

A Condition on Hamilton-Connected Line Graphs

Lan Lei¹ · Jia Wei² · Yikang Xie³ · Mingquan Zhan⁴ · Hong-Jian Lai³

Received: 6 March 2021 / Revised: 19 November 2021 / Accepted: 20 December 2021 © Malaysian Mathematical Sciences Society and Penerbit Universiti Sains Malaysia 2022

Abstract

A graph *G* is Hamilton-connected if for any pair of distinct vertices $u, v \in V(G)$, *G* has a spanning (u, v)-path; *G* is 1-hamiltonian if for any vertex subset $S \subseteq V(G)$ with $|S| \leq 1$, G - S has a spanning cycle. Let $\delta(G)$, $\alpha'(G)$ and L(G) denote the minimum degree, the matching number and the line graph of a graph *G*, respectively. The following result is obtained. Let *G* be a simple graph with $|E(G)| \geq 3$. If $\delta(G) \geq \alpha'(G)$, then each of the following holds. (i) L(G) is Hamilton-connected if and only if $\kappa(L(G)) \geq 3$. (ii) L(G) is 1-hamiltonian if and only if $\kappa(L(G)) \geq 3$.

Keywords Chvátal-Erdős condition \cdot Hamilton-connected \cdot Essential edge connectivity \cdot Matching \cdot Minimum degree \cdot 1-hamiltonian

Mathematics subject classification 05C45 · 05C75

Communicated by Sandi Klavžar.

☑ Jia Wei jiawei_math@163.com

> Lan Lei leilan@ctbu.edu.cn

Yikang Xie yx0010@mix.wvu.edu

Mingquan Zhan mingquan.zhan@millersville.edu

Hong-Jian Lai hjlai@math.wvu.edu

- School of Mathematics and Statistics, Chongqing Technology and Business University, Chongqing 400067, People's Republic of China
- ² School of Mathematics and Statistics, Northwestern Polytechnical University, Xi'an 710129, Shaanxi, People's Republic of China
- ³ Department of Mathematics, West Virginia University, Morgantown, WV 26506, USA
- ⁴ Department of Mathematics, Millersville University of Pennsylvania, Millersville, PA 17551, USA

1 The Problem

Graphs considered here are finite and loopless. Terms and notation in this paper follow generally those in [3]. As in [3], for a graph *G*, let $\alpha(G)$, $\alpha'(G)$, $\kappa(G)$ and $\kappa'(G)$ denote the stability number (also called the independence number), matching number, connectivity and edge connectivity of *G*, respectively. This research is motivated by the following well-known theorem of Chvátal and Erdős on hamiltonian graphs.

Theorem 1.1 (Chvátal and Erdős [9]) Let G be a simple graph with at least three vertices.

- (i) If $\kappa(G) \ge \alpha(G)$, then *G* has a Hamilton cycle.
- (ii) If $\kappa(G) \ge \alpha(G) 1$, then G has a Hamilton path.
- (iii) If $\kappa(G) \ge \alpha(G) + 1$, then G is Hamilton-connected.

As shown in the survey of Saito in [29], there have been many extensions and variations of Theorem 1.1. A graph is supereulerian if it has a spanning Eulerian subgraph. There are quite a few investigations using similar conditions involving edge connectivity, stability number or matching number to study supereulerian graphs, as seen in [10,20,21,31,34], among others.

Another motivation of this research comes from Thomassen's conjecture [32] that every 4-connected line graph is hamiltonian. The line graph of a graph G, denoted by L(G), is a simple graph with vertex set E(G), where two vertices in L(G) are adjacent if and only if the corresponding edges in G are adjacent. A number most fascinating conjectures in this area are presented below. By an ingenious argument of Ryjáček [27], Conjecture 1.2(i) below is equivalent to a seeming stronger conjecture of Conjecture 1.2(ii). In [28], it is shown that all conjectures stated in Conjecture 1.2 are equivalent to each other.

Conjecture 1.2

- (*i*) (Thomassen [32]) Every 4-connected line graph is hamiltonian.
- (ii) (Matthews and Sumner [26]) Every 4-connected claw-free graph is hamiltonian.
- (iii) (Kužel and Xiong [15]) Every 4-connected line graph is Hamilton-connected.
- (iv) (Ryjáček and Vrána [28]) Every 4-connected claw-free graph is Hamiltonconnected.

