Hamiltonian line graphs with local degree conditions ${ }^{\text {dr }}$

Xia Liu ${ }^{\text {a }}$, Sulin Song ${ }^{\text {b }}$, Hong-Jian Lai ${ }^{\text {b,* }}$
${ }^{\text {a }}$ School of Mathematics and Statistics, Northwestern Polytechnical University, Xi'an, Shanxi 710072, PR China
${ }^{\text {b }}$ Department of Mathematics, West Virginia University, Morgantown, WV 26506, USA

A R T I C L E I N F O

Article history:

Received 25 April 2021
Received in revised form 17 January 2022
Accepted 22 January 2022
Available online 4 February 2022

Keywords:

Local degree condition
Claw-free graphs
Line graphs
Catlin's reduction
Collapsible graphs

Abstract

Let $N_{1,1,1}$ be the graph formed by attaching a pendant edge to each vertex of a triangle, and $B_{1,2}$ be a graph obtained by attaching end vertices of two disjoint paths of lengths 1,2 to two vertices of a triangle. Broersma (1993) [2] and Čada et al. (2016) [3] conjectured that for a 2-connected claw-free simple graph G and for a fixed graph $\Gamma \in\left\{N_{1,1,1}, B_{1,2}, P_{6}\right\}$, if $\delta_{\Gamma}(G)=\min \left\{d_{G}(v): d_{H}(v)=1\right.$ for any induced subgraph $H \cong \Gamma$ in $\left.G\right\} \geq \frac{|V(G)|-2}{3}$, then G is Hamiltonian. While Chen settles this conjecture recently, the following two results of the conjecture for 3-connected line graphs are proved. (i) For real numbers a, b with $0<a<1$, there exists a family $\mathcal{F}(a, b)$ of finitely many nonsupereulerian graphs, such that for any 3-connected line graph $H=L(G)$ of a simple graph G, if $\delta_{N_{1,1,1}}(H) \geq a|V(H)|+b$, then either H is Hamiltonian or G is contractible to a member in $\mathcal{F}(a, b)$. (ii) Let $H=L(G)$ be a 3-connected line graph of a simple graph G with $|V(H)| \geq 116$. If $\delta_{N_{1,1,1}}(H) \geq \frac{|V(H)|+5}{10}$, then either H is Hamiltonian or G is isomorphic to the graph $P(10)^{\prime}$, which is formed from the Petersen graph $P(10)$ by attaching $\frac{|V(H)|-15}{10}$ pendant edges to every vertex of $P(10)$.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

We consider finite loopless graphs and follow [1] for undefined notation and terms. Let $\kappa(G), \kappa^{\prime}(G), \alpha^{\prime}(G), \delta(G)$ and $g(G)$ denote the vertex connectivity, the edge connectivity, the matching number, the minimum degree and the girth of a graph G, respectively. For a vertex $v \in V(G)$, let $E_{G}(v)=\{f \in E(G): v \in V(f)\}, d_{G}(v)=\left|E_{G}(v)\right|, N_{G}(v)=\{u \in V(G): u v \in E(G)\}$ and $N_{G}[v]=N_{G}(v) \cup\{v\}$. For a vertex subset S of G, define $N_{G}(S)=\left(\cup_{v \in S} N_{G}(v)\right) \backslash S$ and $N_{G}[S]=N_{G}(S) \cup S$. Let $i \geq 0$ be an integer and define $D_{i}(G)=\left\{v \in V(G): d_{G}(v)=i\right\}, D_{\leq i}(G)=\left\{v \in V(G): d_{G}(v) \leq i\right\}$. Vertices in $D_{1}(G)$ are the leaves of G, and edges incident with vertices in $D_{1}(G)$ are the pendant edges of G. For an edge $e=u v \in E(G)$, define $E_{G}(e)=E_{G}(u) \cup E_{G}(v)$. Thus $\left|E_{G}(e)\right|=d_{G}(u)+d_{G}(v)-1$. For a given graph H, a graph G is H-free if G does not contain an induced subgraph isomorphic to H. A $K_{1,3}$-free graph is often referred as to a claw-free graph. The line graph of a graph G, denoted by $L(G)$, is a simple graph with vertex set $E(G)$, where two vertices in $L(G)$ are adjacent if and only if the corresponding edges in G are adjacent. In [21], Ryjáček defined the closure $c l(H)$ of a claw-free graph H to be one obtained by recursively adding edges to join two nonadjacent vertices in the neighborhood of any locally connected vertex of H, as long as this is possible. Consequently, $\mathrm{cl}(\mathrm{H})$ is a line graph.

[^0]https://doi.org/10.1016/j.disc.2022.112825
0012-365X/© 2022 Elsevier B.V. All rights reserved.

Let $\ell \geq 1$ be an integer, and let $P(10)$ denote the Petersen graph. The graph $P(10, \ell)$ is obtained from $P(10)$ by attaching ℓ pendant edges at every vertex of $P(10)$. If we do not emphasize the value of ℓ, we use $P(10)^{\prime}$ for $P(10, \ell)$. For nonnegative integers i, j, k, we use $N_{i, j, k}$ to denote the graph formed by attaching a path of order $i+1, j+1, k+1$ to each of the three vertices of K_{3}, respectively. It is common to use Z_{i} instead of $N_{i, 0,0}$ if $i>0$ and $B_{i, j}$ instead of $N_{i, j, 0}$ if $i, j>0$. Let P_{i} (or C_{i}, respectively) denote a path (or a cycle, respectively) on i vertices.

A graph is Hamiltonian if it contains a spanning cycle. Sufficient conditions for a 2-connected or 3-connected claw-free graph to be Hamiltonian have been the subjects of many papers. The following are classical results due to degree conditions.

Theorem 1.1. Let H be a simple claw-free graph on $n \geq 3$ vertices. Each of the following holds.
(i) (Matthews and Sumner, [20]) If $\kappa(H) \geq 2$ and $\delta(H) \geq \frac{n-2}{3}$, then H is Hamiltonian.
(ii) (Favaron and Fraisse, [13]) If $\kappa(H) \geq 3$ and $\delta(H) \geq \frac{n+38}{10}$, then H is Hamiltonian.
(iii) (Lai, Shao and Zhan, [16]) If $n \geq 196, \kappa(H) \geq 3$ and $\delta(H) \geq \frac{n+5}{10}$, then H is Hamiltonian, unless $\operatorname{cl}(H) \cong L\left(P(10)^{\prime}\right)$.

As $H=L\left(P(10)^{\prime}\right)$ is a 3-connected non-Hamiltonian claw-free graph with $\delta(H) \geq \frac{|V(H)|+5}{10}$, Theorem 1.1 (iii) settles the conjecture, posed by Kuipers and Veldman (see [13]), that for sufficiently large n, every 3 -connected claw-free graph on n vertices with $\delta(H) \geq \frac{n+6}{10}$ is Hamiltonian. Faudree, Flandrin and Ryjáček, in Section 2(d) of their frequently quoted survey [12], listed a number of forbidden induced subgraphs in the study of Hamiltonian claw-free graphs. Among them, members in the family $N_{i, j, k}, B_{i, j}$ with $i+j+k \leq 3$ are included. For a connected graph Γ, define

$$
\delta_{\Gamma}(G)=\min \left\{d_{G}(v): v \in D_{1}(H) \text { for any induced subgraph } H \cong \Gamma \text { in } G\right\} .
$$

In 1993, Broersma considered to combine the forbidden induced subgraph conditions and degree conditions in the study of Hamiltonian claw-free graphs. He proposed the following conjecture by considering a local degree condition of induced $N_{1,1,1}$.

Conjecture 1.2. (Broersma, [2]) A 2-connected claw-free simple graph H with $\delta_{N_{1,1,1}}(H) \geq \frac{|V(H)|-2}{3}$ is Hamiltonian.
Fujisawa and Yamashita [14] obtained a result for $\delta_{Z_{1}}(G) \geq \frac{n-2}{3}$ and Čada et al. [3] obtained a result for $\delta_{\Gamma}(H) \geq \frac{n+3}{3}$ where $\Gamma \in\left\{P_{6}, B_{1,2}, N_{1,1,1}\right\}$. They then proposed the following conjecture.

Conjecture 1.3. (Čada, Li, Ning and Zhang, [3]) For fixed $\Gamma \in\left\{P_{6}, B_{1,2}\right\}$, every 2-connected claw-free simple graph H with $\delta_{\Gamma}(H) \geq$ $\frac{|V(H)|-2}{3}$ is Hamiltonian.

Conjectures 1.2 and 1.3 have been proved affirmatively by Chen recently.
Theorem 1.4. (Chen, [8,9]) Every 2-connected claw-free simple graph on n vertices with $\delta_{\Gamma}(H) \geq \frac{n-2}{3}$ for a fixed $\Gamma \in\left\{P_{6}, B_{1,2}\right.$, $\left.N_{1,1,1}\right\}$ is Hamiltonian.

It is natural to extend Theorem 1.4 to 3-connected claw-free graphs. Utilizing Theorem 1.1 (ii) and (iii), we prove the following result for 3 -connected line graphs.

Theorem 1.5. Let $H=L(G)$ be a 3-connected line graph of a simple graph G on $n \geq 116$ vertices. If $\delta_{N_{1,1,1}}(H) \geq \frac{n+5}{10}$, then either H is Hamiltonian or $G \cong P(10)^{\prime}$.

A more general question extending Conjecture 1.2 can be posed as follows: given a graph Γ in the list in Section 2(d) of [12], determine best possible linear function $c(n, \Gamma)$ such that for any claw-free graph G on n vertices, if $\delta_{\Gamma}(G) \geq c(n, \Gamma)$, then when n is sufficiently large, G is Hamiltonian. We also obtain the following result in this direction.

Theorem 1.6. Let a and b be real numbers with $0<a<1$. There exists a family $\mathcal{F}(a, b)$ of finitely many nonsupereulerian graphs, such that for any a 3-connected line graph $H=L(G)$ of a simple graph G on n vertices, if $\delta_{N_{1,1,1}}(H) \geq a n+b$, then either H is Hamiltonian or G is contractible to a member in $\mathcal{F}(a, b)$.

Theorem 1.6 reveals that, under any nontrivial linear function lower bound for the local degree condition involving $N_{1,1,1}$, there are only finitely many contractional obstacles for the line graph to be Hamiltonian. Theorem 1.5 strengthens Theorem 1.1 (iii) and indicates that a better bound can be obtained in Conjecture 1.2 within 3-edge-connected line graphs. We will present some definitions and results that will be used in the next section. The justification of the main result will be given in the last section.

2. Preliminaries

For notational convenience, in the paper, if G is a graph and $X \subseteq E(G)$ is an edge subset, then we also use X to denote both an edge subset of $E(G)$ and $G[X]$, the subgraph induced by X in G. Thus $V(X)$ is the set of vertices in G incident with an edge in X. If $X=\{e\}$, we write $V(e)$ for $V(X)$. For a subgraph H of G and $X \subseteq E(G)$, we often use $H \cup X$ to denote the subgraph $G[E(H) \cup X]$. A path with end vertices u and v is often referred as to a (u, v)-path (or $P[u, v]$). For two disjoint subsets X, Y of $V(G)$, an (X, Y)-path is a path linking a vertex in X and a vertex in Y, and whose internal vertices belong to neither X nor Y. When $X=\{v\}$, we write (v, Y)-path for (X, Y)-path.

Let $O(G)=\bigcup_{i \geq 0} D_{2 i+1}(G)$ denote the set of odd degree vertices of a graph G. If $O(G)=\emptyset$ and G is connected, then G is eulerian; if G contains a spanning eulerian subgraph, then it is supereulerian. An eulerian subgraph H of G is dominating if $V(G)-V(H)$ is a stable set of G. Harary and Nash-Williams proved a useful relationship between dominating eulerian subgraphs and Hamiltonian line graphs.

Theorem 2.1. (Harary and Nash-Williams, [15]) Let G be a connected graph with at least 3 edges. The line graph $L(G)$ is Hamiltonian if and only if G has a dominating eulerian subgraph.

Let $X \subseteq E(G)$ be an edge subset of a graph G. The contraction G / X is the graph obtained from G by identifying the two ends of each edge in X and then deleting the resulting loops. By definition, even if G is a simple graph, G / X may have multiple edges. We define $G / \emptyset=G$. When K is a connected subgraph of G, we write G / K for $G / E(K)$ with v_{K} denoting the vertex in G / K onto which K is contracted. The preimage of v_{K} in G, denoted by $P I_{G}\left(v_{K}\right)$, is the induced subgraph $G[V(K)]$. The vertex v_{K} is nontrivial if $P I_{G}\left(v_{K}\right)$ has at least one edge. For a connected subgraph $\Gamma \subseteq G / K$, we denote $P I_{G}(\Gamma)$ to be the induced subgraph $G\left[\cup_{u \in V(\Gamma)} V\left(P I_{G}(u)\right)\right]$. Thus if $P^{\prime} \subseteq G / K$ is a path (or a cycle, respectively), then $P I_{G}\left(P^{\prime}\right)$ contains a path P (or a cycle, respectively). The following result is useful.

Theorem 2.2. (Chen et al., Theorem 1.1 of [11]) Let G be a 3-edge-connected graph and let $A \subseteq V(G)$ with $|A| \leq 12$. Then either G has an eulerian subgraph H with $A \subseteq V(H)$, or G can be contracted to the Petersen graph $P(10)$ in such a way that the preimage of each vertex of the Petersen graph contains at least one vertex in A.

2.1. Catlin reduction method

As in [1], $K_{m, n}$ denotes the complete bipartite graph with partite sets of size m and n. By $H \subseteq G$, we mean that H is a subgraph of G. If $H \subseteq G$, then the set of vertices of attachments of H in G is defined as

$$
A_{G}(H)=\left\{v \in V(H): N_{G}(v) \nsubseteq V(H)\right\}
$$

In [4], Catlin introduced collapsible graphs. By Proposition 1 of [17], a graph G is collapsible if for any $R \subseteq V(G)$ with $|R| \equiv 0(\bmod 2), G$ has a spanning connected subgraph Γ_{R} with $O\left(\Gamma_{R}\right)=R$. Catlin showed in [4] that every vertex of G lies in a unique maximal collapsible subgraph of G. For any graph G, let $H_{1}, H_{2}, \cdots, H_{c}$ be the collection of all maximal collapsible subgraphs of G. The graph $G /\left(H_{1} \cup H_{2} \cup \cdots \cup H_{c}\right)$ is the reduction of G. A graph G is reduced if G equals its reduction.

Let $F(G)$ be the minimum number of additional edges that must be added to G so that the resulting graph has two edgedisjoint spanning trees. Catlin (Theorem 2 of [5]) shows that every graph G with $F(G)=0$ is collapsible. We summarize some results on Catlin's reduction method and other related tools in Theorem 2.3, and use $2 K_{1}$ to denote the edgeless graph with two vertices.

