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Abstract
A graph G is Hamilton-connected if for any pair of distinct vertices u, v ∈ V (G),
G has a spanning (u, v)-path; G is 1-hamiltonian if for any vertex subset S ⊆ V (G)

with |S| ≤ 1, G − S has a spanning cycle. Let δ(G), α′(G) and L(G) denote the
minimum degree, the matching number and the line graph of a graph G, respectively.
The following result is obtained. Let G be a simple graph with |E(G)| ≥ 3. If
δ(G) ≥ α′(G), then each of the following holds. (i) L(G) is Hamilton-connected if
and only if κ(L(G)) ≥ 3. (ii) L(G) is 1-hamiltonian if and only if κ(L(G)) ≥ 3.
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1 The Problem

Graphs considered here are finite and loopless. Terms and notation in this paper follow
generally those in [3]. As in [3], for a graph G, let α(G), α′(G), κ(G) and κ ′(G)

denote the stability number (also called the independence number), matching number,
connectivity and edge connectivity of G, respectively. This research is motivated by
the following well-known theorem of Chvátal and Erdős on hamiltonian graphs.

Theorem 1.1 (Chvátal and Erdős [9]) Let G be a simple graph with at least three
vertices.

(i) If κ(G) ≥ α(G), then G has a Hamilton cycle.
(ii) If κ(G) ≥ α(G) − 1, then G has a Hamilton path.
(iii) If κ(G) ≥ α(G) + 1, then G is Hamilton-connected.

As shown in the survey of Saito in [29], there have been many extensions and
variations of Theorem 1.1. A graph is supereulerian if it has a spanning Eulerian
subgraph. There are quite a few investigations using similar conditions involving edge
connectivity, stability number or matching number to study supereulerian graphs, as
seen in [10,20,21,31,34], among others.

Another motivation of this research comes from Thomassen’s conjecture [32] that
every 4-connected line graph is hamiltonian. The line graph of a graph G, denoted
by L(G), is a simple graph with vertex set E(G), where two vertices in L(G) are
adjacent if and only if the corresponding edges in G are adjacent. A number most
fascinating conjectures in this area are presented below. By an ingenious argument of
Ryjác̆ek [27], Conjecture 1.2(i) below is equivalent to a seeming stronger conjecture
of Conjecture 1.2(ii). In [28], it is shown that all conjectures stated in Conjecture 1.2
are equivalent to each other.

Conjecture 1.2

(i) (Thomassen [32]) Every 4-connected line graph is hamiltonian.
(ii) (Matthews and Sumner [26]) Every 4-connected claw-free graph is hamiltonian.
(iii) (Kužel and Xiong [15]) Every 4-connected line graph is Hamilton-connected.
(iv) (Ryjáček and Vrána [28]) Every 4-connected claw-free graph is Hamilton-

connected.

Many researches have been conducted towards these conjectures, as can be found
in the surveys in [4,12,13], among others. The best result by far is obtained by Kaiser,
Ryjáček and Vrána in [14]. Recently, Algefari et al. (Corollary 1.1 of [1]) proved that
every connected simple graph G with |E(G)| ≥ 3 and with δ(G) ≥ α′(G) has a
hamiltonian line graph. For an integer s ≥ 0, a graph G is s-hamiltonian if for any
vertex subset X ⊆ V (G) with |X | ≤ s, G − X has a Hamilton cycle. The current
research is to investigate similar relationship between the minimum degree and the
matching number of a graph that would warrant Hamilton-connected line graphs and
1-hamiltonian line graphs. As Hamilton-connected graphs and 1-hamiltonian graphs
must be 3-connected, it is natural to conduct the investigation within 3-connected line
graphs. The following is our main result.
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Theorem 1.3 Let G be a simple graph with |E(G)| ≥ 3 and δ(G) ≥ α′(G). Then,
each of the following holds.

(i) L(G) is Hamilton-connected if and only if κ(L(G)) ≥ 3.
(ii) L(G) is 1-hamiltonian if and only if κ(L(G)) ≥ 3.