Many researches have been conducted towards these conjectures, as can be found in the surveys in [4,12,13], among others. The best result by far is obtained by Kaiser, Ryjáček and Vrána in [14]. Recently, Algefari et al. (Corollary 1.1 of [1]) proved that every connected simple graph G with $|E(G)| \ge 3$ and with $\delta(G) \ge \alpha'(G)$ has a hamiltonian line graph. For an integer $s \ge 0$, a graph G is s-hamiltonian if for any vertex subset $X \subseteq V(G)$ with $|X| \le s$, G - X has a Hamilton cycle. The current research is to investigate similar relationship between the minimum degree and the matching number of a graph that would warrant Hamilton-connected line graphs and 1-hamiltonian line graphs. As Hamilton-connected graphs and 1-hamiltonian graphs must be 3-connected, it is natural to conduct the investigation within 3-connected line graphs. The following is our main result. **Theorem 1.3** Let G be a simple graph with $|E(G)| \ge 3$ and $\delta(G) \ge \alpha'(G)$. Then, each of the following holds.

- (*i*) L(G) is Hamilton-connected if and only if $\kappa(L(G)) \ge 3$.
- (*ii*) L(G) is 1-hamiltonian if and only if $\kappa(L(G)) \ge 3$.

2 Preliminaries

A cycle on *n* vertices is often called an *n*-cycle. For a subset $X \subseteq V(G)$ or $X \subseteq E(G)$, G[X] is the subgraph of *G* induced by *X*. A path from a vertex *u* to a vertex *v* is referred to as a (u, v)-path. An edge subset *X* of *G* is an essential cut if G - X has at least two nontrivial components or if |X| = |E(G)| - 1. For an integer $k \ge 0$, a connected graph *G* is essentially *k*-edge-connected if *G* does not have an essential edge cut *X* with |X| < k. For a connected graph *G*, let ess'(G) be the largest integer *k* such that *G* is essentially *k*-edge-connected. By the definition of a line graph, we have the following observation for a graph *G* and its line graph L(G):

$$\kappa(L(G)) = ess'(G). \tag{1}$$

2.1 Maximum Matching of a Graph

Let *M* be a matching in *G*. We use V(M) to denote the set V(G[M]). A path *P* in *G* is an *M*-augmenting path if the edges of *P* are alternately in *M* and in E(G) - M, and if both end vertices of *P* are not in V(M). We start with a fundamental theorem of Berge.

Theorem 2.1 (Berge [2]) A matching M in G is a maximum matching if and only if G does not have M-augmenting paths.

Applying Theorem 2.1, the following results are proved in [1], which will be utilized in our arguments in the proof of Theorem 1.3.

Lemma 2.2 (Lemma 2.1 of [1]) Let k > 0 be an integer and G be a graph with a matching M such that |M| = k. Suppose that V(G) - V(M) has a subset X with $|X| \ge 2$ such that for any $v \in X$, $d(v) \ge k$. If X has at least one vertex u such that $d(u) \ge k + 1$, then M is not a maximum matching of G.

Theorem 2.3 (Theorem 2.2 of [1]) Let *G* be a connected simple graph with $n = |V(G)| \ge 2$ and $k = \alpha'(G)$. If $\delta(G) \ge k$, then $\kappa'(G) \ge k$.

2.2 Collapsible Graphs and Strongly Spanning Trailable Graphs

We use a definition of collapsible graphs [18] that is equivalent to Catlin's original definition in [6]. For a graph *G*, we use O(G) to denote the set of all vertices of odd degree in *G*. A graph *G* is collapsible if for any subset $R \subseteq V(G)$ with $|R| \equiv 0 \pmod{2}$, *G* has a spanning connected subgraph *H* such that O(H) = R. If *G* is

collapsible, then by definition with $R = \emptyset$, *G* is superculerian and so $\kappa'(G) \ge 2$. As examples, Catlin [6] observed that cycles of length at most 3 are collapsible. In [6], Catlin showed that for any graph *G*, every vertex of *G* lies in a unique maximal collapsible subgraph of *G*. The reduction of *G*, denoted by *G'*, is obtained from *G* by contracting all nontrivial maximal collapsible subgraphs of *G*. A graph is **reduced** if it is the reduction of some graph. As shown in [6], a reduced graph is simple.