Theorem 2.3. Let G be a graph, $H \subseteq G$ be a collapsible graph and let G^{\prime} be the reduction of G. Then each of the following holds.
(i) (Catlin, Theorem 8 of [4]) G is collapsible (or supereulerian) if and only if G / H is collapsible (or supereulerian). In particular, G is collapsible if and only if $G^{\prime}=K_{1}$.
(ii) (Catlin, Theorem 5 of [4]) G is reduced if and only if G has no nontrivial collapsible subgraphs.
(iii) (Catlin, Theorem 8 of [4]) $g\left(G^{\prime}\right) \geq 4$.
(iv) (Catlin, Theorem 7 of [5], see also Theorem 3.4 of [18]) If G is reduced, or if $E(G)$ is the union of the edge sets of two spanning trees in G, then $F(G)=2|V(G)|-2-|E(G)|$.
(v) (Catlin et al., Theorem 1.3 of [6]) If $F(G) \leq 1$, then $G^{\prime} \in\left\{K_{1}, K_{2}\right\}$; if $F(G) \leq 2$, then $G^{\prime} \in\left\{K_{1}, 2 K_{1}, K_{2}, K_{2, t}\right\}$ for some $t \geq 1$; if $F(G) \leq 2$ and $\kappa^{\prime}(G) \geq 3$, then G is collapsible.
(vi) (Chen, [7]) If $\kappa^{\prime}\left(G^{\prime}\right) \geq 3$ and $\left|V\left(G^{\prime}\right)\right| \leq 11$, then $G \in\left\{K_{1}, P(10)\right\}$.

Theorem 2.4. (Chen et al., Theorem 4.4 of [10]) Let G be a connected reduced graph with n vertices and $\delta(G) \geq 3$. Then $\alpha^{\prime}(G) \geq$ $\min \left\{\frac{n}{2}, \frac{n+5}{3}\right\}$.

Lemma 2.5. (Xiong et al., Lemma 2.4 of [24]) Let G be a 3-edge-connected graph, and let $H \subset G$ be an induced connected subgraph of G with v_{H} as its contraction image in G / H such that $d_{G / H}\left(v_{H}\right)=3$. Then each of the following holds.
(i) If $|V(H)| \leq 5$, then H is collapsible unless $H \cong K_{2,3}$ with $A_{G}(H)=D_{2}(H)$.
(ii) If H is not collapsible, then for any vertex $u \in A_{G}(H)$, H has a path of length at least 4 with u as its end vertex.

As an application of Lemma 2.5, the following is obtained.

Lemma 2.6. Let G be a 3-edge-connected reduced graph, and let $H \subset G$ be an induced connected subgraph of G with v_{H} being its contraction image in G / H and $d_{G / H}\left(v_{H}\right)=3$. Each of the following holds.
(i) If $|V(H)| \leq 5$, then $H \cong K_{2,3}$ with $A_{G}(H)=D_{2}(H)$.
(ii) If $|V(H)| \geq 6$, then $\alpha^{\prime}(H) \geq 3$.

Proof. As $\kappa^{\prime}(G) \geq 3$ and $d_{G / H}\left(v_{H}\right)=3$, it follows that $\kappa^{\prime}(H) \geq 2$. If $|V(H)| \leq 5$, then by Lemma 2.5 (i), Lemma 2.6(i) holds. Hence we assume that $|V(H)| \geq 6$. If $\alpha^{\prime}(H) \geq 3$, then Lemma $2.6(i i)$ holds. By contradiction, we assume that $\alpha^{\prime}(H) \leq 2$.

Choose a vertex $u \in A_{G}(H)$. By Theorem 2.3(ii) and (iii), H is reduced with $g(H) \geq 4$. By Lemma 2.5 (ii), H contains a $Q_{1}=u x_{1} \cdots x_{\ell}$ with $\ell \geq 4$ and ℓ maximized among all paths and cycles. If $\ell \geq 6$, or if $\ell \geq 5$ and $x_{\ell} \neq u$, then $\alpha^{\prime}(H) \geq 3$, and so Lemma 2.6(ii) holds. Hence we assume that either $\ell=4$ and $u \neq x_{4}$, or $\ell=5$ with $u=x_{5}$.

Suppose first that $\ell=5$ with $u=x_{5}$. Then Q_{1} is a 5-cycle. If $V(H) \backslash V\left(Q_{1}\right) \neq \emptyset$, then since H is connected, there exists a vertex $v \in V(H) \backslash V\left(Q_{1}\right)$ and a vertex $x \in V\left(Q_{1}\right)$ such that $v x \in E(H)$. It follows that H contains a matching consisting of $v x$ and two edges of $E\left(Q_{1}\right)$, and so $\alpha^{\prime}(H) \geq 3$, contrary to the assumption that $\alpha^{\prime}(H) \leq 2$. Hence we must have $V(H)=V\left(Q_{1}\right)$, contrary to the fact that $|V(H)| \geq 6$.

Therefore, we must have $\ell=4$ and $u \neq x_{4}$. As $\kappa^{\prime}(H) \geq 2, x_{4}$ is adjacent to a vertex $w \in V(H) \backslash\left\{x_{3}\right\}$. Since $\alpha^{\prime}(H) \leq 2$ and H is reduced, we must have $w=x_{1}$ and $u x_{3} \in E(H)$. Thus $H\left[V\left(Q_{1}\right)\right] \cong K_{2,3}$ with $D_{2}\left(H\left[V\left(Q_{1}\right)\right]\right)=\left\{u, x_{2}, x_{4}\right\}$. Choose a largest integer $t \geq 3$ such that $K=K_{2, t}$ is a subgraph in H. Since H is reduced, K is induced. If there exists a vertex $z \in V(H) \backslash V(K)$ which is adjacent to a vertex $z^{\prime} \in D_{2}(K)$, then $z z^{\prime}$ together with a 2-matching in the 4-cycle of $K-z^{\prime}$ forces that $\alpha^{\prime}(H) \geq 3$, a contradiction. Hence $D_{2}(K) \subseteq D_{2}(H) \subseteq A_{G}(H)$ since $\kappa^{\prime}(G) \geq 3$, implying that $t=3$. Since $|V(H)| \geq 6$, there exists a vertex $z \in V(H) \backslash V(K)$ which is adjacent to a vertex $z^{\prime} \in D_{3}(K)$. As $\alpha^{\prime}(H) \leq 2, N_{H}(z) \subseteq D_{3}(K)$. Thus $H[V(K) \cup\{z\}] \cong K_{2,4}$, contrary to the choice of K. This final contradiction justifies the lemma.

2.2. The core of a graph

An edge-cut of a graph G is an essential edge-cut if $G-X$ has at least two nontrivial components. A connected graph G is essentially k-edge-connected if G does not have an essential edge-cut of size less than k. Let $\operatorname{ess}^{\prime}(G)$ be the smallest k such that G has an essentially k-edge-cut, if G has an essential edge-cut, or ess $^{\prime}(G)=|E(G)|-1$ if G does not have an essential edge-cut. With this definition, it is routine to verify that for a connected graph G with $|E(G)| \geq 2, \kappa(L(G))=e s s^{\prime}(G)$.

Let G be a graph with $|E(G)| \geq 4$ and $\operatorname{ess}^{\prime}(G) \geq 3$. As $\operatorname{ess}^{\prime}(G) \geq 3, D_{\leq 2}(G)$ is a stable set of G. For each $v \in D_{2}(G)$, let $E_{G}(v)=\left\{e_{1}^{v}, e_{2}^{v}\right\}$ and $X_{2}(G)=\left\{e_{2}^{v}: v \in D_{2}(G)\right\}$. Thus for each vertex $v \in D_{2}(G),\left|X_{2}(G) \cap E_{G}(v)\right|=1$. Define the core of G to be the graph G_{0} in (1):

$$
\begin{align*}
& G_{1}=G-D_{1}(G) \\
& G_{0}=G /\left(\left(\cup_{v \in D_{1}(G)} E_{G}(v)\right) \cup X_{2}(G)\right)=G_{1} / X_{2}(G) \tag{1}\\
& N E(G)=\cup_{v \in D_{2}(G)} E_{G}(v)-X_{2}(G)
\end{align*}
$$

The nontrivial edges in G_{0} are the edges in $N E(G)$. For notational convenience, the vertices in G adjacent to a vertex in $D_{\leq 2}(G)$ can be viewed as vertices in G_{0}. Then $V\left(G_{0}\right) \subseteq V\left(G_{1}\right) \subseteq V(G)$. Let G_{0}^{\prime} be the reduction of G_{0}. Then G_{0}^{\prime} is a contraction of G_{0} as well as G, and so we can view $E\left(G_{0}^{\prime}\right) \subseteq E\left(G_{0}\right) \subseteq E(G)$. Denote the sets of nontrivial vertices in G_{0} and G_{0}^{\prime} as follows:

$$
\begin{aligned}
& \Lambda\left(G_{0}\right)=\left\{v \in V\left(G_{0}\right): P I_{G}(v) \neq K_{1} \text { or } P I_{G}(v) \cap V(N E(G)) \neq \emptyset\right\} \\
& \Lambda^{\prime}\left(G_{0}\right)=\left\{v \in V\left(G_{0}^{\prime}\right): P I_{G}(v) \neq K_{1} \text { or } P I_{G}(v) \cap V(N E(G)) \neq \emptyset\right\}
\end{aligned}
$$

Applying Theorem 2.1, Shao proved the following.

Theorem 2.7. (Shao, Section 1.4 of [23], see also Theorem 4.2 of [19]) Let G be a graph with $|E(G)| \geq 3$ and ess $^{\prime}(G) \geq 3$, and let G_{0} be the core of graph G. Then each of the following holds.
(i) G_{0} is well defined and nontrivial with $\delta\left(G_{0}\right) \geq \kappa^{\prime}\left(G_{0}\right) \geq 3$.
(ii) $L(G)$ is Hamiltonian if and only if G_{0} has a dominating eulerian subgraph H such that $\Lambda\left(G_{0}\right) \subseteq V(H)$.
(iii) $L(G)$ is Hamiltonian if and only if G_{0}^{\prime} has a dominating eulerian subgraph H^{\prime} such that $\Lambda^{\prime}\left(G_{0}\right) \subseteq V\left(H^{\prime}\right)$.

3. Proofs of the main results

Let H_{1}, H_{2} be two graphs. Define $H_{1} \cup H_{2}$ to be the graph with vertex set $V\left(H_{1}\right) \cup V\left(H_{2}\right)$ and edge set $E\left(H_{1}\right) \cup E\left(H_{2}\right)$, and $H_{1}-H_{2}=H_{1}\left[E\left(H_{1}\right) \backslash E\left(H_{2}\right)\right]$. If X, Y are two vertex subsets of a graph G, define $E_{G}(X, Y)=\{x y \in E(G): x \in X, y \in Y\}$. When $X=\{x\}$ or $Y=\{y\}$, we use $E_{G}(x, Y)$ or $E_{G}(X, y)$ for $E_{G}(X, Y)$, respectively. When G is understood from the context, we often omit the subscript G. For positive integers i, j, k, let $T_{i, j, k}$ denote the tree obtained from the disjoint union of three paths P_{i+1}, P_{j+1} and P_{k+1} by identifying an end vertex of each of these three paths into the only degree 3 vertex of $T_{i, j, k}$.

3.1. Lemmas

A vertex $v \in D_{1}(G)$ is a good-leaf of a graph G if G has a subgraph $L_{v} \in\left\{T_{2,2,1}, T_{2,1,1}, T_{1,1,1}\right\}$ and a vertex $u \in D_{3}\left(L_{v}\right)$ such that $u v \in E\left(L_{v}\right)$ and $N_{L_{v}}(u) \cap D_{1}\left(L_{v}\right) \subseteq D_{1}(G)$. For each vertex $x_{i} \in D_{1}(G)$ that is not a good-leaf, an ordered pair (H_{i}, e_{i}) is an x_{i}-net if G has a subgraph $H_{i} \in\left\{T_{2,2,2}, T_{2,2,1}, T_{2,1,1}\right\}$ and an edge $e_{i}=v_{i} u_{i}$ such that $v_{i} u_{i} w_{i} \subseteq H_{i}$ for $w_{i} \in$ $D_{3}\left(H_{i}\right), u_{i} \in D_{\leq 3}(G)$ and $N_{H_{i}}\left(w_{i}\right) \cap D_{1}\left(H_{i}\right) \subseteq D_{1}(G) \backslash\left\{x_{i}\right\}$. For an integer $t \geq 1$, define $K_{2, t}+e$ to be the graph obtained from $K_{2, t}$ by adding an edge e joining any two nonadjacent vertices of degree t. As an example, $K_{2,1}+e \cong K_{3}$.

Lemma 3.1. Let G be a graph such that $g(G) \geq 3, \kappa^{\prime}\left(G-D_{1}(G)\right) \geq 2$ and $D_{1}(G)=\left\{x_{1}, x_{2}, \cdots, x_{k}\right\}$ with $k \geq 3$. Then for any integers $\{i, j\} \subseteq\{1, \cdots, k\}$, each of the following holds.
(i) If x_{i} is not a good-leaf of G, then G has an x_{i}-net $\left(H_{i}, e_{i}\right)$ and a block Γ_{i}, which depends on x_{i} (see Fig. 1), satisfying both of the following properties.
(α) There exist disjoint subsets $R_{0}, R_{1}, \cdots, R_{p}$ in $D_{\leq 3}(G)$ and a set $\left\{y_{1}, w_{1}, \cdots, w_{p+1}\right\}$ of cut-vertices of G such that for any $\ell \in\{0,1, \cdots, p\}$, if $\left|R_{\ell}\right| \geq 3$, then $E\left(G\left[R_{\ell}\right]\right)=\emptyset$, and $\Gamma_{i}=G\left[V\left(R_{0} \cup \cdots \cup R_{p}\right) \cup\left\{x_{i}, y_{1}, w_{1}, \cdots, w_{p+1}\right\}\right]$,
(β) $e_{i} \in E\left(G\left[R_{p} \cup\left\{w_{p}\right\}\right]\right)$ with $E_{G}\left(e_{i}\right) \subseteq E\left(\Gamma_{i}\right)$ and, if $\left|E_{G}\left(e_{i}\right)\right| \geq 6$, then $V\left(e_{i}\right) \cap D_{2}(G) \neq \emptyset$.
(ii) If $x_{i}, x_{j} \in D_{1}(G)$ are not good-leaves, then G has a x_{i}-net $\left(H_{i}, e_{i}\right)$ and a x_{j}-net $\left(H_{j}, e_{j}\right)$ such that $V\left(e_{i}\right) \cap V\left(e_{j}\right)=\emptyset$ and $E_{G}\left(e_{i}\right) \cap$ $E_{G}\left(e_{j}\right)=\emptyset$.