2 Preliminaries

A cycle on n vertices is often called an n-cycle. For a subset X ⊆ V (G) or X ⊆ E(G),
G[X ] is the subgraph ofG induced by X . A path from a vertex u to a vertex v is referred
to as a (u, v)-path. An edge subset X of G is an essential cut if G − X has at least two
nontrivial components or if |X | = |E(G)|−1. For an integer k ≥ 0, a connected graph
G is essentially k-edge-connected if G does not have an essential edge cut X with
|X | < k. For a connected graph G, let ess′(G) be the largest integer k such that G is
essentially k-edge-connected. By the definition of a line graph, we have the following
observation for a graph G and its line graph L(G):

κ(L(G)) = ess′(G). (1)

2.1 MaximumMatching of a Graph

Let M be a matching in G. We use V (M) to denote the set V (G[M]). A path P in G
is an M-augmenting path if the edges of P are alternately in M and in E(G) − M ,
and if both end vertices of P are not in V (M). We start with a fundamental theorem
of Berge.

Theorem 2.1 (Berge [2]) A matching M in G is a maximum matching if and only if
G does not have M-augmenting paths.

ApplyingTheorem2.1, the following results are proved in [1], whichwill be utilized
in our arguments in the proof of Theorem 1.3.

Lemma 2.2 (Lemma 2.1 of [1]) Let k > 0 be an integer and G be a graph with a
matching M such that |M | = k. Suppose that V (G) − V (M) has a subset X with
|X | ≥ 2 such that for any v ∈ X , d(v) ≥ k. If X has at least one vertex u such that
d(u) ≥ k + 1, then M is not a maximum matching of G.

Theorem 2.3 (Theorem 2.2 of [1]) Let G be a connected simple graph with n =
|V (G)| ≥ 2 and k = α′(G). If δ(G) ≥ k, then κ ′(G) ≥ k.

2.2 Collapsible Graphs and Strongly Spanning Trailable Graphs

We use a definition of collapsible graphs [18] that is equivalent to Catlin’s original
definition in [6]. For a graph G, we use O(G) to denote the set of all vertices of
odd degree in G. A graph G is collapsible if for any subset R ⊆ V (G) with |R| ≡ 0
(mod 2), G has a spanning connected subgraph H such that O(H) = R. If G is
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collapsible, then by definition with R = ∅, G is supereulerian and so κ ′(G) ≥ 2.
As examples, Catlin [6] observed that cycles of length at most 3 are collapsible. In
[6], Catlin showed that for any graph G, every vertex of G lies in a unique maximal
collapsible subgraph of G. The reduction of G, denoted by G ′, is obtained from G by
contracting all nontrivial maximal collapsible subgraphs of G. A graph is reduced if
it is the reduction of some graph. As shown in [6], a reduced graph is simple.

Theorem 2.4 Let G be a graph.

(i) (Catlin, Theorem 3 of [6]) Suppose that H is a collapsible subgraph of G. Then,
G is collapsible if and only if G/H is collapsible.

(ii) (Catlin, Lemma 3 of [6]) If G is collapsible, then any contraction of G is also
collapsible.

(iii) (Catlin, Theorem 5 of [6]) A graph G is reduced if and only if G does not contain
a nontrivial collapsible subgraph.

(iv) If G has a spanning connected subgraph Q, such that for any edge e ∈ E(Q),
G has a collapsible subgraph Je with e ∈ E(Je), then G is collapsible.

