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The modulo orientation problem seeks a so-called mod (2t + 1)-orientation of an 
undirected graph, in which the indegree is equal to outdegree under modulo 2t + 1 at each 
vertex. Jaeger’s circular flow conjecture states that every graph G with edge connectivity 
κ ′(G) ≥ 4t has a mod (2t +1)-orientation. Lovász et al. (2013) verified it for κ ′(G) ≥ 6t, and 
later Han et al. (2018) disproved Jaeger’s conjecture with infinitely many counterexamples 
for t ≥ 3. In this paper, we show there are essentially finitely many exceptions for graphs 
with a bounded matching number. More generally, for any positive integers t and s, there 
exists a finite family G(t, s) of graphs not admitting any mod (2t + 1)-orientations, such 
that any graph G with κ ′(G) ≥ 2t + 2 and matching number α′(G) ≤ s has a mod (2t + 1)-
orientation if and only if G cannot be contracted to an element of G(t, s). This immediately 
implies a Chvátal-Erdős type theorem and we additionally characterize all infinitely many 
graphs with κ ′ ≥ α′ but without a nowhere-zero 3-flow. Our results also indicate that the 
problem of seeking mod orientations for planar graphs with bounded matching number 
belongs to P, while for general planar graphs it is a known NP-complete problem.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

This paper studies loopless finite graphs in which multiple edges may be permitted. For many standard notation and 
terminologies, we follow the textbook of Bondy and Murty [1]. Specifically, in a graph G we use notations minimum degree 
δ(G), edge connectivity κ ′(G) and matching number α′(G), respectively. If in a graph G two vertices u and v are adjacent, 
then we write u ∼ v . Given disjoint vertex subsets A, I ⊆ V (G), denote [A, I]G = {uv ∈ E(G) : u ∈ A, v ∈ I}. Sometimes we 
use easier notations [u, I]G or [A, v]G if A = {u} or I = {v}, and we also use ∂G (A) = [A, V (G) − A]G , which may often omit 
subscript for convenience.

If we assign an orientation to all the edges of an undirected graph G , then G is said to possess an orientation. Fixed 
a graph G with orientation D , let E−

D (v) (E+
D (v), resp.) be the set of all ingoing (outgoing, resp.) arcs at vertex v and let 

d−
D (v) = |E−

D (v)|, d+
D (v) = |E+

D (v)|. If f is a mapping assign each e ∈ E(G) to an integer in Z satisfying 
∑

e∈E+
D (v) f (e) =∑

e∈E−
D (v) f (e) at each vertex v ∈ V (G), then we call (D, f ) an integer flow. We call it a nowhere-zero k-flow (abbreviated as 

k-NZF) if it holds additionally that 0 < | f (e)| < k, for any e ∈ E(G). A nowhere-zero modular k-flow of G is an ordered pair 
(D, f ) where D is an orientation of E(G) and f is a function: E(G) → Zk − {0} such that 

∑
e∈E+

D (v) f (e) ≡ ∑
e∈E−

D (v) f (e)

(mod k) at each vertex v ∈ V (G). Tutte [22] gives the following fundamental theorem that a graph G admits a k-NZF if and 
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only if G admits a nowhere-zero modular k-flow. A nowhere-zero modular k-flow is also called Zk-NZF. For a 3-NZF of the 
graph G , by choosing reversed orientation of certain edges of value 2 in G , we may obtain a Z3-NZF (D ′, f1) such that 
f1(e) = 1 for each e ∈ E(G). This orientation D ′ is called a mod 3-orientation, which satisfies |E+

D ′ (x)| ≡ |E−
D ′ (x)| (mod 3) for 

each x ∈ V (G). So a graph has a 3-NZF if and only if it has a mod 3-orientation. In general, for a graph G , a mod (2t + 1)-
orientation is an orientation D such that the outdegree d+

D (x) is congruent to indegree d−
D (x) modulo 2t + 1 for every 

vertex x. Denote by M2t+1 the family of all mod (2t + 1)-orientation-admissible graphs. The authors in [13,14,17] studied a 
more general concept of strongly Z2t+1-connected graphs, allowing orientation with prescribed boundaries at each vertex. 
A graph G is strongly Z2t+1-connected if for every α : V (G) → Z2t+1 with 

∑
u∈V (G) α(u) ≡ 0 (mod 2t + 1), there exists 

an orientation D with d+
D (u) − d−

D (u) ≡ α(u) (mod 2t + 1), ∀u ∈ V (G). Let 〈SZ2t+1〉 be the graph family consisting of all 
strongly Z2t+1-connected graphs.

Tutte [23] showed that a planar graph H has a proper vertex 3-coloring if and only if its planar dual H∗ admits a 3-NZF 
(or equivalently H∗ ∈ M3). The 3-vertex-coloring planar graph problem is NP-complete, and thus the mod 3-orientation 
problem is NP-complete by duality. In [18], MacGillivray and Siggers further proved that the homomorphism problem to 
odd cycle C2t+1 on planar graph is NP-complete. By the duality of circular flow and circular coloring, this also gives the 
NP-completeness of mod (2t + 1)-orientation problem for fixed t > 0.

On the other hand, every triangle-free planar graph is vertex 3-colorable from the classical Grötzsch’s 3-coloring theorem, 
which equivalently provides a 3-NZF for every 4-edge-connected planar graph by duality. Bill Tutte in 1970s suggested that 
the later statement maybe hold for nonplanar graphs as well. This is now known as the celebrated 3-flow conjecture.

Conjecture 1.1. (Tutte’s 3-flow conjecture, see [1]) Every 4-edge-connected graph has a 3-NZF.

