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Abstract

A graph G is Hamilton-connected if for any pair of distinct vertices u, v € V(G),
G has a spanning (u, v)-path; G is 1-hamiltonian if for any vertex subset S € V(G)
with |S| < 1, G — S has a spanning cycle. Let §(G), «'(G) and L(G) denote the
minimum degree, the matching number and the line graph of a graph G, respectively.
The following result is obtained. Let G be a simple graph with |E(G)| > 3. If
8(G) > d’(G), then each of the following holds. (i) L(G) is Hamilton-connected if
and only if x (L(G)) > 3. (ii) L(G) is 1-hamiltonian if and only if x (L(G)) > 3.
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1 The Problem

Graphs considered here are finite and loopless. Terms and notation in this paper follow
generally those in [3]. As in [3], for a graph G, let a(G), &'(G), «(G) and «'(G)
denote the stability number (also called the independence number), matching number,
connectivity and edge connectivity of G, respectively. This research is motivated by
the following well-known theorem of Chvital and Erd6s on hamiltonian graphs.

Theorem 1.1 (Chvatal and Erd6s [9]) Let G be a simple graph with at least three
vertices.

(i) If k(G) > a(G), then G has a Hamilton cycle.
(i) If k(G) = a(G) — 1, then G has a Hamilton path.
(iii) If «(G) = a(G) + 1, then G is Hamilton-connected.

As shown in the survey of Saito in [29], there have been many extensions and
variations of Theorem 1.1. A graph is supereulerian if it has a spanning Eulerian
subgraph. There are quite a few investigations using similar conditions involving edge
connectivity, stability number or matching number to study supereulerian graphs, as
seen in [10,20,21,31,34], among others.

Another motivation of this research comes from Thomassen’s conjecture [32] that
every 4-connected line graph is hamiltonian. The line graph of a graph G, denoted
by L(G), is a simple graph with vertex set E(G), where two vertices in L(G) are
adjacent if and only if the corresponding edges in G are adjacent. A number most
fascinating conjectures in this area are presented below. By an ingenious argument of
Ryjéacek [27], Conjecture 1.2(i) below is equivalent to a seeming stronger conjecture
of Conjecture 1.2(ii). In [28], it is shown that all conjectures stated in Conjecture 1.2
are equivalent to each other.

Conjecture 1.2

(i) (Thomassen [32]) Every 4-connected line graph is hamiltonian.
(i) (Matthews and Sumner [26]) Every 4-connected claw-free graph is hamiltonian.
(iii) (KuZel and Xiong [15]) Every 4-connected line graph is Hamilton-connected.
(iv) (Ryjacek and Vrédna [28]) Every 4-connected claw-free graph is Hamilton-
connected.

Many researches have been conducted towards these conjectures, as can be found
in the surveys in [4,12,13], among others. The best result by far is obtained by Kaiser,
Ryjacek and Vrana in [14]. Recently, Algefari et al. (Corollary 1.1 of [1]) proved that
every connected simple graph G with |E(G)| > 3 and with §(G) > o'(G) has a
hamiltonian line graph. For an integer s > 0, a graph G is s-hamiltonian if for any
vertex subset X € V(G) with |X| < s, G — X has a Hamilton cycle. The current
research is to investigate similar relationship between the minimum degree and the
matching number of a graph that would warrant Hamilton-connected line graphs and
1-hamiltonian line graphs. As Hamilton-connected graphs and 1-hamiltonian graphs
must be 3-connected, it is natural to conduct the investigation within 3-connected line
graphs. The following is our main result.
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A Condition on Hamilton-Connected Line Graphs

Theorem 1.3 Let G be a simple graph with |E(G)| > 3 and §(G) > a'(G). Then,
each of the following holds.

(i) L(G) is Hamilton-connected if and only if k (L(G)) > 3.
(ii) L(G) is I-hamiltonian if and only if k (L(G)) > 3.