Proof We argue by induction on n = |V (G)| to prove (iv). As (iv) holds for n = 1,
we assume that n ≥ 2. For any e ∈ E(Q), let Je denote a collapsible subgraph
of G with e ∈ E(Je). We fix an edge e0 ∈ E(Q) and let J = Je0 be a collapsible
subgraph ofG that contains e0. DefineG1 = G/J . As Q is a spanning subgraph inG,
Q1 = Q/(Q ∩ J ) is a spanning subgraph of G1. For any edge e ∈ E(Q1) ⊆ E(Q),
there exists a collapsible subgraph Je of G with e ∈ E(Je). By Theorem 2.4(ii),
J ′
e = Je/(J ∩ Je) is a collapsible subgraph of G1 with e ∈ E(J ′

e). It follows by
induction that G1 is collapsible. By Theorem 2.4(i), G is collapsible. 
�

For u, v ∈ V (G), a (u, v)-trail is a trail of G from u to v. For e, e′ ∈ E(G), an
(e, e′)-trail is a trail of G having end-edges e and e′. An (e, e′)-trail T is dominating
if each edge of G is incident with at least one internal vertex of T , and T is spanning
if T is a dominating trail with V (T ) = V (G). A graph G is spanning trailable if for
each pair of edges e1 and e2, G has a spanning (e1, e2)-trail. Suppose that e = u1v1
and e′ = u2v2 are two edges of G. If e �= e′, then the graph G(e, e′) is obtained from
G by replacing e = u1v1 with a path u1vev1 and by replacing e′ = u2v2 with a path
u2ve′v2, where ve, ve′ are two new vertices not in V (G). If e = e′, then G(e, e′), also
denoted by G(e), is obtained from G by replacing e = u1v1 with a path u1vev1. For
the recovering operation, we let ce(G(e, e′)) be the graph obtained from G(e, e′) by
replacing the path u1vev1 with the edge e = u1v1. Thus, ce′(ce(G(e, e′))) = G.

By the definition of G(e′, e′′), we have the following observation.

If G(e′, e′′) is collapsible, then G(e′, e′′) has a spanning (ve′, ve′′)-trail. (2)

In fact, if G(e′, e′′) is collapsible, then G(e′, e′′) has a spanning connected subgraph
J with O(J ) = {ve′, ve′′ }. Hence J is a spanning (ve′, ve′′)-trail.

As defined in [23], a graphG is strongly spanning trailable if for any e, e′ ∈ E(G),
G(e, e′) has a (ve, ve′)-trail T with V (G) = V (T )−{ve, ve′ }. Since e = e′ is possible,
strongly spanning trailable graphs are both spanning trailable and supereulerian.
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Theorem 2.5 (Luo et al. [24], see also Theorem 4 of [7]) If κ ′(G) ≥ 4, then G is
strongly spanning trailable.

Harary andNash-Williams showed that there is a close relationship between a graph
and its line graph concerning Hamilton cycles.

Theorem 2.6 (Harary and Nash-Williams [11]) Let G be a graph with |E(G)| ≥
3. Then, L(G) is hamiltonian if and only if G has an Eulerian subgraph H with
E(G − V (H)) = ∅.

Let G be a graph with |V (G)| ≥ 3. For each integer i ≥ 0, define Di (G) = {v ∈
V (G) : dG(v) = i}. Suppose that ess′(G) ≥ 3. The core of this graph G, denoted
by G0, is obtained from G − D1(G) by contracting exactly one edge xy or yz for
each path xyz in G with dG(y) = 2. By the definition of Di (G), G − D1(G) is
connected if G is connected. As contraction does not decrease the edge connectivity,
G0 is connected if G is connected. Lemma 2.7 (iii) below is proved by using a similar
argument in the proof of Theorem 2.6.

Lemma 2.7 (Shao [30]) LetG be a connected nontrivial graph such that κ(L(G)) ≥ 3,
and let G0 denote the core of G.

(i) G0 is uniquely determined by G with κ ′(G0) ≥ 3.
(ii) (see also Lemma 2.9 of [16]) If G0 is strongly spanning trailable, then L(G) is

Hamilton-connected.
(iii) (see also Proposition 2.2 of [16]) L(G) is Hamilton-connected if and only if for

any pair of edges e′, e′′ ∈ E(G), G has a dominating (e′, e′′)-trail.

