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Let N1,1,1 be the graph formed by attaching a pendant edge to each vertex of a triangle, 
and B1,2 be a graph obtained by attaching end vertices of two disjoint paths of lengths 1, 2
to two vertices of a triangle. Broersma (1993) [2] and Čada et al. (2016) [3] conjectured 
that for a 2-connected claw-free simple graph G and for a fixed graph � ∈ {N1,1,1, B1,2, P6}, 
if δ�(G) = min{dG (v) : dH (v) = 1 for any induced subgraph H ∼= � in G} ≥ |V (G)|−2

3 , then 
G is Hamiltonian. While Chen settles this conjecture recently, the following two results of 
the conjecture for 3-connected line graphs are proved.
(i) For real numbers a, b with 0 < a < 1, there exists a family F(a, b) of finitely many 
nonsupereulerian graphs, such that for any 3-connected line graph H = L(G) of a simple 
graph G , if δN1,1,1 (H) ≥ a|V (H)| + b, then either H is Hamiltonian or G is contractible to a 
member in F(a, b).
(ii) Let H = L(G) be a 3-connected line graph of a simple graph G with |V (H)| ≥ 116. If 
δN1,1,1 (H) ≥ |V (H)|+5

10 , then either H is Hamiltonian or G is isomorphic to the graph P (10)′ , 
which is formed from the Petersen graph P (10) by attaching |V (H)|−15

10 pendant edges to 
every vertex of P (10).

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

We consider finite loopless graphs and follow [1] for undefined notation and terms. Let κ(G), κ ′(G), α′(G), δ(G) and 
g(G) denote the vertex connectivity, the edge connectivity, the matching number, the minimum degree and the girth of a graph 
G , respectively. For a vertex v ∈ V (G), let EG(v) = { f ∈ E(G) : v ∈ V ( f )}, dG(v) = |EG(v)|, NG(v) = {u ∈ V (G) : uv ∈ E(G)}
and NG [v] = NG(v) ∪{v}. For a vertex subset S of G , define NG (S) = (∪v∈S NG(v)) \ S and NG [S] = NG(S) ∪ S . Let i ≥ 0 be an 
integer and define Di(G) = {v ∈ V (G) : dG(v) = i}, D≤i(G) = {v ∈ V (G) : dG (v) ≤ i}. Vertices in D1(G) are the leaves of G , and 
edges incident with vertices in D1(G) are the pendant edges of G . For an edge e = uv ∈ E(G), define EG(e) = EG(u) ∪ EG(v). 
Thus |EG(e)| = dG(u) + dG (v) − 1. For a given graph H , a graph G is H-free if G does not contain an induced subgraph 
isomorphic to H . A K1,3-free graph is often referred as to a claw-free graph. The line graph of a graph G , denoted by L(G), 
is a simple graph with vertex set E(G), where two vertices in L(G) are adjacent if and only if the corresponding edges in 
G are adjacent. In [21], Ryjác̆ek defined the closure cl(H) of a claw-free graph H to be one obtained by recursively adding 
edges to join two nonadjacent vertices in the neighborhood of any locally connected vertex of H , as long as this is possible. 
Consequently, cl(H) is a line graph.
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Let � ≥ 1 be an integer, and let P (10) denote the Petersen graph. The graph P (10, �) is obtained from P (10) by attaching 
� pendant edges at every vertex of P (10). If we do not emphasize the value of �, we use P (10)′ for P (10, �). For nonnegative 
integers i, j, k, we use Ni, j,k to denote the graph formed by attaching a path of order i + 1, j + 1, k + 1 to each of the three 
vertices of K3, respectively. It is common to use Zi instead of Ni,0,0 if i > 0 and Bi, j instead of Ni, j,0 if i, j > 0. Let Pi (or 
Ci , respectively) denote a path (or a cycle, respectively) on i vertices.

A graph is Hamiltonian if it contains a spanning cycle. Sufficient conditions for a 2-connected or 3-connected claw-free 
graph to be Hamiltonian have been the subjects of many papers. The following are classical results due to degree conditions.

Theorem 1.1. Let H be a simple claw-free graph on n ≥ 3 vertices. Each of the following holds.
(i) (Matthews and Sumner, [20]) If κ(H) ≥ 2 and δ(H) ≥ n−2

3 , then H is Hamiltonian.

(ii) (Favaron and Fraisse, [13]) If κ(H) ≥ 3 and δ(H) ≥ n+38
10 , then H is Hamiltonian.

(iii) (Lai, Shao and Zhan, [16]) If n ≥ 196, κ(H) ≥ 3 and δ(H) ≥ n+5
10 , then H is Hamiltonian, unless cl(H) ∼= L(P (10)′).

As H = L(P (10)′) is a 3-connected non-Hamiltonian claw-free graph with δ(H) ≥ |V (H)|+5
10 , Theorem 1.1 (iii) settles 

the conjecture, posed by Kuipers and Veldman (see [13]), that for sufficiently large n, every 3-connected claw-free graph 
on n vertices with δ(H) ≥ n+6

10 is Hamiltonian. Faudree, Flandrin and Ryjáček, in Section 2(d) of their frequently quoted 
survey [12], listed a number of forbidden induced subgraphs in the study of Hamiltonian claw-free graphs. Among them, 
members in the family Ni, j,k, Bi, j with i + j + k ≤ 3 are included. For a connected graph �, define

δ�(G) = min{dG(v) : v ∈ D1(H) for any induced subgraph H ∼= � in G}.
In 1993, Broersma considered to combine the forbidden induced subgraph conditions and degree conditions in the study 
of Hamiltonian claw-free graphs. He proposed the following conjecture by considering a local degree condition of induced 
N1,1,1.

Conjecture 1.2. (Broersma, [2]) A 2-connected claw-free simple graph H with δN1,1,1(H) ≥ |V (H)|−2
3 is Hamiltonian.

Fujisawa and Yamashita [14] obtained a result for δZ1 (G) ≥ n−2
3 and Čada et al. [3] obtained a result for δ�(H) ≥ n+3

3
where � ∈ {P6, B1,2, N1,1,1}. They then proposed the following conjecture.

Conjecture 1.3. (Čada, Li, Ning and Zhang, [3]) For fixed � ∈ {P6, B1,2}, every 2-connected claw-free simple graph H with δ�(H) ≥
|V (H)|−2

3 is Hamiltonian.

Conjectures 1.2 and 1.3 have been proved affirmatively by Chen recently.

Theorem 1.4. (Chen, [8,9]) Every 2-connected claw-free simple graph on n vertices with δ�(H) ≥ n−2
3 for a fixed � ∈ {P6, B1,2,

N1,1,1} is Hamiltonian.

It is natural to extend Theorem 1.4 to 3-connected claw-free graphs. Utilizing Theorem 1.1 (ii) and (iii), we prove the 
following result for 3-connected line graphs.

Theorem 1.5. Let H = L(G) be a 3-connected line graph of a simple graph G on n ≥ 116 vertices. If δN1,1,1(H) ≥ n+5
10 , then either H is 

Hamiltonian or G ∼= P (10)′ .

A more general question extending Conjecture 1.2 can be posed as follows: given a graph � in the list in Section 2(d) 
of [12], determine best possible linear function c(n, �) such that for any claw-free graph G on n vertices, if δ�(G) ≥ c(n, �), 
then when n is sufficiently large, G is Hamiltonian. We also obtain the following result in this direction.

Theorem 1.6. Let a and b be real numbers with 0 < a < 1. There exists a family F(a, b) of finitely many nonsupereulerian graphs, such 
that for any a 3-connected line graph H = L(G) of a simple graph G on n vertices, if δN1,1,1(H) ≥ an + b, then either H is Hamiltonian 
or G is contractible to a member in F(a, b).

Theorem 1.6 reveals that, under any nontrivial linear function lower bound for the local degree condition involving 
N1,1,1, there are only finitely many contractional obstacles for the line graph to be Hamiltonian. Theorem 1.5 strengthens 
Theorem 1.1 (iii) and indicates that a better bound can be obtained in Conjecture 1.2 within 3-edge-connected line graphs. 
We will present some definitions and results that will be used in the next section. The justification of the main result will 
be given in the last section.
2



X. Liu, S. Song and H.-J. Lai Discrete Mathematics 345 (2022) 112825
2. Preliminaries

For notational convenience, in the paper, if G is a graph and X ⊆ E(G) is an edge subset, then we also use X to denote 
both an edge subset of E(G) and G[X], the subgraph induced by X in G . Thus V (X) is the set of vertices in G incident with 
an edge in X . If X = {e}, we write V (e) for V (X). For a subgraph H of G and X ⊆ E(G), we often use H ∪ X to denote the 
subgraph G[E(H) ∪ X]. A path with end vertices u and v is often referred as to a (u, v)-path (or P [u, v]). For two disjoint 
subsets X, Y of V (G), an (X, Y )-path is a path linking a vertex in X and a vertex in Y , and whose internal vertices belong 
to neither X nor Y . When X = {v}, we write (v, Y )-path for (X, Y )-path.

Let O (G) = ⋃
i≥0 D2i+1(G) denote the set of odd degree vertices of a graph G . If O (G) = ∅ and G is connected, then G

is eulerian; if G contains a spanning eulerian subgraph, then it is supereulerian. An eulerian subgraph H of G is dominating
if V (G) − V (H) is a stable set of G . Harary and Nash-Williams proved a useful relationship between dominating eulerian 
subgraphs and Hamiltonian line graphs.

Theorem 2.1. (Harary and Nash-Williams, [15]) Let G be a connected graph with at least 3 edges. The line graph L(G) is Hamiltonian 
if and only if G has a dominating eulerian subgraph.