2 Preliminaries

A cycle on n vertices is often called an n-cycle. Forasubset X € V(G)or X € E(G),
G[X]is the subgraph of G induced by X. A path from a vertex u to a vertex v is referred
to as a (u, v)-path. An edge subset X of G is an essential cut if G — X has at least two
nontrivial components or if | X| = |E(G)|— 1. For an integer k > 0, a connected graph
G is essentially k-edge-connected if G does not have an essential edge cut X with
|X| < k. For a connected graph G, let ess’(G) be the largest integer k such that G is
essentially k-edge-connected. By the definition of a line graph, we have the following
observation for a graph G and its line graph L(G):

K (L(G)) = ess'(G). (1

2.1 Maximum Matching of a Graph

Let M be a matching in G. We use V (M) to denote the set V(G[M]). A path P in G
is an M-augmenting path if the edges of P are alternately in M and in E(G) — M,
and if both end vertices of P are not in V (M). We start with a fundamental theorem
of Berge.

Theorem 2.1 (Berge [2]) A matching M in G is a maximum matching if and only if
G does not have M-augmenting paths.

Applying Theorem 2.1, the following results are proved in [ 1], which will be utilized
in our arguments in the proof of Theorem 1.3.

Lemma 2.2 (Lemma 2.1 of [1]) Let k¥ > 0 be an integer and G be a graph with a
matching M such that |M| = k. Suppose that V(G) — V(M) has a subset X with
|X| > 2 such that for any v € X, d(v) > k. If X has at least one vertex u such that
d(u) > k + 1, then M is not a maximum matching of G.

Theorem 2.3 (Theorem 2.2 of [1]) Let G be a connected simple graph with n =
[V(G)| > 2and k = &/(G). If §(G) > k, then k' (G) > k.

2.2 Collapsible Graphs and Strongly Spanning Trailable Graphs

We use a definition of collapsible graphs [18] that is equivalent to Catlin’s original
definition in [6]. For a graph G, we use O(G) to denote the set of all vertices of
odd degree in G. A graph G is collapsible if for any subset R € V(G) with |[R| =0
(mod 2), G has a spanning connected subgraph H such that O(H) = R. If G is
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collapsible, then by definition with R = @, G is supereulerian and so «'(G) > 2.
As examples, Catlin [6] observed that cycles of length at most 3 are collapsible. In
[6], Catlin showed that for any graph G, every vertex of G lies in a unique maximal
collapsible subgraph of G. The reduction of G, denoted by G, is obtained from G by
contracting all nontrivial maximal collapsible subgraphs of G. A graph is reduced if
it is the reduction of some graph. As shown in [6], a reduced graph is simple.

Theorem 2.4 Let G be a graph.

(i) (Catlin, Theorem 3 of [6]) Suppose that H is a collapsible subgraph of G. Then,

G is collapsible if and only if G/ H is collapsible.

(ii) (Catlin, Lemma 3 of [6]) If G is collapsible, then any contraction of G is also
collapsible.

(iii) (Catlin, Theorem 5 of [6]) A graph G is reduced if and only if G does not contain
a nontrivial collapsible subgraph.

(iv) If G has a spanning connected subgraph Q, such that for any edge e € E(Q),
G has a collapsible subgraph J, with e € E(J,), then G is collapsible.

Proof We argue by induction on n = |V (G)| to prove (iv). As (iv) holds forn = 1,
we assume that n > 2. For any ¢ € E(Q), let J, denote a collapsible subgraph
of G with e € E(J.). We fix an edge ¢p € E(Q) and let J = J,, be a collapsible
subgraph of G that contains ey. Define G| = G/J. As Q is a spanning subgraphin G,
01 = Q/(QNJ)is aspanning subgraph of G. For any edge e € E(Q1) € E(Q),
there exists a collapsible subgraph J, of G with e € E(J.). By Theorem 2.4(ii),
J, = J./(J N J,) is a collapsible subgraph of G| with e € E(J)). It follows by
induction that G is collapsible. By Theorem 2.4(i), G is collapsible. O