3 Proof of theMain Results

Theorem1.3will be proved in this section.As everyHamilton-connectedgraphmust be
3-connected, and every 1-hamiltonian graph must be 3-connected, it suffices to prove
that ifG is a graph satisfying δ(G) ≥ α′(G) and κ(L(G)) ≥ 3, then L(G) is Hamilton-
connected for Theorem 1.3(i) and L(G) is 1-hamiltonian for Theorem 1.3(ii).

3.1 Proof of Theorem 1.3(i).

As κ(L(G)) ≥ 3, we have ess′(G) ≥ 3, and so by Lemma 2.7(i), the core G0 of G is
well-defined with κ ′(G0) ≥ 3. We shall prove a slightly stronger Theorem 3.1, which
implies the sufficiency of Theorem 1.3(i).

Theorem 3.1 Let G be a connected simple graph with |E(G)| ≥ 3 and ess′(G) ≥ 3,
and let G0 denote the core of G.

(i) If δ(G0) ≥ α′(G0), then G0 is strongly spanning trailable.
(ii) Suppose that δ(G) ≥ α′(G). Then, L(G) is Hamilton-connected if and only if

κ(L(G)) ≥ 3.
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P−(10) P (10) P (11) K1,3(1, 1, 1) K2,3 T (1, 2)

Fig. 1 nontrivial reduced graphs in Theorem 3.3(ii)

To prove Theorem 3.1, we begin with some tools that would be used in the argu-
ments. For a graph G, let circ(G) denote the length of a longest cycle of G.

Proposition 3.2 Let G be a connected simple graph with |E(G)| ≥ 3 and δ(G) ≥
α′(G) = k.

(i) If k ≥ 4, then κ ′(G) ≥ k ≥ 4 and G is strongly spanning trailable.
(ii) (Lemma 3.1 of [1]) If k = 1, then G ∈ {K3, K1,n−1}.
(iii) If k ≥ 4 or k = 1, then L(G) is Hamilton-connected.

Proof ToproveProposition3.2(i),we applyTheorem2.3 to conclude thatκ ′(G) ≥ k ≥
4. Hence by Theorem 2.5,G is strongly spanning trailable. It remains to justify Propo-
sition 3.2(iii). If k ≥ 4, then as G is strongly spanning trailable, by Lemma 2.7(iii),
L(G) is Hamilton-connected. If k = 1, then L(G) is a complete graph and so it is also
Hamilton-connected. 
�

We define P−(10), P(10), P(11), K1,3(1, 1, 1), K2,3, T (1, 2) to be the graphs as
respectively depicted in Fig. 1.

Theorem 3.3 Let G be a connected graph with n = |V (G)|, and let G ′ denote the
reduction of G.

(i) (Ma et al., Theorem 3.2 of [25], See also Theorem 4.5.4 of [33]) If G = G ′, and
G satisfies κ ′(G) ≥ 2, circ(G) ≤ 8, |D2(G)| ≤ 2 and ess′(G) ≥ 3, then G is
collapsible.

(ii) (Theorem 1.7 of [19]) If ess′(G) ≥ 3, n ≤ 11, |D1(G)| = 0 and |D2(G)| ≤ 2,
then G ′ ∈ {K1, K2,3, K1,3(1, 1, 1), T (1, 2), P−(10), P(10), P(11)}.

Corollary 3.4 Each of the following holds.

(i) Every graph G with κ ′(G) ≥ 2, circ(G) ≤ 8, |D2(G)| ≤ 2 and ess′(G) ≥ 3 is
collapsible.