Proof. (i) For each s with $1 \leq s \leq k$, as $x_{s} \in D_{1}(G)$, there exists an unique vertex y_{s} with $x_{s} y_{s} \in E(G)$. Without loss of generality, we assume that x_{1} is not a good-leaf of G. Choose a shortest ($x_{1},\left\{x_{2}, \cdots, x_{k}\right\}$)-path P_{1} in G, say (x_{1}, x_{2})-path, and then choose a shortest $\left(\left\{x_{3}, \cdots, x_{k}\right\}, V\left(P_{1}\right)\right)$-path P_{2} in G, say (x_{3}, y_{0})-path for some vertex $y_{0} \in V\left(P_{1}\right) \cap V\left(P_{2}\right)$. As $x_{1}, x_{2}, x_{3} \in D_{1}(G)$, we have $x_{1} y_{1}, x_{2} y_{2} \in E\left(P_{1}\right)$ and $x_{3} y_{3} \in E\left(P_{2}\right)$. We first claim that for any path $P \subseteq G$ whose end vertices belong to $\left\{x_{2}, \cdots, x_{k}\right\}, E_{0}=E\left(x_{1}, V(P)\right)=\emptyset$. Since otherwise, $G\left[E_{0} \cup E(P)\right] \cong T_{\ell_{1}, \ell_{2}, \ell_{3}}$ for some integer $\ell_{1}, \ell_{2}, \ell_{3} \geq 1$ with x_{1} and two of $\left\{x_{2}, \cdots, x_{k}\right\}$ as its leaves, which implies that x_{1} is a good-leaf, a contradiction. Hence, $y_{1} \notin V\left(P_{2}\right) \cup$ $V\left(y_{0} P_{1} x_{2}\right)$ and $E\left(y_{1}, V\left(P_{2}-y_{0}\right)\right)=\emptyset$. Then there is a vertex $z_{1} \neq x_{1}$ with $y_{1} z_{1} \in E\left(P_{1}\right)$. By the choice of P_{1}, it follows that $E\left(y_{1}, V\left(P_{1}-\left\{z_{1}, x_{1}\right\}\right)\right)=\emptyset$.

Let $V_{0}=N_{G}\left(y_{1}\right) \backslash\left\{z_{1}, x_{1}\right\}$ and $t_{0}=\left|V_{0}\right|$. Then $V_{0} \cap V\left(P_{1} \cup P_{2}\right)=\emptyset$. Since $\kappa^{\prime}\left(G-D_{1}(G)\right) \geq 2$, we have $d_{G}\left(y_{1}\right) \geq$ 3 , and so $t_{0} \geq 1$. Let $z_{2} \in N_{P_{1}}\left(z_{1}\right) \backslash\left\{y_{1}\right\}$. Then for any vertex $v \in V_{0}$, as x_{1} is not a good-leaf, we have $N_{G}(v) \subseteq$ $\left\{y_{1}, z_{1}, z_{2}\right\}$, implying that V_{0} is a stable set of G. If there are vertices $v_{1}, v_{2} \in V_{0}$ such that $v_{1} z_{1}, v_{2} z_{2} \in E(G)$, then $G\left[\left\{x_{1} y_{1}, y_{1} v_{1}, y_{1} v_{2}, v_{1} z_{1}, v_{2} z_{2}\right\}\right] \cong T_{2,2,1}$,implying that x_{1} is a good-leaf, a contradiction. Hence either $\left|N_{G}\left(V_{0}\right)\right|=2$ or $N_{G}\left(V_{0}\right)=\left\{y_{1}, z_{1}, z_{2}\right\}$ with $\left|V_{0}\right|=1$. Let $L_{0}=G\left[N_{G}\left[V_{0}\right] \cup\left\{z_{1}\right\}\right]$. We then have the following claim.

Claim 1. One of the following holds:
(i) $L_{0} \in\left\{K_{2, t_{0}}+e, K_{2, t_{0}+1}\right\}$ with $V_{0} \subseteq D_{2}(G)$ if $\left|N_{G}\left(V_{0}\right)\right|=2$, or
(ii) $L_{0} \cong K_{2,2}+e$ with $V_{0} \cup\left\{z_{1}\right\} \subseteq D_{3}(G)$ if $\left|N_{G}\left(V_{0}\right)\right|=3$ and $\left|V_{0}\right|=1$.

If there exists a vertex $v_{0} \in V_{0}$ with $y_{1} v_{0} z_{2} \subseteq G$ and a vertex $v \notin\left\{y_{1}, z_{2}\right\} \cup V_{0}$ with $z_{1} v \in E(G)$, then $G\left[\left\{x_{1} y_{1}, y_{1} v_{0}, v_{0} z_{2}\right.\right.$, $\left.\left.y_{1} z_{1}, z_{1} v\right\}\right] \cong T_{2,2,1}$, implying that x_{1} is a good leaf of G, a contradiction. This implies that $N_{G}\left(z_{1}\right) \subseteq\left\{y_{1}, z_{2}\right\} \cup V_{0}$ if $z_{2} \in$ $N_{G}\left(V_{0}\right)$. Let $w_{1}=z_{2}$ if $z_{2} \in N_{G}\left(V_{0}\right)$, and $w_{1}=z_{1}$ if $z_{2} \notin N_{G}\left(V_{0}\right)$. Hence y_{1}, w_{1} are cut-vertices of G. Let $R_{0}=V_{0} \cup\left\{z_{1}\right\}$ if $z_{1} \neq w_{1}$, and $R_{0}=V_{0}$ if $z_{1}=w_{1}$. Choose a vertex $v_{1} \in R_{0}$ and let $\Gamma_{0}=G-N_{G}\left[y_{1}\right] \backslash\left\{v_{1}, w_{1}\right\}$. Then $D_{1}\left(\Gamma_{0}\right)=\left(D_{1}(G)-\right.$ $\left.\left\{x_{1}\right\}\right) \cup\left\{v_{1}\right\}$ and $\kappa^{\prime}\left(\Gamma_{0}-D_{1}\left(\Gamma_{0}\right)\right) \geq 2$. If v_{1} is not a good-leaf of Γ_{0}, then replace graph G by Γ_{0} and repeat the discussion above. Set $w_{0}=y_{1}$. We have obtained a sequence of induced graphs L_{0}, \cdots, L_{p} (see Fig. 1 for an illustration) such that

- $L_{\ell} \in\left\{K_{2, t_{\ell}}+e, K_{2, t_{\ell}+1}\right\}, w_{0}, w_{1}, \cdots, w_{p+1}$ are cut-vertices of $G, R_{\ell}=V\left(L_{\ell}\right) \backslash\left\{w_{\ell}, w_{\ell+1}\right\}, N_{G}\left(R_{\ell}\right)=\left\{w_{\ell}, w_{\ell+1}\right\}, R_{\ell} \subseteq$ $D_{\leq 3}(G)$, and $E\left(G\left[R_{\ell}\right]\right)=\emptyset$ if $\left|R_{\ell}\right| \geq 3$ for each $\ell \in\{0, \cdots, p\}$ and some integer $t_{\ell} \geq 1$.
- $N_{G}\left(w_{0}\right) \subseteq R_{0} \cup\left\{x_{1}\right\}, N_{G}\left(w_{\ell}\right) \subseteq R_{\ell-1} \cup R_{\ell}$ and $\left(V\left(L_{0}\right) \cup \cdots \cup V\left(L_{p}\right)\right) \cap V\left(P_{2}\right) \subseteq\left\{y_{0}\right\}, \ell \in\{1, \cdots, p\}$.
- For any vertex $v_{0} \in R_{p}, v_{0}$ is a good-leaf of Γ_{0} for the block $\Gamma_{1}=G\left[V\left(L_{0} \cup \cdots \cup L_{p}\right) \cup\left\{x_{1}\right\}\right]$ and the subgraph $\Gamma_{0}=$ $\left(G-V\left(\Gamma_{1}\right)\right) \cup\left\{v_{0} w_{p+1}\right\}$ of G.

Fig. 1. An induced subgraph $\Gamma_{1}=G\left[V\left(L_{0} \cup \cdots \cup L_{p}\right) \cup\left\{x_{1}\right\}\right]$ and a subgraph $\Gamma_{0}=\left(G-V\left(\Gamma_{1}\right)\right) \cup\left\{v_{0} w_{p+1}\right\}$ of G.

Then Γ_{1} is an induced subgraph of G satisfying the assumption of Lemma 3.1 (i) (α). Moreover, Γ_{0} has a subgraph $T_{0} \in$ $\left\{T_{2,2,1}, T_{2,1,1}, T_{1,1,1}\right\}$ such that v_{0} is a good-leaf of T_{0}. Choose $e_{1} \in E\left(G\left[\left\{w_{p}\right\} \cup R_{p}\right]\right) \subseteq E\left(\Gamma_{1}\right)$. We then set $H_{1}=T_{0} \cup\left\{e_{1}\right\}$, and so $H_{1} \in\left\{T_{2,2,2}, T_{2,2,1}, T_{2,1,1}\right\}$. Hence (H_{1}, e_{1}) is an x_{1}-net with $E_{G}\left(e_{1}\right) \subseteq E\left(L_{p-1} \cup L_{p}\right) \subseteq E\left(\Gamma_{1}\right)$. If $\left|E_{G}\left(e_{1}\right)\right| \geq 6$, then $L_{p} \not \neq K_{2,2}+e$, and so $V\left(e_{1}\right) \cap D_{2}(G) \neq \emptyset$ by Claim 1. Hence Lemma 3.1(i)(β) holds.
(ii) If x_{i} and x_{j} are not good-leaves, then by Lemma 3.1(i), G has x_{i}-net $\left(H_{i}, e_{i}\right), x_{j}$-net $\left(H_{j}, e_{j}\right)$ and two blocks Γ_{i}, Γ_{j} such that $E_{G}\left(e_{i}\right) \subseteq E\left(\Gamma_{i}\right)$ and $E_{G}\left(e_{j}\right) \subseteq E\left(\Gamma_{j}\right)$. Hence $V\left(e_{i}\right) \cap V\left(e_{j}\right)=\emptyset, E_{G}\left(e_{i}\right) \cap E_{G}\left(e_{j}\right) \subseteq E\left(\Gamma_{i}\right) \cap E\left(\Gamma_{j}\right)=\emptyset$, and so Lemma 3.1(ii) follows.

Lemma 3.2. Let G be a 3-edge-connected reduced graph. Then for $\{i, j\}=\{1,2\}$, any edge $v_{1} v_{2} \in E(G)$ and any vertex $u_{i} \in$ $N_{G}\left(v_{i}\right) \backslash\left\{v_{j}\right\}$, G has subgraphs $T_{1} \cong T_{2} \cong T_{2,2,1}$ and $T_{3} \cong T_{4} \cong T_{2,2,2}$ such that $v_{1} v_{2} \subseteq T_{i}, v_{i} \in D_{3}\left(T_{i}\right), v_{j} \in D_{1}\left(T_{i}\right), u_{i} v_{i} v_{j} \subseteq T_{i+2}$ and $u_{i} \in D_{3}\left(T_{i+2}\right)$.

Proof. Without loss of generality, we consider the case when $i=1$. By Theorem 2.3(iii), $g(G) \geq 4$. As $\delta(G) \geq 3$, there are vertices $w_{1}, z_{1} \in N_{G}\left(v_{1}\right) \backslash\left\{v_{2}\right\}$ with $w_{1} v_{2}, z_{1} v_{2} \notin E(G)$ and vertices $w_{2} \in N_{G}\left(w_{1}\right) \backslash\left\{v_{1}\right\}, z_{2} \in N_{G}\left(z_{1}\right) \backslash\left\{v_{1}\right\}$. We then set $T_{1}=G\left[\left\{v_{1} v_{2}, v_{1} w_{1}, v_{1} z_{1}, w_{1} w_{2}, z_{1} z_{2}\right\}\right]$ with $T_{1} \cong T_{2,2,1}$.

Since $g(G) \geq 4$, there are two vertices $w_{1}, z_{1} \in N_{G}\left(u_{1}\right) \backslash\left\{v_{1}, v_{2}\right\}$ such that $\left\{v_{1}, w_{1}, z_{1}\right\}$ is a stable set of G. As $\delta(G) \geq 3$, there is a vertex $w_{2} \in N_{G}\left(w_{1}\right) \backslash\left\{u_{1}, v_{2}\right\}$. If there is a vertex $z_{2} \in N_{G}\left(z_{1}\right) \backslash\left\{u_{1}, v_{2}, w_{2}\right\}$, then we set $T_{3}=$ $G\left[\left\{u_{1} v_{1}, u_{1} w_{1}, u_{1} z_{1}, v_{1} v_{2}, w_{1} w_{2}, z_{1} z_{2}\right\}\right]$ with $T_{3} \cong T_{2,2,2}$. Otherwise, we must have $\left\{z_{1} v_{2}, z_{1} w_{2}\right\} \subseteq E(G)$. If $w_{1} v_{2} \in E(G)$, then $G\left[\left\{u_{1}, v_{1}, v_{2}, w_{1}, w_{2}, z_{1}\right\}\right] \cong K_{3,3}^{-}$, where $K_{3,3}^{-}$is a graph obtained from the complete bipartite graph $K_{3,3}$ via deleting one edge. As $F\left(K_{3,3}^{-}\right)=2$, it follows by Theorem 2.3(v) that $G\left[\left\{u_{1}, v_{1}, v_{2}, w_{1}, w_{2}, z_{1}\right\}\right]$ is collapsible, contrary to the assumption that G is reduced by Theorem 2.3(ii).

Then $w_{1} v_{2} \notin E(G), w_{1}$ has a neighbor w_{1}^{\prime} outside $\left\{u_{1}, v_{2}, w_{2}\right\}$ and we have $T_{3}=G\left[\left\{u_{1} v_{1}, u_{1} w_{1}, u_{1} z_{1}, v_{1} v_{2}, w_{1} w_{1}^{\prime}\right.\right.$, $\left.\left.z_{1} w_{2}\right\}\right] \cong T_{2,2,2}$.

Lemma 3.3. Let a, b be any two real numbers with $a>0$, and let $M(a, b)=\max \left\{\frac{1}{a}, \frac{3-b}{a}-4\right\}$. If $a x+b \geq 3$, then $f(x)=\frac{x-4}{a x+b-2} \leq$ $M(a, b)$.

Proof. As $f^{\prime}(x)=\frac{b+4 a-2}{(a x+b-2)^{2}}$ and $\lim _{x \rightarrow \infty} f(x)=\frac{1}{a}$, it follows that if $b+4 a=2$, then $f(x) \equiv \frac{1}{a}$. If $b+4 a>2$, then $f^{\prime}(x)>0$, implying that $f(x) \leq \frac{1}{a}$. If $b+4 a<2$, then $f^{\prime}(x)<0$ and since $x \geq \frac{3-b}{a}$, we have $f(x) \leq f\left(\frac{3-b}{a}\right)=\frac{3-b}{a}-4$.