Tutte’s flow conjectures were further extended by Jaeger [10] and Lai [13] to highly connected graphs for general mod 
(2t + 1)-orientations. In 2012, Thomassen [21] proved the weak versions of these conjectures for high edge-connectivity 
2(2t + 1)2 + 2t + 1. It was further improved to 6t-edge-connected graphs by Lovász et al. [17].

Theorem 1.2. (Lovász, Thomassen, Wu and Zhang [17]) Every 6t-edge-connected graph is strongly Z2t+1-connected, and therefore 
admits a mod (2t + 1)-orientation.

However, the original problems of Jaeger [10] and Lai [13] were answered negatively in [9] recently, for larger values 
of t .

Theorem 1.3. ([9])

(1) For every integer t ≥ 3, there exist infinitely many 4t-edge-connected graphs without a mod (2t + 1)-orientation.
(2) For every integer t ≥ 5, there exist infinitely many (4t + 1)-edge-connected graphs without a mod (2t + 1)-orientation.

Pushing further on the edge connectivity condition to warrant mod (2t + 1)-orientation seems to be very challenged in 
either direction. It remains widely open seeking other types of nice sufficient conditions for mod orientations.

In this paper, we prove a relatively positive result that if a graph family has a bounded matching number, then after cer-
tain reduction operations, there are only finitely many (2t + 2)-edge-connected graphs without mod (2t + 1)-orientations in 
this family. To state our theorem formally, we shall first introduce graph contraction operation and the concept of 〈SZ2t+1〉-
reduction below.

For an edge e of the graph G , edge contraction, denoted by G/e, is an operation which removes edge e from the graph 
while simultaneously merging the vertices of e into a single vertex and then delete the generating loops. More generally, 
the operation may be performed on a set of edges by contracting each edge (in any order).

Fixed a graph G , each vertex contains in a maximal strongly Z2t+1-connected subgraph, since the singleton K1 ∈
〈SZ2t+1〉. By Proposition 2.2 in [13], every vertex lies in one unique maximal strongly Z2t+1-connected subgraph of G . 
Select all the maximal strongly Z2t+1-connected subgraph of G , denoted by G1, G2, · · · , Gc . Define G ′ = G/(∪c

i=1 E(Gi)) as 
the 〈SZ2t+1〉-reduction of G , or saying that G is 〈SZ2t+1〉-reduced to G ′ . Thus, for any graph G , its 〈SZ2t+1〉-reduction G ′
is unique. A graph G is called 〈SZ2t+1〉-reduced if G = G ′ (i.e. it contains no strongly Z2t+1-connected subgraph G with 
|V (G)| > 1). The construction in [9] indicates that for every t ≥ 5, there are infinitely many 〈SZ2t+1〉-reduced graphs with-
out a mod (2t + 1)-orientation in the family of all (4t + 1)-edge-connected graphs. For G ∈ 〈SZ2t+1〉, it is proved in [13]
that, for every supergraph � of G , � ∈ M2t+1 if and only if �/G does. Therefore, seeking mod (2t + 1)-orientations of a 
graph G is equivalent to seeking mod (2t + 1)-orientations of the 〈SZ2t+1〉-reduction of G . Our first main result is formally 
stated as follows.

Theorem 1.4. For a fixed integer s > 0, there exists a graph family G(t, s) of finite cardinality such that every graph G with κ ′(G) ≥
2t + 2 and α′(G) ≤ s has a mod (2t + 1)-orientation if and only if its 〈SZ2t+1〉-reduction G ′ /∈ G(t, s).
2
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As the 〈SZ2t+1〉-reduction operation is a special type of contraction, Theorem 1.4 is still valid with contraction replacing 
〈SZ2t+1〉-reduction. That is, for every graph G with κ ′(G) ≥ 2t + 2 and α′(G) ≤ s, G ∈ M2t+1 if and only if G is not 
contractible to a graph in the finite graph family G(t, s).

The contractibility problem, asking to decide whether a graph is contractible to G , is NP-complete for any triangle-free 
graph G other than star [2], and it is polynomial-time solvable when G is a star [2], a clique [15,19], and some other graphs. 
It is proved by Kamiński, Paulusma, and Thilikos [11] that for any graph G , there is a polynomial-time algorithm to decide 
whether a planar graph is contractible to G . Since there are constant many graphs in the family G(t, s) in Theorem 1.4, 
we can check whether a planar G is contractible to a member of G(t, s) in polynomial-time. Furthermore, each member of 
G(t, s) has size bounded by some constant N(t, s) (see Section 2), which is constant-time determined. Therefore, we obtain 
a polynomial-time algorithm from Theorem 1.4 to decide whether a planar graph G with κ ′(G) ≥ 2t + 2 and α′(G) ≤ s has a 
mod (2t + 1)-orientation for fixed s and t . In contrast, the mod orientation problem remains NP-complete for planar graph 
G with κ ′(G) ≥ 2t + 2 when t ≥ 2 as shown by Esperet, Montassier, Ochem, Pinlou [4].

Corollary 1.5. For fixed integers s > 0 and t > 0, there exists a polynomial-time algorithm to decide whether a planar graph G with 
κ ′(G) ≥ 2t + 2 and α′(G) ≤ s has a mod (2t + 1)-orientation. Moreover, the running time is O(2(2t−1)N(t,s)2 |V (G)|O(N(t,s))).

Note that the polynomial-time algorithm of Corollary 1.5 extends to graphs embeddable on surfaces as well, since 
Kamiński et al. [11] also provides a polynomial-time algorithm for contractibility of graphs embeddable on a given sur-
face.