Let X ⊆ E(G) be an edge subset of a graph G . The contraction G/X is the graph obtained from G by identifying the two 
ends of each edge in X and then deleting the resulting loops. By definition, even if G is a simple graph, G/X may have 
multiple edges. We define G/∅ = G . When K is a connected subgraph of G , we write G/K for G/E(K ) with v K denoting the 
vertex in G/K onto which K is contracted. The preimage of v K in G , denoted by P IG(v K ), is the induced subgraph G[V (K )]. 
The vertex v K is nontrivial if P IG (v K ) has at least one edge. For a connected subgraph � ⊆ G/K , we denote P IG(�) to be 
the induced subgraph G[∪u∈V (�)V (P IG (u))]. Thus if P ′ ⊆ G/K is a path (or a cycle, respectively), then P IG(P ′) contains a 
path P (or a cycle, respectively). The following result is useful.

Theorem 2.2. (Chen et al., Theorem 1.1 of [11]) Let G be a 3-edge-connected graph and let A ⊆ V (G) with |A| ≤ 12. Then either G has 
an eulerian subgraph H with A ⊆ V (H), or G can be contracted to the Petersen graph P (10) in such a way that the preimage of each 
vertex of the Petersen graph contains at least one vertex in A.

2.1. Catlin reduction method

As in [1], Km,n denotes the complete bipartite graph with partite sets of size m and n. By H ⊆ G , we mean that H is a 
subgraph of G . If H ⊆ G , then the set of vertices of attachments of H in G is defined as

AG(H) = {v ∈ V (H) : NG(v) � V (H)}.
In [4], Catlin introduced collapsible graphs. By Proposition 1 of [17], a graph G is collapsible if for any R ⊆ V (G) with 

|R| ≡ 0 (mod 2), G has a spanning connected subgraph �R with O (�R) = R . Catlin showed in [4] that every vertex of G
lies in a unique maximal collapsible subgraph of G . For any graph G , let H1, H2, · · · , Hc be the collection of all maximal 
collapsible subgraphs of G . The graph G/(H1 ∪ H2 ∪ · · · ∪ Hc) is the reduction of G . A graph G is reduced if G equals its 
reduction.

Let F (G) be the minimum number of additional edges that must be added to G so that the resulting graph has two edge-
disjoint spanning trees. Catlin (Theorem 2 of [5]) shows that every graph G with F (G) = 0 is collapsible. We summarize 
some results on Catlin’s reduction method and other related tools in Theorem 2.3, and use 2K1 to denote the edgeless graph 
with two vertices.

Theorem 2.3. Let G be a graph, H ⊆ G be a collapsible graph and let G ′ be the reduction of G. Then each of the following holds.
(i) (Catlin, Theorem 8 of [4]) G is collapsible (or supereulerian) if and only if G/H is collapsible (or supereulerian). In particular, G is 
collapsible if and only if G ′ = K1 .
(ii) (Catlin, Theorem 5 of [4]) G is reduced if and only if G has no nontrivial collapsible subgraphs.
(iii) (Catlin, Theorem 8 of [4]) g(G ′) ≥ 4.
(iv) (Catlin, Theorem 7 of [5], see also Theorem 3.4 of [18]) If G is reduced, or if E(G) is the union of the edge sets of two spanning trees 
in G, then F (G) = 2|V (G)| − 2 − |E(G)|.
(v) (Catlin et al., Theorem 1.3 of [6]) If F (G) ≤ 1, then G ′ ∈ {K1, K2}; if F (G) ≤ 2, then G ′ ∈ {K1, 2K1, K2, K2,t} for some t ≥ 1; if 
F (G) ≤ 2 and κ ′(G) ≥ 3, then G is collapsible.
(vi) (Chen, [7]) If κ ′(G ′) ≥ 3 and |V (G ′)| ≤ 11, then G ∈ {K1, P (10)}.

Theorem 2.4. (Chen et al., Theorem 4.4 of [10]) Let G be a connected reduced graph with n vertices and δ(G) ≥ 3. Then α′(G) ≥
min{ n

2 , n+5
3 }.

Lemma 2.5. (Xiong et al., Lemma 2.4 of [24]) Let G be a 3-edge-connected graph, and let H ⊂ G be an induced connected subgraph of 
G with v H as its contraction image in G/H such that dG/H (v H ) = 3. Then each of the following holds.
3
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(i) If |V (H)| ≤ 5, then H is collapsible unless H ∼= K2,3 with AG(H) = D2(H).
(ii) If H is not collapsible, then for any vertex u ∈ AG(H), H has a path of length at least 4 with u as its end vertex.

As an application of Lemma 2.5, the following is obtained.

Lemma 2.6. Let G be a 3-edge-connected reduced graph, and let H ⊂ G be an induced connected subgraph of G with v H being its 
contraction image in G/H and dG/H (v H ) = 3. Each of the following holds.
(i) If |V (H)| ≤ 5, then H ∼= K2,3 with AG(H) = D2(H).
(ii) If |V (H)| ≥ 6, then α′(H) ≥ 3.

Proof. As κ ′(G) ≥ 3 and dG/H (v H ) = 3, it follows that κ ′(H) ≥ 2. If |V (H)| ≤ 5, then by Lemma 2.5 (i), Lemma 2.6(i) holds. 
Hence we assume that |V (H)| ≥ 6. If α′(H) ≥ 3, then Lemma 2.6(ii) holds. By contradiction, we assume that α′(H) ≤ 2.

Choose a vertex u ∈ AG(H). By Theorem 2.3(ii) and (iii), H is reduced with g(H) ≥ 4. By Lemma 2.5 (ii), H contains a 
Q 1 = ux1 · · · x� with � ≥ 4 and � maximized among all paths and cycles. If � ≥ 6, or if � ≥ 5 and x� 
= u, then α′(H) ≥ 3, and 
so Lemma 2.6(ii) holds. Hence we assume that either � = 4 and u 
= x4, or � = 5 with u = x5.

Suppose first that � = 5 with u = x5. Then Q 1 is a 5-cycle. If V (H)\V (Q 1) 
= ∅, then since H is connected, there exists a 
vertex v ∈ V (H)\V (Q 1) and a vertex x ∈ V (Q 1) such that vx ∈ E(H). It follows that H contains a matching consisting of vx
and two edges of E(Q 1), and so α′(H) ≥ 3, contrary to the assumption that α′(H) ≤ 2. Hence we must have V (H) = V (Q 1), 
contrary to the fact that |V (H)| ≥ 6.

Therefore, we must have � = 4 and u 
= x4. As κ ′(H) ≥ 2, x4 is adjacent to a vertex w ∈ V (H)\{x3}. Since α′(H) ≤ 2 and H
is reduced, we must have w = x1 and ux3 ∈ E(H). Thus H[V (Q 1)] ∼= K2,3 with D2(H[V (Q 1)]) = {u, x2, x4}. Choose a largest 
integer t ≥ 3 such that K = K2,t is a subgraph in H . Since H is reduced, K is induced. If there exists a vertex z ∈ V (H)\V (K )

which is adjacent to a vertex z′ ∈ D2(K ), then zz′ together with a 2-matching in the 4-cycle of K − z′ forces that α′(H) ≥ 3, 
a contradiction. Hence D2(K ) ⊆ D2(H) ⊆ AG(H) since κ ′(G) ≥ 3, implying that t = 3. Since |V (H)| ≥ 6, there exists a vertex 
z ∈ V (H)\V (K ) which is adjacent to a vertex z′ ∈ D3(K ). As α′(H) ≤ 2, NH (z) ⊆ D3(K ). Thus H[V (K ) ∪{z}] ∼= K2,4, contrary 
to the choice of K . This final contradiction justifies the lemma. �
2.2. The core of a graph

An edge-cut of a graph G is an essential edge-cut if G − X has at least two nontrivial components. A connected graph G
is essentially k-edge-connected if G does not have an essential edge-cut of size less than k. Let ess′(G) be the smallest k such 
that G has an essentially k-edge-cut, if G has an essential edge-cut, or ess′(G) = |E(G)| − 1 if G does not have an essential 
edge-cut. With this definition, it is routine to verify that for a connected graph G with |E(G)| ≥ 2, κ(L(G)) = ess′(G).

Let G be a graph with |E(G)| ≥ 4 and ess′(G) ≥ 3. As ess′(G) ≥ 3, D≤2(G) is a stable set of G . For each v ∈ D2(G), let 
EG(v) = {ev

1 , ev
2} and X2(G) = {ev

2 : v ∈ D2(G)}. Thus for each vertex v ∈ D2(G), |X2(G) ∩ EG(v)| = 1. Define the core of G to 
be the graph G0 in (1):

G1 = G − D1(G),

G0 = G/((∪v∈D1(G)EG(v)) ∪ X2(G)) = G1/X2(G),

N E(G) = ∪v∈D2(G)EG(v) − X2(G).

(1)

The nontrivial edges in G0 are the edges in N E(G). For notational convenience, the vertices in G adjacent to a vertex in 
D≤2(G) can be viewed as vertices in G0. Then V (G0) ⊆ V (G1) ⊆ V (G). Let G ′

0 be the reduction of G0. Then G ′
0 is a 

contraction of G0 as well as G , and so we can view E(G ′
0) ⊆ E(G0) ⊆ E(G). Denote the sets of nontrivial vertices in G0 and 

G ′
0 as follows:

�(G0) = {v ∈ V (G0) : P IG(v) 
= K1 or P IG(v) ∩ V (N E(G)) 
= ∅},
�′(G0) = {v ∈ V (G ′

0) : P IG(v) 
= K1 or P IG(v) ∩ V (N E(G)) 
= ∅}.
Applying Theorem 2.1, Shao proved the following.