3.2. Proofs

Let a, b be two given real numbers with $0<a<1$. Throughout this section, we assume that $H=L(G)$ is 3-connected graph with $n=|V(H)|$ and $\delta_{N_{1,1,1}}(H) \geq a n+b \geq 3$ for a simple graph G. Then $\operatorname{ess}^{\prime}(G) \geq 3,|E(G)|=|V(H)|=n$. Define

$$
E_{L}(G)=\left\{u v \in E(G):\{u, v\} \cap D_{1}(G) \neq \emptyset\right\} \text { to be the pendant edge set of } G .
$$

Then for any subgraph $T \cong T_{2,2,2}$ of G and any edge $x y \in E(G) \cap E_{L}(T)$, as $L(x y)$ is a leaf of an induced subgraph $L(T) \cong$ $N_{1,1,1}$ of H, we must have

$$
\begin{equation*}
d_{G}(x)+d_{G}(y)=d_{H}(L(x y))+2 \geq a n+b+2 . \tag{2}
\end{equation*}
$$

As in (1), $G_{1}=G-D_{1}(G)$ and G_{0} is the core of G. Let G_{0}^{\prime} be the reduction of G_{0}. By Theorem 2.7, we assume that $\left|V\left(G_{0}^{\prime}\right)\right|>1$. Then $\kappa^{\prime}\left(G_{0}^{\prime}\right) \geq \kappa^{\prime}\left(G_{0}\right) \geq 3$. For any vertex $v \in V\left(G_{0}^{\prime}\right)$, define $\ell(v)=\left|E\left(P I_{G}(v)\right)\right|+d_{G_{0}^{\prime}}(v)$. Then

$$
\begin{equation*}
|E(G)|=\left|E\left(G_{0}^{\prime}\right)\right|+\sum_{v \in V\left(G_{0}^{\prime}\right)}\left|E\left(P I_{G}(v)\right)\right|=\sum_{v \in V\left(G_{0}^{\prime}\right)} \ell(v)-\left|E\left(G_{0}^{\prime}\right)\right| . \tag{3}
\end{equation*}
$$

A vertex v is k-heavy if $\ell(v) \geq k(a n+b+1)$. Define

$$
\begin{align*}
& X^{k}=\left\{v \in V\left(G_{0}^{\prime}\right) \text { is } k \text {-heavy and not }(k+1) \text {-heavy }\right\}, \\
& X_{0}=\cup_{k \geq 1} X^{k}, X_{1}=\Lambda^{\prime}\left(G_{0}\right) \backslash X_{0} . \tag{4}
\end{align*}
$$

Let $Y=\left\{u v \in E\left(G_{0}^{\prime}\right): \ell(u)+\ell(v) \geq a n+b+2\right\}$. Choose a maximal matching M of $G-\left(X_{0} \cup X_{1}\right)$ such that
$|Y \cap M|$ maximized.
Let $Y_{0}=Y \cap M, Y_{1}=M \backslash Y_{0}$. Then

$$
\begin{equation*}
X_{0}, X_{1}, V\left(Y_{0}\right), V\left(Y_{1}\right) \text { are four mutually disjoint subsets of } V\left(G_{0}^{\prime}\right) \tag{6}
\end{equation*}
$$

We have the following discussions on heavy vertices.

Lemma 3.4. For any vertex $v \in V\left(G_{0}^{\prime}\right)$, if $H_{v}=P I_{G_{1}}(v) \cup E_{G_{0}^{\prime}}(v)$ has k leaves which are not good-leaves of H_{v}, then $v \in X^{\ell}$ for some integer $\ell \geq k$.

Proof. Assume that $v_{1}, \cdots, v_{k} \in D_{1}\left(H_{v}\right)$ that are not good-leaves of H_{v}. If $v \in V\left(G_{0}\right)$, then $v \in V\left(G_{1}\right)$ and $H_{v} \cong K_{1, t}$ for some integer $t=d_{G_{0}}(v) \geq 3$ with v_{1}, \cdots, v_{k} as its good-leaves, a contradiction. Hence $P_{G_{0}}(v) \not \approx K_{1}$ is a non-trivial collapsible subgraph, implying that $g\left(P I_{G_{1}}(v)\right) \geq g(G) \geq 3$ and $\kappa^{\prime}\left(P I_{G_{1}}(v)\right) \geq 2$. By Lemma 3.1(ii), H_{v} has v_{1}-net $\left(H_{1}, e_{1}\right)$, \cdots, v_{k}-net $\left(H_{k}, e_{k}\right)$ such that for any $\{i, j\} \subseteq\{1, \cdots, k\}, V\left(e_{i}\right) \cap V\left(e_{j}\right)=\emptyset$ and $E_{G}\left(e_{i}\right) \cap E_{G}\left(e_{j}\right)=\emptyset$.

Then $H_{i} \in\left\{T_{2,2,2}, T_{2,2,1}, T_{2,1,1}\right\}$ with $D_{3}\left(H_{i}\right)=\left\{u_{i}\right\}$. Furthermore, for any vertex $w_{i} \in N_{H_{i}}\left(u_{i}\right) \cap D_{1}\left(H_{i}\right)$, we have $w_{i} \in$ $N_{G_{0}}(v) \backslash\left\{v_{i}\right\}$. Then there is an edge $w_{i} z_{i} \in E\left(G_{0}^{\prime}-v\right)$ such that $z_{i} w_{i} v \subseteq G_{0}^{\prime}$. As $E\left(G_{0}^{\prime}\right) \subseteq E(G)$, the subgraph $P I_{G}\left(w_{i} z_{i} v\right)$ of G is connected, and so it contains an edge $w_{i}^{\prime} z_{i}^{\prime}$ with $u_{i} w_{i}^{\prime} z_{i}^{\prime} \subseteq G$. We set $H_{i}:=\left(H_{i}-u_{i} w_{i}\right) \cup u_{i} w_{i}^{\prime} z_{i}^{\prime}$. Hence G always has a subgraph $H_{i} \cong T_{2,2,2}$ with $e_{i} \in E_{L}\left(H_{i}\right)$. Assume that $e_{i}=x_{i} y_{i}$. By (2), $\left|E_{G}\left(e_{i}\right)\right| \geq d_{G}\left(x_{i}\right)+d_{G}\left(y_{i}\right)-1 \geq a n+b+1$. Thus $\ell(v) \geq\left(\left|E_{G}\left(e_{1}\right)\right|+\cdots+\left|E_{G}\left(e_{k}\right)\right|+k-d_{G_{0}^{\prime}}(v)\right)+d_{G_{0}^{\prime}}(v) \geq k(a n+b+1)$. By (4), $v \in X^{\ell}$ for some integer $\ell \geq k$.

Lemma 3.5. Each of the following holds.
(i) For any vertex $v \in \Lambda^{\prime}\left(G_{0}\right)$, either $v \in X_{0}$ or $N_{G_{0}^{\prime}}(v) \subseteq X_{0}$.
(ii) For any edge $u v \in E\left(G_{0}^{\prime}\right)$, either $u v \in Y$ or $N_{G_{0}^{\prime}}(\{u, v\}) \subseteq X_{0}$.
(iii) For any vertex $v \in X_{0}$, if $\left|N_{G_{0}^{\prime}}(v) \cap\left(X_{1} \cup V\left(Y_{1}\right)\right)\right|=k$, then $v \in X^{\ell}$ for some integer $\ell \geq k$.
(iv) For any path $u_{1} v_{1} v_{2} u_{2}$ with $\left\{u_{1}, u_{2}\right\} \subseteq X_{1} \cup V\left(Y_{1}\right), \max \left\{\ell\left(v_{1}\right), \ell\left(v_{2}\right)\right\} \geq 2(a n+b)$.

Proof. (i) Assume that $v \in \Lambda^{\prime}\left(G_{0}\right) \backslash X_{0}$. Choose a vertex $w \in N_{G_{0}^{\prime}}(v)$. It suffices to prove that $w \in X_{0}$. By Lemma 3.2, G_{0}^{\prime} has a subgraph $T_{1}=G_{0}^{\prime}\left[\left\{w v, w x_{1}, x_{1} y_{1}, w x_{2}, x_{2} y_{2}\right\}\right] \cong T_{2,2,1}$ for some vertices $x_{1}, x_{2}, y_{1}, y_{2}$. Let $L_{1}=P I_{G_{1}}(w) \cup$ $\left\{w v, w x_{1}, w x_{2}\right\} \subseteq G$. Suppose first that v is a good-leaf of L_{1}. As $E\left(G_{0}^{\prime}\right) \subseteq E(G), P I_{G}\left(L_{1}\right) \cup P I_{G}\left(y_{1}\right) \cup P I_{G}\left(y_{2}\right) \cup\left\{x_{1} y_{1}, x_{2} y_{2}\right\}$ is connected and it has a subgraph $T_{2} \cong T_{2,2,1}$ such that $v \in D_{1}\left(T_{2}\right) \cap N_{T_{2}}\left(D_{3}\left(T_{2}\right)\right)$. Hence for any edge $v v_{1} \subseteq P I_{G}(v)$, $T_{2} \cup\left\{v v_{1}\right\} \cong T_{2,2,2}$. It follows by (2) that $d_{G}(v)+d_{G}\left(v_{1}\right) \geq a n+b+2$, and so $\ell(v)=\left|E\left(P I_{G}(v)\right)\right|+d_{G_{0}^{\prime}}(v) \geq\left(d_{G}(v)+\right.$ $\left.d_{G}\left(v_{1}\right)-1-d_{G_{0}^{\prime}}(v)\right)+d_{G_{0}^{\prime}}(v) \geq a n+b+1$. This implies that $v \in X_{0}$, a contradiction. Thus v is not a good-leaf of L_{1}. By Lemma 3.4, $w \in X_{0}$. This proves Lemma 3.5(i).
(ii) Assume that $u v \notin Y$. If $\{u, v\} \nsubseteq V(G)$, then by Lemma 3.5(i), $\{u, v\} \cap X_{0} \neq \emptyset$. Thus $\ell(u)+\ell(v) \geq a n+b+4$, implying that $u v \in Y$, a contradiction. Hence $\{u, v\} \subseteq V(G)$. Choose a vertex $w \in N_{G_{0}^{\prime}}(u) \cup N_{G_{0}^{\prime}}(v)$ (say $w \in N_{G_{0}^{\prime}}(u)$). By Lemma 3.2, G_{0}^{\prime} has a subgraph $T_{3}=G_{0}^{\prime}\left[\left\{w u, u v, w x_{1}, x_{1} y_{1}, w x_{2}, x_{2} y_{2}\right\}\right] \cong T_{2,2,2}$ for some vertices $x_{1}, x_{2}, y_{1}, y_{2}$. Let $L_{2}=P I_{G_{1}}(w) \cup$ $\left\{w u, w x_{1}, w x_{2}\right\} \subseteq G$. If u is a good-leaf of L_{2}, then as $P I_{G}\left(L_{2}\right) \cup P I_{G}\left(y_{1}\right) \cup P I_{G}\left(y_{2}\right) \cup\left\{x_{1} y_{1}, x_{2} y_{2}\right\}$ is connected, it has a subgraph $T_{4} \cong T_{2,2,1}$ such that $u \in D_{1}\left(T_{4}\right) \cap N_{T_{4}}\left(D_{3}\left(T_{4}\right)\right)$. Hence $T_{4} \cup\{u v\} \cong T_{2,2,2}$. Then $d_{G}(u)+d_{G}(v) \geq a n+b+2$ and $\ell(u)+\ell(v)=d_{G_{0}^{\prime}}(u)+d_{G_{0}^{\prime}}(v)=d_{G}(u)+d_{G}(v) \geq a n+b+2$, implying that $u v \in Y$, a contradiction. Thus u is not a good-leaf of L_{2}, and so $w \in X_{0}$ by Lemma 3.4. This proves Lemma 3.5(ii).
(iii) If there is a vertex $v_{0} \in N_{G_{0}^{\prime}}(v) \cap\left(X_{1} \cup V\left(Y_{1}\right)\right)$ which is a good-leaf of $H_{v}=P I_{G_{1}}(v) \cup G_{0}^{\prime}\left[N_{G_{0}^{\prime}}[v]\right]$, then by the same analysis above, there is a subgraph $T_{5} \cong T_{2,2,1}$ and an edge $v_{0} u_{0} \in Y_{1} \cup E\left(P I_{G}\left(v_{0}\right)\right)$ such that $T_{5} \cup\left\{v_{0} u_{0}\right\} \cong T_{2,2,2}$, forcing v_{0} is heavy if $u_{0} \in V\left(P I_{G}(v)\right)$ or $v_{0} u_{0} \in Y_{0}$ if $v_{0} u_{0} \in Y_{1}$, which is impossible. Thus $N_{G_{0}^{\prime}}(v) \cap\left(X_{1} \cup V\left(Y_{1}\right)\right)$ are not good-leaves of H_{v} with $\left|N_{G_{0}^{\prime}}(v) \cap\left(X_{1} \cup V\left(Y_{1}\right)\right)\right|=k$. By Lemma 3.4, $v \in X^{\ell}$ for some integer $\ell \geq k$.
(iv) By Lemma 3.5(i) and (ii), $\left\{v_{1}, v_{2}\right\} \subseteq X_{0}$. For $i \in\{1,2\}$, let $L_{i}=G\left[V\left(P I_{G}\left(v_{i}\right)\right) \cup N_{G_{0}^{\prime}}\left(v_{i}\right)\right]$. As $u_{i} \in X_{1} \cap V\left(Y_{1}\right)$, using arguments similar to those in the proof for Lemma 3.5(i) and (ii), we conclude that u_{i} is not a good-leaf of L_{i}. If v_{2} is not a good leaf of L_{1}, then by Lemma 3.4, $\ell\left(v_{1}\right) \geq 2(a n+b+1)$, and so Lemma $3.5(i v)$ follows. We then assume that v_{2} is a good leaf of L_{1} and v_{1} is a good leaf of L_{2}. Then there exists an edge $v v_{1} \subseteq E_{L}\left(T_{2,2,2}\right) \cap E\left(L_{2}\right)$. As u_{2} is not a good-leaf of L_{2} and by Lemma 3.1(i), L_{2} has an edge $v_{2} v_{3} \in E_{L}\left(T_{2,2,2}\right) \cap E\left(L_{2}\right)$ with $v_{2} \in D_{\leq 3}(G)$ and $v_{3} \notin N_{G}(v)$. Then $\ell(v)+\ell\left(v_{1}\right) \geq a n+b+2, \ell\left(v_{2}\right)+\ell\left(v_{3}\right) \geq a n+b+2$ and $\left\{v, v_{1}\right\} \cap\left\{v_{2}, v_{3}\right\} \subseteq\left\{v_{2}\right\}$, and so $\ell(v) \geq|E(P I(v))|-d_{G_{0}^{\prime}}(v) \geq$ $d_{G}(v)+d_{G}\left(v_{1}\right)+d_{G}\left(v_{2}\right)+d_{G}\left(v_{3}\right)-2-\left(d_{G}\left(v_{2}\right)-1\right) \geq 2(a n+b+2)-d_{G}\left(v_{2}\right)-1 \geq 2(a n+b)$. Thus Lemma 3.5(iv) always holds.

