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Fault-tolerant networks are often modeled as s-hamiltonian graphs. Thus it is of interests 
to find graph families in which whether a graph is s-hamiltonian can be determined in 
polynomial time. An hourglass is a graph obtained from K5 by deleting the edges in a cycle 
of length 4, and an hourglass-free graph is one that has no induced subgraph isomorphic to 
an hourglass. Kriesell in [J. Combin. Theory Ser. B, 82 (2001), 306-315] proved that every 4-
connected hourglass-free line graph is Hamilton-connected, and Kaiser, Ryjáček and Vrána 
in [Discrete Mathematics, 321 (2014) 1-11] extended it by showing that every 4-connected 
hourglass-free line graph is 1-Hamilton-connected. We characterize all essentially 4-edge-
connected graphs whose line graph is hourglass-free. Consequently we prove that for any 
integer s and for any hourglass-free line graph L(G), each of the following holds.
(i) If s ≥ 2, then L(G) is s-hamiltonian if and only if κ(L(G)) ≥ s + 2;
(ii) If s ≥ 1, then L(G) is s-Hamilton-connected if and only if κ(L(G)) ≥ s + 3.

© 2022 Published by Elsevier B.V.

1. Introduction

We consider finite graphs without loops but permitting multiple edges, and follow [1] for undefined terms and notations. 
In particular, for a graph G , κ(G), κ ′(G) and δ(G) denote the connectivity, edge-connectivity and the minimum degree of 
G , respectively. For any integer s with 0 ≤ s ≤ n − 3, a graph G of order n ≥ 3 is s-hamiltonian (or s-Hamilton-connected, 
respectively) if for any X ⊆ V (G) with |X | ≤ s, G − X is hamiltonian (G − X is Hamilton-connected, respectively). The line 
graph of a graph G , denoted by L(G), is a simple graph with E(G) as its vertex set, where two vertices in L(G) are adjacent 
if and only if the corresponding edges in G are adjacent.

Certain fault-tolerant networks are modeled as s-hamiltonian graphs [8]. Thus it is of interests to find graph families in 
which whether a graph is s-hamiltonian can be determined in polynomial time. It has been shown in [11] that 1-Hamilton-
connectedness is polynomial-time decidable in the class of hourglass-free line graphs. A few most fascinating problems in 
this area are presented below. In [21], Ryjáček uses an ingenious argument to show that Conjecture 1.1(i) below is equivalent 
to a seeming stronger statement in Conjecture 1.1(ii). Later, Ryjáček and Vrána in [22] indicated that all the statements in 
Conjecture 1.1 are mutually equivalent.

Conjecture 1.1. (i) (Thomassen [24]) Every 4-connected line graph is hamiltonian.
(ii) (Matthews and Sumner [19]) Every 4-connected claw-free graph is hamiltonian.
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(iii) (Kučzel and Xiong [13]) Every 4-connected line graph is Hamilton-connected.
(iv) (Ryjáček and Vrána [22]) Every 4-connected claw-free graph is Hamilton-connected.

Towards Conjecture 1.1, Zhan gave a first result in this direction. The best result so far is obtained by Kaiser and Vrána 
[10] and Kaiser, Ryjáček and Vrána [11]. The following are known.

Theorem 1.2. Let G be a graph.
(i) (Zhan, Theorem 3 in [26]) If κ(L(G)) ≥ 7, then L(G) is Hamilton-connected.
(ii) (Kaiser and Vrána [10]) If κ(L(G)) ≥ 5 and δ(L(G)) ≥ 6, then L(G) is hamiltonian.
(iii) (Kaiser, Ryjáček and Vrána [11]) If κ(L(G)) ≥ 5 and δ(L(G)) ≥ 6, then L(G) is 1-Hamilton-connected.

By definitions, if s ≥ 1, then s-hamiltonian graphs are (s − 1)-hamiltonian, and s-hamiltonian graphs are hamiltonian. It 
is well known that if a graph G is s-hamiltonian, then G is (s + 2)-connected. Broersma and Veldman in [3] consider the 
problem of determining the range of s such that a line graph L(G) is s-hamiltonian if and only if L(G) is (s + 2)-connected. 
They define, for an integer k ≥ 0, a graph G is k-triangular if every edge of G lies in at least k triangles of G .