Theorems with conditions involving the relationship between κ(G) (or κ ′(G)) and α(G) (or α′(G)) are often called 
Chvátal-Erdős type theorem, see [5]. Theorem 1.4, together with Theorem 1.2, immediately implies a Chvátal-Erdős type 
result: if G satisfies a Chvátal-Erdős type condition κ ′(G) ≥ max{α′(G), 2t + 2}, then G admits a mod (2t + 1)-orientation 
with essentially finitely many exceptions.

Theorem 1.6. For fixed integer t > 0, there is a finite family of non-modulo (2t + 1)-orientation-admissible graphs F1(t) with the 
following property: A graph G with κ ′(G) ≥ max{α′(G), 2t + 2} has a mod (2t + 1)-orientation if and only if it is not contracted to a 
graph in F1(t).

Theorems 1.4 and 1.6 are best possible results in a sense that the edge connectivity 2t + 2 cannot be replaced by 2t + 1. 
In fact, there are infinitely many (2t + 1)-edge-connected 〈SZ2t+1〉-reduced graphs with fixed matching number admitting 
no mod (2t + 1)-orientation. Let n ≥ s ≥ 3 be integers. The graph K +k

s,n is constructed from complete bipartite graph Ks,n by 
adding k extra edges connecting vertices of degree n arbitrarily. The obtained graph K +k

s,n may have parallel edges. We write 
K +

s,n as an abbreviation of K +1
s,n in this paper. It is easy to observe that K +

3,n admits no mod 3-orientation for any n ≥ 3. 
This example can be generalized to mod (2t + 1)-orientations for any t . For example, let K(t) be a graph family defined by 
K(t) = {K +

2t+1,c : c ≥ 2t + 1 }. Then each member in K(t) is a (2t + 1)-edge-connected 〈SZ2t+1〉-reduced graph without a 
mod (2t + 1)-orientation, providing infinitely many examples of connectivity 2t + 1 respected to Theorems 1.4 and 1.6.

The 3-Flow Conjecture of Tutte has been intensively studied. For example, Grünbaum in [7] proved that if G is planar 
with κ ′(G) ≥ 2 and has at most three 3-edge-cuts, then G has a 3-NZF. Steinberg and Younger in [20] showed that if G is a 
projective planar graph with κ ′(G) ≥ 2 and at most one 3-edge-cut, then G has a 3-NZF.

While Theorems 1.4 and 1.6 with t = 1 address the 3-flow problem, the next result of this research is an improvement 
to Theorem 1.6 by characterizing all the (infinitely many) 〈SZ3〉-reduced graphs G with κ ′(G) ≥ α′(G). Denote G1 to be a 
class of graphs in Fig. 1.

Theorem 1.7. Every bridgeless graph G with κ ′(G) ≥ α′(G) has a 3-NZF, unless G belongs to one of the following exceptional cases.

(1) G can be contracted (or 〈SZ3〉-reduced) to a graph in G1.
(2) G is the graph K4 or K +

3,n for a positive integer n ≥ 3.

In 2002, Kochol [12] showed that Conjecture 1.1 is equivalent to a seemly stronger form that every bridgeless graph with 
at most three 3-edge-cuts admits a 3-NZF. The corollary below is an immediate application of Theorem 1.7.

Corollary 1.8. Every bridgeless graph G with κ ′(G) ≥ α′(G) admits a 3-NZF provided that G has at most three 3-edge-cuts.

In the next two sections, we shall give the proofs of our main results, Theorems 1.4 and 1.7.

2. Modulo orientations and matchings

We start with some needed lemmas. Let mH be the graph constructed from H by replacing each edge of H with m
parallel edges. We summarize some fundamental properties of mod (2t + 1)-orientation and strongly Z2t+1-connectedness 
from [13] and [14].
3
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Fig. 1. The graph family G1 in Theorem 1.7 consists of 19 graphs. There are four graphs with 6 vertices, one graph with 5 vertices, and the rest fourteen 
graphs have 7 vertices.

Lemma 2.1. ([13,14]) For fixed integers m, t > 0 and fixed graph H, we have properties below:

(1) For H ∈ 〈SZ2t+1〉 and e ∈ E(H), H/e ∈ 〈SZ2t+1〉.
(2) For H ⊆ G, if both G/H ∈ 〈SZ2t+1〉 and H ∈ 〈SZ2t+1〉, then G ∈ 〈SZ2t+1〉.
(3) The graph mK2 ∈ 〈SZ2t+1〉 if and only if m ≥ 2t.
(4) A nontrivial complete graph Km ∈ 〈SZ2t+1〉 if and only if m ≥ 4t + 1.
(5) The graph H ∈ M2t+1 if and only if its 〈SZ2t+1〉-reduction H ′ ∈ M2t+1 .
(6) The graph H ∈ 〈SZ2t+1〉 if and only if its 〈SZ2t+1〉-reduction H ′ = K1 .

The lifting lemma below can be easily obtained from the definition of strongly Z2t+1-connected graphs.

Lemma 2.2 (Lifting). For a graph H with v1 v2, v1 v3 ∈ E(H), construct a graph H[v1,v2 v3] from H by removing v1 v2, v1 v3 and 
adding a new edge v2 v3 . If H[v1,v2 v3] ∈ 〈SZ2t+1〉, then H ∈ 〈SZ2t+1〉.