By Lemma 3.5(i), $E\left(G_{0}^{\prime}\left[X_{1}\right]\right)=\emptyset$ and for any vertex $x \in X_{1}, N_{G_{0}^{\prime}}(x) \subseteq X_{0}$. Throughout the rest of Subsection 3.2, we assume that X_{0}, X_{1} are defined as in (4), and a maximum matching satisfying (5) is fixed and so Y_{0}, Y_{1} are defined as before. Thus (6) holds. By Lemma 3.5(ii), P_{3} is not a subgraph of $G_{0}^{\prime}\left[X_{1} \cup V\left(Y_{0} \cup Y_{1}\right)\right]$ and $N_{G_{0}^{\prime}}\left(Y_{1}\right) \subseteq X_{0}$. Define

$$
\begin{equation*}
H_{0}=G_{0}^{\prime}\left[X_{0} \cup V\left(Y_{0}\right)\right], H_{1}=G_{0}^{\prime}\left[X_{0} \cup X_{1} \cup V\left(Y_{0}\right) \cup V\left(Y_{1}\right)\right] \tag{7}
\end{equation*}
$$

Let $\bar{X}=V\left(G_{0}^{\prime}\right) \backslash V\left(H_{1}\right)$. By the choice of $M, E\left(G_{0}^{\prime}[\bar{X}]\right)=\emptyset$. By Lemma 3.5(i) and (ii), there is always an edge in $E\left(H_{0}\right)$. As G_{0}^{\prime} is reduced, we conclude that
both H_{0} and H_{1} are reduced graphs with $\left|E\left(H_{0}\right)\right|>0$.
Let $\left|X_{0}\right|=x_{0},\left|X^{k}\right|=x^{k},\left|X_{1}\right|=x_{1},\left|Y_{0}\right|=y_{0}$ and $\left|Y_{1}\right|=y_{1}$. As $k \geq 1$ is an integer, we have $x_{0}=\sum_{k} x^{k} \leq \sum_{k} k x^{k}$.
Lemma 3.6. $x_{0}+y_{0}+y_{1} \geq \alpha^{\prime}\left(G_{0}^{\prime}\right)$.
Proof. Let M^{\prime} be any maximum matching of $G_{0}^{\prime}, M_{1}=\left\{e \in M^{\prime}: V(e) \cap X_{0} \neq \emptyset\right\}$ and $M_{2}=M^{\prime} \backslash M_{1}$. Then $\left|M_{1}\right| \leq\left|X_{0}\right|$. If there is an edge $u v \in M_{2}$ with $\{u, v\} \cap X_{1} \neq \emptyset$, then by Lemma 3.5(i), $\{u, v\} \cap X_{0} \neq \emptyset$, and so $u v \in M_{1}$, a contradiction. Hence $M_{2} \subseteq E\left(G_{0}^{\prime}\left[V\left(Y_{0} \cup Y_{1}\right) \cup \bar{X}\right]\right)$. By the choice of M, it must have $\left|M_{2}\right| \leq|M|=\left|Y_{0}\right|+\left|Y_{1}\right|$, implying that $\alpha^{\prime}\left(G_{0}^{\prime}\right)=$ $\left|M_{1}\right|+\left|M_{2}\right| \leq x_{0}+y_{0}+y_{1}$.

3.2.1. Proof of Theorem 1.6

We assume that $L(G)$ is not Hamiltonian. By Theorem 2.7(iii), G_{0}^{\prime} is not supereulerian. It suffices to prove the existence of $\mathcal{F}(a, b)$ such that $G_{0}^{\prime} \in \mathcal{F}(a, b)$. Define $M(a, b)$ as in Lemma 3.3, and let $B(a, b)=\max \left\{\left\lceil\frac{5 M(a, b)}{2}\right\rceil,\lceil 4 M(a, b)-5\rceil,\left\lceil\frac{2-b}{a}\right\rceil, 10\right\}$.

Claim 2. $\left|V\left(G_{0}^{\prime}\right)\right| \leq B(a, b)$.
Proof. We argue by contradiction and assume that $\left|V\left(G_{0}^{\prime}\right)\right|>B(a, b)$. Then $\left|V\left(G_{0}^{\prime}\right)\right| \geq 11$ implies that $\alpha^{\prime}\left(G_{0}^{\prime}\right) \geq 5$ by Theorem 2.4. If $Y_{1}=\emptyset$, then by Lemma 3.6, $x_{0}+y_{0} \geq \alpha^{\prime}\left(G_{0}^{\prime}\right) \geq 5$; if $Y_{1} \neq \emptyset$, then $x_{0} \geq 4$. Hence we always have $\left|V\left(H_{0}\right)\right|=x_{0}+2 y_{0} \geq 4$ and $H_{0} \notin\left\{2 K_{1}, K_{2}\right\}$. By (8) and Theorem 2.3(iv) and (v), $2 \leq F\left(H_{0}\right) \leq 2\left(x_{0}+2 y_{0}\right)-\left|E\left(H_{0}\right)\right|-2$, and so

$$
\begin{equation*}
\left|E\left(H_{0}\right)\right| \leq 2 x_{0}+4 y_{0}-4 \leq 2 \sum_{k} k x^{k}+4 y_{0}-4 \tag{9}
\end{equation*}
$$

As $N_{G_{0}^{\prime}}\left(V\left(Y_{1}\right)\right) \subseteq X_{0}$ and by Lemma 3.5(iii), $\sum_{k} k x^{k} \geq\left|E\left(V\left(Y_{1}\right), X_{0}\right)\right| \geq 4\left|Y_{1}\right|$, implying that $\left|Y_{1}\right| \leq \frac{1}{4} \sum_{k} k x^{k} \leq \frac{1}{4}\left(\sum_{k} k x^{k}+\right.$ $\left.y_{0}\right)$. As $n \geq\left|V\left(G_{0}^{\prime}\right)\right|>\left\lceil\frac{2-b}{a}\right\rceil$, $a n+b>2$. By Lemma 3.3, we have $M(a, b) \geq \frac{n-4}{a n+b-2}$. As $\left|V\left(G_{0}^{\prime}\right)\right|>\max \left\{\left\lceil\frac{5 M(a, b)}{2}\right\rceil\right.$, $\lceil 4 M(a, b)-$ $57\}$ and by Theorem 2.4, we have

$$
\begin{equation*}
\sum_{k} k x^{k}+y_{0} \geq \alpha^{\prime}\left(G_{0}^{\prime}\right)-\left|Y_{1}\right|>M(a, b) \geq \frac{n-4}{a n+b-2} \tag{10}
\end{equation*}
$$

However, by (3), (4), (9) and (10), we obtain the following contradiction:

$$
\begin{aligned}
|E(G)| & =\sum_{v \in V\left(G_{0}^{\prime}\right)} \ell(v)-\left|E\left(G_{0}^{\prime}\right)\right| \geq \sum_{v \in X_{0} \cup V\left(Y_{0}\right)} \ell(v)-\left|E\left(H_{0}\right)\right| \\
& \geq\left(\sum_{k} k x^{k}\right)(a n+b+1)+y_{0}(a n+b+2)-\left(2 \sum_{k} k x^{k}+4 y_{0}-4\right) \\
& \geq\left(\sum_{k} k x^{k}+y_{0}\right)(a n+b+1)-2 \sum_{k} k x^{k}-3 y_{0}+4 \\
& \geq\left(\sum_{k} k x^{k}+y_{0}\right)(a n+b-2)+4>n=|E(G)|
\end{aligned}
$$

Hence $\left|V\left(G_{0}^{\prime}\right)\right| \leq B(a, b)$.
Let $\mathcal{F}(a, b)=\left\{F\right.$: F is a reduced nonsupereulerian graph such that $\kappa^{\prime}(F) \geq 3$ and $\left.|V(F)| \leq B(a, b)\right\}$. By Claim $2, \mathcal{F}(a, b)$ is a finite family with $G_{0}^{\prime} \in \mathcal{F}(a, b)$. This completes the proof of Theorem 1.6.

3.2.2. Proof of Theorem 1.5

Let $m>1$ be an integer. For circular indexing purpose, we shall use \mathbb{Z}_{m} to denote the (additive) cyclic group or order m. Assume that $H=L(G)$ satisfies the hypotheses of Theorem 1.5 with $a=\frac{1}{10}$ and $b=\frac{1}{2}$. If $G_{0}^{\prime}=K_{1}$, then by Theorem 2.3(i), G_{0} is collapsible and also supereulerian. By Theorem 2.7(ii) and (iii), $L(G)$ is Hamiltonian. We then assume that $\left|V\left(G_{0}^{\prime}\right)\right|>1$ and G_{0}^{\prime} is not supereulerian with $\kappa^{\prime}\left(G_{0}^{\prime}\right) \geq \kappa^{\prime}\left(G_{0}\right) \geq 3$. If $\left|V\left(G_{0}^{\prime}\right)\right|<10$, then by Theorem $2.3(v i), G_{0}$ must be supereulerian. By Theorem $2.3(v)$ and $\kappa^{\prime}\left(G_{0}^{\prime}\right) \geq 3$, and by Theorem 2.4 , we may assume that

$$
\begin{equation*}
F\left(G_{0}^{\prime}\right) \geq 3,\left|V\left(G_{0}^{\prime}\right)\right| \geq 10 \text { and } \alpha^{\prime}\left(G_{0}^{\prime}\right) \geq 5 \tag{11}
\end{equation*}
$$

Claim 3. $\sum_{k} k x^{k}+y_{0} \leq 10$.
Proof. We argue by contradiction and assume that $\sum_{k} k x^{k}+y_{0} \geq 11$. If $Y_{1}=\emptyset$, then by Lemma 3.6, $\sum_{k} x^{k}+y_{0} \geq \alpha^{\prime}\left(G_{0}^{\prime}\right) \geq 5$. If $Y_{1} \neq \emptyset$, then by Lemma 3.5(ii), $\sum_{k} x^{k} \geq 4$. Hence $\left|V\left(H_{0}\right)\right|=\sum_{k} x^{k}+2 y_{0} \geq 4$ and $H_{0} \notin\left\{2 K_{1}, K_{2}\right\}$. By Theorem 2.3(v), we have $F\left(H_{0}\right) \geq 2$. By (8) and by Theorem $2.3(v), 2 \leq F\left(H_{0}\right)=2\left(\sum_{k} x^{k}+2 y_{0}\right)-\left|E\left(H_{0}\right)\right|-2$, where $F\left(H_{0}\right)=2$ only if $H_{0} \cong K_{2, t}$ for some integer $t>0$. We have show first that $\left|E\left(H_{0}\right)\right| \leq 3 \sum_{k} k x^{k}+4 y_{0}-5$. If $y_{0} \leq 2$, then as $\sum_{k} k x^{k} \geq 11-y_{0}>1$, $\left|E\left(H_{0}\right)\right| \leq 2 \sum_{k} x^{k}+4 y_{0}-4 \leq 2 \sum_{k} k x^{k}+4 y_{0}-\left(5-\sum_{k} k x^{k}\right)=3 \sum_{k} k x^{k}+4 y_{0}-5$. Assume that $y_{0} \geq 3$. Then $H_{0} \nsubseteq K_{2, t}$ for any integer $t \geq 2$ and so by Theorem 2.3(v),F(H0) ≥ 3, leading also to $\left|E\left(H_{0}\right)\right| \leq 2 \sum_{k} k x^{k}+4 y_{0}-5 \leq 3 \sum_{k} k x^{k}+4 y_{0}-5$. However, by (3), (4) and as $|E(G)| \geq 116$, we obtain the following contradiction:

$$
\begin{aligned}
|E(G)| & =\sum_{v \in V\left(G_{0}^{\prime}\right)} \ell(v)-\left|E\left(G_{0}^{\prime}\right)\right| \geq \sum_{v \in V\left(H_{0}\right)} \ell(v)-\left|E\left(H_{0}\right)\right| \\
& \geq\left(\sum_{k} k x^{k}\right) \times \frac{|E(G)|+15}{10}+y_{0} \times \frac{|E(G)|+25}{10}-\left(3 \sum_{k} k x^{k}+4 y_{0}-5\right) \\
& \geq|E(G)|+\left(\sum_{k} k x^{k}+y_{0}-10\right) \times \frac{|E(G)|-15}{10}-10>|E(G)| .
\end{aligned}
$$

Hence $\sum_{k} k x^{k}+y_{0} \leq 10$.
Claim 4. $\left|V\left(G_{0}^{\prime}\right)\right| \geq 10+9 y_{0}$.
Proof. For any edge $u v \in Y_{0}$, as $|E(G)| \geq 116$, we have $d_{G_{0}^{\prime}}(u)+d_{G_{0}^{\prime}}(v)=\ell(u)+\ell(v) \geq \frac{|E(G)|+25}{10}>14$. Then $d_{G_{0}^{\prime}}(u)+$ $d_{G_{0}^{\prime}}(v) \geq 15$, and so $2\left|E\left(G_{0}^{\prime}\right)\right|=\sum_{v \in V\left(Y_{0}\right)} d_{G_{0}^{\prime}}(v)+\sum_{v \in V\left(G_{0}^{\prime}\right) \backslash V\left(Y_{0}\right)} d_{G_{0}^{\prime}}(v) \geq 15\left|Y_{0}\right|+3\left(\left|V\left(G_{0}^{\prime}\right)\right|-2\left|Y_{0}\right|\right)=3\left|V\left(G_{0}^{\prime}\right)\right|+9\left|Y_{0}\right|$. By Theorem 2.3(v) and (11), $3 \leq F\left(G_{0}^{\prime}\right) \leq 2\left|V\left(G_{0}^{\prime}\right)\right|-\frac{1}{2}\left(3\left|V\left(G_{0}^{\prime}\right)\right|+9\left|Y_{0}\right|\right)-2$, implying that $\left|V\left(G_{0}^{\prime}\right)\right| \geq 10+9 y_{0}$.

We shall distinguish the following cases to finish our proof.

Case 1. $X_{1} \cup Y_{1}=\emptyset$.