Theorem 1.3. (Broersma and Veldman, [3]) Let k ≥ s ≥ 0 be integers and let G be a k-triangular simple graph. Then L(G) is s-
hamiltonian if and only if L(G) is (s + 2)-connected.

Broersma and Veldman in [3] proposed an open problem of determining the range of integral values s such that within 
triangular graphs, L(G) is s-hamiltonian if and only if L(G) is (s + 2)-connected. This problem was first settled by Chen et 
al. in [7]. Later, it is extended in [15].

Theorem 1.4. Let G be a connected graph and let k, s be nonnegative integers. Each of the following holds.
(i) (Chen et al., Theorem 1.2 in [7]) Suppose that 0 ≤ s ≤ max{2k, 6k − 16}, and G is a k-triangular simple graph. Then L(G) is s-
hamiltonian if and only if L(G) is (s + 2)-connected.
(ii) (Theorem 3.1 of [14]) Suppose s ≥ 2 and κ ′(G) ≥ s + 2. Then L(G) is s-Hamilton-connected if and only if κ(L(G)) ≥ s + 3.
(iii) (Theorem 1.3 in [15]) Suppose s ≥ 5. Then L(G) is s-hamiltonian if and only if L(G) is (s + 2)-connected.

Similar problem for s-Hamilton-connectedness is also considered by researchers. In addition to the result by Kaiser, 
Ryjáček and Vrána (Theorem 1.2(iii)), the following are also known.

Theorem 1.5. Let G be a claw-free graph and s ≥ 2 be an integer.
(i) (Kriesell [12]) If κ(L(G)) ≥ 4, then L(G) is Hamilton-connected.
(ii) (Theorem 1.6 of [18]) The line graph L(G) is s-hamiltonian if and only if κ(L(G)) ≥ s + 2; and L(G) is 1-hamiltonian connected if 
and only if κ(L(G)) ≥ 4.

Theorem 1.5(i) is further extended to Quasi claw-free graphs in [17] and to almost claw-free graphs in [16]. In view of 
the Conjecture 1.1 and, results presented in Theorems 1.2, 1.4 and 1.5, the following has been considered in [14,15,18].

Conjecture 1.6. Let G be a connected graph and let s be an integer.
(i) ([15]) If s ≥ 2, then L(G) is s-hamiltonian if and only if κ(L(G)) ≥ s + 2.
(ii) ([14]) If s ≥ 1, then L(G) is s-Hamilton-connected if and only if κ(L(G)) ≥ s + 3.

Let P (10, �) be the graph obtained from P (10), the Petersen graph by attaching � > 0 pendant edges at every vertex of 
P (10). It is known that L(P (10, �)) is 3-connected but not hamiltonian. Hence the values of s in Conjecture 1.6 cannot be 
smaller.

An hourglass is the graph consisting of two triangles meeting in exactly one vertex. Thus if C denotes a cycle of length 4 
in a K5, then K5 − E(C) is the hourglass graph. A graph G is hourglass-free if G contains no induced subgraph isomorphic 
to an hourglass. The following have been proved.

Theorem 1.7. Let G be an hourglass-free and claw-free graph.
(i) (Broersma et al., Theorem 6 in [2]) If κ(G) ≥ 4, then G is hamiltonian.
(ii) (Kriesell, Corollary 4 in [12]) If κ(G) ≥ 4, then G is Hamilton-connected.
(iii) (Kaiser, Ryjáček and Vrána [11]) If κ(G) ≥ 4, then G is 1-Hamilton-connected.

In this paper, we prove the following theorem, which provides support to Conjecture 1.6.
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Theorem 1.8. Let L(G) be an hourglass-free line graph and s be an integer. Each of the following holds.
(i) If s ≥ 2, then L(G) is s-hamiltonian if and only if κ(L(G)) ≥ s + 2.
(ii) If s ≥ 1, then L(G) is s-Hamilton-connected if and only if κ(L(G)) ≥ s + 3.

Consequently, for sufficiently large value of s, whether an hourglass-free graph is s-hamiltonian and s-Hamilton-
connected is polynomial-time decidable. Preliminaries will be provided in the next section and the structural characteri-
zation is stated and proved in Section 3. The proof of Theorem 3.2 will be given in the last section.