(ii) Every graph G with κ ′(G) ≥ 3 and circ(G) ≤ 6 is strongly spanning trailable.
(iii) Let G be a graph with ess′(G) ≥ 3 and circ(G) ≤ 6, and let G0 be the core of

G. Then, G0 is strongly spanning trailable.

Proof Let G be a graph with κ ′(G) ≥ 2, circ(G) ≤ 8, |D2(G)| ≤ 2 and ess′(G) ≥ 3,
and let G ′ be the reduction of G. By the definition of contraction, we have κ ′(G ′) ≥
κ ′(G) ≥ 2, circ(G ′) ≤ circ(G) ≤ 8 and ess′(G ′) ≥ ess′(G) ≥ 3. Let v ∈ D2(G ′)
be a vertex. Since ess′(G) ≥ 3, v must be a trivial vertex and so v ∈ D2(G). This
implies that |D2(G ′)| ≤ |D2(G)| ≤ 2. It follows by Theorem 3.3, G ′ is collapsible
which implies that G ′ = K1 and so G is collapsible. This proves (i).
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Toprove (ii),we assume thatGwith κ ′(G) ≥ 3 and circ(G) ≤ 6. Let e′, e′′ ∈ E(G)

be two edges and let H = G(e′, e′′). Then, as κ ′(G) ≥ 3 and circ(G) ≤ 6, we
conclude that κ ′(H) ≥ 2, circ(H) ≤ 8, |D2(H)| ≤ 2 and ess′(H) ≥ 3. It follows by
(i) that H is collapsible. Let ve′ and ve′′ denote the only vertices in D2(H). As H is
collapsible, H has a spanning connected subgraph T with O(T ) = {ve′, ve′′ }. Thus,
T is a spanning (ve′ , ve′′)-trail of H , and so by the randomness of e′, e′′, G is strongly
spanning trailable. This proves (ii).

Now we assume that G is a graph with ess′(G) ≥ 3 and circ(G) ≤ 6. Let G0
denote the core of G. By Lemma 2.7(i), κ ′(G0) ≥ 3. As G0 is a contraction of G, we
have circ(G0) ≤ circ(G) ≤ 6. By (ii), G0 is strongly spanning trailable. 
�

3.1.1 Proof of Theorem 3.1(i)

We assume that δ(G0) ≥ α′(G0). Let n = |V (G0)| and k = α′(G0). As G is
connected, by the definition of G0, G0 is also connected. Thus, if k = 0, then n = 1,
and so by definition, G0 is strongly spanning trailable. Hence, we assume that k > 0.
Then, |V (G)| ≥ n = |V (G0)| ≥ 2α′(G0) = 2k ≥ 2. Thus, G is a connected
nontrivial graph. As ess′(G) ≥ 3, by (1) and Lemma 2.7(i), κ ′(G0) ≥ 3. Thus,
|E(G0)| ≥ 3. If k = 1, then applying Proposition 3.2(ii) to G0, G0 is spanned either
by a K3 or by a K1,n−1 with κ ′(G0) ≥ 3. If G0 is spanned by a K3, then this K3 must
have at least two edges each of which lies in a 2-cycle. For any e′, e′′ ∈ G0, if there
exists a 2-cycle C in G0(e′, e′′), then after contracting this 2-cycle C in G0(e′, e′′),
every edge of G0(e′, e′′)/C lies in a cycle of length at most 3. As C is collapsible,
by Theorem 2.4(i) that G0(e′, e′′) is collapsible. If there does not exist a 2-cycle in
G0(e′, e′′), every edge of G0(e′, e′′) lies in a cycle of length at most 3 in G0(e′, e′′).
It follows by Theorem 2.4(iv) that G0(e′, e′′) is collapsible. When G0 is spanned by a
K1,n−1, since κ ′(G0) ≥ 3, every edge must be in a parallel class of at least three edges.
In this case, every edge of G0(e′, e′′) lies in a cycle of length at most 3. It follows by
Theorem2.4(iv) thatG0(e′, e′′) is collapsible. By (2),G0 is strongly spanning trailable.
If k ≥ 4, then by Proposition 3.2(i), G0 is strongly spanning trailable. Therefore, we
assume that k ∈ {2, 3}. Suppose that k = 2. Then, G0 does not have a cycle of length
longer than 5, and so by Corollary 3.4(iii), G0 is strongly spanning trailable.