Theorem 2.4 *Let G be a graph*.

- (i) (Catlin, Theorem 3 of [6]) Suppose that H is a collapsible subgraph of G. Then, G is collapsible if and only if G/H is collapsible.
- (ii) (Catlin, Lemma 3 of [6]) If G is collapsible, then any contraction of G is also collapsible.
- (iii) (Catlin, Theorem 5 of [6]) A graph G is reduced if and only if G does not contain a nontrivial collapsible subgraph.
- (iv) If G has a spanning connected subgraph Q, such that for any edge $e \in E(Q)$, G has a collapsible subgraph J_e with $e \in E(J_e)$, then G is collapsible.

Proof We argue by induction on n = |V(G)| to prove (iv). As (iv) holds for n = 1, we assume that $n \ge 2$. For any $e \in E(Q)$, let J_e denote a collapsible subgraph of G with $e \in E(J_e)$. We fix an edge $e_0 \in E(Q)$ and let $J = J_{e_0}$ be a collapsible subgraph of G that contains e_0 . Define $G_1 = G/J$. As Q is a spanning subgraph in G, $Q_1 = Q/(Q \cap J)$ is a spanning subgraph of G_1 . For any edge $e \in E(Q_1) \subseteq E(Q)$, there exists a collapsible subgraph J_e of G with $e \in E(J_e)$. By Theorem 2.4(ii), $J'_e = J_e/(J \cap J_e)$ is a collapsible subgraph of G_1 with $e \in E(J'_e)$. It follows by induction that G_1 is collapsible. By Theorem 2.4(i), G is collapsible.

For $u, v \in V(G)$, a (u, v)-trail is a trail of G from u to v. For $e, e' \in E(G)$, an (e, e')-trail is a trail of G having end-edges e and e'. An (e, e')-trail T is dominating if each edge of G is incident with at least one internal vertex of T, and T is spanning if T is a dominating trail with V(T) = V(G). A graph G is spanning trailable if for each pair of edges e_1 and e_2 , G has a spanning (e_1, e_2) -trail. Suppose that $e = u_1v_1$ and $e' = u_2v_2$ are two edges of G. If $e \neq e'$, then the graph G(e, e') is obtained from G by replacing $e = u_1v_1$ with a path $u_1v_ev_1$ and by replacing $e' = u_2v_2$ with a path $u_2v_{e'}v_2$, where $v_e, v_{e'}$ are two new vertices not in V(G). If e = e', then G(e, e'), also denoted by G(e), is obtained from G by replacing $e = u_1v_1$ with a path $u_1v_ev_1$. For the recovering operation, we let $c_e(G(e, e'))$ be the graph obtained from G(e, e') by replacing the path $u_1v_ev_1$ with the edge $e = u_1v_1$. Thus, $c_{e'}(c_e(G(e, e'))) = G$.

By the definition of G(e', e''), we have the following observation.

If
$$G(e', e'')$$
 is collapsible, then $G(e', e'')$ has a spanning $(v_{e'}, v_{e''})$ -trail. (2)

In fact, if G(e', e'') is collapsible, then G(e', e'') has a spanning connected subgraph J with $O(J) = \{v_{e'}, v_{e''}\}$. Hence J is a spanning $(v_{e'}, v_{e''})$ -trail.

As defined in [23], a graph *G* is **strongly spanning trailable** if for any $e, e' \in E(G)$, G(e, e') has a $(v_e, v_{e'})$ -trail *T* with $V(G) = V(T) - \{v_e, v_{e'}\}$. Since e = e' is possible, strongly spanning trailable graphs are both spanning trailable and supereulerian.

Theorem 2.5 (Luo et al. [24], see also Theorem 4 of [7]) If $\kappa'(G) \ge 4$, then G is strongly spanning trailable.

Harary and Nash-Williams showed that there is a close relationship between a graph and its line graph concerning Hamilton cycles.

Theorem 2.6 (Harary and Nash-Williams [11]) Let G be a graph with $|E(G)| \ge$ 3. Then, L(G) is hamiltonian if and only if G has an Eulerian subgraph H with $E(G - V(H)) = \emptyset$.