For u,v € V(G), a (u, v)-trail is a trail of G from u to v. For e, ¢’ € E(G), an
(e, €)-trail is a trail of G having end-edges e and ¢’. An (e, ¢')-trail T is dominating
if each edge of G is incident with at least one internal vertex of 7', and 7 is spanning
if T is a dominating trail with V(T) = V(G). A graph G is spanning trailable if for
each pair of edges e; and e, G has a spanning (eg, e)-trail. Suppose that e = u v
and ¢’ = upv; are two edges of G. If e # ¢/, then the graph G (e, ¢’) is obtained from
G by replacing ¢ = ujv; with a path uv,v; and by replacing ¢’ = upv, with a path
Uy, v, where v,, v, are two new vertices not in V(G). If e = ¢/, then G(e, €'), also
denoted by G (e), is obtained from G by replacing e = ujv; with a path uv,v;. For
the recovering operation, we let ¢.(G (e, ¢’)) be the graph obtained from G (e, ¢’) by
replacing the path ujv,v; with the edge ¢ = ujv;. Thus, ¢,/ (c.(G(e, €'))) = G.

By the definition of G (¢, ¢”), we have the following observation.

If G(¢/, €) is collapsible, then G(¢’, ¢”) has a spanning (v, vo»)-trail.  (2)

In fact, if G(¢’, ¢”) is collapsible, then G(¢’, ¢”') has a spanning connected subgraph
J with O(J) = {v., v.r}. Hence J is a spanning (v,/, v,)-trail.

As defined in [23], a graph G is strongly spanning trailableif forany e, ¢’ € E(G),
G(e, €') has a (v, ve)-trail T with V(G) = V(T) —{v,, ve}. Since e = ¢’ is possible,
strongly spanning trailable graphs are both spanning trailable and supereulerian.
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Theorem 2.5 (Luo et al. [24], see also Theorem 4 of [7]) If k'(G) > 4, then G is
strongly spanning trailable.

Harary and Nash-Williams showed that there is a close relationship between a graph
and its line graph concerning Hamilton cycles.

Theorem 2.6 (Harary and Nash-Williams [11]) Let G be a graph with |E(G)| >
3. Then, L(G) is hamiltonian if and only if G has an Eulerian subgraph H with
E(G—-V(H)) =0

Let G be a graph with |V (G)| > 3. For each integer i > 0, define D;(G) = {v €
V(G) : dg(v) = i}. Suppose that ess’(G) > 3. The core of this graph G, denoted
by Gy, is obtained from G — D;(G) by contracting exactly one edge xy or yz for
each path xyz in G with dg(y) = 2. By the definition of D;(G), G — D1(G) is
connected if G is connected. As contraction does not decrease the edge connectivity,
Gy is connected if G is connected. Lemma 2.7 (iii) below is proved by using a similar
argument in the proof of Theorem 2.6.

Lemma 2.7 (Shao [30]) Let G be a connected nontrivial graph such that« (L(G)) > 3,
and let G denote the core of G.

(i) Gy is uniquely determined by G with «'(Gg) > 3.
(i1) (see also Lemma 2.9 of [16]) If G is strongly spanning trailable, then L(G) is
Hamilton-connected.
(iii) (see also Proposition 2.2 of [16]) L(G) is Hamilton-connected if and only if for
any pair of edges ¢/, ¢” € E(G), G has a dominating (¢’, ¢”)-trail.

3 Proof of the Main Results

Theorem 1.3 will be proved in this section. As every Hamilton-connected graph must be
3-connected, and every 1-hamiltonian graph must be 3-connected, it suffices to prove
that if G is a graph satisfying §(G) > «’(G) and x (L(G)) > 3, then L(G) is Hamilton-
connected for Theorem 1.3(i) and L(G) is 1-hamiltonian for Theorem 1.3(ii).

3.1 Proof of Theorem 1.3(i).

As k(L(G)) > 3, we have ess’(G) > 3, and so by Lemma 2.7(i), the core G of G is
well-defined with «"(Go) > 3. We shall prove a slightly stronger Theorem 3.1, which
implies the sufficiency of Theorem 1.3(i).

Theorem 3.1 Let G be a connected simple graph with |E(G)| > 3 and ess'(G) > 3,
and let G denote the core of G.