2. Preliminaries

A graph is trivial if it has no edges. Unless otherwise stated, we always assume that the graph G under discussion is 
nontrivial. For integers i, j ≥ 0, let Di(G) = {v ∈ V (G) : dG (v) = i}, and D≥ j(G) = ∪i≥ j Di(G). Define EG (v) = {e ∈ E(G) : e
is incident with v in G}, NG(v) = {u ∈ V (G) : uv ∈ E(G)} and NG [v] = NG(v) ∪ {v}. We write H ⊆ G to mean that H is a 
subgraph of G .

2.1. s-hamiltonian line graphs

For a graph G , let O (G) denote the set of odd degree vertices in G . A graph G is eulerian if G is connected with 
O (G) = ∅, and is supereulerian if G has a spanning eulerian subgraph. A subgraph H of a graph G is dominating if 
G − V (H) is edgeless. Harary and Nash-Williams proved a very useful relationship between hamiltonian cycles in the line 
graph L(G) and dominating eulerian subgraphs in G .

Theorem 2.1. (Harary and Nash-Willaims [9]) For a connected graph G with |E(G)| ≥ 3, L(G) is hamiltonian if and only if G has a 
dominating eulerian subgraph.

As deleting vertices in L(G) amount to deleting the corresponding edges in G and then removing the resulting isolated 
vertices, for simplicity, we use G − S in the discussions instead of G − S − D0(G − S). Throughout this article, isolated 
vertices arising from edge deletion will be deleted automatically unless otherwise specified. With the same arguments used 
in [9], the following is observed.

Proposition 2.2. (Theorem 2.7 of [15]) Let s ≥ 0 be an integer and G be a connected graph with |E(G)| ≥ s + 3. The line graph L(G)

is s-hamiltonian if and only if for any S ⊆ E(G) with |S| ≤ s, G − S has a dominating eulerian subgraph.

Let G be a graph G and k > 0 be an integer. An edge-cut X of G is an essential k-edge-cut of G if |X | = k and each 
side of G − X has at least one edge. A connected graph G is essentially k-edge-connected if G does not have an essential 
k′-edge-cut for any k′ < k. Let K0 denote the family of graphs such that a graph G ∈ K0 if and only if both κ ′(G) ≥ 2 and G
is spanned by a K3, or contains a vertex incident with all edges. We have the following observation.

Observation 2.3. Each of the following holds.
(i) A graph G does not have an essential edge cut if and only if G ∈K0 .
(ii) If G ∈ K0 , then L(G) is a complete graph.
(iii) (Proposition 1.1.3 of [23]) Let G be a graph. Then κ(L(G)) ≥ k if and only if ess′(G) ≥ k.

Observation 2.3 leads to the following definition: if G ∈ K0, then define ess′(G) = |E(G)| −1; otherwise let ess′(G) be the 
largest integer k such that G is essentially k-edge-connected. Observation 2.3(ii) suggests that when discussing hamiltonicity 
of L(G) for a graph G , we may assume that G /∈ K0.

Definition 2.4. Let X1(G) = {e ∈ E(G): e is incident with a vertex in D1(G)}. For each vertex v ∈ D2(G), let EG(v) = {ev , e′
v}

be the set of edges incident with v and define

X2(G) = {ev : v ∈ D2(G)}, X ′
2(G) = {e′

v : v ∈ D2(G)}, (2.1)

and

Y (G) = E(G) − (X1(G) ∪ X2(G) ∪ X ′
2(G)). (2.2)

Then (X1(G), X2(G), X ′
2(G), Y (G)) is a partition of E(G). The core of G is defined as

G0 = G/(X1(G) ∪ X ′ (G)).
2
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Fig. 1. Graphs in F0.

Shao in her dissertation [23] indicated that if G /∈ K0 and ess′(G) ≥ 3, then

G0, the core of G , is uniquely determined and δ(G0) ≥ κ ′(G0) ≥ 3. (2.3)

Lemma 2.5. Suppose G /∈ K0 with ess′(G) ≥ 3 and let G0 be the core of G. Let s ≥ 0 be an integer, S ⊂ E(G0) with |S| ≤ s, and 
G S = (G0 − S) − D1(G0 − S). If for any S ⊂ E(G0) with |S| ≤ s, G S is supereulerian, then for any edge subset Z ⊂ E(G) with |Z | ≤ s, 
G − Z has a dominating eulerian trail. Consequently, L(G) is s-hamiltonian.