Let *G* be a graph with $|V(G)| \ge 3$. For each integer $i \ge 0$, define $D_i(G) = \{v \in V(G) : d_G(v) = i\}$. Suppose that $ess'(G) \ge 3$. The **core** of this graph *G*, denoted by G_0 , is obtained from $G - D_1(G)$ by contracting exactly one edge xy or yz for each path xyz in *G* with $d_G(y) = 2$. By the definition of $D_i(G)$, $G - D_1(G)$ is connected if *G* is connected. As contraction does not decrease the edge connectivity, G_0 is connected if *G* is connected. Lemma 2.7 (iii) below is proved by using a similar argument in the proof of Theorem 2.6.

Lemma 2.7 (Shao [30]) Let G be a connected nontrivial graph such that $\kappa(L(G)) \ge 3$, and let G_0 denote the core of G.

- (i) G_0 is uniquely determined by G with $\kappa'(G_0) \ge 3$.
- (ii) (see also Lemma 2.9 of [16]) If G_0 is strongly spanning trailable, then L(G) is Hamilton-connected.
- (iii) (see also Proposition 2.2 of [16]) L(G) is Hamilton-connected if and only if for any pair of edges $e', e'' \in E(G)$, G has a dominating (e', e'')-trail.

3 Proof of the Main Results

Theorem 1.3 will be proved in this section. As every Hamilton-connected graph must be 3-connected, and every 1-hamiltonian graph must be 3-connected, it suffices to prove that if *G* is a graph satisfying $\delta(G) \ge \alpha'(G)$ and $\kappa(L(G)) \ge 3$, then L(G) is Hamilton-connected for Theorem 1.3(i) and L(G) is 1-hamiltonian for Theorem 1.3(ii).

3.1 Proof of Theorem 1.3(i).

As $\kappa(L(G)) \ge 3$, we have $ess'(G) \ge 3$, and so by Lemma 2.7(i), the core G_0 of G is well-defined with $\kappa'(G_0) \ge 3$. We shall prove a slightly stronger Theorem 3.1, which implies the sufficiency of Theorem 1.3(i).

Theorem 3.1 Let G be a connected simple graph with $|E(G)| \ge 3$ and $ess'(G) \ge 3$, and let G_0 denote the core of G.

- (i) If $\delta(G_0) \ge \alpha'(G_0)$, then G_0 is strongly spanning trailable.
- (ii) Suppose that $\delta(G) \ge \alpha'(G)$. Then, L(G) is Hamilton-connected if and only if $\kappa(L(G)) \ge 3$.

Fig. 1 nontrivial reduced graphs in Theorem 3.3(ii)

To prove Theorem 3.1, we begin with some tools that would be used in the arguments. For a graph G, let circ(G) denote the length of a longest cycle of G.

Proposition 3.2 Let G be a connected simple graph with $|E(G)| \ge 3$ and $\delta(G) \ge \alpha'(G) = k$.

- (i) If $k \ge 4$, then $\kappa'(G) \ge k \ge 4$ and G is strongly spanning trailable.
- (*ii*) (Lemma 3.1 of [1]) If k = 1, then $G \in \{K_3, K_{1,n-1}\}$.
- (iii) If $k \ge 4$ or k = 1, then L(G) is Hamilton-connected.

Proof To prove Proposition 3.2(i), we apply Theorem 2.3 to conclude that $\kappa'(G) \ge k \ge 4$. Hence by Theorem 2.5, *G* is strongly spanning trailable. It remains to justify Proposition 3.2(iii). If $k \ge 4$, then as *G* is strongly spanning trailable, by Lemma 2.7(iii), L(G) is Hamilton-connected. If k = 1, then L(G) is a complete graph and so it is also Hamilton-connected.

We define $P^{-}(10)$, P(10), P(11), $K_{1,3}(1, 1, 1)$, $K_{2,3}$, T(1, 2) to be the graphs as respectively depicted in Fig. 1.

Theorem 3.3 Let G be a connected graph with n = |V(G)|, and let G' denote the reduction of G.