(i) If 8(Go) = a’'(Gy), then G is strongly spanning trailable.
(ii) Suppose that 5(G) > o'(G). Then, L(G) is Hamilton-connected if and only if
k(L(G)) > 3.
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A <D <2

P~(10) P(10) P(11) Ki13(1,1,1) Koz T(1,2)

Fig. 1 nontrivial reduced graphs in Theorem 3.3(ii)

To prove Theorem 3.1, we begin with some tools that would be used in the argu-
ments. For a graph G, let circ(G) denote the length of a longest cycle of G.

Proposition 3.2 Let G be a connected simple graph with |E(G)| > 3 and 6(G) >
o' (G) = k.

(i) Ifk > 4, then ' (G) > k > 4 and G is strongly spanning trailable.
(ii) (Lemma 3.1 of [1]) Ifk = 1, then G € {K3, K n—1}.
(iii) If k > 4 or k = 1, then L(G) is Hamilton-connected.

Proof To prove Proposition 3.2(i), we apply Theorem 2.3 to conclude that ' (G) > k >
4. Hence by Theorem 2.5, G is strongly spanning trailable. It remains to justify Propo-
sition 3.2(iii). If kK > 4, then as G is strongly spanning trailable, by Lemma 2.7(iii),
L(G) is Hamilton-connected. If k = 1, then L(G) is a complete graph and so it is also
Hamilton-connected. O

We define P~ (10), P(10), P(11), K13(1, 1, 1), K23, T(1, 2) to be the graphs as
respectively depicted in Fig. 1.

Theorem 3.3 Let G be a connected graph with n = |V (G)|, and let G’ denote the
reduction of G.

(i) (Ma et al., Theorem 3.2 of [25], See also Theorem 4.5.4 of [33]) If G = G’, and
G satisfies k' (G) > 2, circ(G) < 8, |D2(G)| < 2 and ess’(G) > 3, then G is
collapsible.

(i1) (Theorem 1.7 of [19]) If ess’(G) > 3,n < 11, |D1(G)| = 0 and | D,(G)| < 2,
then G’ € {K|, K23, K13(1,1, 1), T(1,2), P~(10), P(10), P(11)}.

Corollary 3.4 Each of the following holds.

(i) Every graph G with '(G) > 2, circ(G) < 8, |D2(G)| <2 and ess'(G) > 3 is
collapsible.
(ii) Every graph G with k'(G) > 3 and circ(G) < 6 is strongly spanning trailable.
(iii) Let G be a graph with ess'(G) > 3 and circ(G) < 6, and let G be the core of
G. Then, G is strongly spanning trailable.

Proof Let G be a graph with k' (G) > 2, circ(G) < 8, |D2(G)| < 2and ess’(G) > 3,
and let G’ be the reduction of G. By the definition of contraction, we have «'(G’) >
k' (G) > 2, circ(G’) < circ(G) < 8 and ess’'(G') > ess'(G) > 3. Letv € D>(G')
be a vertex. Since ess’(G) > 3, v must be a trivial vertex and so v € D(G). This
implies that |D,(G’)| < |D2(G)| < 2. It follows by Theorem 3.3, G’ is collapsible
which implies that G’ = K| and so G is collapsible. This proves (i).
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To prove (ii), we assume that G with«’(G) > 3and circ(G) < 6.Lete’, ¢’ € E(G)
be two edges and let H = G(é', ¢”). Then, as «'(G) > 3 and circ(G) < 6, we
conclude that k' (H) > 2, circ(H) < 8, |Dy(H)| < 2 and ess’(H) > 3. It follows by
(i) that H is collapsible. Let v, and v,» denote the only vertices in Dy (H). As H is
collapsible, H has a spanning connected subgraph 7' with O(T') = {v./, v.»}. Thus,
T is a spanning (v,/, ver)-trail of H, and so by the randomness of ¢/, ¢”, G is strongly
spanning trailable. This proves (ii).