For notational convenience, we always use U = {u1, . . . , um} and V = {v1, . . . , vn} to denote the two parts of a com-
plete bipartite graph Km,n . For any subset {t1, t2, . . . , t�} of Zm , form a graph Km,n(t1, t2, . . . , t�) from Km,n by identifying 
u1, . . . , ut1 , identifying uti+1, . . . , uti+1 for each 1 ≤ i ≤ � − 1 and identifying ut�+1, . . . , um , respectively. Define a family of 
graphs B∗(m, n) to be

B∗(m,n) = {Km,n(t1, t2, . . . , t�) : {t1, t2, . . . , t�} ⊆ Zm}.
Lemma 2.3. Every member of B∗(2p + 2, 4p2 + 2p) is strongly Z2p+1-connected.

Proof. We first apply the lifting lemma to show the complete bipartite graph K2p+2,4p2+2p is strongly Z2p+1-connected. 
Recall that U = {u1, u2 . . . , u2p+2} and V = {v1, v2, . . . , v4p2+2p} are the set of all degree 4p2 + 2p vertices and all de-
gree 2p + 2 vertices in K2p+2,4p2+2p , respectively. Obtain a graph K ′ from K2p+2,4p2+2p by lifting v2pi+1ui+1, v2pi+1ui+2, 
lifting v2pi+2ui+1, v2pi+2ui+2, . . ., and lifting v2pi+2pui+1, v2pi+2pui+2 to obtain 2p parallel edges between ui+1 and ui+2, 
for each 0 ≤ i ≤ 2p. Then K ′[U ] ∈ 〈SZ2p+1〉 by Lemma 2.1(3). Notice that |[v j, U ]K ′ | = 2p for each 1 ≤ j ≤ 4p2 + 2p. By 
Lemma 2.1(2)(3), we have K ′ ∈ 〈SZ2p+1〉. Therefore, K2p+2,4p2+2p ∈ 〈SZ2t+1〉 by Lemma 2.2. Since the strongly Z2p+1-
connectedness is preserved under identifying vertices and every member in B∗(2p + 2, 4p2 + 2p) is obtained from identi-
fying vertices of K2p+2,4p2+2p , we conclude that every member of B∗(2p + 2, 4p2 + 2p) is strongly Z2p+1-connected. �

The following elementary counting fact is also needed in our proof.

Fact 1. For fixed positive integers �, n, there are exactly 
(n+�−1

�−1

)
non-negative integral solutions 〈x1, x2, . . . , x�〉 for the equation x1 +

x2 + · · · + x� = n.

Define N(t, s) = (4t2 +2t)
(2s+2t+1

2s−1

)+2s. Let F(t, s) be the family of all (2t +2)-edge-connected 〈SZ2t+1〉-reduced graphs 
of order between 2 and N(t, s) with matching number at most s. Then the edge multiplicity of each graph in F(t, s) is at 
4
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most 2t − 1 by Lemma 2.1(3). So there are indeed finitely many graphs in F(t, s). Define G(t, s) as the family of graphs in 
F(t, s) which are not in M2t+1. We will prove a stronger theorem below, which implies Theorem 1.4 by Lemma 2.1(5)(6).

Theorem 2.4. For any (2t + 2)-edge-connected graph G with α′(G) ≤ s, we have G ∈ 〈SZ2t+1〉 if and only if G cannot be 〈SZ2t+1〉-
reduced to a member in F(t, s).

Proof. If G ∈ 〈SZ2t+1〉, then G is 〈SZ2t+1〉-reduced to K1 /∈F(t, s) by Lemma 2.1(6). We shall show the converse that if G
cannot be 〈SZ2t+1〉-reduced to a member in F(t, s), then G ∈ 〈SZ2t+1〉.

Let G be a counterexample and let G ′ be its 〈SZ2t+1〉-reduction. Then G ′ /∈F(t, s) and this leads to

|V (G ′)| > N(t, s) = (4t2 + 2t)

(
2s + 2t + 1

2s − 1

)
+ 2s. (1)

Since G ′ is the 〈SZ2t+1〉-reduction of G , we have α′(G ′) ≤ α′(G) ≤ s. Let M = {w1 w2, w3 w4, . . ., w2d−1 w2d} be a 
maximum matching of G ′ , where d ≤ s. Denote W = {w1, . . . , w2d}. Then Z = V (G ′) − W is an independent set of G ′ by 
the maximality of M . Since κ ′(G ′) ≥ κ ′(G) ≥ 2t + 2, we have |[z, W ]G ′ | ≥ 2t + 2 for any z ∈ Z . Pick arbitrary 2t + 2 edges 
from [z, W ]G ′ , denoted by H(z), for each z ∈ Z . Let G ′

1 = ∪z∈Z H(z) be an edge subset as well as the edge-induced subgraph 
of G ′ .

We claim that there exists a member of B∗(2t + 2, 4t2 + 2t) contained in G ′
1, therefore in G ′ . This will contradict to the 

assumption that G ′ is a 〈SZ2t+1〉-reduced graph by Lemma 2.3.
For any w ∈ W and z ∈ Z , we use x(w, z) = |[w, z]G ′

1
| to denote the number of edges in H(z) between w and z. We also 

define x(w, z) = 0 if w is not in the graph H(z). Since H(z) consists of 2t + 2 edges, we have, for each z ∈ Z ,

x(w1, z) + x(w2, z) + · · · + x(w2d, z) = 2t + 2.

Since d ≤ s and by (1), we have

|Z | = |V (G ′)| − 2d > N(t, s) − 2s ≥ (4t2 + 2t)

(
2s + 2t + 1

2s − 1

)
.

