3, 4} and n ∈ {3, 4, 6, 7, 8, 14};
r ≥ 4, m ≥ 5 and n ̸= 5t, for all t ≥ 1.

6.3. Corona product

The corona [38] of two graphs G and H is denoted by G ⊙ H , which is obtained by taking one copy of G and |V (G)|
copies of H where ith vertex of G is adjacent to every vertex in the ith copy of H . For any integer ℓ ≥ 2, a graph G ⊙

ℓ H
is called ℓ-corona product [38] of G and H such that G ⊙

ℓ H = (G ⊙
ℓ−1 H) ⊙ H . Agustin, Alfarisi, Dafik, Harsya, Kristiana

and Utoyo [2,81–84] obtained a list of results on r-hued chromatic numbers of coronas of two graphs, including complete
graphs Kn, paths Pn, cycles Cn, star graphs Sn, wheel graphs Wn, and fan graphs Fn with n ≥ 3. Dafik et al. [38] extended
some of those results to 2-corona products.

For positive integers n, m and r , define f1, f2 and f3 as follows:

f1 =

{ n, if 1 ≤ r ≤ n − 1;
r + 1, if n ≤ r ≤ m + n;
m + n + 1, otherwise.

f2 =

{
r + 1, if n ≤ r ≤ m + n;
m + n + 1, otherwise.

f3 =

{ m + 1, if 1 ≤ r ≤ m;

r + 1, if m + 1 ≤ r ≤ m + n;
m + n + 1, otherwise.

Theorem 6.7. Let m, n, r be integers. For a graph G, let ∆ = ∆(G). Each of the following holds.
(i) (Agustin, Dafik and Harsya [2]) If n ≥ 3 and m ≥ 2, then for 1 ≤ r ≤ 2,

χr (Wn ⊙ Pm) =

{
3, if n is even;
4, if n is odd.

(ii) (Agustin, Dafik and Harsya [2]) If n ≥ 3 and m ≥ 3, then for 1 ≤ r ≤ 2,

χr (Cn ⊙ Sm) =

{
3, if n is even;
4, if n is odd.

(iii) (Kristiana, Dafik, Utoyo, Agustin [81]) If n, m ≥ 2, then

χr (Pn ⊙ Pm) =

{ 3, if 1 ≤ r ≤ 2;
r + 1, if 3 ≤ r ≤ ∆ − 1;

m + 3, otherwise.
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iv) (Kristiana, Dafik, Utoyo, Agustin [81]) If n, m ≥ 3, then2

χ (Pn ⊙ Cm) = χ2(Pn ⊙ Cm) =

{
3, if m is even;
4, if m is odd.

χ3(Pn ⊙ Cm) =

{ 4, if m ≡ 0 (mod 3);
6, if m = 5;
5, otherwise.

χr (Pn ⊙ Cm) =

{
r + 1, if 4 ≤ r ≤ ∆ − 1;
m + 3, otherwise.

(v) (Kristiana, Dafik, Utoyo, Agustin [81]) If n, m ≥ 3, then

χ (Pn ⊙ Wm) = χ2(Pn ⊙ Wm) = χ3(Pn ⊙ Wm) =

{
4, if m is even;
5, if m is odd.

χ4(Pn ⊙ Wm) =

{ 5, if m ≡ 0 (mod 3);
7, if m = 5;
6, otherwise.

χr (Pn ⊙ Wm) =

{
r + 1, if 5 ≤ r ≤ ∆ − 1;
m + 4, otherwise.

vi) (Kristiana, Utoyo, Dafik [84]) If n ≥ 4 and m ≥ 3, then χr (Kn ⊙ Sm) = χr (Kn ⊙ Fm) = f1.
vii) (Kristiana, Utoyo, Dafik [84]) If n ≥ 3 and m ≥ 4, then χr (Sn ⊙ Km) = f2 and χr (Fn ⊙ Km) = f3.
viii) (Kristiana, Utoyo, Dafik [84]) If n, m ≥ 4, then for n ≤ m, χr (Kn ⊙ Km) = f3; for n ≥ m + 1, χr (Kn ⊙ Km) = f1.
ix) (Kristiana, Utoyo, Dafik [83]) Let G ∈ {Sn ⊙ Wm,Wn ⊙ Wm} with n, m ≥ 3. Then

χ (G) = χ2(G) = χ3(G) =

{
4, if m is even,
5, if m is odd.