- (*i*) (Ma et al., Theorem 3.2 of [25], See also Theorem 4.5.4 of [33]) If G = G', and G satisfies $\kappa'(G) \ge 2$, $circ(G) \le 8$, $|D_2(G)| \le 2$ and $ess'(G) \ge 3$, then G is collapsible.
- (ii) (Theorem 1.7 of [19]) If $ess'(G) \ge 3$, $n \le 11$, $|D_1(G)| = 0$ and $|D_2(G)| \le 2$, then $G' \in \{K_1, K_{2,3}, K_{1,3}(1, 1, 1), T(1, 2), P^{-}(10), P(10), P(11)\}.$

Corollary 3.4 *Each of the following holds.*

- (i) Every graph G with $\kappa'(G) \ge 2$, $circ(G) \le 8$, $|D_2(G)| \le 2$ and $ess'(G) \ge 3$ is collapsible.
- (ii) Every graph G with $\kappa'(G) \ge 3$ and $\operatorname{circ}(G) \le 6$ is strongly spanning trailable.
- (iii) Let G be a graph with $ess'(G) \ge 3$ and $circ(G) \le 6$, and let G_0 be the core of G. Then, G_0 is strongly spanning trailable.

Proof Let *G* be a graph with $\kappa'(G) \ge 2$, $circ(G) \le 8$, $|D_2(G)| \le 2$ and $ess'(G) \ge 3$, and let *G'* be the reduction of *G*. By the definition of contraction, we have $\kappa'(G') \ge \kappa'(G) \ge 2$, $circ(G') \le circ(G) \le 8$ and $ess'(G') \ge ess'(G) \ge 3$. Let $v \in D_2(G')$ be a vertex. Since $ess'(G) \ge 3$, *v* must be a trivial vertex and so $v \in D_2(G)$. This implies that $|D_2(G')| \le |D_2(G)| \le 2$. It follows by Theorem 3.3, *G'* is collapsible which implies that $G' = K_1$ and so *G* is collapsible. This proves (i).

To prove (ii), we assume that G with $\kappa'(G) \ge 3$ and $circ(G) \le 6$. Let $e', e'' \in E(G)$ be two edges and let H = G(e', e''). Then, as $\kappa'(G) \ge 3$ and $circ(G) \le 6$, we conclude that $\kappa'(H) \ge 2$, $circ(H) \le 8$, $|D_2(H)| \le 2$ and $ess'(H) \ge 3$. It follows by (i) that H is collapsible. Let $v_{e'}$ and $v_{e''}$ denote the only vertices in $D_2(H)$. As H is collapsible, H has a spanning connected subgraph T with $O(T) = \{v_{e'}, v_{e''}\}$. Thus, T is a spanning $(v_{e'}, v_{e''})$ -trail of H, and so by the randomness of e', e'', G is strongly spanning trailable. This proves (ii).

Now we assume that *G* is a graph with $ess'(G) \ge 3$ and $circ(G) \le 6$. Let G_0 denote the core of *G*. By Lemma 2.7(i), $\kappa'(G_0) \ge 3$. As G_0 is a contraction of *G*, we have $circ(G_0) \le circ(G) \le 6$. By (ii), G_0 is strongly spanning trailable.

3.1.1 Proof of Theorem 3.1(i)

We assume that $\delta(G_0) \geq \alpha'(G_0)$. Let $n = |V(G_0)|$ and $k = \alpha'(G_0)$. As G is connected, by the definition of G_0 , G_0 is also connected. Thus, if k = 0, then n = 1, and so by definition, G_0 is strongly spanning trailable. Hence, we assume that k > 0. Then, $|V(G)| \ge n = |V(G_0)| \ge 2\alpha'(G_0) = 2k \ge 2$. Thus, G is a connected nontrivial graph. As $ess'(G) \ge 3$, by (1) and Lemma 2.7(i), $\kappa'(G_0) \ge 3$. Thus, $|E(G_0)| \ge 3$. If k = 1, then applying Proposition 3.2(ii) to G_0 , G_0 is spanned either by a K_3 or by a $K_{1,n-1}$ with $\kappa'(G_0) \ge 3$. If G_0 is spanned by a K_3 , then this K_3 must have at least two edges each of which lies in a 2-cycle. For any $e', e'' \in G_0$, if there exists a 2-cycle C in $G_0(e', e'')$, then after contracting this 2-cycle C in $G_0(e', e'')$, every edge of $G_0(e', e'')/C$ lies in a cycle of length at most 3. As C is collapsible, by Theorem 2.4(i) that $G_0(e', e'')$ is collapsible. If there does not exist a 2-cycle in $G_0(e', e'')$, every edge of $G_0(e', e'')$ lies in a cycle of length at most 3 in $G_0(e', e'')$. It follows by Theorem 2.4(iv) that $G_0(e', e'')$ is collapsible. When G_0 is spanned by a $K_{1,n-1}$, since $\kappa'(G_0) \ge 3$, every edge must be in a parallel class of at least three edges. In this case, every edge of $G_0(e', e'')$ lies in a cycle of length at most 3. It follows by Theorem 2.4(iv) that $G_0(e', e'')$ is collapsible. By (2), G_0 is strongly spanning trailable. If k > 4, then by Proposition 3.2(i), G_0 is strongly spanning trailable. Therefore, we assume that $k \in \{2, 3\}$. Suppose that k = 2. Then, G_0 does not have a cycle of length longer than 5, and so by Corollary 3.4(iii), G_0 is strongly spanning trailable.