Theorem 2.7. (Shao, Section 1.4 of [23], see also Theorem 4.2 of [19]) Let G be a graph with |E(G)| ≥ 3 and ess′(G) ≥ 3, and let G0 be 
the core of graph G. Then each of the following holds.
(i) G0 is well defined and nontrivial with δ(G0) ≥ κ ′(G0) ≥ 3.
(ii) L(G) is Hamiltonian if and only if G0 has a dominating eulerian subgraph H such that �(G0) ⊆ V (H).
(iii) L(G) is Hamiltonian if and only if G ′ has a dominating eulerian subgraph H ′ such that �′(G0) ⊆ V (H ′).
0
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3. Proofs of the main results

Let H1, H2 be two graphs. Define H1 ∪ H2 to be the graph with vertex set V (H1) ∪ V (H2) and edge set E(H1) ∪ E(H2), 
and H1 − H2 = H1[E(H1)\E(H2)]. If X, Y are two vertex subsets of a graph G , define EG (X, Y ) = {xy ∈ E(G) : x ∈ X, y ∈ Y }. 
When X = {x} or Y = {y}, we use EG(x, Y ) or EG(X, y) for EG(X, Y ), respectively. When G is understood from the context, 
we often omit the subscript G . For positive integers i, j, k, let Ti, j,k denote the tree obtained from the disjoint union of 
three paths Pi+1, P j+1 and Pk+1 by identifying an end vertex of each of these three paths into the only degree 3 vertex of 
Ti, j,k .

3.1. Lemmas

A vertex v ∈ D1(G) is a good-leaf of a graph G if G has a subgraph Lv ∈ {T2,2,1, T2,1,1, T1,1,1} and a vertex u ∈ D3(Lv)

such that uv ∈ E(Lv) and NLv (u) ∩ D1(Lv) ⊆ D1(G). For each vertex xi ∈ D1(G) that is not a good-leaf, an ordered pair 
(Hi, ei) is an xi -net if G has a subgraph Hi ∈ {T2,2,2, T2,2,1, T2,1,1} and an edge ei = viui such that viui wi ⊆ Hi for wi ∈
D3(Hi), ui ∈ D≤3(G) and NHi (wi) ∩ D1(Hi) ⊆ D1(G)\{xi}. For an integer t ≥ 1, define K2,t + e to be the graph obtained from 
K2,t by adding an edge e joining any two nonadjacent vertices of degree t . As an example, K2,1 + e ∼= K3.

Lemma 3.1. Let G be a graph such that g(G) ≥ 3, κ ′(G − D1(G)) ≥ 2 and D1(G) = {x1, x2, · · · , xk} with k ≥ 3. Then for any integers 
{i, j} ⊆ {1, · · · , k}, each of the following holds.

(i) If xi is not a good-leaf of G, then G has an xi -net (Hi, ei) and a block �i , which depends on xi (see Fig. 1), satisfying both of the 
following properties.
(α) There exist disjoint subsets R0, R1, · · · , R p in D≤3(G) and a set {y1, w1, · · · , w p+1} of cut-vertices of G such that for any 

� ∈ {0, 1, · · · , p}, if |R�| ≥ 3, then E(G[R�]) = ∅, and �i = G[V (R0 ∪ · · · ∪ R p) ∪ {xi, y1, w1, · · · , w p+1}],
(β) ei ∈ E(G[R p ∪ {w p}]) with EG(ei) ⊆ E(�i) and, if |EG(ei)| ≥ 6, then V (ei) ∩ D2(G) 
= ∅.

(ii) If xi, x j ∈ D1(G) are not good-leaves, then G has a xi -net (Hi, ei) and a x j -net (H j, e j) such that V (ei) ∩ V (e j) = ∅ and EG(ei) ∩
EG(e j) = ∅.

Proof. (i) For each s with 1 ≤ s ≤ k, as xs ∈ D1(G), there exists an unique vertex ys with xs ys ∈ E(G). Without loss of 
generality, we assume that x1 is not a good-leaf of G . Choose a shortest (x1, {x2, · · · , xk})-path P1 in G , say (x1, x2)-path, 
and then choose a shortest ({x3, · · · , xk}, V (P1))-path P2 in G , say (x3, y0)-path for some vertex y0 ∈ V (P1) ∩ V (P2). 
As x1, x2, x3 ∈ D1(G), we have x1 y1, x2 y2 ∈ E(P1) and x3 y3 ∈ E(P2). We first claim that for any path P ⊆ G whose end 
vertices belong to {x2, · · · , xk}, E0 = E(x1, V (P )) = ∅. Since otherwise, G[E0 ∪ E(P )] ∼= T�1,�2,�3 for some integer �1, �2, �3 ≥ 1
with x1 and two of {x2, · · · , xk} as its leaves, which implies that x1 is a good-leaf, a contradiction. Hence, y1 /∈ V (P2) ∪
V (y0 P1x2) and E(y1, V (P2 − y0)) = ∅. Then there is a vertex z1 
= x1 with y1z1 ∈ E(P1). By the choice of P1, it follows that 
E(y1, V (P1 − {z1, x1})) = ∅.

Let V 0 = NG(y1)\{z1, x1} and t0 = |V 0|. Then V 0 ∩ V (P1 ∪ P2) = ∅. Since κ ′(G − D1(G)) ≥ 2, we have dG(y1) ≥
3, and so t0 ≥ 1. Let z2 ∈ N P1 (z1)\{y1}. Then for any vertex v ∈ V 0, as x1 is not a good-leaf, we have NG(v) ⊆
{y1, z1, z2}, implying that V 0 is a stable set of G . If there are vertices v1, v2 ∈ V 0 such that v1z1, v2z2 ∈ E(G), then 
G[{x1 y1, y1 v1, y1 v2, v1z1, v2z2}] ∼= T2,2,1,implying that x1 is a good-leaf, a contradiction. Hence either |NG (V 0)| = 2 or 
NG(V 0) = {y1, z1, z2} with |V 0| = 1. Let L0 = G[NG [V 0] ∪ {z1}]. We then have the following claim.

Claim 1. One of the following holds:

(i) L0 ∈ {K2,t0 + e, K2,t0+1} with V 0 ⊆ D2(G) if |NG(V 0)| = 2, or
(ii) L0 ∼= K2,2 + e with V 0 ∪ {z1} ⊆ D3(G) if |NG(V 0)| = 3 and |V 0| = 1.

If there exists a vertex v0 ∈ V 0 with y1 v0z2 ⊆ G and a vertex v /∈ {y1, z2} ∪ V 0 with z1 v ∈ E(G), then G[{x1 y1, y1 v0, v0z2,

y1z1, z1 v}] ∼= T2,2,1, implying that x1 is a good leaf of G , a contradiction. This implies that NG (z1) ⊆ {y1, z2} ∪ V 0 if z2 ∈
NG(V 0). Let w1 = z2 if z2 ∈ NG(V 0), and w1 = z1 if z2 /∈ NG(V 0). Hence y1, w1 are cut-vertices of G . Let R0 = V 0 ∪ {z1}
if z1 
= w1, and R0 = V 0 if z1 = w1. Choose a vertex v1 ∈ R0 and let �0 = G − NG [y1]\{v1, w1}. Then D1(�0) = (D1(G) −
{x1}) ∪ {v1} and κ ′(�0 − D1(�0)) ≥ 2. If v1 is not a good-leaf of �0, then replace graph G by �0 and repeat the discussion 
above. Set w0 = y1. We have obtained a sequence of induced graphs L0, · · · , Lp (see Fig. 1 for an illustration) such that

• L� ∈ {K2,t� + e, K2,t�+1}, w0, w1, · · · , w p+1 are cut-vertices of G , R� = V (L�)\{w�, w�+1}, NG(R�) = {w�, w�+1}, R� ⊆
D≤3(G), and E(G[R�]) = ∅ if |R�| ≥ 3 for each � ∈ {0, · · · , p} and some integer t� ≥ 1.

• NG(w0) ⊆ R0 ∪ {x1}, NG(w�) ⊆ R�−1 ∪ R� and (V (L0) ∪ · · · ∪ V (Lp)) ∩ V (P2) ⊆ {y0}, � ∈ {1, · · · , p}.

• For any vertex v0 ∈ R p , v0 is a good-leaf of �0 for the block �1 = G[V (L0 ∪ · · · ∪ Lp) ∪ {x1}] and the subgraph �0 =
(G − V (�1)) ∪ {v0 w p+1} of G .
5
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Fig. 1. An induced subgraph �1 = G[V (L0 ∪ · · · ∪ Lp) ∪ {x1}] and a subgraph �0 = (G − V (�1)) ∪ {v0 w p+1} of G .

Then �1 is an induced subgraph of G satisfying the assumption of Lemma 3.1 (i)(α). Moreover, �0 has a subgraph T0 ∈
{T2,2,1, T2,1,1, T1,1,1} such that v0 is a good-leaf of T0. Choose e1 ∈ E(G[{w p} ∪ R p]) ⊆ E(�1). We then set H1 = T0 ∪ {e1}, 
and so H1 ∈ {T2,2,2, T2,2,1, T2,1,1}. Hence (H1, e1) is an x1-net with EG(e1) ⊆ E(Lp−1 ∪ Lp) ⊆ E(�1). If |EG(e1)| ≥ 6, then 
Lp � K2,2 + e, and so V (e1) ∩ D2(G) 
= ∅ by Claim 1. Hence Lemma 3.1(i)(β) holds.

(ii) If xi and x j are not good-leaves, then by Lemma 3.1(i), G has xi -net (Hi, ei), x j -net (H j, e j) and two blocks 
�i, � j such that EG(ei) ⊆ E(�i) and EG(e j) ⊆ E(� j). Hence V (ei) ∩ V (e j) = ∅, EG(ei) ∩ EG(e j) ⊆ E(�i) ∩ E(� j) = ∅, and 
so Lemma 3.1(ii) follows. �
Lemma 3.2. Let G be a 3-edge-connected reduced graph. Then for {i, j} = {1, 2}, any edge v1 v2 ∈ E(G) and any vertex ui ∈
NG(vi)\{v j}, G has subgraphs T1 ∼= T2 ∼= T2,2,1 and T3 ∼= T4 ∼= T2,2,2 such that v1 v2 ⊆ Ti , vi ∈ D3(Ti), v j ∈ D1(Ti), ui vi v j ⊆ Ti+2
and ui ∈ D3(Ti+2).