Proof. Fix a subset Z ⊆ E(G) with |Z | ≤ s. Define X1(G) and X2(G) as in Definition 2.4. Let S = Z − (X1(G) ∪ X ′
2(G)). We 

adopt the convention that

if v ∈ D2(G) and (Z − X1(G)) ∩ EG(v) = {e}, then we assume that e ∈ S ∩ X2(G). (2.4)

Thus S ⊂ E(G0) with |S| ≤ |Z | ≤ s.
Suppose that G S is supereulerian, which implies that G − Z has a dominating eulerian trail. By Proposition 2.2, L(G) is 

s-hamiltonian. �
2.2. Catlin’s reduction method

In [4], Catlin defined collapsible graphs. A graph is collapsible if for every subset R ⊆ V (G) with |R| ≡ 0 (mod 2), G has 
a spanning connected subgraph � such that O (�) = R . As one can take R = ∅, it follows by definition that every collapsible 
graph is supereuerlian. For a graph G and an edge subset X ⊆ E(G), G/X denotes the graph obtained from G by contracting 
each edge in X and then deleting resulting loops. If H is a subgraph of G , then we use G/H for G/E(H). If H is connected, 
and if v H is the vertex in G/H onto which H is contracted, then H is the pre-image of v H in G/H . If H1, H2, ..., Hk are 
the list of all maximal collapsible subgraphs of G , then G ′ = G/(∪k

i=1 Hi) is the reduction of G; a graph is reduced if it is 
the reduction of some graph. The next theorem briefs some of the useful properties related to collapsible graphs.

Theorem 2.6. Let G be a connected graph. Each of the following holds.
(i) (Catlin, Corollary of Theorem 3 in [4]) Let H be a collapsible subgraph of G. Then G is supereulerian (collapsible, respectively) if and 
only if G/H is supereulerian (collapsible, respectively). In particular, if G ′ is the reduction of G, then G is supereulerian (collapsible, 
respectively) if and only if G ′ is supereulerian (a K1 , respectively).
(ii) (Catlin [4]) Every cycle of length at most 3 is collapsible.

For a graph G , let F (G) be the minimum number of additional edges that must be added to G to result in a graph 
G1 with two edge-disjoint spanning trees. Thus F (G) = 0 if and only if G contains two edge-disjoint spanning trees. The-
orem 2.7(iii) below is an application of the well-known spanning tree packing theorem of Nash-Williams ([20]) and Tutte 
([25]).

Theorem 2.7. Let G be a connected graph. Each of the following holds.
(i) (Catlin, Theorem 7 in [4]) If F (G) ≤ 1, then G is collapsible if and only if κ ′(G) ≥ 2.
(ii) (Catlin et al., Theorem 1.3 in [5]) If F (G) ≤ 2, then either G is collapsible, or the reduction of G is a K2 or a K2,t for some integer 
t ≥ 1.
(iii) (Theorem 1.1 in [6]) For any integer k > 0, κ ′(G) ≥ 2k if and only if for any edge subset X with |X | ≤ k, G − X contains k
edge-disjoint spanning trees.

3. Proof of Theorem 1.8

For a graph G , if e is an edge not in E(G) but V (e) ⊆ V (G), then we define G + e to be the graph with vertex set V (G)

and edge set E(G) ∪ {e}. Like wise, if X is an edge subset consisting of edges whose end vertices are in V (G), then G + X
is the graph spanned by G with edge set E(G) ∪ X .

Define F0 to be the family consisting of the three graphs depicted in Fig. 1. A graph G is F0-clear if G does not have a 
(not necessarily induced) subgraph isomorphic to a member in F 0. Thus

L(G) is hourglass-free if and only if G does not contain a member in F0 as a subgraph. (3.5)
4
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Fig. 2. Illustration of the proof of Lemma 3.1 and Lemma 3.2.

Throughout the rest of this section, we let G be a connected graph not in K0 and with ess′(G) ≥ 4, and let G0 be the core 
of G as define in Definition 2.4. An edge e ∈ E(G) is an X2-edge if e ∈ X2(G). By the definition of G0, we can view E(G0) as 
a subset of E(G). Thus we define an edge e ∈ E(G0) to be an X2-edge of G0 if e is an X2-edge of G . Let u ∈ D3(G0) be an 
arbitrary vertex with EG0(u) = { f1, f2, f3}, where for each i ∈ {1, 2, 3}, f i = uui . Then we have the following lemmas.