Now we assume that G is a graph with ess’(G) > 3 and circ(G) < 6. Let Gy
denote the core of G. By Lemma 2.7(i), «'(Gg) > 3. As Gy is a contraction of G, we
have circ(Go) < circ(G) < 6. By (i), Gy is strongly spanning trailable. O

3.1.1 Proof of Theorem 3.1(i)

We assume that §(Gg) > o'(Gyp). Let n = |V(Go)| and k = o'(Gg). As G is
connected, by the definition of G, G is also connected. Thus, if k = 0, thenn = 1,
and so by definition, Gy is strongly spanning trailable. Hence, we assume that k > 0.
Then, |V(G)| > n = |V(Go)| > 2a'(Gy) = 2k > 2. Thus, G is a connected
nontrivial graph. As ess’(G) > 3, by (1) and Lemma 2.7(i), «'(Gp) > 3. Thus,
|E(Go)| = 3. If k = 1, then applying Proposition 3.2(ii) to Go, G is spanned either
by a K3 orby a Ky ,—1 with «'(Go) > 3.If Gy is spanned by a K3, then this K3 must
have at least two edges each of which lies in a 2-cycle. For any €', ¢” € Gy, if there
exists a 2-cycle C in Go(€', "), then after contracting this 2-cycle C in Go(¢', ¢”),
every edge of Go(e', ¢”)/C lies in a cycle of length at most 3. As C is collapsible,
by Theorem 2.4(i) that Go(e’, ¢”) is collapsible. If there does not exist a 2-cycle in
Go(e', e"), every edge of Go(€', ¢”) lies in a cycle of length at most 3 in Go(¢’, €”).
It follows by Theorem 2.4(iv) that G (¢’, €”) is collapsible. When Gy is spanned by a
K1.n—1,since ' (Go) > 3, every edge must be in a parallel class of at least three edges.
In this case, every edge of Go(¢’, €”) lies in a cycle of length at most 3. It follows by
Theorem 2.4(iv) that Go(¢’, €”) is collapsible. By (2), G is strongly spanning trailable.
If k > 4, then by Proposition 3.2(i), G is strongly spanning trailable. Therefore, we
assume that k € {2, 3}. Suppose that k = 2. Then, G( does not have a cycle of length
longer than 5, and so by Corollary 3.4(iii), G is strongly spanning trailable.

Hence, we assume that k = 3, and so circ(Go) < 7. If circ(Go) < 6, then by
Corollary 3.4(iii), Gy is strongly spanning trailable, and we are done. Therefore, we
assume that circ(Gg) = 7. Let C be a cycle of Go with |[V(C)| = 7. If V(Gyp) —
V(C) # @, then as G is connected, there must be a vertex v € V(Go) — V(C) such
that v is adjacent to a vertex on C, implying that 3 = &'(Gg) > 4, a contradiction.
Thus, V(Go) = V(C) and so |V (Gp)| = 7 and C is a Hamilton cycle of Gy.

For any ¢, ¢” € E(Gy), let H = Go(¢, ¢”) and let v/, v, denote the new
vertices newly added in the process of subdividing ¢’ and e”, respectively. Then,
[V(H)| = 9. As ' (Gy) > 3, we have |[D;(H)| = 0 and |D>(H)| = 2. Let H'
be the reduction of H. We claim that H' = K and so H is collapsible. By con-
tradiction, we assume that 1 < |V(H’)| < |V(H)| = 9. By Theorem 3.3 (ii),
H' € {Ky3,K13(1,1,1), T(1,2)}. Since ' (Go) > 3, |D2(H')| < |D2(H)| < 2.1t
follows that H' ¢ {K23, K13(1, 1, 1), T(1, 2)}, as any of these graphs have at least 3
vertices of degree 2. This contradiction implies that H' = K and so H is collapsible.
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By (2), Gy is strongly spanning trailable. This completes the proof of Theorem 3.1(1).
]

3.1.2 Proof of Theorem 3.1(ii)

In this subsection, we assume Theorem 3.1(i) to prove Theorem 3.1(ii). It suffices to
show that if ess’(G) > 3 and §(G) > o/(G), then L(G) is Hamilton-connected. Let
G denote the core of G, k = o/(G) and n = |V (Gy)]|.

By Proposition 3.2(i), if «’(G) > 4, then G is strongly spanning trailable. By
definition, any spanning (v, v.~)-trail induces a spanning (¢’, ¢”)-trail in G. It follows
by Lemma 2.7 that L(G) is Hamilton-connected.