Proof. Without loss of generality, we consider the case when i = 1. By Theorem 2.3(iii), g(G) ≥ 4. As δ(G) ≥ 3, there are 
vertices w1, z1 ∈ NG(v1) \ {v2} with w1 v2, z1 v2 /∈ E(G) and vertices w2 ∈ NG(w1) \ {v1}, z2 ∈ NG(z1) \ {v1}. We then set 
T1 = G[{v1 v2, v1 w1, v1z1, w1 w2, z1z2}] with T1 ∼= T2,2,1.

Since g(G) ≥ 4, there are two vertices w1, z1 ∈ NG(u1)\{v1, v2} such that {v1, w1, z1} is a stable set of G . As 
δ(G) ≥ 3, there is a vertex w2 ∈ NG(w1)\{u1, v2}. If there is a vertex z2 ∈ NG(z1)\{u1, v2, w2}, then we set T3 =
G[{u1 v1, u1 w1, u1z1, v1 v2, w1 w2, z1z2}] with T3 ∼= T2,2,2. Otherwise, we must have {z1 v2, z1 w2} ⊆ E(G). If w1 v2 ∈ E(G), 
then G[{u1, v1, v2, w1, w2, z1}] ∼= K −

3,3, where K −
3,3 is a graph obtained from the complete bipartite graph K3,3 via delet-

ing one edge. As F (K −
3,3) = 2, it follows by Theorem 2.3(v) that G[{u1, v1, v2, w1, w2, z1}] is collapsible, contrary to the 

assumption that G is reduced by Theorem 2.3(ii).
Then w1 v2 /∈ E(G), w1 has a neighbor w ′

1 outside {u1, v2, w2} and we have T3 = G[{u1 v1, u1 w1, u1z1, v1 v2, w1 w ′
1, 

z1 w2}] ∼= T2,2,2. �
Lemma 3.3. Let a, b be any two real numbers with a > 0, and let M(a, b) = max{ 1

a , 3−b
a − 4}. If ax + b ≥ 3, then f (x) = x−4

ax+b−2 ≤
M(a, b).

Proof. As f ′(x) = b+4a−2
(ax+b−2)2 and lim

x→∞ f (x)= 1
a , it follows that if b + 4a = 2, then f (x) ≡ 1

a . If b + 4a > 2, then f ′(x) > 0, 

implying that f (x) ≤ 1
a . If b + 4a < 2, then f ′(x) < 0 and since x ≥ 3−b

a , we have f (x) ≤ f ( 3−b
a ) = 3−b

a − 4. �
3.2. Proofs

Let a, b be two given real numbers with 0 < a < 1. Throughout this section, we assume that H = L(G) is 3-connected 
graph with n = |V (H)| and δN1,1,1 (H) ≥ an + b ≥ 3 for a simple graph G . Then ess′(G) ≥ 3, |E(G)| = |V (H)| = n. Define

E L(G) = {uv ∈ E(G) : {u, v} ∩ D1(G) 
= ∅} to be the pendant edge set of G .

Then for any subgraph T ∼= T2,2,2 of G and any edge xy ∈ E(G) ∩ E L(T ), as L(xy) is a leaf of an induced subgraph L(T ) ∼=
N1,1,1 of H , we must have

dG(x) + dG(y) = dH (L(xy)) + 2 ≥ an + b + 2. (2)

As in (1), G1 = G − D1(G) and G0 is the core of G . Let G ′
0 be the reduction of G0. By Theorem 2.7, we assume that 

|V (G ′
0)| > 1. Then κ ′(G ′

0) ≥ κ ′(G0) ≥ 3. For any vertex v ∈ V (G ′
0), define �(v) = |E(P IG(v))| + dG ′

0
(v). Then

|E(G)| = |E(G ′
0)| +

∑

v∈V (G ′
0)

|E(P IG(v))| =
∑

v∈V (G ′
0)

�(v) − |E(G ′
0)|. (3)

A vertex v is k-heavy if �(v) ≥ k(an + b + 1). Define
6
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Xk = {v ∈ V (G ′
0) is k-heavy and not (k + 1)-heavy},

X0 = ∪k≥1 Xk , X1 = �′(G0)\X0.
(4)

Let Y = {uv ∈ E(G ′
0) : �(u) + �(v) ≥ an + b + 2}. Choose a maximal matching M of G − (X0 ∪ X1) such that

|Y ∩ M| maximized. (5)

Let Y0 = Y ∩ M , Y1 = M\Y0. Then

X0, X1, V (Y0), V (Y1) are four mutually disjoint subsets of V (G ′
0). (6)

We have the following discussions on heavy vertices.

Lemma 3.4. For any vertex v ∈ V (G ′
0), if H v = P IG1 (v) ∪ EG ′

0
(v) has k leaves which are not good-leaves of H v , then v ∈ X� for some 

integer � ≥ k.

Proof. Assume that v1, · · · , vk ∈ D1(H v) that are not good-leaves of H v . If v ∈ V (G0), then v ∈ V (G1) and H v ∼= K1,t

for some integer t = dG0 (v) ≥ 3 with v1, · · · , vk as its good-leaves, a contradiction. Hence P IG0 (v) � K1 is a non-trivial 
collapsible subgraph, implying that g(P IG1 (v)) ≥ g(G) ≥ 3 and κ ′(P IG1 (v)) ≥ 2. By Lemma 3.1(ii), H v has v1-net (H1, e1), 
· · · , vk-net (Hk, ek) such that for any {i, j} ⊆ {1, · · · , k}, V (ei) ∩ V (e j) = ∅ and EG(ei) ∩ EG(e j) = ∅.

Then Hi ∈ {T2,2,2, T2,2,1, T2,1,1} with D3(Hi) = {ui}. Furthermore, for any vertex wi ∈ NHi (ui) ∩ D1(Hi), we have wi ∈
NG0 (v)\{vi}. Then there is an edge wi zi ∈ E(G ′

0 − v) such that zi wi v ⊆ G ′
0. As E(G ′

0) ⊆ E(G), the subgraph P IG(wi zi v) of 
G is connected, and so it contains an edge w ′

i z
′
i with ui w ′

i z
′
i ⊆ G . We set Hi := (Hi − ui wi) ∪ ui w ′

i z
′
i . Hence G always has 

a subgraph Hi ∼= T2,2,2 with ei ∈ E L(Hi). Assume that ei = xi yi . By (2), |EG(ei)| ≥ dG(xi) + dG (yi) − 1 ≥ an + b + 1. Thus 
�(v) ≥ (|EG(e1)| + · · · + |EG(ek)| + k − dG ′

0
(v)) + dG ′

0
(v) ≥ k(an + b + 1). By (4), v ∈ X� for some integer � ≥ k. �

Lemma 3.5. Each of the following holds.

(i) For any vertex v ∈ �′(G0), either v ∈ X0 or NG ′
0
(v) ⊆ X0 .

(ii) For any edge uv ∈ E(G ′
0), either uv ∈ Y or NG ′

0
({u, v}) ⊆ X0 .

(iii) For any vertex v ∈ X0 , if |NG ′
0
(v) ∩ (X1 ∪ V (Y1))| = k, then v ∈ X� for some integer � ≥ k.

(iv) For any path u1 v1 v2u2 with {u1, u2} ⊆ X1 ∪ V (Y1), max{�(v1), �(v2)} ≥ 2(an + b).

Proof. (i) Assume that v ∈ �′(G0)\X0. Choose a vertex w ∈ NG ′
0
(v). It suffices to prove that w ∈ X0. By Lemma 3.2, 

G ′
0 has a subgraph T1 = G ′

0[{w v, wx1, x1 y1, wx2, x2 y2}] ∼= T2,2,1 for some vertices x1, x2, y1, y2. Let L1 = P IG1 (w) ∪
{w v, wx1, wx2} ⊆ G . Suppose first that v is a good-leaf of L1. As E(G ′

0) ⊆ E(G), P IG (L1) ∪ P IG(y1) ∪ P IG (y2) ∪ {x1 y1, x2 y2}
is connected and it has a subgraph T2 ∼= T2,2,1 such that v ∈ D1(T2) ∩ NT2 (D3(T2)). Hence for any edge v v1 ⊆ P IG (v), 
T2 ∪ {v v1} ∼= T2,2,2. It follows by (2) that dG (v) + dG(v1) ≥ an + b + 2, and so �(v) = |E(P IG (v))| + dG ′

0
(v) ≥ (dG (v) +

dG (v1) − 1 − dG ′
0
(v)) + dG ′

0
(v) ≥ an + b + 1. This implies that v ∈ X0, a contradiction. Thus v is not a good-leaf of L1. By 

Lemma 3.4, w ∈ X0. This proves Lemma 3.5(i).
(ii) Assume that uv /∈ Y . If {u, v} � V (G), then by Lemma 3.5(i), {u, v} ∩ X0 
= ∅. Thus �(u) + �(v) ≥ an + b + 4, implying 

that uv ∈ Y , a contradiction. Hence {u, v} ⊆ V (G). Choose a vertex w ∈ NG ′
0
(u) ∪ NG ′