Lemma 3.1. Suppose G does not contain a subgraph isomorphic to a member in F0 . Each of the following holds.
(i) Every edge in EG0(u) is not an X2-edge of G0 .
(ii) There is a cycle Cu of G0 with |E(Cu)| ≤ 3 such that |E(Cu) ∩ EG0(u)| = 2.
(iii) For any w ∈ D3(G0), let C w be a fixed cycle (called the short cycle of w) of length at most 3 whose existence is warranted by (ii). 
Then for any Y ⊆ EG0(u) with |Y | ≤ 2, there are at most three vertices in NG[u] whose short cycles containing an edge in Y .

Proof. Let Hu denote the preimage of u in G . If |V (Hu)| ≥ 2, then EG0(u) is an essential edge-cut of G , contrary to ess′(G) ≥
4. Hence we must have V (Hu) = {u}. Next we assume that f1 is a X2-edge of G0 by symmetry. Then by definition, there 
exists a vertex v ′ ∈ D2(G) such that EG (v ′) = { f1, f ′

1} for some edge f ′
1 ∈ X ′

2(G). As G /∈ K0, it follows that either { f1, f2, f3}
or { f ′

1, f2, f3} is an essential edge-cut of G , contrary to the assumption that ess′(G) ≥ 4. This implies Lemma 3.1(i).
We argue by contradiction to show (ii) and assume that no two edges in { f1, f2, f3} lie in a cycle of length at most 3 

in G0. Thus there exist distinct vertices u1, u2, u3 ∈ V (G0) such that f i = uui . For each vertex w ∈ V (G0), recall that H w
denote the contraction preimage of w in G . Assume that v, v1 ∈ V (G) such that f1 = v v1 ∈ E(G). (Thus v ∈ V (Hu) and 
v1 ∈ V (Hu1 )). By Lemma 3.1(i), each of v and v1 has degree at least 3 in G , and so G contains a subgraph isomorphic to a 
member in F0, contrary to the assumption of the lemma. Hence Lemma 3.1(ii) must hold.

To prove (iii), suppose first that E(Cu) = { f1, f2} with u1 = u2. (See Fig. 2(a) for an illustration.) As u ∈ D3(G0) and 
ess′(G0) ≥ 4, dG0 (u1) ≥ 5. By (i), f3 is not an X2-edge, and so there exists a vertex u′

3 ∈ D≥3(G) such that f3 = uu′
3. If 

EG(u′
3) − { f3} contains two edges f ′

3, f
′′
3 that are not in EG0 (u1), then G[{ f1, f2, f3, f ′

3, f
′′
3 }] ∈ F0, a contradiction to the 

assumption of the lemma. Hence we may assume that f ′
3 ∈ EG0 (u1). Since u ∈ D3(G0), for any w ∈ D3(G0) − {u, u1, u3}, C w

does not contain u and so Lemma 3.1(iii) follows. Hence we assume that EG0 (u) contains no cycles of length 2. By symmetry, 
assume that f1 ∈ E(Cu). (See Fig. 2(b) and (c) for an illustration.) By ess′(G0) ≥ 4, at most two vertices in {u1, u2, u3} are in 
D3(G0), and so for any w ∈ D3(G0) − NG0 [u], C w does not contain an edge in Y . �
Lemma 3.2. Let G /∈ K0 be a connected graph with ess′(G) ≥ 4 such that G does not have a subgraph isomorphic to a member in F0 , 
and let G0 be the core of G. Then for any edge subset Y ⊆ E(G0) with |Y | ≤ 2, (G0 − Y ) − D1(G0 − Y ) is supereulerian.

Proof. Suppose that |D3(G0)| = 0. Then as κ ′(G0) ≥ 3 and ess′(G0) ≥ 4, we conclude that κ ′(G0) ≥ 4, and so by |Y | ≤ 2 and 
by Theorem 2.7(i) and (iii), G0 − Y is collapsible, and supereulerian. Hence we assume that |D3(G0)| > 0. We firstly justify 
the following claim.

Claim 1. If for some u ∈ D3(G0), Y ⊆ EG0(u), then (G0 − Y ) − D1(G0 − Y ) is supereulerian.