Hence, we assume that k = 3, and so $circ(G_0) \le 7$. If $circ(G_0) \le 6$, then by Corollary 3.4(iii), G_0 is strongly spanning trailable, and we are done. Therefore, we assume that $circ(G_0) = 7$. Let *C* be a cycle of G_0 with |V(C)| = 7. If $V(G_0) - V(C) \ne \emptyset$, then as G_0 is connected, there must be a vertex $v \in V(G_0) - V(C)$ such that *v* is adjacent to a vertex on *C*, implying that $3 = \alpha'(G_0) \ge 4$, a contradiction. Thus, $V(G_0) = V(C)$ and so $|V(G_0)| = 7$ and *C* is a Hamilton cycle of G_0 .

For any $e', e'' \in E(G_0)$, let $H = G_0(e', e'')$ and let $v_{e'}, v_{e''}$ denote the new vertices newly added in the process of subdividing e' and e'', respectively. Then, |V(H)| = 9. As $\kappa'(G_0) \ge 3$, we have $|D_1(H)| = 0$ and $|D_2(H)| = 2$. Let H' be the reduction of H. We claim that $H' = K_1$ and so H is collapsible. By contradiction, we assume that $1 < |V(H')| \le |V(H)| = 9$. By Theorem 3.3 (ii), $H' \in \{K_{2,3}, K_{1,3}(1, 1, 1), T(1, 2)\}$. Since $\kappa'(G_0) \ge 3$, $|D_2(H')| \le |D_2(H)| \le 2$. It follows that $H' \notin \{K_{2,3}, K_{1,3}(1, 1, 1), T(1, 2)\}$, as any of these graphs have at least 3 vertices of degree 2. This contradiction implies that $H' = K_1$ and so H is collapsible.

By (2), G_0 is strongly spanning trailable. This completes the proof of Theorem 3.1(i).

3.1.2 Proof of Theorem 3.1(ii)

In this subsection, we assume Theorem 3.1(i) to prove Theorem 3.1(ii). It suffices to show that if $ess'(G) \ge 3$ and $\delta(G) \ge \alpha'(G)$, then L(G) is Hamilton-connected. Let G_0 denote the core of G, $k = \alpha'(G)$ and $n = |V(G_0)|$.

By Proposition 3.2(i), if $\alpha'(G) \ge 4$, then G is strongly spanning trailable. By definition, any spanning $(v_{e'}, v_{e''})$ -trail induces a spanning (e', e'')-trail in G. It follows by Lemma 2.7 that L(G) is Hamilton-connected.

Hence, we assume that $k \leq 3$. As G_0 is a contraction of G, we have $\alpha'(G_0) \leq \alpha'(G) \leq 3 \leq \kappa'(G_0) \leq \delta(G_0)$. By Theorem 3.1(i), G_0 is strongly spanning trailable. By Lemma 2.7(ii), L(G) is Hamilton-connected. This completes the proof.

3.2 Proof of Theorem 1.3(ii)

For a vertex $u \in V(G)$, define $N_G(u) = \{v \in V(G) : uv \in E(G)\}$ to be the set of neighbors of u in G. The main purpose of this subsection is to prove Theorem 1.3(ii). As remarked at the beginning of this section, it suffices to assume that G is a graph satisfying $\delta(G) \ge \alpha'(G)$ and $\kappa(L(G)) \ge 3$ to show that L(G) is 1-hamiltonian. In the proof, we will need the following former results.

Lemma 3.5 Let *G* be a connected graph, and let $K_{3,3}^-$ denote the graph obtained from $K_{3,3}$ by deleting an edge. Each of the following holds.