It follows from Fact 1 and Pigeon-Hole Principle that there exists a subset Z1 ⊂ Z of size 4t2 +2t such that, for any a, b ∈ Z1,

〈x(w1,a), x(w2,a), . . . , x(w2d,a)〉 = 〈x(w1,b), x(w2,b), . . . , x(w2d,b)〉.
Denote x1, . . . , x�+1 to be all the nonzero coordinates in 〈x(w1, a), x(w2, a), . . . , x(w2d, a)〉, where we have x1 + . . . + x�+1 =
2t + 2. Then the graph [S1, Z1]G ′

1
∼= K2t+2,4t2+2t(t1, t2, . . . , t�) is a member of B∗(2t + 2, 4t2 + 2t), where t1 = x1, x�+1 =

(2t + 2) − t� , ti − ti−1 = xi for 2 ≤ i ≤ �. Here in the graph [S1, Z1]G ′
1
, S1 denotes the set of all vertices wi such that 

x(wi, a) �= 0 in 〈x(w1, a), x(w2, a), . . . , x(w2d, a)〉 for 1 ≤ i ≤ 2d. This proves the claim as well as the theorem. �

Remark. By [15], the running time of the algorithm deciding whether a planar graph G can be contracted to H is 
|V (G)|O(|V (H)|) . As each graph in F(t, s) (or G(t, s)) has at most N(t, s)2 vertices and multiplicity at most 2t − 1, there 
are at most 2(2t−1)N(t,s)2

graphs in this family. Therefore, the running time of the algorithm from Theorem 1.4 to decide 
whether a planar graph G with κ ′(G) ≥ 2t + 2 and α′(G) ≤ s has a mod (2t + 1)-orientation for fixed s and t is then 
O(2(2t−1)N(t,s)2 |V (G)|O(N(t,s))), which is polynomial in |V (G)|.

In the following section, we will focus on the special important case of t = 1, which is Theorem 1.7 concerning mod 
3-orientation. However, Theorem 1.7 seems not possible to extend to general mod (2t + 1)-orientations. One may obverse 
that for k ≤ t and c ≥ 2t + 2, the graph K +k

2t+1,c and some graphs obtained by identifying some large degree vertices of 
K +k

2t+1,c are still (2t + 1)-edge-connected 〈SZ2t+1〉-reduced graphs without mod (2t + 1)-orientations. Also, applying 2-sum 
operations on some of those graphs results in more 〈SZ2t+1〉-reduced graphs without mod (2t + 1)-orientations and with 
a small matching number. Thus the structures of all such exceptional graphs are much more complicated, which seems far 
from being characterized. As we can see from the proof of Theorem 1.7 below, the arguments require to characterize all 
〈SZ3〉-reduced graphs of small order. However, it seems hopeless to characterize all 〈SZ2t+1〉-reduced graphs without mod 
(2t + 1)-orientations on at most 4t + 3 vertices by hand for general t .

3. Nowhere-zero 3-Flows and matchings

Note that a graph G admits a mod 3-orientation if and only if G admits a 3-NZF; and the concept of strongly Z3-
connected is the same as the so-called “Z3-connected” in some literature [3,16]. In this section we characterize all the 
exceptions of Theorem 1.4 when t = 1, which is the content of Theorem 1.7.
5
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Proof Outline of Theorem 1.7. To prove Theorem 1.7, we shall only need to focus on 〈SZ3〉-reduced graphs by Lemma 2.1. 
We will apply a similar but more structural argument as in the proof of Theorem 1.4 to show every such graph has restricted 
structure and order. Then we analyze the matching number to rule out the graphs K +

3,n and further restrict to graphs with 
order at most 7. Then we apply various tools below to handle all those small graphs to characterize all the exceptions.

First, we display some more needed lemmas.

Lemma 3.1. ([16]) If G is 〈SZ3〉-reduced and |V (G)| = 7, then |E(G)| ≤ 13.

Lemma 3.2. ([16]) If κ ′(G) ≥ 4 and |V (G)| ≤ 13, then G admits a 3-NZF.

Lemma 3.3. (Hakimi [8]) Given a graph G, let � : V (G) → Z be a function with 
∑

u∈V (G) �(u) = 0 and �(u) ≡ dG(u) (mod 2) for 
any u ∈ V (G). Then G admits an orientation D with �(u) = d+

D (u) − d−
D (u) for any u ∈ V (G) if and only if

|
∑
u∈A

�(u)| ≤ |∂G(A)| for any vertex subset A ⊆ V (G). (2)

The k-wheel Wk is a graph constructed by adding a new center vertex connecting to each vertex of the k-cycle.

Lemma 3.4. ([3]) For any integer s ≥ 1, the even wheel W2s is strongly Z3-connected.

Lemma 3.5. ([16]) Assume that an odd wheel W2s+1 is a proper subgraph of a graph G. Let A, B be a bipartition of the vertex set 
V (W2s+1). Form a graph G[A,B] from G by removing all edges of E(W2k+1), contracting the sets A and B into two single vertices u
and v, respectively, and then connecting a new edge uv.
(i) If G[A,B] has a 3-NZF, then so does G.
(ii) If G[A,B] ∈ 〈SZ3〉, then G ∈ 〈SZ3〉.

Lemma 3.6. Let k ≥ 0 and n ≥ 3 be integers. Then K +k
3,n admits a 3-NZF if and only if k �= 1.