0
(v) (say w ∈ NG ′

0
(u)). By Lemma 3.2, 

G ′
0 has a subgraph T3 = G ′

0[{wu, uv, wx1, x1 y1, wx2, x2 y2}] ∼= T2,2,2 for some vertices x1, x2, y1, y2. Let L2 = P IG1 (w) ∪
{wu, wx1, wx2} ⊆ G . If u is a good-leaf of L2, then as P IG(L2) ∪ P IG (y1) ∪ P IG(y2) ∪ {x1 y1, x2 y2} is connected, it has a 
subgraph T4 ∼= T2,2,1 such that u ∈ D1(T4) ∩ NT4 (D3(T4)). Hence T4 ∪ {uv} ∼= T2,2,2. Then dG (u) + dG(v) ≥ an + b + 2 and 
�(u) + �(v) = dG ′

0
(u) + dG ′

0
(v) = dG(u) + dG (v) ≥ an + b + 2, implying that uv ∈ Y , a contradiction. Thus u is not a good-leaf 

of L2, and so w ∈ X0 by Lemma 3.4. This proves Lemma 3.5(ii).
(iii) If there is a vertex v0 ∈ NG ′

0
(v) ∩ (X1 ∪ V (Y1)) which is a good-leaf of H v = P IG1 (v) ∪ G ′

0[NG ′
0
[v]], then by the 

same analysis above, there is a subgraph T5 ∼= T2,2,1 and an edge v0u0 ∈ Y1 ∪ E(P IG (v0)) such that T5 ∪ {v0u0} ∼= T2,2,2, 
forcing v0 is heavy if u0 ∈ V (P IG(v)) or v0u0 ∈ Y0 if v0u0 ∈ Y1, which is impossible. Thus NG ′

0
(v) ∩ (X1 ∪ V (Y1)) are not 

good-leaves of H v with |NG ′
0
(v) ∩ (X1 ∪ V (Y1))| = k. By Lemma 3.4, v ∈ X� for some integer � ≥ k.

(iv) By Lemma 3.5(i) and (ii), {v1, v2} ⊆ X0. For i ∈ {1, 2}, let Li = G[V (P IG(vi)) ∪ NG ′
0
(vi)]. As ui ∈ X1 ∩ V (Y1), using 

arguments similar to those in the proof for Lemma 3.5(i) and (ii), we conclude that ui is not a good-leaf of Li . If v2 is 
not a good leaf of L1, then by Lemma 3.4, �(v1) ≥ 2(an + b + 1), and so Lemma 3.5(iv) follows. We then assume that 
v2 is a good leaf of L1 and v1 is a good leaf of L2. Then there exists an edge v v1 ⊆ E L(T2,2,2) ∩ E(L2). As u2 is not a 
good-leaf of L2 and by Lemma 3.1(i), L2 has an edge v2 v3 ∈ E L(T2,2,2) ∩ E(L2) with v2 ∈ D≤3(G) and v3 /∈ NG(v). Then 
�(v) + �(v1) ≥ an + b + 2, �(v2) + �(v3) ≥ an + b + 2 and {v, v1} ∩ {v2, v3} ⊆ {v2}, and so �(v) ≥ |E(P I(v))| − dG ′

0
(v) ≥

dG (v) + dG(v1) + dG(v2) + dG(v3) − 2 − (dG(v2) − 1) ≥ 2(an + b + 2) − dG(v2) − 1 ≥ 2(an + b). Thus Lemma 3.5(iv) always 
holds. �
7
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By Lemma 3.5(i), E(G ′
0[X1]) = ∅ and for any vertex x ∈ X1, NG ′

0
(x) ⊆ X0. Throughout the rest of Subsection 3.2, we 

assume that X0, X1 are defined as in (4), and a maximum matching satisfying (5) is fixed and so Y0, Y1 are defined as 
before. Thus (6) holds. By Lemma 3.5(ii), P3 is not a subgraph of G ′

0[X1 ∪ V (Y0 ∪ Y1)] and NG ′
0
(Y1) ⊆ X0. Define

H0 = G ′
0[X0 ∪ V (Y0)], H1 = G ′

0[X0 ∪ X1 ∪ V (Y0) ∪ V (Y1)]. (7)

Let X̄ = V (G ′
0)\V (H1). By the choice of M , E(G ′

0[ X̄]) = ∅. By Lemma 3.5(i) and (ii), there is always an edge in E(H0). As 
G ′

0 is reduced, we conclude that

both H0 and H1 are reduced graphs with |E(H0)| > 0. (8)

Let |X0| = x0, |Xk| = xk , |X1| = x1, |Y0| = y0 and |Y1| = y1. As k ≥ 1 is an integer, we have x0 = ∑
k xk ≤ ∑

k kxk .

Lemma 3.6. x0 + y0 + y1 ≥ α′(G ′
0).

Proof. Let M ′ be any maximum matching of G ′
0, M1 = {e ∈ M ′ : V (e) ∩ X0 
= ∅} and M2 = M ′\M1. Then |M1| ≤ |X0|. If 

there is an edge uv ∈ M2 with {u, v} ∩ X1 
= ∅, then by Lemma 3.5(i), {u, v} ∩ X0 
= ∅, and so uv ∈ M1, a contradiction. 
Hence M2 ⊆ E(G ′

0[V (Y0 ∪ Y1) ∪ X̄]). By the choice of M , it must have |M2| ≤ |M| = |Y0| + |Y1|, implying that α′(G ′
0) =|M1| + |M2| ≤ x0 + y0 + y1. �

3.2.1. Proof of Theorem 1.6
We assume that L(G) is not Hamiltonian. By Theorem 2.7(iii), G ′

0 is not supereulerian. It suffices to prove the existence of 
F (a, b) such that G ′

0 ∈ F (a, b). Define M(a, b) as in Lemma 3.3, and let B(a, b) = max{� 5M(a,b)
2 �, �4M(a, b) − 5�, � 2−b

a �, 10}.

Claim 2. |V (G ′
0)| ≤ B(a, b).

Proof. We argue by contradiction and assume that |V (G ′
0)| > B(a, b). Then |V (G ′

0)| ≥ 11 implies that α′(G ′
0) ≥ 5 by 

Theorem 2.4. If Y1 = ∅, then by Lemma 3.6, x0 + y0 ≥ α′(G ′
0) ≥ 5; if Y1 
= ∅, then x0 ≥ 4. Hence we always have 

|V (H0)| = x0 + 2y0 ≥ 4 and H0 /∈ {2K1, K2}. By (8) and Theorem 2.3(iv) and (v), 2 ≤ F (H0) ≤ 2(x0 + 2y0) − |E(H0)| − 2, 
and so

|E(H0)| ≤ 2x0 + 4y0 − 4 ≤ 2
∑

k

kxk + 4y0 − 4. (9)

As NG ′
0
(V (Y1)) ⊆ X0 and by Lemma 3.5(iii), 

∑
k kxk ≥ |E(V (Y1), X0)| ≥ 4|Y1|, implying that |Y1| ≤ 1

4

∑
k kxk ≤ 1

4 (
∑

k kxk +
y0). As n ≥ |V (G ′

0)| > � 2−b
a �, an + b > 2. By Lemma 3.3, we have M(a, b) ≥ n−4

an+b−2 . As |V (G ′
0)| > max{� 5M(a,b)

2 �, �4M(a, b) −
5�} and by Theorem 2.4, we have

∑

k

kxk + y0 ≥ α′(G ′
0) − |Y1| > M(a,b) ≥ n − 4

an + b − 2
. (10)

However, by (3), (4), (9) and (10), we obtain the following contradiction:

|E(G)| =
∑

v∈V (G ′
0)

�(v) − |E(G ′
0)| ≥

∑

v∈X0∪V (Y0)

�(v) − |E(H0)|

≥ (
∑

k

kxk)(an + b + 1) + y0(an + b + 2) − (2
∑

k

kxk + 4y0 − 4)

≥ (
∑

k

kxk + y0)(an + b + 1) − 2
∑

k

kxk − 3y0 + 4

≥ (
∑

k

kxk + y0)(an + b − 2) + 4 > n = |E(G)|.

Hence |V (G ′
0)| ≤ B(a, b). �

Let F (a, b) = {F : F is a reduced nonsupereulerian graph such that κ ′(F ) ≥ 3 and |V (F )| ≤ B(a, b)}. By Claim 2, F (a, b)

is a finite family with G ′ ∈ F (a, b). This completes the proof of Theorem 1.6. �
0

8
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3.2.2. Proof of Theorem 1.5
Let m > 1 be an integer. For circular indexing purpose, we shall use Zm to denote the (additive) cyclic group or order m. 

Assume that H = L(G) satisfies the hypotheses of Theorem 1.5 with a = 1
10 and b = 1

2 . If G ′
0 = K1, then by Theorem 2.3(i), 

G0 is collapsible and also supereulerian. By Theorem 2.7(ii) and (iii), L(G) is Hamiltonian. We then assume that |V (G ′
0)| > 1

and G ′
0 is not supereulerian with κ ′(G ′

0) ≥ κ ′(G0) ≥ 3. If |V (G ′
0)| < 10, then by Theorem 2.3(vi), G0 must be supereulerian. 

By Theorem 2.3(v) and κ ′(G ′
0) ≥ 3, and by Theorem 2.4, we may assume that

F (G ′
0) ≥ 3, |V (G ′

0)| ≥ 10 and α′(G ′
0) ≥ 5. (11)

Claim 3. 
∑

k kxk + y0 ≤ 10.

Proof. We argue by contradiction and assume that 
∑

k kxk + y0 ≥ 11. If Y1 = ∅, then by Lemma 3.6, 
∑

k xk + y0 ≥ α′(G ′
0) ≥ 5. 