By Lemma 3.6, $\alpha^{\prime}\left(G_{0}^{\prime}\right) \leq\left|X_{0}\right|+\left|Y_{0}\right| \leq 10$. By Theorem 2.4, $\left|V\left(G_{0}^{\prime}\right)\right| \leq 25$ and by Claim 4, $\left|Y_{0}\right| \leq 1$. Let $S_{0}=\emptyset$ if $Y_{0}=\emptyset$, or $S_{0}=\left\{v_{e} \in V(e)\right\}$ if $Y_{0}=\{e\}$. Let $A=X_{0} \cup S_{0}$. Then $\Lambda^{\prime}\left(G_{0}\right) \subseteq A$ with $|A| \leq 10$. If G_{0}^{\prime} has a dominating eulerian subgraph containing A, then $L(G)$ is Hamiltonian by Theorem 2.7 (iii). If not, then by Theorem 2.2, G_{0}^{\prime} can be contracted to a graph $L_{0} \cong P(10)$ such that the preimage of each vertex of L_{0} contains at least one vertex in A. Then $\left|X_{0}\right|+\left|Y_{0}\right|=10$ and for any vertex $u \in V\left(L_{0}\right)$, we have $\ell(u)=d_{L_{0}}(u)+\left|E\left(P I_{G}(u)\right)\right| \geq \frac{|E(G)|+15}{10}$. As $|E(G)| \geq \sum_{u \in V\left(L_{0}\right)} \ell(u)-\left|E\left(L_{0}\right)\right| \geq 10 \times \frac{|E(G)|+15}{10}-15$, we have $\ell(u)=\frac{|E(G)|+15}{10}$ and $\left|E\left(P I_{G}(u)\right)\right|=\frac{|E(G)|-15}{10}$. Hence $\left|A_{G}\left(P I_{G}(u)\right)\right|=1$. Assume that $A_{G}\left(P I_{G}(u)\right)=\{u\}$. If $P I_{G}(u)-$ u has an edge $x y$, then as $x y \in E_{L}\left(T_{2,2,2}\right),\left|E\left(P I_{G}(u)\right)\right| \geq d_{G}(x)+d_{G}(y)-1 \geq \frac{|E(G)|+15}{10}$, a contradiction. Thus $P I_{G}(u) \cong$ $K_{1, \frac{|E(G)|-15}{10}}$ and $G \cong P(10)^{\prime}$.

Case 2. $X_{1} \cup Y_{1} \neq \emptyset$.
Claim 5. $x_{0}+y_{0} \leq \sum_{k} k x^{k}+y_{0} \leq 9$.
Proof. By Claim 3, $\sum_{k} k x^{k}+y_{0} \leq 10$. We then assume by contradiction that $\sum_{k} k x^{k}+y_{0}=10$, and so $x_{0}+y_{0} \leq 10$. Recall that $H_{1}=G_{0}^{\prime}\left[X_{0} \cup X_{1} \cup V\left(Y_{0} \cup Y_{1}\right)\right],\left|X_{1}\right|=x_{1}$ and $\left|Y_{1}\right|=y_{1}$. For any vertex $x \in X_{1}$ and edge $u v \in Y_{1}$, by Lemma 3.5 (i), (ii), $N_{G_{0}^{\prime}}(x)=N_{H_{1}}(x) \subseteq X_{0}$ and $N_{G_{0}^{\prime}}(\{u, v\})=N_{H_{1}}(\{u, v\}) \subseteq X_{0}$. We obtain the following conclusions.
(a) $\left|E\left(H_{0}\right)\right| \geq 15+x_{1}+y_{0}+y_{1}$.

Since $|E(G)| \geq\left|X_{0}\right| \times \frac{|E(G)|+15}{10}+\left|Y_{0}\right| \times \frac{|E(G)|+25}{10}+\left|X_{1}\right|+\left|Y_{1}\right|-\left|E\left(H_{0}\right)\right|=|E(G)|+15+x_{1}+y_{0}+y_{1}-\left|E\left(H_{0}\right)\right|$, it follows that $\left|E\left(H_{0}\right)\right| \geq 15+x_{1}+y_{0}+y_{1}$.
(b) $\left|E\left(H_{1}\right)\right| \geq 15+4 x_{1}+y_{0}+6 y_{1} \geq 19$.

It follows by (a) that $\left|E\left(H_{1}\right)\right| \geq\left|E\left(H_{0}\right)\right|+\left|E\left(X_{1} \cup Y_{1}, X_{0}\right)\right|+\left|Y_{1}\right| \geq\left|E\left(H_{0}\right)\right|+3 x_{1}+5 y_{1} \geq 15+4 x_{1}+y_{0}+6 y_{1} \geq 19$.
(c) $H_{1} \not \neq K_{2, t}$ for any $t \geq 1$.

If $H_{1} \cong K_{2, t}$ for some integer $t \geq 1$, then as $\kappa^{\prime}\left(G_{0}^{\prime}\right) \geq 3$, we have $\bar{X} \neq \emptyset$ with $N_{G}(\bar{X}) \subseteq X_{0}$, and so G_{0}^{\prime} is collapsible, a contradiction.
(d) $y_{0} \geq 2$.
$\overline{\text { By }(b), H_{1}} \notin\left\{2 K_{1}, K_{2}\right\}$ and so by Theorem $2.3(v)$, we have $F\left(H_{1}\right) \geq 2$, with equality only if $H_{1} \cong K_{2, t}$ for some integer $t \geq 1$. By (c), we must have $F\left(H_{1}\right) \geq 3$. Thus by (8) and Theorem $2.3(v)$, as well as the assumption $x_{0}+y_{0} \leq 10$, we have $3 \leq F\left(H_{1}\right)=2\left|V\left(H_{1}\right)\right|-\left|E\left(H_{1}\right)\right|-2=2\left(x_{0}+x_{1}+2\left(y_{0}+y_{1}\right)\right)-\left|E\left(H_{1}\right)\right|-2 \leq 2 x_{0}+3 y_{0}-2\left(x_{1}+y_{1}\right)-17 \leq 20+y_{0}-$ $17-2\left(x_{1}+y_{1}\right)=y_{0}+3-2\left(x_{1}+y_{1}\right)$. This implies that $y_{0} \geq 2\left(x_{1}+y_{1}\right) \geq 2$.
(e) $\left|V\left(H_{1}\right)\right| \leq 18$.

By (d) and as $\sum_{k} k x^{k}+y_{0}=10$, we have $x_{0} \leq \operatorname{sum}_{k} k x^{k} \leq 8$. Then $3 x_{1}+4 y_{1} \leq\left|E\left(X_{1} \cup V\left(Y_{1}\right), X_{0}\right)\right| \leq \sum_{k} k x^{k} \leq 8$ by Lemma 3.5 (iii), implying that $x_{1}+y_{1} \leq 2$. If $y_{1}=2$, then $x_{0}=8, y_{0}=2$ and $x_{1}=0$, whence $\left|V\left(H_{1}\right)\right|=4+8+4=16$. If $y_{1}=1$, then either $x_{1}=1, x_{0} \geq 7$ and $y_{0} \leq 3$, whence $\left|V\left(H_{1}\right)\right|=16$; or $x_{1}=0, x_{0} \geq 4$ and $y_{0} \leq 3$, whence $\left|V\left(H_{1}\right)\right| \leq 18$. If $y_{1}=0$, then either $x_{1}=2, x_{0} \geq 6$ and $y_{0} \leq 4$, whence $\left|V\left(H_{1}\right)\right| \leq 16$; or $x_{1}=1, x_{0} \geq 3$ and $y_{0} \leq 7$, whence $\left|V\left(H_{1}\right)\right| \leq 18$. (f) $y_{0}=2$.

If $y_{0} \geq 3$, then by Claim 4, $\left|V\left(G_{0}^{\prime}\right)\right| \geq 37$. By (b) and (e), $\left|E\left(H_{1}\right)\right| \geq 19,\left|V\left(H_{1}\right)\right| \leq 18$, and so $\left|E\left(G_{0}^{\prime}\right)\right|=\left|E\left(H_{1}\right)\right|+$ $\left|E_{G_{0}^{\prime}}\left(V\left(H_{1}\right), \bar{X}\right)\right| \geq 19+3\left(\left|V\left(G_{0}^{\prime}\right)\right|-18\right)=3\left|V\left(G_{0}^{\prime}\right)\right|-35$ as $E\left(G_{0}^{\prime}[\bar{X}]\right)=\emptyset$. Hence $F\left(G_{0}^{\prime}\right)=2\left|V\left(G_{0}^{\prime}\right)\right|-\left|E\left(G_{0}^{\prime}\right)\right|-2 \leq$ $33-\left|V\left(G_{0}^{\prime}\right)\right|<0$, contrary to the fact that G_{0}^{\prime} is reduced. Hence $y_{0} \leq 2$. By (d), $y_{0}=2$.
$(g)\left|V\left(H_{1}\right)\right| \leq 16$.
As $3 x_{1}+4 y_{1} \leq\left|E\left(X_{1} \cup V\left(Y_{1}\right), X_{0}\right)\right| \leq \sum_{k} k x^{k} \leq 8, x_{1}+y_{1} \leq 2$. By (f) and as $\sum_{k} k x^{k}+y_{0}=10$, we have $y_{0}=2, x_{0} \leq 8$, and so $\left|V\left(H_{1}\right)\right|=x_{0}+x_{1}+2\left(y_{0}+y_{1}\right) \leq x_{0}+2 y_{0}+2\left(x_{1}+y_{1}\right) \leq 16$.

By Claim 4 and (f), we have $\left|V\left(G_{0}^{\prime}\right)\right| \geq 28$. It follows by (g) that $|\bar{X}|=\left|V\left(G_{0}^{\prime}\right)\right|-\left|V\left(H_{1}\right)\right| \geq\left|V\left(G_{0}^{\prime}\right)\right|-16 \geq 12$, and so $F\left(G_{0}^{\prime}\right) \leq 2\left|V\left(G_{0}^{\prime}\right)\right|-\left(\left|E\left(H_{1}\right)\right|+3|\bar{X}|\right)-2 \leq 0$, contrary to the fact that G_{0}^{\prime} is reduced. Hence $\sum_{k} k x^{k}+y_{0} \leq 9$.

By Lemma 3.5, for any $S \subseteq X_{1} \cup V\left(Y_{1}\right), N_{G_{0}^{\prime}}(S) \subseteq X_{0}$. Then $\sum_{k} k x^{k} \geq\left|E\left(V\left(Y_{1}\right), X_{0}\right)\right|+\left|E\left(X_{1}, X_{0}\right)\right| \geq 3 x_{1}+4 y_{1}$. By Claim 5, we have $3 x_{1}+4 y_{1} \leq 9$, implying that

$$
\begin{equation*}
y_{1} \leq 2 \text { and if } Y_{1} \neq \emptyset \text {, then } x_{1}+y_{1} \leq 2 \text {; if } Y_{1}=\emptyset \text {, then } x_{1} \leq 3 \tag{12}
\end{equation*}
$$

By Lemma 3.6 and Claim 5, $\alpha^{\prime}\left(G_{0}^{\prime}\right) \leq x_{0}+y_{0}+y_{1} \leq 9+y_{1} \leq 11$. By Theorem 2.4, $\left|V\left(G_{0}^{\prime}\right)\right| \leq 28$. By Claim $4, y_{0} \leq 2$. Assume first that there exists an edge $e_{1}=u_{1} v_{1} \in Y_{0}$ and vertices $u_{2}, v_{2} \in \bar{X}$ such that $u_{1} u_{2}, v_{1} v_{2} \in E\left(G_{0}^{\prime}\right)$. Then $u_{1} u_{2} \in Y_{0}$, since otherwise, $v_{1} \in X_{0}$ by Lemma 3.5, contrary to the fact that $V\left(Y_{0}\right) \cap X_{0}=\emptyset$. By symmetry, $v_{1} v_{2} \in Y_{0}$. We then obtain a subset $Y_{0}^{\prime}=\left(Y_{0} \backslash\left\{u_{1} v_{1}\right\}\right) \cup\left\{u_{1} u_{2}, v_{1} v_{2}\right\}$ and a matching $M^{\prime}=\left(M \backslash\left\{u_{1} v_{1}\right\}\right) \cup\left\{u_{1} u_{2}, v_{1} v_{2}\right\}$ such that $Y_{0}^{\prime}=Y \cap M^{\prime}$ and $\left|Y_{0}^{\prime}\right|=y_{0}+1$, contrary to (5). Hence for any edge $e \in Y_{0}$, there is a vertex $u_{e} \in V(e)$ such that $N_{G_{0}^{\prime}}\left(u_{e}\right) \subseteq X_{0} \cup V(e)$, and so

$$
\begin{equation*}
\left|E\left(X_{0}, V\left(Y_{0}\right)\right)\right| \geq 2 y_{0} \tag{13}
\end{equation*}
$$

In the rest of the arguments, choose a maximum stable set S_{1} of $G_{0}^{\prime}\left[Y_{1}\right]$ and a vertex $u_{e} \in V(e)$ with $N_{G_{0}^{\prime}}\left(u_{e}\right) \subseteq X_{0} \cup V(e)$ for some edge $e \in Y_{0}$. Set

$$
\begin{equation*}
S_{0}=V\left(Y_{0}\right) \backslash\left\{u_{e}\right\} \text { and } A=X_{0} \cup X_{1} \cup S_{0} \cup S_{1} \tag{14}
\end{equation*}
$$

Then $\left|S_{1}\right|=\left|Y_{1}\right|, \Lambda^{\prime}\left(G_{0}\right) \subseteq A$ and $E\left(V\left(G_{0}^{\prime}\right) \backslash A\right)=\emptyset$. If $y_{0}=2$, then by Claim $4,\left|V\left(G_{0}^{\prime}\right)\right|=28$. By Claim 5 and (12), (13), we have

$$
\begin{aligned}
\left|E\left(G_{0}^{\prime}\right)\right| & \geq\left|Y_{0}\right|+\left|E\left(X_{0}, V\left(Y_{0}\right)\right)\right|+\left|Y_{1}\right|+\left|E_{G_{0}^{\prime}}\left(X_{0} \cup V\left(Y_{0}\right)\right)\right| \\
& \geq 3\left|Y_{0}\right|+\left|Y_{1}\right|+3\left(\left|X_{1}\right|+|\bar{X}|\right)+4\left|Y_{1}\right| \\
& =3 y_{0}+5 y_{1}+3\left(\left|V\left(G_{0}^{\prime}\right)\right|-x_{0}-2 y_{0}-2 y_{1}\right) \\
& =3\left|V\left(G_{0}^{\prime}\right)\right|-3\left(x_{0}+y_{0}\right)-y_{1} \geq 55 .
\end{aligned}
$$

However $F\left(G_{0}^{\prime}\right)=2\left|V\left(G_{0}^{\prime}\right)\right|-\left|E\left(G_{0}^{\prime}\right)\right|-2 \leq 0$, contrary to the fact that G_{0}^{\prime} is reduced. Hence $y_{0} \leq 1$, and so by Claim 5 , we must have $\left|X_{0}\right|+\left|S_{0}\right|=x_{0}+y_{0} \leq 9$. It follows by (12) and (14) that $|A|=\left|X_{0}\right|+\left|S_{0}\right|+\left|X_{1}\right|+\left|S_{1}\right| \leq 12$. By Theorem 2.7(iii), $L(G)$ is Hamiltonian by the following claim.

Claim 6. G_{0}^{\prime} has a dominating eulerian subgraph containing A.