Proof. First, assume k �= 1 and we shall show K +k
3,n admits a 3-NZF. If k = 0, then K +k

3,n = K3,n is a complete bipartite graph 
which obviously has a 3-NZF. Now assume k > 0. Let V (K +k

3,n) = {v1, . . . , vn+3}, and denote the three vertices with degree 
more than 3 to be v1, v2, v3. Since 2K2 ∈ 〈SZ3〉 by Lemma 2.1(3), if K +k

3,n has parallel edges, then K +k
3,n ∈ 〈SZ3〉 after 

contracting all 2-cycles by Lemma 2.1(2). Hence K +k
3,n admits a 3-NZF if k ≥ 4. Now it just needs to show the cases of 

k = 2, 3, where the new added edges are non-parallel. If k = 3, then edges of K +3
3,n can be partitioned to K3,n and K3, which 

both have a 3-NZF and so does K +3
3,n . Thus assume k = 2 in the following. Define a function � : V (K3,n) →Z by �(vi) are 3

and −3 alternately for i ∈ {4, . . . , n + 3}, �(v2) = −3, �(v1) = �(v3) = 0 when n is odd and �(v2) = 0, �(v1) = 3, �(v3) = −3
when n is even. Then we can verify statement (2) of Lemma 3.3 for K +k

3,n , and so K +k
3,n admits a mod 3-orientation D , or 

equivalently it admits 3-NZF. Conversely, if k = 1, then it is routine to check that K +
3,n does not admit a 3-NZF. �

Fan and Zhou [6] in 2008 characterized 3-NZF of simple graphs under Ore-condition.

Theorem 3.7. (Fan and Zhou [6]) Given a simple graph G with |V (G)| ≥ 3, if G satisfies the Ore-condition that d(s) + d(t) ≥ |V (G)|
for any pair of non-adjacent vertices s, t, then G admits a 3-NZF if and only if G is not isomorphic to a graph in Fig. 2.

For a matching M of a graph G , a path P is called an M-augmenting path if both end vertices of P are not in V (M), and 
the edges of P are alternately in E(G) − M and in M . It is well-known that a matching M is maximum if and only if there 
is no M-augmenting path.

Lemma 3.8. If a simple graph G satisfies |V (G)| ≥ 3k and κ ′(G) ≥ α′(G) = k, then G contains Kk,k as a subgraph.

Proof. Let V (G) = {v1, . . . , vn}. Since α′(G) = k, we may assume that M = {v2i−1 v2i : 1 ≤ i ≤ k} is a maximum matching 
of G . Hence there is no M-augmenting path in G , and moreover, {v2k+1, . . . , vn} is an independent vertex-set. Assume that 
v2k+1 is adjacent to both end vertices of an edge of M , say v2k+1 ∼ v1 and v2k+1 ∼ v2 without loss of any generality. Then 
each of v2k+2, . . . , vn is adjacent to neither v1 nor v2. Otherwise, it would cause an M-augmenting path, a contradiction. 
Since κ ′(G ′) ≥ k, we know degree of v2k+2 is at least k, and so v2k+2 is also adjacent to both end vertices of another edge of 
M , say v2k+2 ∼ v3 and v2k+2 ∼ v4 without loss of any generality. Then each of v2k+3, . . . , vn is adjacent to neither v3 nor v4
for the same reason. Repeat this argument again and again, we would have that v2k+i is not adjacent to v1, v2, . . . , v2i−1, v2i
6
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Fig. 2. The graphs presented in Theorem 3.7. All graphs satisfy Ore-condition but do not admit a 3-NZF.

Fig. 3. The graph (a) is for Claim 1, and the graphs (b) and (c) are for Claim 5.

for any 1 ≤ i ≤ k. But this implies v3k is adjacent to none of the vertices in V (M). Since {v2k+1, . . . , vn} is an independent 
vertex set, this shows that v3k is an isolated vertex, contradicting to κ ′(G ′) ≥ k.

Now we assume instead that v2k+1 is adjacent to precisely one end vertex of each edge of M , say v2k+1 ∼ v2i−1 for 
each 1 ≤ i ≤ k. As there is no M-augmenting path, for any j ≥ 2, v2k+ j is adjacent to none of {v2, v4, . . . , v2k}. Since 
κ ′(G ′) ≥ k, v2k+ j must be adjacent to v2i−1 for any 1 ≤ i, j ≤ k. Therefore, the set {v1, v3, . . . , v2k−1, v2k+1, . . . , v2k+k}
induces a complete bipartite graph Kk,k as required. �

Now we shall prove Theorem 1.7, restated as the following equivalent version.

Theorem 3.9. Let G be a bridgeless graph with κ ′(G) ≥ α′(G). Then either G has a 3-NZF, or G can be 〈SZ3〉-reduced to a graph in 
G1 ∪ K4 ∪ {K +

3,t : t ≥ 3}.

Proof. When α′(G) = 1, the simplification of G is spanned by a K1,n−1. As G is bridgeless, it implies that G consists of a 
branch of parallel edges joining to the center vertex. Hence by Lemma 2.1 G has a 3-NZF. If α′(G) ≥ 6, then by Theorem 1.2
G admits a 3-NZF. It remains to show the cases of 2 ≤ α′(G) ≤ 5. We use G ′ to represent the 〈SZ3〉-reduction of G as 
above. Then we have

5 ≥ κ ′(G ′) ≥ κ ′(G) ≥ α′(G) ≥ α′(G ′) ≥ 2.

Claim 1. If G ′ /∈ M3 and α′(G ′) = 2, then G ′ is K4 or (a) in Fig. 3.

Proof. When |V (G ′)| = 4, we have that G ′ is either C4 or C4 adding chords. They all have a 3-NZF except K4. If |V (G ′)| =
5, then G ′ is one of K2,3, C5 and C5 adding chords. It is easy to verify they all have a 3-NZF except the graph (a) in 
Fig. 3. Next assume that |V (G ′)| = n ≥ 6. Since α(G ′) = 2 and κ ′(G ′) ≥ 2, we get that G ′ contains K2,2 as a subgraph by 
Lemma 3.8. Assume a maximal matching of G is M = {v1 v2, v3 v4}. Then v5, . . . , vn induce an independent set. Using a 
similar argument, one can justify that G ′ ∼= K2,n−2 when v1 � v3 and G ′ ∼= K +

2,n−2 when v1 ∼ v3. In either case, G ′ has a 
3-NZF. �

Claim 2. If α′(G ′) = 4, 5, then G admits a 3-NZF.