If Y1 
= ∅, then by Lemma 3.5(ii), 
∑

k xk ≥ 4. Hence |V (H0)| = ∑
k xk + 2y0 ≥ 4 and H0 /∈ {2K1, K2}. By Theorem 2.3(v), we 

have F (H0) ≥ 2. By (8) and by Theorem 2.3(v), 2 ≤ F (H0) = 2(
∑

k xk +2y0) −|E(H0)| −2, where F (H0) = 2 only if H0 ∼= K2,t

for some integer t > 0. We have show first that |E(H0)| ≤ 3 
∑

k kxk + 4y0 − 5. If y0 ≤ 2, then as 
∑

k kxk ≥ 11 − y0 > 1, 
|E(H0)| ≤ 2 

∑
k xk + 4y0 − 4 ≤ 2 

∑
k kxk + 4y0 − (5 − ∑

k kxk) = 3 
∑

k kxk + 4y0 − 5. Assume that y0 ≥ 3. Then H0 � K2,t for 
any integer t ≥ 2 and so by Theorem 2.3(v), F (H0) ≥ 3, leading also to |E(H0)| ≤ 2 

∑
k kxk + 4y0 − 5 ≤ 3 

∑
k kxk + 4y0 − 5. 

However, by (3), (4) and as |E(G)| ≥ 116, we obtain the following contradiction:

|E(G)| =
∑

v∈V (G ′
0)

�(v) − |E(G ′
0)| ≥

∑

v∈V (H0)

�(v) − |E(H0)|

≥ (
∑

k

kxk) × |E(G)| + 15

10
+ y0 × |E(G)| + 25

10
− (3

∑

k

kxk + 4y0 − 5)

≥ |E(G)| + (
∑

k

kxk + y0 − 10) × |E(G)| − 15

10
− 10 > |E(G)|.

Hence 
∑

k kxk + y0 ≤ 10. �
Claim 4. |V (G ′

0)| ≥ 10 + 9y0 .

Proof. For any edge uv ∈ Y0, as |E(G)| ≥ 116, we have dG ′
0
(u) + dG ′

0
(v) = �(u) + �(v) ≥ |E(G)|+25

10 > 14. Then dG ′
0
(u) +

dG ′
0
(v) ≥ 15, and so 2|E(G ′

0)| =
∑

v∈V (Y0) dG ′
0
(v) + ∑

v∈V (G ′
0)\V (Y0) dG ′

0
(v) ≥ 15|Y0| + 3(|V (G ′

0)| − 2|Y0|) = 3|V (G ′
0)| + 9|Y0|. 

By Theorem 2.3(v) and (11), 3 ≤ F (G ′
0) ≤ 2|V (G ′

0)| − 1
2 (3|V (G ′

0)| + 9|Y0|) − 2, implying that |V (G ′
0)| ≥ 10 + 9y0. �

We shall distinguish the following cases to finish our proof.

Case 1. X1 ∪ Y1 = ∅.

By Lemma 3.6, α′(G ′
0) ≤ |X0| + |Y0| ≤ 10. By Theorem 2.4, |V (G ′

0)| ≤ 25 and by Claim 4, |Y0| ≤ 1. Let S0 = ∅ if Y0 = ∅, 
or S0 = {ve ∈ V (e)} if Y0 = {e}. Let A = X0 ∪ S0. Then �′(G0) ⊆ A with |A| ≤ 10. If G ′

0 has a dominating eulerian subgraph 
containing A, then L(G) is Hamiltonian by Theorem 2.7(iii). If not, then by Theorem 2.2, G ′

0 can be contracted to a graph 
L0 ∼= P (10) such that the preimage of each vertex of L0 contains at least one vertex in A. Then |X0| + |Y0| = 10 and for any 
vertex u ∈ V (L0), we have �(u) = dL0(u) + |E(P IG(u))| ≥ |E(G)|+15

10 . As |E(G)| ≥ ∑
u∈V (L0) �(u) − |E(L0)| ≥ 10 × |E(G)|+15

10 − 15, 
we have �(u) = |E(G)|+15

10 and |E(P IG(u))| = |E(G)|−15
10 . Hence |AG(P IG(u))| = 1. Assume that AG (P IG (u)) = {u}. If P IG(u) −

u has an edge xy, then as xy ∈ E L(T2,2,2), |E(P IG(u))| ≥ dG(x) + dG(y) − 1 ≥ |E(G)|+15
10 , a contradiction. Thus P IG(u) ∼=

K1,
|E(G)|−15

10
and G ∼= P (10)′ .

Case 2. X1 ∪ Y1 
= ∅.

Claim 5. x0 + y0 ≤ ∑
k kxk + y0 ≤ 9.

Proof. By Claim 3, 
∑

k kxk + y0 ≤ 10. We then assume by contradiction that 
∑

k kxk + y0 = 10, and so x0 + y0 ≤ 10. Recall 
that H1 = G ′

0[X0 ∪ X1 ∪ V (Y0 ∪ Y1)], |X1| = x1 and |Y1| = y1. For any vertex x ∈ X1 and edge uv ∈ Y1, by Lemma 3.5 (i), 
(ii), NG ′ (x) = NH1 (x) ⊆ X0 and NG ′ ({u, v}) = NH1 ({u, v}) ⊆ X0. We obtain the following conclusions.
0 0

9
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(a) |E(H0)| ≥ 15 + x1 + y0 + y1.

Since |E(G)| ≥ |X0| × |E(G)|+15
10 + |Y0| × |E(G)|+25

10 + |X1| + |Y1| − |E(H0)| = |E(G)| + 15 + x1 + y0 + y1 − |E(H0)|, it follows 
that |E(H0)| ≥ 15 + x1 + y0 + y1.

(b)|E(H1)| ≥ 15 + 4x1 + y0 + 6y1 ≥ 19.

It follows by (a) that |E(H1)| ≥ |E(H0)| + |E(X1 ∪ Y1, X0)| + |Y1| ≥ |E(H0)| + 3x1 + 5y1 ≥ 15 + 4x1 + y0 + 6y1 ≥ 19.

(c)H1 � K2,t for any t ≥ 1.

If H1 ∼= K2,t for some integer t ≥ 1, then as κ ′(G ′
0) ≥ 3, we have X̄ 
= ∅ with NG ( X̄) ⊆ X0, and so G ′

0 is collapsible, a 
contradiction.

(d)y0 ≥ 2.

By (b), H1 /∈ {2K1, K2} and so by Theorem 2.3(v), we have F (H1) ≥ 2, with equality only if H1 ∼= K2,t for some integer 
t ≥ 1. By (c), we must have F (H1) ≥ 3. Thus by (8) and Theorem 2.3(v), as well as the assumption x0 + y0 ≤ 10, we have 
3 ≤ F (H1) = 2|V (H1)| − |E(H1)| − 2 = 2(x0 + x1 + 2(y0 + y1)) − |E(H1)| − 2 ≤ 2x0 + 3y0 − 2(x1 + y1) − 17 ≤ 20 + y0 −
17 − 2(x1 + y1) = y0 + 3 − 2(x1 + y1). This implies that y0 ≥ 2(x1 + y1) ≥ 2.

(e)|V (H1)| ≤ 18.

By (d) and as 
∑

k kxk + y0 = 10, we have x0 ≤ sumkkxk ≤ 8. Then 3x1 + 4y1 ≤ |E(X1 ∪ V (Y1), X0)| ≤ ∑
k kxk ≤ 8 by 

Lemma 3.5 (iii), implying that x1 + y1 ≤ 2. If y1 = 2, then x0 = 8, y0 = 2 and x1 = 0, whence |V (H1)| = 4 + 8 + 4 = 16. If 
y1 = 1, then either x1 = 1, x0 ≥ 7 and y0 ≤ 3, whence |V (H1)| = 16; or x1 = 0, x0 ≥ 4 and y0 ≤ 3, whence |V (H1)| ≤ 18. 
If y1 = 0, then either x1 = 2, x0 ≥ 6 and y0 ≤ 4, whence |V (H1)| ≤ 16; or x1 = 1, x0 ≥ 3 and y0 ≤ 7, whence |V (H1)| ≤ 18.

( f )y0 = 2.

If y0 ≥ 3, then by Claim 4, |V (G ′
0)| ≥ 37. By (b) and (e), |E(H1)| ≥ 19, |V (H1)| ≤ 18, and so |E(G ′

0)| = |E(H1)| +
|EG ′

0
(V (H1), X̄)| ≥ 19 + 3(|V (G ′

0)| − 18) = 3|V (G ′
0)| − 35 as E(G ′

0[ X̄]) = ∅. Hence F (G ′
0) = 2|V (G ′

0)| − |E(G ′
0)| − 2 ≤

33 − |V (G ′
0)| < 0, contrary to the fact that G ′

0 is reduced. Hence y0 ≤ 2. By (d), y0 = 2.

(g)|V (H1)| ≤ 16.

As 3x1 + 4y1 ≤ |E(X1 ∪ V (Y1), X0)| ≤ ∑
k kxk ≤ 8, x1 + y1 ≤ 2. By ( f ) and as 

∑
k kxk + y0 = 10, we have y0 = 2, x0 ≤ 8, 

and so |V (H1)| = x0 + x1 + 2(y0 + y1) ≤ x0 + 2y0 + 2(x1 + y1) ≤ 16.