Proof. We argue by contradiction. By Theorem 2.2, G_{0}^{\prime} can be contracted to the graph $L_{0} \cong P(10)$ such that $V\left(L_{0}\right)=$ $\cup_{i \in \mathbb{Z}_{5}}\left\{u_{i}, v_{i}\right\}, E\left(L_{0}\right)=\cup_{i \in \mathbb{Z}_{5}}\left\{u_{i} v_{i}, v_{i} v_{i+1}, u_{i} u_{i+2}\right\}$ and the preimage of each vertex of L_{0} contains at least one vertex in A, where \mathbb{Z}_{5} is cyclic group of order 5 . Let $V_{1} \subseteq V\left(L_{0}\right)$ be the set such that for each vertex of V_{1}, its preimage in G_{0}^{\prime} contains at least one vertex of $X_{1} \cup S_{0} \cup S_{1}$, and let $V_{0}=V\left(L_{0}\right) \backslash V_{1}$. Then the preimage in G_{0}^{\prime} of each vertex in V_{0} contains at least one vertex of X_{0}, and by (14),

$$
\begin{equation*}
\left|V_{1}\right| \leq\left|X_{1}\right|+\left|S_{0}\right|+\left|S_{1}\right| \text { and }\left|V_{0}\right| \geq 10-\left(\left|X_{1}\right|+\left|S_{0}\right|+\left|S_{1}\right|\right) . \tag{15}
\end{equation*}
$$

If $G_{0}^{\prime} \neq L_{0}$, then for any vertex $v \in V\left(L_{0}\right)$, redefine $\ell(v)=\left|E\left(P I_{G}(v)\right)\right|+d_{L_{0}}(v)$. For any vertex $v_{1} \in V\left(L_{0}\right)$ with $H_{1}=$ $P I_{G_{0}^{\prime}}\left(v_{1}\right)$ being nontrivial, we have the following conclusions.
(a) $Y_{1} \cap E\left(H_{1}\right)=\emptyset$.

We argue by contradiction, and assume that $x_{1} y_{1} \in Y_{1} \cap E\left(H_{1}\right)$. Then $v_{1} \in V_{1}$ and $\left|X_{1}\right|+\left|S_{1}\right|=\left|X_{1}\right|+\left|Y_{1}\right| \leq 2$ by (12). As $\left|S_{0}\right|=\left|Y_{0}\right| \leq 1$ and by (15), $\left|V_{0} \backslash\left\{v_{1}\right\}\right|=\left|V_{0}\right| \geq 10-\left(\left|X_{1}\right|+\left|S_{1}\right|+\left|S_{0}\right|\right) \geq 7$. As $\left|X_{0}\right| \geq\left|V_{0} \backslash\left\{v_{1}\right\}\right|+\left|V\left(H_{1}\right) \cap X_{0}\right|$ and by Claim 5, we have $\left|V\left(H_{1}\right) \cap X_{0}\right| \leq 2$. Then $\left|N_{G_{0}^{\prime}}\left(\left\{x_{1}, y_{1}\right\}\right) \cap V\left(H_{1}\right)\right| \leq 2$ since $N_{G_{0}^{\prime}}\left(\left\{x_{1}, y_{1}\right\}\right) \subseteq X_{0}$. If $\left|N_{G_{0}^{\prime}}\left(\left\{x_{1}, y_{1}\right\}\right) \cap V\left(H_{1}\right)\right|=$ 1 , then by symmetry, we may assume that $\left\{x_{1} u_{1}, x_{1} v_{2}, y_{1} v_{5}\right\} \subseteq E\left(L_{0}\right)$ and $y_{1} z_{1} \in E\left(H_{1}\right)$ for some vertex z_{1}, and so $y_{1} z_{1}$ is an cut-edge of G_{0}^{\prime}, contrary to the fact that $\kappa^{\prime}\left(G_{0}^{\prime}\right) \geq 3$. Hence $\left|N_{G_{0}^{\prime}}\left(\left\{x_{1}, y_{1}\right\}\right) \cap V\left(H_{1}\right)\right|=\left|V\left(H_{1}\right) \cap X_{0}\right|=2$. By Claim $5,\left|V_{0} \backslash\left\{v_{1}\right\}\right|=7,\left|X_{0}\right|+\left|Y_{0}\right|=\left|X_{0}\right|=9$, and so $\left|Y_{1}\right|=2$. This implies that there is an edge $u v \in Y_{1} \cap E\left(L_{0}\right)$ with $\{u, v\} \subseteq V\left(L_{0}\right) \cap A$, contrary to the choice of A.
(b) $\left|V\left(H_{1}\right) \cap X_{0}\right| \geq 2$ and $\left|V\left(H_{1}\right) \cap X_{0}\right| \geq 3$ if $\left|V\left(H_{1}\right)\right| \geq 6$.

If $Y_{0} \cap E\left(H_{1}\right)=\emptyset$, then for any edge $e \in E\left(H_{1}\right)$, it follows by (a) that $V(e) \cap X_{0} \neq \emptyset$. Thus (b) holds by Lemma 2.6. We then assume that there is an edge $x_{1} y_{1} \in Y_{0} \cap E\left(H_{1}\right)$. By Claim 4, $\left|V\left(G_{0}^{\prime}\right)\right| \geq 19$. As $d_{G_{0}^{\prime}}\left(x_{1}\right)+d_{G_{0}^{\prime}}\left(y_{1}\right) \geq 15$ and $g\left(G_{0}^{\prime}\right) \geq 4$, we have $\left|N_{G_{0}^{\prime}}\left(\left\{x_{1}, y_{1}\right\}\right)\right| \geq 10$, and so $\left|V\left(H_{1}\right)\right| \geq 12$. By Lemma 2.6(ii), $\alpha^{\prime}\left(H_{1}\right) \geq 3$. If $\alpha^{\prime}\left(H_{1}\right) \geq 4$, then $\left|V\left(H_{1}\right) \cap X_{0}\right| \geq$ 3, and so (b) holds. We then assume that $\alpha^{\prime}\left(H_{1}\right)=3$ and $\left\{x_{1} y_{1}, x_{2} y_{2}, x_{3} y_{3}\right\} \subseteq E\left(H_{1}\right)$ with $\left\{x_{2}, x_{3}\right\} \subseteq X_{0}$. Then $H_{1}-$ $\left\{x_{1}, x_{2}, x_{3}, y_{1}, y_{2}, y_{3}\right\}$ has a stable set $\left\{z_{1}, z_{2}, z_{3}, z_{4}\right\} \subseteq \bar{X}$. If $E\left(\left\{z_{1}, z_{2}, z_{3}, z_{4}\right\},\left\{y_{2}, y_{3}\right\}\right)=\emptyset$, then as $\left|N_{G_{0}^{\prime}}(\bar{X}) \cap V\left(Y_{0}\right)\right| \leq 1$, there is a collapsible subgraph $K_{3,4} \subseteq G_{0}^{\prime}\left[\left\{z_{1}, z_{2}, z_{3}, z_{4}, x_{2}, x_{3}, x_{1}, y_{1}\right\}\right]$, contrary to the fact that G_{0}^{\prime} is reduced. Hence $\left\{z_{1}, z_{2}, z_{3}, z_{4}, y_{2}, y_{3}\right\} \cap X_{0} \neq \emptyset$, and so $\left|V\left(H_{1}\right) \cap X_{0}\right| \geq 3$.
(c) $\left|X_{1}\right|+\left|Y_{1}\right| \leq 2$.

Assume by contradiction that $\left|X_{1}\right|+\left|Y_{1}\right|=3$. Then $\left|X_{1}\right|=3$ by (refeqa111). By (b), $\left|E\left(P_{G}\left(v_{1}\right)\right)\right| \geq 2 \times \frac{|E(G)|+15}{10}-$ $1-d_{L_{0}}\left(v_{1}\right)=\frac{|E(G)|-5}{5}$. If $X_{1}=\left\{v_{2}, v_{5}, u_{1}\right\}$, then by Lemma 3.5(i) and (ii), we have $\left\{v_{3}, v_{4}, u_{2}, u_{3}, u_{4}, u_{5}\right\} \subseteq V_{0}$. By Lemma 3.5 (iv), $\min \left\{\max \left\{\ell\left(v_{3}\right), \ell\left(u_{3}\right)\right\}, \max \left\{\ell\left(v_{4}\right), \ell\left(u_{4}\right)\right\}, \max \left\{\ell\left(u_{2}\right), \ell\left(u_{5}\right)\right\}\right\} \geq \frac{|E(G)|+5}{5}$. Without loss of generality, assume that $\min \left\{\ell\left(v_{3}\right), \ell\left(v_{4}\right), \ell\left(u_{2}\right)\right\} \geq \frac{|E(G)|+5}{5}$. However $|E(G)| \geq 3 \times \frac{|E(G)|+5}{5}+3 \times \frac{|E(G)|+15}{10}+\left|E\left(P I_{G}\left(v_{1}\right)\right)\right|-15>|E(G)|$, a contradiction. Hence $\left|X_{1} \cap\left\{v_{2}, v_{5}, u_{1}\right\}\right| \leq 2$. If $\left\{v_{2}, u_{1}\right\} \subseteq X_{1}$, then $\left\{v_{3}, u_{2}, u_{3}, u_{4}\right\} \subseteq V_{0}$ and either $v_{4} \in X_{1}$ or $u_{5} \in X_{1}$. If $v_{4} \in X_{1}$, then by Lemma 3.5(iii), $\left\{v_{5}, u_{5}\right\} \subseteq V_{0}$ and $v_{3}, u_{4} \in X^{t}$ for some integer $t \geq 2$, implying that $\sum_{k} k x^{k} \geq$ $2 \times 2+\left|\left\{v_{5}, u_{2}, u_{3}, u_{5}\right\}\right|+\left|V\left(H_{1}\right) \cap X_{0}\right| \geq 10$, contrary to Claim 5. If $u_{5} \in X_{1}$, then by Lemma 3.5(iii), $\left\{v_{4}, v_{5}\right\} \subseteq V_{0}$ and $u_{2}, u_{3} \in X^{t}$ for some integer $t \geq 2$, implying that $\sum_{k} k x^{k} \geq 2 \times 2+\left|\left\{v_{3}, v_{4}, v_{5}, u_{4}\right\}\right|+\left|V\left(H_{1}\right) \cap X_{0}\right| \geq 10$, contrary to Claim 5. So $\left|X_{1} \cap\left\{v_{2}, v_{5}, u_{1}\right\}\right| \leq 1$. Without loss of generality, we have $X_{1} \in\left\{\left\{v_{2}, v_{4}, u_{3}\right\},\left\{v_{2}, v_{4}, u_{5}\right\},\left\{v_{3}, u_{4}, u_{5}\right\}\right\}$. If $X_{1}=\left\{v_{2}, v_{4}, u_{3}\right\}$, then $\left\{v_{5}, u_{1}, u_{2}, u_{4}, u_{5}\right\} \subseteq V_{0}$ and $v_{3} \in X^{t}$ for some integer $t \geq 3$, and so $\sum_{k} k x^{k} \geq 10$, a contradiction. If $X_{1}=\left\{v_{2}, v_{4}, u_{5}\right\}$, then $\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\} \subseteq V_{0}$ and $v_{3}, v_{5} \in X^{t}$ for some integer $t \geq 2$, and so $\sum_{k} k x^{k} \geq 10$, a contradiction. If $X_{1}=\left\{v_{3}, u_{4}, u_{5}\right\}$, then $\left\{v_{2}, v_{5}, u_{1}\right\} \subseteq V_{0}$ and $v_{4}, u_{2}, u_{3} \in X^{t}$ for some integer $t \geq 2$, and so $\sum_{k} k x^{k} \geq 11$, a contradiction.
(d) $Y_{0} \neq \emptyset$.

Assume by contradiction that $Y_{0}=\emptyset$. By (15) and (c), $\left|V_{0}\right| \geq 8$. It follows by Claim 5 that $\left|V\left(H_{1}\right) \cap X_{0}\right|=2,\left|X_{1}\right|+\left|Y_{1}\right|=2$, $\left|X_{0}\right|=9$ and $X^{t}=\emptyset$ for any integer $t \geq 2$. By (b) and Lemma 2.6(i), $\left|V\left(H_{1}\right)\right| \leq 5, H_{1} \cong K_{2,3}$ with $x_{1}, x_{2} \in D_{3}\left(H_{1}\right) \cap X_{0}$ and $y_{1}, y_{2}, y_{3} \in D_{2}\left(H_{1}\right) \backslash X_{0}$. By Lemma 3.5(i), $\left\{v_{2}, v_{5}, u_{1}\right\} \cap X_{1}=\emptyset$, and so $\left\{v_{3}, v_{4}, u_{2}, u_{3}, u_{4}, u_{5}\right\} \cap X_{1} \neq \emptyset$. By symmetry, assume that $v_{3} \in X_{1}$. Then $\left\{v_{2}, v_{4}, u_{3}\right\} \subseteq V_{0}$, and so $\left\{v_{5}, u_{1}, u_{2}, u_{4}, u_{5}\right\} \subseteq V_{0}$ since $X^{t}=\emptyset$ for any integer $t \geq 2$. However, $\left|X_{0}\right| \geq\left|V_{0} \backslash\left\{v_{1}\right\}\right|+2=10$, a contradiction.
(e) $\left|V\left(H_{1}\right) \cap X_{0}\right|=2$.

Assume by contradiction that $\left|V\left(H_{1}\right) \cap X_{0}\right| \geq 3$. As $\left|S_{0}\right|=\left|Y_{0}\right|=1$ and by (15), (c) and Claim 5, $\left|V\left(H_{1}\right) \cap X_{0}\right|=3$, $\left|X_{1}\right|+\left|Y_{1}\right|=2,\left|V_{0}\right|=7,\left|X_{0}\right|=9$ and $X^{t}=\emptyset$ for any integer $t \geq 2$. If $\left\{v_{2}, v_{5}, u_{1}\right\} \cap\left(X_{1} \cup V\left(Y_{1}\right)\right) \neq \emptyset$, then by symmetry, assume that $v_{2} \in X_{1} \cup V\left(Y_{1}\right)$. By Lemma 3.5 and as $X^{t}=\emptyset$ for any integer $t \geq 2$, we have $\left\{v_{3}, v_{4}, u_{2}, u_{3}, u_{4}, u_{5}\right\} \subseteq$ V_{0}, and so $\left\{v_{5}, u_{1}\right\} \cap\left(X_{1} \cup V\left(Y_{1}\right)\right) \neq \emptyset$. By symmetry, assume that $v_{5} \in X_{1} \cup V\left(Y_{1}\right)$. It follows by Lemma 3.5(iv) that $\min \left\{\max \left\{\ell\left(v_{3}\right), \ell\left(v_{4}\right)\right\}, \max \left\{\ell\left(u_{2}\right), \ell\left(u_{5}\right)\right\}\right\} \geq \frac{|E(G)|+5}{5}$. As $\left|V\left(H_{1}\right) \cap X_{0}\right|=3$ and $g(G) \geq 3,\left|E\left(P I_{G}\left(v_{1}\right)\right)\right| \geq 3 \times \frac{|E(G)|+15}{10}-$ $5=\frac{3|E(G)|-5}{10}$. However $|E(G)|=\left|E\left(P I_{G}\left(v_{1}\right)\right)\right|+2 \times \frac{|E(G)|+5}{5}+4 \times \frac{|E(G)|+15}{10}+12-15>|E(G)|$, a contradiction. Hence $\left\{v_{2}, v_{5}, u_{1}\right\} \cap\left(X_{1} \cup V\left(Y_{1}\right)\right)=\emptyset$. Without loss of generality, we assume that $v_{3} \in X_{1} \cup V\left(Y_{1}\right)$. By Lemma 3.5 and as $X^{t}=\emptyset$ for any integer $t \geq 2$, we have $\left\{v_{2}, v_{4}, v_{5}, u_{1}, u_{2}, u_{3}, u_{4}, u_{5}\right\} \subseteq V_{0}$, and so $\left|V_{0}\right| \geq 8$, a contradiction.