Hence, we assume that k = 3, and so circ(G0) ≤ 7. If circ(G0) ≤ 6, then by
Corollary 3.4(iii), G0 is strongly spanning trailable, and we are done. Therefore, we
assume that circ(G0) = 7. Let C be a cycle of G0 with |V (C)| = 7. If V (G0) −
V (C) �= ∅, then as G0 is connected, there must be a vertex v ∈ V (G0) − V (C) such
that v is adjacent to a vertex on C , implying that 3 = α′(G0) ≥ 4, a contradiction.
Thus, V (G0) = V (C) and so |V (G0)| = 7 and C is a Hamilton cycle of G0.

For any e′, e′′ ∈ E(G0), let H = G0(e′, e′′) and let ve′ , ve′′ denote the new
vertices newly added in the process of subdividing e′ and e′′, respectively. Then,
|V (H)| = 9. As κ ′(G0) ≥ 3, we have |D1(H)| = 0 and |D2(H)| = 2. Let H ′
be the reduction of H . We claim that H ′ = K1 and so H is collapsible. By con-
tradiction, we assume that 1 < |V (H ′)| ≤ |V (H)| = 9. By Theorem 3.3 (ii),
H ′ ∈ {K2,3, K1,3(1, 1, 1), T (1, 2)}. Since κ ′(G0) ≥ 3, |D2(H ′)| ≤ |D2(H)| ≤ 2. It
follows that H ′ /∈ {K2,3, K1,3(1, 1, 1), T (1, 2)}, as any of these graphs have at least 3
vertices of degree 2. This contradiction implies that H ′ = K1 and so H is collapsible.
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By (2), G0 is strongly spanning trailable. This completes the proof of Theorem 3.1(i).

�

3.1.2 Proof of Theorem 3.1(ii)

In this subsection, we assume Theorem 3.1(i) to prove Theorem 3.1(ii). It suffices to
show that if ess′(G) ≥ 3 and δ(G) ≥ α′(G), then L(G) is Hamilton-connected. Let
G0 denote the core of G, k = α′(G) and n = |V (G0)|.

By Proposition 3.2(i), if α′(G) ≥ 4, then G is strongly spanning trailable. By
definition, any spanning (ve′ , ve′′)-trail induces a spanning (e′, e′′)-trail inG. It follows
by Lemma 2.7 that L(G) is Hamilton-connected.

Hence, we assume that k ≤ 3. As G0 is a contraction of G, we have α′(G0) ≤
α′(G) ≤ 3 ≤ κ ′(G0) ≤ δ(G0). By Theorem 3.1(i), G0 is strongly spanning trailable.
By Lemma 2.7(ii), L(G) is Hamilton-connected. This completes the proof. 
�

3.2 Proof of Theorem 1.3(ii)

For a vertex u ∈ V (G), define NG(u) = {v ∈ V (G) : uv ∈ E(G)} to be the set of
neighbors of u in G. The main purpose of this subsection is to prove Theorem 1.3(ii).
As remarked at the beginning of this section, it suffices to assume that G is a graph
satisfying δ(G) ≥ α′(G) and κ(L(G)) ≥ 3 to show that L(G) is 1-hamiltonian. In
the proof, we will need the following former results.

Lemma 3.5 Let G be a connected graph, and let K−
3,3 denote the graph obtained from

K3,3 by deleting an edge. Each of the following holds.

(i) (Catlin et al., Theorem 1.1 of [8]) If κ ′(G) ≥ 4, then for any edge subset X ⊆
E(G)with |X | ≤ 2,G−X has two edge-disjoint spanning trees and is collapsible.

(ii) (Catlin [5]) K−
3,3 is collapsible, and so K3,3 is collapsible.

(iii) (Li et al., Lemma 2.1 of [22]) If |V (G)| ≤ 8 with |D1(G)| = 0 and |D2(G)| ≤ 2.
Then, the reduction of G is in {K1, K2, K2,3}.