By Claim 4 and ( f ), we have |V (G ′
0)| ≥ 28. It follows by (g) that | X̄ | = |V (G ′

0)| − |V (H1)| ≥ |V (G ′
0)| − 16 ≥ 12, and so 

F (G ′
0) ≤ 2|V (G ′

0)| − (|E(H1)| + 3| X̄|) − 2 ≤ 0, contrary to the fact that G ′
0 is reduced. Hence 

∑
k kxk + y0 ≤ 9. �

By Lemma 3.5, for any S ⊆ X1 ∪ V (Y1), NG ′
0
(S) ⊆ X0. Then 

∑
k kxk ≥ |E(V (Y1), X0)| +|E(X1, X0)| ≥ 3x1 +4y1. By Claim 5, 

we have 3x1 + 4y1 ≤ 9, implying that

y1 ≤ 2 and if Y1 
= ∅, then x1 + y1 ≤ 2; if Y1 = ∅, then x1 ≤ 3. (12)

By Lemma 3.6 and Claim 5, α′(G ′
0) ≤ x0 + y0 + y1 ≤ 9 + y1 ≤ 11. By Theorem 2.4, |V (G ′

0)| ≤ 28. By Claim 4, y0 ≤ 2. Assume 
first that there exists an edge e1 = u1 v1 ∈ Y0 and vertices u2, v2 ∈ X̄ such that u1u2, v1 v2 ∈ E(G ′

0). Then u1u2 ∈ Y0, since 
otherwise, v1 ∈ X0 by Lemma 3.5, contrary to the fact that V (Y0) ∩ X0 = ∅. By symmetry, v1 v2 ∈ Y0. We then obtain a subset 
Y ′

0 = (Y0\{u1 v1}) ∪ {u1u2, v1 v2} and a matching M ′ = (M\{u1 v1}) ∪ {u1u2, v1 v2} such that Y ′
0 = Y ∩ M ′ and |Y ′

0| = y0 + 1, 
contrary to (5). Hence for any edge e ∈ Y0, there is a vertex ue ∈ V (e) such that NG ′

0
(ue) ⊆ X0 ∪ V (e), and so

|E(X0, V (Y0))| ≥ 2y0. (13)

In the rest of the arguments, choose a maximum stable set S1 of G ′
0[Y1] and a vertex ue ∈ V (e) with NG ′

0
(ue) ⊆ X0 ∪ V (e)

for some edge e ∈ Y0. Set

S0 = V (Y0)\{ue} and A = X0 ∪ X1 ∪ S0 ∪ S1. (14)

Then |S1| = |Y1|, �′(G0) ⊆ A and E(V (G ′
0)\A) = ∅. If y0 = 2, then by Claim 4, |V (G ′

0)| = 28. By Claim 5 and (12), (13), we 
have

|E(G ′
0)| ≥ |Y0| + |E(X0, V (Y0))| + |Y1| + |EG ′

0
(X0 ∪ V (Y0))|

≥ 3|Y0| + |Y1| + 3(|X1| + | X̄ |) + 4|Y1|
= 3y0 + 5y1 + 3(|V (G ′

0)| − x0 − 2y0 − 2y1)

= 3|V (G ′
0)| − 3(x0 + y0) − y1 ≥ 55.

However F (G ′
0) = 2|V (G ′

0)| − |E(G ′
0)| − 2 ≤ 0, contrary to the fact that G ′

0 is reduced. Hence y0 ≤ 1, and so by Claim 5, we 
must have |X0| +|S0| = x0 + y0 ≤ 9. It follows by (12) and (14) that |A| = |X0| +|S0| +|X1| +|S1| ≤ 12. By Theorem 2.7(iii), 
L(G) is Hamiltonian by the following claim.
10
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Claim 6. G ′
0 has a dominating eulerian subgraph containing A.

Proof. We argue by contradiction. By Theorem 2.2, G ′
0 can be contracted to the graph L0 ∼= P (10) such that V (L0) =

∪i∈Z5 {ui, vi}, E(L0) = ∪i∈Z5{ui vi, vi vi+1, uiui+2} and the preimage of each vertex of L0 contains at least one vertex in A, 
where Z5 is cyclic group of order 5. Let V 1 ⊆ V (L0) be the set such that for each vertex of V 1, its preimage in G ′

0 contains 
at least one vertex of X1 ∪ S0 ∪ S1, and let V 0 = V (L0)\V 1. Then the preimage in G ′

0 of each vertex in V 0 contains at least 
one vertex of X0, and by (14),

|V 1| ≤ |X1| + |S0| + |S1| and |V 0| ≥ 10 − (|X1| + |S0| + |S1|). (15)

If G ′
0 
= L0, then for any vertex v ∈ V (L0), redefine �(v) = |E(P IG (v))| + dL0(v). For any vertex v1 ∈ V (L0) with H1 =

P IG ′
0
(v1) being nontrivial, we have the following conclusions.

(a)Y1 ∩ E(H1) = ∅.

We argue by contradiction, and assume that x1 y1 ∈ Y1 ∩ E(H1). Then v1 ∈ V 1 and |X1| + |S1| = |X1| + |Y1| ≤ 2 by (12). 
As |S0| = |Y0| ≤ 1 and by (15), |V 0\{v1}| = |V 0| ≥ 10 − (|X1| + |S1| + |S0|) ≥ 7. As |X0| ≥ |V 0\{v1}| + |V (H1) ∩ X0| and by 
Claim 5, we have |V (H1) ∩ X0| ≤ 2. Then |NG ′

0
({x1, y1}) ∩ V (H1)| ≤ 2 since NG ′

0
({x1, y1}) ⊆ X0. If |NG ′

0
({x1, y1}) ∩ V (H1)| =

1, then by symmetry, we may assume that {x1u1, x1 v2, y1 v5} ⊆ E(L0) and y1z1 ∈ E(H1) for some vertex z1, and so 
y1z1 is an cut-edge of G ′

0, contrary to the fact that κ ′(G ′
0) ≥ 3. Hence |NG ′

0
({x1, y1}) ∩ V (H1)| = |V (H1) ∩ X0| = 2. By 

Claim 5, |V 0\{v1}| = 7, |X0| + |Y0| = |X0| = 9, and so |Y1| = 2. This implies that there is an edge uv ∈ Y1 ∩ E(L0) with 
{u, v} ⊆ V (L0) ∩ A, contrary to the choice of A.

(b)|V (H1) ∩ X0| ≥ 2 and |V (H1) ∩ X0| ≥ 3 if |V (H1)| ≥ 6.

If Y0 ∩ E(H1) = ∅, then for any edge e ∈ E(H1), it follows by (a) that V (e) ∩ X0 
= ∅. Thus (b) holds by Lemma 2.6. We 
then assume that there is an edge x1 y1 ∈ Y0 ∩ E(H1). By Claim 4, |V (G ′

0)| ≥ 19. As dG ′
0
(x1) + dG ′

0
(y1) ≥ 15 and g(G ′

0) ≥ 4, 
we have |NG ′

0
({x1, y1})| ≥ 10, and so |V (H1)| ≥ 12. By Lemma 2.6(ii), α′(H1) ≥ 3. If α′(H1) ≥ 4, then |V (H1) ∩ X0| ≥

3, and so (b) holds. We then assume that α′(H1) = 3 and {x1 y1, x2 y2, x3 y3} ⊆ E(H1) with {x2, x3} ⊆ X0. Then H1 −
{x1, x2, x3, y1, y2, y3} has a stable set {z1, z2, z3, z4} ⊆ X̄ . If E({z1, z2, z3, z4}, {y2, y3}) = ∅, then as |NG ′

0
( X̄) ∩ V (Y0)| ≤ 1, 

there is a collapsible subgraph K3,4 ⊆ G ′
0[{z1, z2, z3, z4, x2, x3, x1, y1}], contrary to the fact that G ′

0 is reduced. Hence 
{z1, z2, z3, z4, y2, y3} ∩ X0 
= ∅, and so |V (H1) ∩ X0| ≥ 3.

(c)|X1| + |Y1| ≤ 2.

Assume by contradiction that |X1| + |Y1| = 3. Then |X1| = 3 by (refeqa111). By (b), |E(P IG(v1))| ≥ 2 × |E(G)|+15
10 −

1 − dL0(v1) = |E(G)|−5
5 . If X1 = {v2, v5, u1}, then by Lemma 3.5(i) and (ii), we have {v3, v4, u2, u3, u4, u5} ⊆ V 0. By 

Lemma 3.5(iv), min{max{�(v3), �(u3)}, max{�(v4), �(u4)}, max{�(u2), �(u5)}} ≥ |E(G)|+5
5 . Without loss of generality, as-

sume that min{�(v3), �(v4), �(u2)} ≥ |E(G)|+5
5 . However |E(G)| ≥ 3 × |E(G)|+5

5 + 3 × |E(G)|+15
10 + |E(P IG(v1))| − 15 > |E(G)|, 

a contradiction. Hence |X1 ∩ {v2, v5, u1}| ≤ 2. If {v2, u1} ⊆ X1, then {v3, u2, u3, u4} ⊆ V 0 and either v4 ∈ X1 or u5 ∈ X1. 
If v4 ∈ X1, then by Lemma 3.5(iii), {v5, u5} ⊆ V 0 and v3, u4 ∈ Xt for some integer t ≥ 2, implying that 

∑
k kxk ≥

2 × 2 + |{v5, u2, u3, u5}| + |V (H1) ∩ X0| ≥ 10, contrary to Claim 5. If u5 ∈ X1, then by Lemma 3.5(iii), {v4, v5} ⊆ V 0
and u2, u3 ∈ Xt for some integer t ≥ 2, implying that 

∑
k kxk ≥ 2 × 2 + |{v3, v4, v5, u4}| + |V (H1) ∩ X0| ≥ 10, contrary 

to Claim 5. So |X1 ∩ {v2, v5, u1}| ≤ 1. Without loss of generality, we have X1 ∈ {{v2, v4, u3}, {v2, v4, u5}, {v3, u4, u5}}. If 
X1 = {v2, v4, u3}, then {v5, u1, u2, u4, u5} ⊆ V 0 and v3 ∈ Xt for some integer t ≥ 3, and so 

∑
k kxk ≥ 10, a contradiction. If 

X1 = {v2, v4, u5}, then {u1, u2, u3, u4} ⊆ V 0 and v3, v5 ∈ Xt for some integer t ≥ 2, and so 
∑

k kxk ≥ 10, a contradiction. If 
X1 = {v3, u4, u5}, then {v2, v5, u1} ⊆ V 0 and v4, u2, u3 ∈ Xt for some integer t ≥ 2, and so 

∑
k kxk ≥ 11, a contradiction.