Hence, we assume that k < 3. As Gy is a contraction of G, we have o’(Gg) <
a'(G) <3 <«'(Gp) < 8(Gp). By Theorem 3.1(i), G is strongly spanning trailable.
By Lemma 2.7(ii), L(G) is Hamilton-connected. This completes the proof. O

3.2 Proof of Theorem 1.3(ii)

For a vertex u € V(G), define Ng(u) = {v € V(G) : uv € E(G)} to be the set of
neighbors of u in G. The main purpose of this subsection is to prove Theorem 1.3(ii).
As remarked at the beginning of this section, it suffices to assume that G is a graph
satisfying §(G) > «’(G) and x(L(G)) > 3 to show that L(G) is 1-hamiltonian. In
the proof, we will need the following former results.

Lemma3.5 Let G be a connected graph, and let K5 5 denote the graph obtained from
K3 3 by deleting an edge. Each of the following holds.
(i) (Catlin et al., Theorem 1.1 of [8]) If «’(G) > 4, then for any edge subset X C
E(G)with | X| < 2, G— X hastwo edge-disjoint spanning trees and is collapsible.
(i) (Catlin [5]) K75 5 is collapsible, and so K3 3 is collapsible.
(iii) (Lietal,, Lemma?2.1of [22])If |V (G)| < 8 with |D{(G)| = Oand |D2(G)| < 2.
Then, the reduction of G is in {K1, K2, K23}

By the definition of the core, and imitating the arguments in [11,30] and in Theorem
2.7 of [17], we have the following observation.

Observation 3.6 Lets > 0 be an integer, G be a connected graph with |E(G)| > s+3
and ess'(G) > 3, and G be the core of G.

(i) (Theorem 2.7 of [17]) The line graph L(G) is s-hamiltonian if and only if for any
S C E(G) with |S| < s, G — S has a dominating Eulerian subgraph.
(ii) If for any S € E(Gg) with |S| < s, Go — S is supereulerian, then L(G) is
s-hamiltonian.
Proof 1t suffices to justify Observation 3.6(ii). By Observation 3.6(i), we need to prove
that for any X € E(G) with |X| < s, G — X has a dominating Eulerian subgraph.
Let G denote the core of G. Define

S1 = {e € E(G) : e is incident with a vertex in D{(G)},
S5 = {e € X : eis incident with a vertex in D»(G)}.
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We shall adopt the following convention in our arguments. If ¢/, ¢” € S} are incident
with a vertex v € D;(G), then we may always assume that ¢” is being contracted
in the construction of G and ¢’ remains in E(Gg). With this convention, for any
v € D2(G), we may denote Eg(v) = {e], )}, and define X, = {e] : v € D2(G)}.
Hence by the definition of G, we may assume that Go = G /(81 U X»).

Let S = 8, — X2, 83 = X — (51 US)). Then, § = S, U S3 S E(Go). As
S C X, we have |S| < |X| < s. By the assumption of Observation 3.6(ii), Go — S
has a spanning Eulerian subgraph H'. Let S) = Uycp,(G).e,cE(H" 1€y, €, ). Define
H = G[E(H') U §J]. Since H’ is an Eulerian subgraph of Gy, by the definition of
Go, every vertex in H notincident with an edge in X, NS} has the same (even) degree as
in H'. As H is obtained from G[E (H')] by adding the edges in X, NS, which amounts
to subdividing the edges in (Uyep,(G)Eg (v)) N E(H') to form H, it follows that H is
an Eulerian subgraph of G.Foranyedgee € E(G),ife € E(G)—(S1UX3) = E(Gyp),
then since H' is a spanning Eulerian subgraph of Gy, e is incident with a vertex in
V(H).Ife € S, thenby ess’(G) > 3, e is also incident with a vertex of degree at least
4 in G. Hence, e is incident with a vertex in V (H) as well. Finally, we assume that
e € Xa2. As Xo = {€]] : v € D2(G)}, there exists a vertex v € D»(G) withe = €. Let
u, w be the neighbors of v in G, and so uvw is a path of length2in G. Asess’(G) > 3,
it follows that dg (1) > 3 and dg(w) > 3. By the definition that Go = G/(S1 U X>»)
and since H' spans Go, we have u, w € V(Go) = V(H'). As H = G[E(H") U §/],
this implies that u, w € V (H), and so e must be incident with a vertex in V (H). It
follows by definition that H is a dominating Eulerian subgraph of G — X, and so by
Observation 3.6(i), L(G) — X is hamiltonian. This proves Observation 3.6(ii). m]

To prove Theorem 1.3(ii), we let k = &’(G) and G denote the core of G. Then,
we will justify the following claim.