By the definition of the core, and imitating the arguments in [11,30] and in Theorem
2.7 of [17], we have the following observation.

Observation 3.6 Let s ≥ 0 be an integer, G be a connected graph with |E(G)| ≥ s+3
and ess′(G) ≥ 3, and G0 be the core of G.

(i) (Theorem 2.7 of [17]) The line graph L(G) is s-hamiltonian if and only if for any
S ⊆ E(G) with |S| ≤ s, G − S has a dominating Eulerian subgraph.

(ii) If for any S ⊆ E(G0) with |S| ≤ s, G0 − S is supereulerian, then L(G) is
s-hamiltonian.

Proof It suffices to justify Observation 3.6(ii). ByObservation 3.6(i), we need to prove
that for any X ⊆ E(G) with |X | ≤ s, G − X has a dominating Eulerian subgraph.
Let G0 denote the core of G. Define

S1 = {e ∈ E(G) : e is incident with a vertex in D1(G)},
S′
2 = {e ∈ X : e is incident with a vertex in D2(G)}.
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We shall adopt the following convention in our arguments. If e′, e′′ ∈ S′
2 are incident

with a vertex v ∈ D2(G), then we may always assume that e′′ is being contracted
in the construction of G0 and e′ remains in E(G0). With this convention, for any
v ∈ D2(G), we may denote EG(v) = {e′

v, e
′′
v }, and define X2 = {e′′

v : v ∈ D2(G)}.
Hence by the definition of G0, we may assume that G0 = G/(S1 ∪ X2).

Let S2 = S′
2 − X2, S3 = X − (S1 ∪ S′

2). Then, S = S2 ∪ S3 ⊆ E(G0). As
S ⊆ X , we have |S| ≤ |X | ≤ s. By the assumption of Observation 3.6(ii), G0 − S
has a spanning Eulerian subgraph H ′. Let S′′

2 = ∪v∈D2(G),e′
v∈E(H ′){e′

v, e
′′
v }. Define

H = G[E(H ′) ∪ S′′
2 ]. Since H ′ is an Eulerian subgraph of G0, by the definition of

G0, every vertex in H not incidentwith an edge in X2∩S′′
2 has the same (even) degree as

in H ′. As H is obtained fromG[E(H ′)] by adding the edges in X2∩S′′
2 , which amounts

to subdividing the edges in (∪v∈D2(G)EG(v))∩ E(H ′) to form H , it follows that H is
an Eulerian subgraph ofG. For any edge e ∈ E(G), if e ∈ E(G)−(S1∪X2) = E(G0),
then since H ′ is a spanning Eulerian subgraph of G0, e is incident with a vertex in
V (H). If e ∈ S1, then by ess′(G) ≥ 3, e is also incident with a vertex of degree at least
4 in G. Hence, e is incident with a vertex in V (H) as well. Finally, we assume that
e ∈ X2. As X2 = {e′′

v : v ∈ D2(G)}, there exists a vertex v ∈ D2(G)with e = e′′
v . Let

u, w be the neighbors of v inG, and so uvw is a path of length 2 inG. As ess′(G) ≥ 3,
it follows that dG(u) ≥ 3 and dG(w) ≥ 3. By the definition that G0 = G/(S1 ∪ X2)

and since H ′ spans G0, we have u, w ∈ V (G0) = V (H ′). As H = G[E(H ′) ∪ S′′
2 ],

this implies that u, w ∈ V (H), and so e must be incident with a vertex in V (H). It
follows by definition that H is a dominating Eulerian subgraph of G − X , and so by
Observation 3.6(i), L(G) − X is hamiltonian. This proves Observation 3.6(ii). 
�

To prove Theorem 1.3(ii), we let k = α′(G) and G0 denote the core of G. Then,
we will justify the following claim.

Claim 1 If k = 1 or k ≥ 4, then L(G) is 1-hamiltonian.