To sum up, by (d) and Claim $4,\left|Y_{0}\right|=1$ and $\left|V\left(G_{0}^{\prime}\right)\right| \geq 19$; by (15), (c) and Claim $5,\left|V_{0}\right| \geq 7$; by (b), (e) and Lemma 2.6(i), $\left|V\left(H_{1}\right) \cap X_{0}\right|=2$ and $H_{1} \cong K_{2,3}$. Those imply that L_{0} has at least three vertices such that each of whose preimage in G_{0}^{\prime} contains exactly 2 vertices in X_{0}, and so $\left|X_{0}\right| \geq\left(\left|V_{0}\right|-3\right)+2 \times 3 \geq 10$, a contradiction.

Hence $G_{0}^{\prime}=L_{0} \cong P(10)$. Then $X_{0}=V_{0}, Y_{0}=\emptyset$ by Claim 4. By the choice of $A, Y_{1}=\emptyset$, and so $X_{1} \neq \emptyset$. Without loss of generality, assume that $v_{1} \in X_{1}$. If $\left|X_{1}\right| \geq 2$, by symmetry, assume that $v_{3} \in X_{1}$. Thus $\left\{v_{2}, v_{4}, v_{5}, u_{1}, u_{3}\right\} \subseteq X_{0}$ and $v_{2} \in X^{t}$ for some integer $t \geq 2$. Then $\left\{u_{2}, u_{4}, u_{5}\right\} \nsubseteq X_{0}$, since otherwise, $\sum_{k} k\left|X^{k}\right| \geq 10$, a contradiction. Without loss of generality, we must have $\left\{u_{2}, u_{5}\right\} \cap X_{1} \neq \emptyset$. If $u_{5} \in X_{1}$, then $\left\{v_{4}, u_{1}, u_{2}, u_{4}\right\} \subseteq X_{0}$ and $v_{2}, v_{5}, u_{3} \in X^{t}$ for some integer $t \geq 2$, and so $\sum_{k} k\left|X^{k}\right| \geq 10$, a contradiction. Hence $u_{2} \in X_{1}$. Then $\left\{v_{4}, v_{5}, u_{1}, u_{3}, u_{4}, u_{5}\right\} \subseteq X_{0}$ and $v_{2} \in X^{t}$ for some integer $t \geq 3$. By Lemma $3.5(i v), \min \left\{\max \left\{\ell\left(v_{4}\right), \ell\left(u_{4}\right)\right\}, \max \left\{\ell\left(v_{5}\right), \ell\left(u_{5}\right)\right\}, \max \left\{\ell\left(u_{1}\right), \ell\left(u_{3}\right)\right\}\right\} \geq \frac{|E(G)|+5}{5}$, and so we obtain a contradiction that $|E(G)|>|E(G)|$.

Thus $X_{1}=\left\{v_{1}\right\}$ and $\left|X_{0}\right|=9$. As $v_{1} \in \Lambda^{\prime}\left(G_{0}\right)$ and by the proof of Lemma 3.5(i), v_{1} is not a good-leaf of $\operatorname{PI}_{G}\left(v_{2}\right) \cup$ $\left\{v_{2} v_{1}, v_{2} v_{3}, v_{2} u_{2}\right\}$ and $P I_{G}\left(v_{5}\right) \cup\left\{v_{4} v_{5}, v_{5} v_{1}, v_{5} u_{5}\right\}$. By Lemma 3.1 $(i), P I_{G}\left(v_{2}\right)$ has a v_{1}-net $\left(x_{1} y_{1}, T_{1}\right)$ satisfying the assumption of Lemma $3.1(i)$. As $T_{1} \in\left\{T_{2,2,2}, T_{2,2,1}, T_{2,1,2}\right\}, T_{1} \cup P I_{G}\left(u_{2} v_{2} v_{3}\right)$ contains a subgraph $T_{2} \cong T_{2,2,2}$ with $x_{1} y_{1} \in$ $E_{L}\left(T_{2,2,2}\right)$. By (2), $d_{G}\left(x_{1}\right)+d_{G}\left(y_{1}\right) \geq \frac{|E(G)|+25}{10} \geq 15$, and so $\left\{x_{1}, y_{1}\right\} \cap D_{2}(G) \neq \emptyset$ by Lemma $3.1(\beta)$. Without loss of generality, assume that $x_{1} \in D_{2}(G)$. Then $d_{G}\left(y_{1}\right) \geq \frac{|E(G)|+5}{10}$. If v_{2} is a good-leaf of $P I_{G}\left(v_{3}\right) \cup\left\{v_{2} v_{3}, v_{3} v_{4}, v_{3} u_{3}\right\}$, then by the construction of $\Gamma_{1}, V\left(e_{1}\right) \cap V\left(e_{2}\right) \subseteq\left\{x_{1}\right\}$ and $P I_{G}\left(v_{2}\right)$ has an edge $e_{2}=x_{2} y_{2} \nsubseteq \Gamma_{1}-w_{p+1}$ such that $e_{2} \in E(G) \cap E_{L}\left(T_{2,2,2}\right)$, and so $d_{G}\left(x_{2}\right)+d_{G}\left(y_{2}\right) \geq \frac{|E(G)|+25}{10}$. It follows that $\ell\left(v_{2}\right) \geq\left|E\left(P I_{G}\left(v_{2}\right)\right)\right|+d_{G_{0}^{\prime}}\left(v_{2}\right) \geq\left(\left|E_{G}\left(y_{1}\right)\right|+\left|E_{G}\left(e_{2}\right)\right|-1-d_{G_{0}^{\prime}}\left(v_{2}\right)\right)+$ $d_{G_{0}^{\prime}}\left(v_{2}\right) \geq d_{G}\left(y_{1}\right)+d_{G}\left(x_{2}\right)+d_{G}\left(y_{2}\right)-2 \geq \frac{2|E(G)|+10}{10}$. Since $v_{1} \in X_{1}$, we have $\left|E\left(P I_{G}\left(v_{1}\right)\right)\right| \geq 1$, and so $\ell\left(v_{1}\right) \geq 4$. Hence $|E(G)| \geq \sum_{v \in V\left(G_{0}^{\prime}\right)} \ell(v)-\left|E\left(G_{0}^{\prime}\right)\right| \geq \frac{2|E(G)|+10}{10}+8 \times \frac{|E(G)|+15}{10}+4-15>|E(G)|$, a contradiction. This implies that v_{2} is not a good-leaf of $P I_{G}\left(v_{3}\right) \cup\left\{v_{2} v_{3}, v_{3} v_{4}, v_{3} u_{3}\right\}$. By symmetry, v_{3} is not a good-leaf of $P I_{G}\left(v_{4}\right) \cup\left\{v_{3} v_{4}, v_{4} v_{5}, v_{4} u_{4}\right\}$ and v_{4} is not a good-leaf of $P I_{G}\left(v_{5}\right) \cup\left\{v_{4} v_{5}, v_{5} v_{1}, v_{5} u_{5}\right\}$. As v_{1}, v_{4} are not good-leaves of $P I_{G}\left(v_{5}\right) \cup\left\{v_{4} v_{5}, v_{5} v_{1}, v_{5} u_{5}\right\}$ and by Lemma 3.4, $v_{5} \in X^{t}$ for some integer $t \geq 2$, and so $\sum_{k} k\left|X^{k}\right| \geq 10$, a contradiction. Hence Claim 6 holds.

By Claim 6 and by Theorem 2.7(iii), we conclude that Theorem 1.5 must be valid.

4. Remarks

For a claw-free graph H, a vertex $x \in V(H)$ is eligible if $H\left[N_{H}(x)\right]$ is a connected noncomplete subgraph of H. The local completion of H at x is the subgraph H_{x}^{*} obtained from H by adding all missing edges with both vertices in $N_{H}(x)$. The closure $c l(H)$ of H was defined in [21] as the graph obtained from H by recursively performing the local completion operation at eligible vertices as long as possible. In [22], the concept of an SM-closure H^{M} is obtained from H by performing local completions at some (but not all) eligible vertices, where these vertices are chosen in a special way such that the resulting graph is a line graph of a multigraph while still preserving the (non-)Hamilton-connectedness of H. The following result summarizes basic properties of $c l(H)$ and H^{M}.

Theorem 4.1. Let H be a claw-free graph and $\operatorname{cl}(H), H^{M}$ be its closures. Each of the following holds.
(i) (Ryjáček, [21]) cl(H) is well-defined, there is a triangle-free simple graph G_{1} such that $c l(H)=L\left(G_{1}\right)$, and H is Hamiltonian if and only if $c l(H)$ is Hamiltonian.
(ii) (Ryjáček and Vrána, [22]) H^{M} is uniquely determined, there is a multigraph G_{2} such that $H^{M}=L\left(G_{2}\right)$, and H^{M} is Hamiltonconnected if and only if H is Hamilton-connected.

For a 3-connected claw-free graph H, by Theorem 4.1, both of its closures $c l(H)$ and H^{M} are line graphs. Our next step is to generalize Theorem 1.5 to the claw-free graph version, and leave it as Conjecture $4.2(i)$. Define H_{8}^{\prime} to be the graph obtained from C_{8} by adding four chords between four pairs of vertices of maximum distance in C_{8}, and by attaching $\frac{\left|E\left(H_{8}^{\prime}\right)\right|-12}{8}$ pendant edges at each vertex of degree 3. Then $H=L\left(H_{8}^{\prime}\right)$ is a 3-connected non-Hamilton-connected graph with $\delta_{N_{1,1,1}}(H)=\frac{|V(H)|+4}{8}$. We hence leave the claw-free Hamilton-connected graph version as Conjecture 4.2(ii).

Conjecture 4.2. Let H be a 3-connected claw-free simple graph on n vertices.
(i) If $\delta_{N_{1,1,1}}(H) \geq \frac{n+5}{10}$, then either H is Hamiltonian or $\operatorname{cl}(H) \cong L\left(P(10)^{\prime}\right)$.
(ii) If $\delta_{N_{1,1,1}}(H) \geq \frac{n+4}{8}$, then either H is Hamilton-connected or $H^{M} \cong L\left(H_{8}^{\prime}\right)$.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgement

We would like to thank the anonymous referees for their many helpful suggestions which lead to the improvement of the presentation.

References

[1] J.A. Bondy, U.S.R. Murty, Graph Theory, Graduate in Mathematics, vol. 244, Springer, 2008.
[2] H.J. Broersma, Problem 2. Workshop cycles and colouring, Novy Smokovec, 1993, http://umv.science.upjs.sk/c\&c/history/93problems.pdf.
[3] R. Čada, B. Li, B. Ning, S. Zhang, Induced subgraphs with large degrees at end-vertices for hamiltonicity of claw-free graphs, Acta Math. Sin. 32 (2016) 845-855.
[4] P.A. Catlin, A reduction method to find spanning Eulerian subgraph, J. Graph Theory 12 (1988) 29-45.
[5] P.A. Catlin, Supereulerian graphs, collapsible graphs, and four-cycles, Congr. Numer. 58 (1988) 233-246.
[6] P.A. Catlin, Z.Y. Han, H.-J. Lai, Graphs without spanning closed trails, Discrete Math. 160 (1996) 81-91.
[7] Z.-H. Chen, Supereulerian graphs and the Petersen graph, J. Comb. Math. Comb. Comput. 9 (1991) 70-89.
[8] Z.-H. Chen, Hamiltonicity and restricted degree conditions on induced subgraphs in claw-free graphs, Discrete Math. 344 (2021) 112165.
[9] Z.-H. Chen, Hamiltonicity and restricted degree conditions on induced subgraphs in claw-free graphs, II, Discrete Math. (2021), https://doi.org/10.1016/ j.disc.2021.112642.
[10] Z.-H. Chen, H.-J. Lai, M. Zhang, Spanning trails with variations of Chvátal-Erdös conditions, Discrete Math. 340 (2017) 243-251.
[11] Z.-H. Chen, H.-J. Lai, X. Li, D. Li, J. Mao, Eulerian subgraphs in 3-edge-connected graphs and Hamiltonian line graphs, J. Graph Theory 42 (2003) 308-319.
[12] R. Faudree, E. Flandrin, Z. Ryjáček, Claw-free graphs a survey, Discrete Math. 164 (1997) 87-147.
[13] O. Favaron, P. Fraisse, Hamiltonicity and minimum degree in 3-connected claw-free graphs, J. Comb. Theory, Ser. B 82 (2001) $297-305$.
[14] J. Fujisawa, T. Yamashita, Degree conditions on claws and modified claws for hamiltonicity of graphs, Discrete Math. 308 (2008) 1612-1619.
[15] F. Harary, C.St.J.A. Nash-Williams, On Eulerian and Hamiltonian graphs and line graphs, Can. Math. Bull. 8 (1965) 701-709.
[16] H.-J. Lai, Y. Shao, M. Zhan, Hamiltonicity in 3-connected claw-free graphs, J. Comb. Theory, Ser. B 96 (2006) 493-504.
[17] H.-J. Lai, Y. Shao, H. Yan, An update on supereulerian graphs, WSEAS Trans. Math. 12 (2013) 926-940.
[18] D. Liu, H.-J. Lai, Z.-H. Chen, Reinforcing the number of disjoint spanning trees, Ars Comb. 93 (2009) 113-127.
[19] X. Ma, H.-J. Lai, W. Xiong, B. Wu, X. An, Supereulerian graphs with small circumference and 3-connected Hamiltonian claw-free graphs, Discrete Appl. Math. 202 (2016) 111-130.
[20] M.M. Matthews, D.P. Sumner, Longest paths and cycles in $K_{1,3}$-free graphs, J. Graph Theory 9 (1985) 269-277.
[21] Z. Ryjáček, On a closure concept in claw-free graphs, J. Comb. Theory, Ser. B 70 (1997) 217-224.
[22] Z. Ryjáček, P. Vrána, Line graphs of multigraphs and Hamilton-connectedness of claw-free graphs, J. Graph Theory 66 (2011) 152-173.
[23] Y. Shao, Claw-free graphs and line graphs, Ph. D. Dissertation, West Virginia University, 2005.
[24] W. Xiong, H.-J. Lai, X. Ma, K. Wang, M. Zhang, Hamilton cycles in 3-connected claw-free and net-free graphs, Discrete Math. 313 (2013) $784-795$.

[^0]: 2. Supported by China Scholarship Council (No. 201906030092).

 * Corresponding author.

 E-mail addresses: liuxia_math@nwpu.edu.cn (X. Liu), ss0148@mix.wvu.edu (S. Song), hjlai@math.wvu.edu (H.-J. Lai).