Proof. Since κ ′(G ′) ≥ α′(G ′) ≥ 4, one has |V (G ′)| = n ≥ 14 by Lemma 3.2. By Lemma 3.8, G ′ contains a subgraph which is 
isomorphic to K4,4. Since K4,4 is Z3-connected, this is a contradiction to G ′ is 〈SZ3〉-reduced. �

Claim 3. If G ′ /∈ M3 and |V (G ′)| ≥ 8, then G ′ ∼= K +
3,t for some integer t ≥ 5.

Proof. From the above claims, one has α′(G ′) = 3. Assume that v6 ∼ v5, v4 ∼ v3 and v2 ∼ v1, and the rest vertices form an 
independent set. Suppose that v7 is adjacent to both v2 and v1. As κ(G ′) ≥ 3, the degree of v7 is at least 3, and so, with 
out loss of generality, assume that v7 ∼ v3. Then v8 is not adjacent to v1, v2, v4 as α′(G ′) = 3. Hence v8 is adjacent to 
v3, v5, v6. Since v4 has degree at least 3 and cannot be adjacent to v9, . . . , vn , we have that v4 is adjacent to at least two 
of v1, v2, v5, v6. But in each case it results that α′(G ′) > 3. So, for each k ∈ {7, . . . , n}, vk is adjacent to each of v5, v3, v1
and is adjacent to none of v6, v4, v2. Thus G ′ must be one of the graphs K3,n−3, K +

3,n−3, K +2
3,n−3 or K +3

3,n−3. Among them, 
only the graph K + does not have a 3-NZF by Lemma 3.6. �
3,n−3

7
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Fig. 4. The graphs for case (3) in Claim 5.

Claim 4. If G ′ /∈ M3 and |V (G ′)| = 6, then G ′ is one of (c), (d), (e) and (f) in Fig. 2.

Proof. Since |V (G ′)| = 6 and δ(G ′) ≥ κ ′(G ′) ≥ 3, it satisfies the Ore-condition as in Theorem 3.7, and so G ′ is one of (c), (d), 
(e) and (f) in Fig. 2. �

A vertex is called a k-vertex if it is a vertex of degree k.

Claim 5. If G ′ /∈ M3 and |V (G ′)| = 7, then G ′ is one of the following graphs: (c) in Fig. 3; (e), (f) in Fig. 4; (a), (c), (e) in Fig. 5; (a), (b), 
(d)–(j) in Fig. 6; or K +

3,4 .

Proof. Note that α′(G ′) = 3 by |V (G ′)| = 7. First, assume that G ′ contains a 6-vertex, say v7. Let H = G[{v1, . . . , v6}] be an 
induced subgraph of G . As κ ′(G ′) ≥ α′(G ′) = 3, one has that the degree of each vertex of H is at least 2. Thus H contains a 
cycle. If it has an even length circle, then G ′ has a subgraph which is an even wheel graph. However, the even wheel graph 
is strongly Z3-connected by Lemma 3.4, which contradicts to G ′ is 〈SZ3〉-reduced. So H has two circles of length 3 or one 
circle of length 5. In the latter case, one can find an even length cycle in H as well. Thus H must have two circles of length 
3. We may assume that v1, v2, v3, v7 induce a K4, say H1; and v4, v5, v6, v7 induce the other K4, say H2. If there exists 
no edge between H1 and H2, then G ′ is exactly (c) in Fig. 3. Clearly, this graph does not have a 3-NZF. If there exist edges 
between H1 and H2, then apply Lemma 3.5 to contract these two K4’s into a K2, and the resulting graph is bridgeless with 
3 vertices, which admits a 3-NZF. This implies G has a 3-NZF by Lemma 3.5.

Now assume instead, G ′ does not have any 6-vertex in the following. By Ore-condition, there exists a pair of nonadjacent 
3-vertices; otherwise G ′ admits a 3-NZF by Theorem 3.7. We have 5 cases depending on the number of 3-vertices.

(1) There are exactly two 3-vertices. Assume G ′ has a 5-vertex, then it has even number of 5-vertices, and so |E(G ′)| ≥
(2 · 5 + 2 · 3 + 3 · 4)/2 = 14. It follows by Lemma 3.1 that G ′ is not 〈SZ3〉-reduced, a contradiction. Hence G ′ has no 
5-vertex, namely, G ′ has five 4-vertices. Next we apply lifting operations on those 4-vertices. First split each 4-vertex 
into two 2-vertices, and then shrink the corresponding 2-vertices. After splitting all the 4-vertices, G ′ becomes a 3K2, 
which has a 3-NZF. Thus G ′ admits a 3-NZF.

(2) There are exactly three 3-vertices. Thus there are odd number 5-vertices. If G ′ has more than one 5-vertices, then we 
also have |E(G ′)| ≥ (3 · 3 + 3 · 5 + 4)/2 = 14. Thus G ′ is not a 〈SZ3〉-reduced graph by Lemma 3.1, a contradiction. Then 
G ′ has exactly one 5-vertex and three 4-vertices. After splitting all 4-vertices as before, one can get a graph of order 4 
with parallel edges, which has a 3-NZF. So G ′ also admits a 3-NZF.