(d)Y0 
= ∅.

Assume by contradiction that Y0 = ∅. By (15) and (c), |V 0| ≥ 8. It follows by Claim 5 that |V (H1) ∩ X0| = 2, |X1| +|Y1| = 2, 
|X0| = 9 and Xt = ∅ for any integer t ≥ 2. By (b) and Lemma 2.6(i), |V (H1)| ≤ 5, H1 ∼= K2,3 with x1, x2 ∈ D3(H1) ∩ X0
and y1, y2, y3 ∈ D2(H1)\X0. By Lemma 3.5(i), {v2, v5, u1} ∩ X1 = ∅, and so {v3, v4, u2, u3, u4, u5} ∩ X1 
= ∅. By symmetry, 
assume that v3 ∈ X1. Then {v2, v4, u3} ⊆ V 0, and so {v5, u1, u2, u4, u5} ⊆ V 0 since Xt = ∅ for any integer t ≥ 2. However, 
|X0| ≥ |V 0\{v1}| + 2 = 10, a contradiction.

(e)|V (H1) ∩ X0| = 2.

Assume by contradiction that |V (H1) ∩ X0| ≥ 3. As |S0| = |Y0| = 1 and by (15), (c) and Claim 5, |V (H1) ∩ X0| = 3, 
|X1| + |Y1| = 2, |V 0| = 7, |X0| = 9 and Xt = ∅ for any integer t ≥ 2. If {v2, v5, u1} ∩ (X1 ∪ V (Y1)) 
= ∅, then by symmetry, 
assume that v2 ∈ X1 ∪ V (Y1). By Lemma 3.5 and as Xt = ∅ for any integer t ≥ 2, we have {v3, v4, u2, u3, u4, u5} ⊆
V 0, and so {v5, u1} ∩ (X1 ∪ V (Y1)) 
= ∅. By symmetry, assume that v5 ∈ X1 ∪ V (Y1). It follows by Lemma 3.5(iv) that 
min{max{�(v3), �(v4)}, max{�(u2), �(u5)}} ≥ |E(G)|+5

5 . As |V (H1) ∩ X0| = 3 and g(G) ≥ 3, |E(P IG (v1))| ≥ 3 × |E(G)|+15
10 −

5 = 3|E(G)|−5
10 . However |E(G)| = |E(P IG (v1))| + 2 × |E(G)|+5

5 + 4 × |E(G)|+15
10 + 12 − 15 > |E(G)|, a contradiction. Hence 

{v2, v5, u1} ∩ (X1 ∪ V (Y1)) = ∅. Without loss of generality, we assume that v3 ∈ X1 ∪ V (Y1). By Lemma 3.5 and as Xt = ∅
for any integer t ≥ 2, we have {v2, v4, v5, u1, u2, u3, u4, u5} ⊆ V 0, and so |V 0| ≥ 8, a contradiction.
11
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To sum up, by (d) and Claim 4, |Y0| = 1 and |V (G ′
0)| ≥ 19; by (15), (c) and Claim 5, |V 0| ≥ 7; by (b), (e) and 

Lemma 2.6(i), |V (H1) ∩ X0| = 2 and H1 ∼= K2,3. Those imply that L0 has at least three vertices such that each of whose 
preimage in G ′

0 contains exactly 2 vertices in X0, and so |X0| ≥ (|V 0| − 3) + 2 × 3 ≥ 10, a contradiction.
Hence G ′

0 = L0 ∼= P (10). Then X0 = V 0, Y0 = ∅ by Claim 4. By the choice of A, Y1 = ∅, and so X1 
= ∅. Without loss of 
generality, assume that v1 ∈ X1. If |X1| ≥ 2, by symmetry, assume that v3 ∈ X1. Thus {v2, v4, v5, u1, u3} ⊆ X0 and v2 ∈ Xt

for some integer t ≥ 2. Then {u2, u4, u5} � X0, since otherwise, 
∑

k k|Xk| ≥ 10, a contradiction. Without loss of generality, 
we must have {u2, u5} ∩ X1 
= ∅. If u5 ∈ X1, then {v4, u1, u2, u4} ⊆ X0 and v2, v5, u3 ∈ Xt for some integer t ≥ 2, and so ∑

k k|Xk| ≥ 10, a contradiction. Hence u2 ∈ X1. Then {v4, v5, u1, u3, u4, u5} ⊆ X0 and v2 ∈ Xt for some integer t ≥ 3. By 
Lemma 3.5(iv), min{max{�(v4), �(u4)}, max{�(v5), �(u5)}, max{�(u1), �(u3)}} ≥ |E(G)|+5

5 , and so we obtain a contradiction 
that |E(G)| > |E(G)|.

Thus X1 = {v1} and |X0| = 9. As v1 ∈ �′(G0) and by the proof of Lemma 3.5(i), v1 is not a good-leaf of P IG(v2) ∪
{v2 v1, v2 v3, v2u2} and P IG (v5) ∪ {v4 v5, v5 v1, v5u5}. By Lemma 3.1(i), P IG (v2) has a v1-net (x1 y1, T1) satisfying the as-
sumption of Lemma 3.1(i). As T1 ∈ {T2,2,2, T2,2,1, T2,1,2}, T1 ∪ P IG(u2 v2 v3) contains a subgraph T2 ∼= T2,2,2 with x1 y1 ∈
E L(T2,2,2). By (2), dG (x1) + dG(y1) ≥ |E(G)|+25

10 ≥ 15, and so {x1, y1} ∩ D2(G) 
= ∅ by Lemma 3.1(β). Without loss of gen-

erality, assume that x1 ∈ D2(G). Then dG (y1) ≥ |E(G)|+5
10 . If v2 is a good-leaf of P IG(v3) ∪ {v2 v3, v3 v4, v3u3}, then by the 

construction of �1, V (e1) ∩ V (e2) ⊆ {x1} and P IG (v2) has an edge e2 = x2 y2 � �1 − w p+1 such that e2 ∈ E(G) ∩ E L(T2,2,2), 
and so dG (x2) + dG(y2) ≥ |E(G)|+25

10 . It follows that �(v2) ≥ |E(P IG(v2))| + dG ′
0
(v2) ≥ (|EG(y1)| + |EG(e2)| − 1 − dG ′

0
(v2)) +

dG ′
0
(v2) ≥ dG(y1) + dG (x2) + dG (y2) − 2 ≥ 2|E(G)|+10

10 . Since v1 ∈ X1, we have |E(P IG(v1))| ≥ 1, and so �(v1) ≥ 4. Hence 
|E(G)| ≥ ∑

v∈V (G ′
0) �(v) − |E(G ′

0)| ≥ 2|E(G)|+10
10 + 8 × |E(G)|+15

10 + 4 − 15 > |E(G)|, a contradiction. This implies that v2 is not 
a good-leaf of P IG (v3) ∪ {v2 v3, v3 v4, v3u3}. By symmetry, v3 is not a good-leaf of P IG(v4) ∪ {v3 v4, v4 v5, v4u4} and v4
is not a good-leaf of P IG (v5) ∪ {v4 v5, v5 v1, v5u5}. As v1, v4 are not good-leaves of P IG (v5) ∪ {v4 v5, v5 v1, v5u5} and by 
Lemma 3.4, v5 ∈ Xt for some integer t ≥ 2, and so 

∑
k k|Xk| ≥ 10, a contradiction. Hence Claim 6 holds. �

By Claim 6 and by Theorem 2.7(iii), we conclude that Theorem 1.5 must be valid.

4. Remarks

For a claw-free graph H , a vertex x ∈ V (H) is eligible if H[NH (x)] is a connected noncomplete subgraph of H . The 
local completion of H at x is the subgraph H∗

x obtained from H by adding all missing edges with both vertices in NH (x). 
The closure cl(H) of H was defined in [21] as the graph obtained from H by recursively performing the local completion 
operation at eligible vertices as long as possible. In [22], the concept of an SM-closure H M is obtained from H by performing 
local completions at some (but not all) eligible vertices, where these vertices are chosen in a special way such that the 
resulting graph is a line graph of a multigraph while still preserving the (non-)Hamilton-connectedness of H . The following 
result summarizes basic properties of cl(H) and H M .

Theorem 4.1. Let H be a claw-free graph and cl(H), H M be its closures. Each of the following holds.
(i) (Ryjác̆ek, [21]) cl(H) is well-defined, there is a triangle-free simple graph G1 such that cl(H) = L(G1), and H is Hamiltonian if and 
only if cl(H) is Hamiltonian.
(ii) (Ryjáček and Vrána, [22]) H M is uniquely determined, there is a multigraph G2 such that H M = L(G2), and H M is Hamilton-
connected if and only if H is Hamilton-connected.

For a 3-connected claw-free graph H , by Theorem 4.1, both of its closures cl(H) and H M are line graphs. Our next 
step is to generalize Theorem 1.5 to the claw-free graph version, and leave it as Conjecture 4.2(i). Define H ′

8 to be the 
graph obtained from C8 by adding four chords between four pairs of vertices of maximum distance in C8, and by attaching 
|E(H ′

8)|−12
8 pendant edges at each vertex of degree 3. Then H = L(H ′

8) is a 3-connected non-Hamilton-connected graph with 
δN1,1,1(H) = |V (H)|+4

8 . We hence leave the claw-free Hamilton-connected graph version as Conjecture 4.2(ii).

Conjecture 4.2. Let H be a 3-connected claw-free simple graph on n vertices.
(i) If δN1,1,1(H) ≥ n+5

10 , then either H is Hamiltonian or cl(H) ∼= L(P (10)′).

(ii) If δN1,1,1(H) ≥ n+4
8 , then either H is Hamilton-connected or H M ∼= L(H ′

8).
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