χ4(G) = χ5(G) =

{ r + 1, if m ≡ 0 (mod 3);
7, if m = 5;
6, otherwise.

χr (G) =

{
r + 1, if 6 ≤ r ≤ n + m + 1;
n + m + 2, otherwise.

heorem 6.8 (Kristiana, Utoyo, Alfarisi and Dafik [82]). For integers m, n ≥ 3, r ≥ 1,
i)

χr (Wn ⊙ Sm) =

⎧⎪⎨⎪⎩
3, if 1 ≤ r ≤ 2, n is even;
4, if 1 ≤ r ≤ 2, n is odd;
r + 1, if 3 ≤ r ≤ n + m + 1;
m + n + 2, otherwise.

ii)

χr (Sn ⊙ Fm) =

{ 4, if 1 ≤ r ≤ 3;
r + 1, if 4 ≤ r ≤ n + m + 1;
m + n + 2, otherwise.

iii)

χr (Wn ⊙ Fm) =

⎧⎪⎨⎪⎩
3, if 1 ≤ r ≤ 3, n is even;
4, if 1 ≤ r ≤ 3, n is odd;
r + 1, if 4 ≤ r ≤ n + m + 1;
m + n + 2, otherwise.

iv) Let G ∈ {Fn ⊙ Sm, Sn ⊙ Sm}.

χr (G) =

{ 3, if 1 ≤ r ≤ 2;
r + 1, if 3 ≤ r ≤ n + m + 1;
m + n + 2, otherwise.

heorem 6.9 (Dafik, Agustin, Wardani, Septory, Kristiana and Kurniawati [38]). Let G ∈ {Kn⊙
2Pm, Kn⊙

2Sm, Kn⊙
2Fm, Kn⊙

2Km}

nd n,m be integers with n,m ≥ 3, then

χr (G) =

{ n, if 1 ≤ r ≤ n − 1;
r + 1, if n ≤ r ≤ 2m + n − 2;
2m + n, otherwise.

2 This result is revised by authors.
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.4. Join operation

Given two graphs G and H . The join G + H [2] is defined as follows: V (G + H) = V (G) ∪ V (H), E(G + H) =

E(G)∪ E(H)∪ {(u, v) : u ∈ V (G) and v ∈ V (H)}. Agustin et al. [2], Dafik et al. [39], Reddy et al. [117] and Kaliraj et al. [68]
tudied r-hued chromatic numbers of joins of two graphs.

heorem 6.10. For positive integers n,m, r, each of the following holds.
i) (Agustin, Dafik and Harsya [2]) If n ≥ 2 and m ≥ 3, then for 1 ≤ r ≤ 3,

χr (Pn + Cm) =

{
4, if m is even;
5, if n is odd.

nd

χ4(Pn + Cm) =

{
5, if m ≡ 0 (mod 3);
6, otherwise.

ii) (Dafik, Meganingtyas, Purnomo, Tarmidzi and Agustin [39]) If n,m ≥ 3, then

χ5(Pn + Cm) =

{ 6, if m = 3;
8, if m = 5;
7, otherwise.

iii) (Agustin, Dafik and Harsya [2]) If n ≥ 3 and m ≥ 2, then for 1 ≤ r ≤ 4,

χr (Wn + Pm) =

{
5, if n is even;
6, if n is odd.

(iv) (Reddy and Iyer [117]) Let T1, T2 be two non trivial trees with |V (T1)| ≤ |V (T2)|. Then χr (T1 + T2) = 2(r − 1), where
≤ r ≤ |V (T1)| + 1.

v) (Kaliraj, Kumar and Vivin [68]) For any two connected graphs G and H, χ2(G + H) = χ (G) + χ (H).

Agustin et al. also studied r-hued chromatic numbers of some other operations of two graphs in [2], such as the
exicographic product of a cycle with a star and shackles of the Cartesian product of a path with either a cycle or a star.