Denote NG (u) = {u1, u2, u3}. By Lemma 3.1(iii) and by symmetry, we may assume that every C w with w ∈ D3(G0) −
{u, u1, u2} is still a cycle in G0 − Y , and that u3 ∈ D≥4(G0). Suppose first that Y = { f1}. Then let f ′

1, f
′
2 be dis-

tinct edges not in G0 but with V ( f ′
i ) = V ( f i), for i ∈ {1, 2}, and let X ′ = ∪w∈D3(G0)−{u,u1,u2}E(C w). As EG0/X ′(u), 

EG0/X ′(u1) and EG0/X ′ (u2) are the only possible edge cuts of size 3, it follows that κ ′((G0 + { f ′
1, f

′
2})/X ′) ≥ 4, and so 

by Theorem 2.7(iii), (G0 + { f ′
1, f

′
2})/X ′ − { f ′

1, f
′
2} has two edge-disjoint spanning trees. It follows by κ ′(G0) ≥ 3 that 

F ((G0 + { f ′
1, f

′
2})/X ′ − { f1, f ′

1, f
′
2}) ≤ 1 and κ ′((G0 + { f ′

1, f
′
2})/X ′ − { f1, f ′

1, f
′
2}) ≥ 2. By Theorem 2.7(i), (G0 − f1)/X ′ =

(G0 + { f ′
1, f

′
2})/X ′ − { f1, f ′

1, f
′
2} is collapsible, and so supereulerian. By Theorem 2.6, G0 − f1 is supereulerian.

Hence we assume that |Y | = 2 and by symmetry, f1 ∈ Y . By Lemma 3.1(iii), we may assume that u1, u2 ∈ NG0 (u) such 
that D3(G0) ∩ NG0(u) ⊆ {u1, u2} (see Fig. 2(c)). Now let f ′′ be an edge not in E(G0) and with V ( f ′′) = {u1, u2}. Then 
as EG0/(X ′∪{ f3})(u1) and EG0/(X ′∪{ f3})(u2) are the only possible edge cuts of size 3(see Fig. 2(c)), it follows that κ ′((G0 +
{ f ′′})/(X ′ ∪ { f3})) ≥ 4, and so by Theorem 2.7(iii), (G0 + { f ′′})/(X ′ ∪ { f3}) − Y has two edge-disjoint spanning trees. Thus 
5
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again we have F ((G0 + { f ′′})/(X ′ ∪ { f3}) − (Y ∪ { f ′′})) ≤ 1 and κ ′((G0 + { f ′′})/(X ′ ∪ { f3}) − Y ) ≥ 2. By Theorem 2.7(i), 
(G0 − u)/X ′ = (G0 +{ f ′′})/(X ′ ∪ { f3}) − (Y ∪{ f ′′}) is collapsible, and supereulerian. By Theorem 2.6, G0 − Y is supereulerian. 
This proves Claim 1.

By Claim 1, we may assume that |Y | = 2 and Y is a matching of G0. Let Y = {e1, e2} with ei = ui vi for i ∈ {1, 2}. 
Define X ′′ = ∪w∈D3(G0)−{u1,v1,u2,v2}E(C w), and let e′

1, e
′
2 denote two edges not in E(G0) such that V (e′

i) = {ui, vi}. Then as 
ess′(G0) ≥ 4, we have κ ′((G0 + {e′

1, e
′
2})/X ′′) ≥ 4. It follows by Theorem 2.7(iii) that F (((G0 + {e′

1, e
′
2})/X ′′) − {e′

1, e
′
2}) = 0, 

and F (G0/X ′′ − Y ) = F (((G0 + {e′
1, e

′
2})/X ′′) − (Y ∪ {e′

1, e
′
2})) ≤ 2. By Theorem 2.7(ii), either G0/X ′′ − Y is collapsible, or 

G0/X ′′ − Y is contracted to a K2,t for some integer t ≥ 2. Since the only edge cuts of size 2 in G0/X ′′ − Y are of the form 
EG0/X ′′−Y (ui) and EG0/X ′′−Y (vi) with i ∈ {1, 2}, we conclude that t ≤ 4. As ess′(G0) ≥ 4, we must have t = 4. It follows that 
the reduction of (G0 − Y )/X ′′ = G0/X ′′ − Y is either K1 or K2,4, and so supereulerian. By Theorem 2.6, G0 − Y is also 
supereulerian. �
Proof of Theorem 1.8. It suffices to prove the sufficiency in either statement of the theorem. If L(G) is a complete graph, 
then L(G) is s-hamiltonian (in (i)) and L(G) is s-Hamilton-connected (in (ii)). Thus we assume that G /∈ K0.