(3) There are exactly four 3-vertices.
(3.1) Assume there are exactly three 4-vertices, say v3, v2, v1. Let H = G[{v3, v2, v1}] be the graph induced by 

v3, v2, v1.
(3.1.1) Assume H has no edges. Then G has just one realization K3,4, see graph (a) in Fig. 4, which has a 3-NZF.
(3.1.2) Assume H has exactly one edge. Then G has just one realization (b) shown in Fig. 4, which has a 3-NZF as 

well.
(3.1.3) Assume H has exactly two edges. Consider the graph K induced by other vertices v4, v5, v6, v7. Then K is 

either two 2-paths or one 3-path together with an isolate vertex, see (c) and (d) in Fig. 4. Define a function 
� : V (G) → Z with �(v4) = �(v6) = 3, �(v7) = �(v5) = −3, �(v1) = �(v2) = �(v3) = 0. It is routine to justify that 
|∂G(A)| ≥ | ∑u∈A �(u)|, ∀A ⊂ V (G). By Lemma 3.3, G admits an orientation D with �(s) = d+

G (s) − d−
G (s), for any 

s ∈ V (G). So this gives a mod 3-orientation of G , thus a 3-NZF in each case.
(3.1.4) Assume H has exactly 3 edges. Then G has 4 realizations (e), (f) (g) and (h) as in Fig. 4. Thus we easily get 

that each of the graphs (g) and (h) has a 3-NZF, while the graphs (e) and (f) not.
(3.2) Assume there are exactly two 5-vertices and one 4-vertex. Suppose that there are two adjacent 3-vertices, and 

say that v2 ∼ v1 by symmetry. Since |E(G ′)| = (2 · 5 + 4 · 3 + 4)/2 = 13, one has that v7, v6, v5, v4, v3 induce a 
graph with 8 edges, which is (b) in Fig. 3 or W4. But W4 ∈ 〈SZ3〉 by Lemma 3.4, then we have G ′ does not contain 
8
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Fig. 5. The graphs for case (4) in Claim 5.

Fig. 6. The graphs for case (5) in Claim 5.

W4 as it is 〈SZ3〉-reduced. Thus we obtain that v3, v4, v5, v6, v7 precisely induce the graph (b) in Fig. 3. Notice 
also that v3, v4, v5, v6 induce a K4, which is also an odd wheel W3. Denote two partitions of {v6, v5, v4, v3} by 
P1 = {v5, v3} ∪ {v6, v4} and P2 = {v4, v5} ∪ {v3, v6}, respectively. By Lemma 3.5, with a careful analysis we can 
choose an appropriate partition from Pi for some i ∈ {1, 2}, say Pi = A ∪ B , such that G ′[A,B] admits a 3-NZF. Hence 
G ′ has a 3-NZF, a contradiction. This shows that there is no adjacent 3-vertices. Hence G ′ ∼= K +

3,4.
(4) There are five 3-vertices. Then there is a 5-vertex, say v1, and a 4-vertex, say v2.

(4.1) Assume v1 is not adjacent to v2. Then v2 and v1 have 4 common neighbor vertices. Hence G ′ is isomorphic to 
the graph (a) in Fig. 5, which does not have a 3-NZF.

(4.2) Assume v1 is adjacent to v2, and that v2 and v1 have exactly 3 common neighbor vertices. Then the graph must 
be (b) in Fig. 5. It is straightforward to check that it has a 3-NZF.

(4.3) Assume v1 is adjacent to v2, and that v2 and v1 have exactly 2 common neighbor vertices. Then there are four 
such graphs, (c), (d), (e) or (f) in Fig. 5. We can check one by one that the graphs (c) and (e) do not have 3-NZF.

(5) There are six 3-vertices. Then G ′ has exactly one 4-vertex. By Ore condition, there exist two 3-vertices, say v2 and v1, 
such that v2 � v1. We have 3 subcases dividing by the number of common neighbor vertices of v1 and v2.
(5.1) Assume v1 and v2 have 3 common neighbor vertices, say v5, v4, v3. If v7 or v6 is a 4-vertex, then such a graph 

does not exist. So assume instead that one of v5, v4, v3 is a 4-vertex, say v3. If v3 ∼ v4, then there is no graph 
satisfied above condition. Hence, G ′ must be the graph (a) in Fig. 6, which does not have a 3-NZF.

(5.2) Assume v1 and v2 have exactly 2 common neighbor vertices, say v3, v4. Assume the other neighbor vertex of v1
and of v2 is v5 and v6, respectively. If v4 or v5 is a 4-vertex, then G ′ is (b) in Fig. 6, which does not admit a 3-NZF. 
If v3 or v6 is a 4-vertex, then G ′ is (c) in Fig. 6, which admits a 3-NZF. If v7 is the 4-vertex, then G ′ is (d) in Fig. 6, 
which does not admit a 3-NZF.

(5.3) Assume v1 and v2 have exactly one common neighbor vertex, say v3. Assume the extra two neighbor vertices of 
v1 and v2 are {v4, v5} and {v6, v7}, respectively. If one of v7, v6, v5, v4 is a 4-vertex, without loss of any generality, 
say v5, then G ′ is one of the graphs (e), (f), (g) or (h) in Fig. 6. Hence they all do not have a 3-NZF with an easy one 
by one verification. Now assume v3 is the 4-vertex. Then G ′ is one of the graphs (i) and (j) in Fig. 6, which does not 
have a 3-NZF in each case. �
9
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By Claims 1-5, we conclude that if G ′ /∈ M3, then G ′ ∈ G1 ∪ K4 ∪ {K +
3,t : t ≥ 3} as desired. �
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