Claim1 Ifk = 1 or k > 4, then L(G) is I-hamiltonian.

Suppose first that k = 1. By Proposition 3.2(ii), G € {K3, K1 5—1}. Ask(L(G)) > 3,
G € {Kin—1} where n > 5. By the definition of a line graph, L(G) = K,_1 is
1-hamiltonian. Next we assume that k = «’(G) > 4. By Theorem 2.3, «'(G) > 4. By
Lemma 3.5(i), for any e € E(G), G — e is collapsible, and so is supereulerian. Thus
by Observation 3.6, L(G) is 1-hamiltonian. This proves Claim 1.

By Claim 1, it remains to discuss the cases when k € {2, 3}. Suppose that k = 2. Let
M be a maximum matching of G and X be the set of vertices in G not incident with
any edges in M. As §(Go) > k'(Gp) > 3, it follows by Lemma 2.2 that | X| < 1 and
s0 |V (Go)| < 5. Thus for any edge ¢ € E(Gy), we have |V (Go—e)| < |V(Go)| <5.
As«k’(Gg) > 3, wehave | D (Gg—e)| = 0and |D2(Gp—e)| < 2.ByLemma 3.5(iii),
the reduction of Gy — e is in {K, K2, K> 3}. Again by «'(Go) > 3, k' (Go —e) > 2
and Gog — e has at most two edge cuts of size 2. Thus, the reduction of Gy — e is
2-edge-connected and has at most two edge cuts of size 2. Then, the reduction of
Go—eis K1 and so G — e is collapsible. By Observation 3.6, L(G) is 1-hamiltonian.

Hence, we assume that k = 3. We shall show that

for any e € E(Gy), Go — e is collapsible. 3)
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We prove (3) by contradiction, and assume that for some ep = z1z2 € E(Gy), Go—eg
is not collapsible. Let G6 denote the reduction of Gy — ¢g. Since Gy — ¢q is not
collapsible, |V (Gy)| = 2.

Letw;, wy be the verticesin V (Gé)), each of whose preimages in Gy —e( contains an
end vertex of eg. We claim that w; # w;. By contradiction, we assume that w; = w.
As 6 is the reduction of Gy — ey, there exists a collapsible subgraph H in Gg — eg
with V(eg) € V(H), and so (Go — eg)/H = Go/H. Since Go/H is a contraction of
Go, we have k' (Go/H) > k'(Go) > 3 and o/(Go/H) < a'(G) = k < 3. It follows
that «'(Go/H) > 3 and circ(Go/H) < 7. By Corollary 3.4(i), Go/H is collapsible
which implies that (Go — eg)/H is collapsible. Thus by Theorem 2.4(i), Go — eg is
collapsible, which is contrary to the assumption that Go — eq is not collapsible. This
proves wy # wy.

Define Gg to be the graph obtained from G|, by adding a new edge linking w; and
w». Thus, G(J)r is a contraction of G, and 66 = G(J{ — ¢eo. As Gy is a contraction of
G and G, is a contraction of Go — e, it follows that o’ (G()) < '(Go) < &'(G) =
k < 3. Since k' (Gg) > 3 and G(T is a contraction of G, we have K/(G(T) > 3. As

0= G(J)r — eo, we conclude that k" (G()) > 2, |D2(G()| < 2 and ess’(G)) > 3. Thus
by Corollary 3.4(i), Gy, is collapsible. As G, is the reduction of Gy — eo, we have
G6 = K1 and so G — e is collapsible. This leads to a contradiction to the assumption
that Go — ep is not collapsible, and completes the proof of Theorem 1.3(ii). O
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