We argue by induction on s to prove (i) and (ii) of Theorem 1.8. Suppose that κ(L(G)) ≥ 4. If s = 1, then by The-
orem 1.7(iii), L(G) is 1-Hamilton-connected. If s = 2, then let G be a graph whose line graph L(G) is 4-connected. By 
Lemmas 2.5 and 3.2, L(G) is 2-hamiltonian.

Assume that s ≥ 3 for (i) and s ≥ 2 for (ii), and that Theorem 1.8 holds for smaller values of s. Since L(G) is hourglass-
free, G is F0-clear. Let X ⊆ E(G) be an edge set with 1 ≤ |X | ≤ s. Choose a subset X ′ ⊆ X such that |X ′| ≤ s − 1. Let 
X ′′ = X − X ′ , and G ′ = G − X ′′ . Since G is F0-clear, G ′ is also F0-clear. By the definition of a line graph, L(G ′) = L(G) − X ′′
satisfies κ(L(G ′)) ≥ κ(L(G)) − 1.

For (i), assume that κ(L(G)) ≥ s + 2. Then κ(L(G ′)) ≥ (s − 1) + 2, and so by induction on s and as |X ′| ≤ s − 1, we 
deduce that L(G) − X = L(G ′) − X ′ is hamiltonian. For (ii), assume that κ(L(G)) ≥ s + 3. Then κ(L(G ′)) ≥ (s − 1) + 3, and 
so by induction on s and as |X ′| ≤ s − 1, we deduce that L(G) − X = L(G ′) − X ′ is Hamilton-connected. This proves the 
theorem. �
4. Remarks

Theorem 1.8 is motivated by Conjecture 1.6 and provides evidences for this conjecture. Given the relationship between 
claw-free graphs and line graphs, the following conjectures seem to be natural.

Conjecture 4.1. Let G be a connected claw-free graph and let s be an integer.
(i) If s ≥ 2, then G is s-hamiltonian if and only if κ(G) ≥ s + 2.
(ii) If s ≥ 1, then G is s-Hamilton-connected if and only if κ(G) ≥ s + 3.

Ryjáček [21] and Ryjáček and P. Vrána [22] ingeniously brought in the related closure concepts to show that Con-
jecture 1.6 and Conjecture 4.1 are equivalent for a few smaller values of s. In [22], Ryjáček and Vrána proved that all 
the conjectures stated in Conjecture 1.1 are equivalent. There results in fact can also be applied to show the equivalence 
between Thomassen’s conjecture (stated as Conjecture 1.1(i)) and Conjecture 4.1(ii). It is obvious that the special case Conjec-
ture 4.1(ii) when s = 1 implies Thomassen’s conjecture. On the other hand, for any integer s ≥ 1, let G be a claw-free graph 
with κ(G) ≥ s + 3. For any nonempty vertex subset S ⊂ V (G) with |S| ≤ s, choose a vertex v ∈ S . The graph G − (S −{v}) is 
4-connected and claw-free. Assume the validity of Thomassen’s conjecture, which implies, by a result of Ryjáček and Vrána 
in [22], that G − (S − {v}) is 1-Hamilton-connected. Thus if Thomassen’s conjecture holds, then G − S is also Hamilton-
connected. This shows that Conjecture 4.1(ii) is also equivalent to any one stated in Conjecture 1.1. By the same reasoning, 
if one could prove that Thomassen’s conjecture also implies that every 4-connected claw-free graph is 2-hamiltonian, then 
each of Conjecture 4.1(i) and (ii) would also be equivalent to any one stated in Conjecture 1.1.

As a final remark, a referee kindly indicated that the arguments to prove Theorem 1.8(ii) can also be applied, in conjunc-
tion with Theorem 1.7(iii), to prove the following seemingly stronger result.

Theorem 4.2. Let s ≥ 1 be an integer and let G be a hourglass-free and claw-free graph. If κ(G) ≥ s + 3, then G is s-Hamilton-
connected.
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