. The sensitivity problem

Let k > 0 be an integer. A graph G is k-critical if χ (G) = k but any proper subgraph H of G satisfies χ (H) < k. It is very
ommon to study critical graphs in graph coloring researches. However, there exist graphs G with a proper subgraph H
atisfying χ2(H) > χ2(G). For example, let H be the 5-cycle and let G be the 5-cycle plus a chord. Then we have χ2(G) = 4
hereas χ2(H) = 5. Thus, in r-hued colorings, it is of interest to investigate tight bounds for the changes of χr when an
dge or a vertex is being removed or added. Montgomery [110] studied the case when r = 2, the effect of deleting a
ertex.

heorem 7.1 (Montgomery [110]). For any graph G, χ2(G−v) ≥ χ2(G)−2 for any vertex v ∈ V (G). The only graphs for which
2(G − v) = χ2(G) − 2 for at least one vertex are C5, the 5-cycle, and K1,n−1, the star on n vertices with n ≥ 3.

Miao et al. [108] have found an interesting phenomenon. They showed that for any integer M ≥ 1, there exists a graph
such that G possess a vertex v satisfying χ2(G − v) ≥ χ2(G) + M . Thus, to bound the difference χ2(G − v) − χ2(G) for
eneric graphs G would be impossible. They also studied the impact of removing an edge when r = 2.

heorem 7.2 (Miao, Lai, Guo and Miao [108]). Each of the following holds.
i) Let G be a connected graph with |V (G)| ≥ 3. Then for every edge e ∈ E(G), χ2(G) − 2 ≤ χ2(G − e) ≤ χ2(G) + 2.
ii) There exists a graph G such that χ2(G − e) = χ2(G) + 2 for at least one edge e ∈ E(G).
iii) If a connected graph G is such that χ2(G − e) = χ2(G) − 2 for at least one edge e ∈ E(G), then G = C5.

heorem 7.3 (Miao, Lai, Guo and Miao [108]). Let G be a connected graph with |V (G)| ≥ 2. If G does not contain a subdivision
f K3,3, then χ2(G − e) ≤ χ2(G) + 1 for every e ∈ E(G).

Song et al. investigated the general case when r ≥ 2 in [126], extending some of the findings in [108] from r = 2 to
eneric values of r . The effect of a topological K3,3 minor seems to deserve the attention of research. Further investigations
ight be needed to fully understand the impact of a topological K3,3 minor in this direction of studies.

heorem 7.4 (Song, Miao, Miao and Lai [126]). Let r ≥ 2 be an integer, and G be a connected graph with |V (G)| ≥ 2.
i) For any edge e ∈ E(G), χr (G) − 2 ≤ χr (G − e) ≤ χr (G) + 2.
ii) For every graph G, there exists an edge e ∈ E(G) such that χr (G − e) ̸= χr (G) + 2.
iii) If χ (G − e) = χ (G) + 2 for some e ∈ E(G), then G must contain a subdivision of K .
r r 3,3
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heorem 7.5 (Song, Miao, Miao and Lai [126]). Let r ≥ 2 be an integer, and G be a connected graph with |V (G)| ≥ 2, and u, v
be any pair of nonadjacent vertices in V (G).
(i) If u, v are in the same component of G, then χr (G) − 2 ≤ χr (G + uv) ≤ χr (G) + 2.
ii) If u, v are in different components of G, then χr (G) − 1 ≤ χr (G + uv) ≤ χr (G) + 1.

. Other remarks

We have reviewed related literature regarding r-hued colorings and list r-hued colorings of graphs, which are natural
eneralizations of graph colorings and list graph colorings. As this survey is intended to review the literature and
evelopment for r-hued colorings with r ≥ 2, many of the results in the area of classical colorings and list colorings
re not included. A resourceful monograph by Jensen and Toft [67] would be a much better source for graph colorings
n general. As mentioned in the introduction section, distance colorings is an important component of r-hued colorings.
ramer and Kramer [80] reviewed the literature and development of distance colorings, which is also a very resourceful
eference for this topic. For more literary works and references concerning coloring problems on products of graphs,
ee the surveys of Klavžar [75] and N. Sauer [119]. Finally, we would like to mention the excellent survey of Zhu [142]
n circular colorings of graphs. While vertex circular colorings refine vertex colorings, it is of interest to seek a similar
efinement of r-hued colorings of graphs.
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