Suppose first that k = 1. By Proposition 3.2(ii), G ∈ {K3, K1,n−1}. As κ(L(G)) ≥ 3,
G ∈ {K1,n−1} where n ≥ 5. By the definition of a line graph, L(G) = Kn−1 is
1-hamiltonian. Next we assume that k = α′(G) ≥ 4. By Theorem 2.3, κ ′(G) ≥ 4. By
Lemma 3.5(i), for any e ∈ E(G), G − e is collapsible, and so is supereulerian. Thus
by Observation 3.6, L(G) is 1-hamiltonian. This proves Claim 1.

ByClaim 1, it remains to discuss the cases when k ∈ {2, 3}. Suppose that k = 2. Let
M be a maximum matching of G0 and X be the set of vertices in G0 not incident with
any edges in M . As δ(G0) ≥ κ ′(G0) ≥ 3, it follows by Lemma 2.2 that |X | ≤ 1 and
so |V (G0)| ≤ 5. Thus for any edge e ∈ E(G0), we have |V (G0 −e)| ≤ |V (G0)| ≤ 5.
As κ ′(G0) ≥ 3, we have |D1(G0−e)| = 0 and |D2(G0−e)| ≤ 2. By Lemma 3.5(iii),
the reduction of G0 − e is in {K1, K2, K2,3}. Again by κ ′(G0) ≥ 3, κ ′(G0 − e) ≥ 2
and G0 − e has at most two edge cuts of size 2. Thus, the reduction of G0 − e is
2-edge-connected and has at most two edge cuts of size 2. Then, the reduction of
G0 −e is K1 and so G0 −e is collapsible. By Observation 3.6, L(G) is 1-hamiltonian.

Hence, we assume that k = 3. We shall show that

for any e ∈ E(G0), G0 − e is collapsible. (3)
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We prove (3) by contradiction, and assume that for some e0 = z1z2 ∈ E(G0),G0−e0
is not collapsible. Let G ′

0 denote the reduction of G0 − e0. Since G0 − e0 is not
collapsible, |V (G ′

0)| ≥ 2.
Letw1, w2 be the vertices inV (G ′

0), each ofwhose preimages inG0−e0 contains an
end vertex of e0. We claim that w1 �= w2. By contradiction, we assume that w1 = w2.
As G ′

0 is the reduction of G0 − e0, there exists a collapsible subgraph H in G0 − e0
with V (e0) ⊆ V (H), and so (G0 − e0)/H = G0/H . Since G0/H is a contraction of
G0, we have κ ′(G0/H) ≥ κ ′(G0) ≥ 3 and α′(G0/H) ≤ α′(G) = k ≤ 3. It follows
that κ ′(G0/H) ≥ 3 and circ(G0/H) ≤ 7. By Corollary 3.4(i), G0/H is collapsible
which implies that (G0 − e0)/H is collapsible. Thus by Theorem 2.4(i), G0 − e0 is
collapsible, which is contrary to the assumption that G0 − e0 is not collapsible. This
proves w1 �= w2.

Define G+
0 to be the graph obtained from G ′

0 by adding a new edge linking w1 and
w2. Thus, G

+
0 is a contraction of G0, and G ′

0 = G+
0 − e0. As G0 is a contraction of

G and G ′
0 is a contraction of G0 − e0, it follows that α′(G ′

0) ≤ α′(G0) ≤ α′(G) =
k ≤ 3. Since κ ′(G0) ≥ 3 and G+

0 is a contraction of G0, we have κ ′(G+
0 ) ≥ 3. As

G ′
0 = G+

0 − e0, we conclude that κ ′(G ′
0) ≥ 2, |D2(G ′

0)| ≤ 2 and ess′(G ′
0) ≥ 3. Thus

by Corollary 3.4(i), G ′
0 is collapsible. As G ′

0 is the reduction of G0 − e0, we have
G ′

0 = K1 and soG0−e0 is collapsible. This leads to a contradiction to the assumption
that G0 − e0 is not collapsible, and completes the proof of Theorem 1.3(ii). 
�
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