- (*i*) (Catlin et al., Theorem 1.1 of [8]) If $\kappa'(G) \ge 4$, then for any edge subset $X \subseteq E(G)$ with $|X| \le 2, G-X$ has two edge-disjoint spanning trees and is collapsible.
- (ii) (Catlin [5]) $K_{3,3}^-$ is collapsible, and so $K_{3,3}$ is collapsible.
- (iii) (Li et al., Lemma 2.1 of [22]) If $|V(G)| \le 8$ with $|D_1(G)| = 0$ and $|D_2(G)| \le 2$. Then, the reduction of G is in $\{K_1, K_2, K_{2,3}\}$.

By the definition of the core, and imitating the arguments in [11,30] and in Theorem 2.7 of [17], we have the following observation.

Observation 3.6 Let $s \ge 0$ be an integer, *G* be a connected graph with $|E(G)| \ge s+3$ and $ess'(G) \ge 3$, and G_0 be the core of *G*.

- (i) (Theorem 2.7 of [17]) The line graph L(G) is s-hamiltonian if and only if for any $S \subseteq E(G)$ with $|S| \le s$, G S has a dominating Eulerian subgraph.
- (ii) If for any $S \subseteq E(G_0)$ with $|S| \leq s$, $G_0 S$ is supereulerian, then L(G) is *s*-hamiltonian.

Proof It suffices to justify Observation 3.6(ii). By Observation 3.6(i), we need to prove that for any $X \subseteq E(G)$ with $|X| \leq s$, G - X has a dominating Eulerian subgraph. Let G_0 denote the core of G. Define

 $S_1 = \{e \in E(G) : e \text{ is incident with a vertex in } D_1(G)\},$ $S'_2 = \{e \in X : e \text{ is incident with a vertex in } D_2(G)\}.$ We shall adopt the following convention in our arguments. If $e', e'' \in S'_2$ are incident with a vertex $v \in D_2(G)$, then we may always assume that e'' is being contracted in the construction of G_0 and e' remains in $E(G_0)$. With this convention, for any $v \in D_2(G)$, we may denote $E_G(v) = \{e'_v, e''_v\}$, and define $X_2 = \{e''_v : v \in D_2(G)\}$. Hence by the definition of G_0 , we may assume that $G_0 = G/(S_1 \cup X_2)$.

Let $S_2 = S'_2 - X_2$, $S_3 = X - (S_1 \cup S'_2)$. Then, $S = S_2 \cup S_3 \subseteq E(G_0)$. As $S \subseteq X$, we have $|S| \leq |X| \leq s$. By the assumption of Observation 3.6(ii), $G_0 - S$ has a spanning Eulerian subgraph H'. Let $S_2'' = \bigcup_{v \in D_2(G), e'_v \in E(H')} \{e'_v, e''_v\}$. Define $H = G[E(H') \cup S_2'']$. Since H' is an Eulerian subgraph of G_0 , by the definition of G_0 , every vertex in \overline{H} not incident with an edge in $X_2 \cap S_2''$ has the same (even) degree as in H'. As H is obtained from G[E(H')] by adding the edges in $X_2 \cap S_2''$, which amounts to subdividing the edges in $(\bigcup_{v \in D_2(G)} E_G(v)) \cap E(H')$ to form H, it follows that H is an Eulerian subgraph of G. For any edge $e \in E(G)$, if $e \in E(G) - (S_1 \cup X_2) = E(G_0)$, then since H' is a spanning Eulerian subgraph of G_0 , e is incident with a vertex in V(H). If $e \in S_1$, then by $ess'(G) \ge 3$, e is also incident with a vertex of degree at least 4 in G. Hence, e is incident with a vertex in V(H) as well. Finally, we assume that $e \in X_2$. As $X_2 = \{e''_n : v \in D_2(G)\}$, there exists a vertex $v \in D_2(G)$ with $e = e''_n$. Let u, w be the neighbors of v in G, and so uvw is a path of length 2 in G. As $ess'(G) \ge 3$, it follows that $d_G(u) \ge 3$ and $d_G(w) \ge 3$. By the definition that $G_0 = G/(S_1 \cup X_2)$ and since H' spans G_0 , we have $u, w \in V(G_0) = V(H')$. As $H = G[E(H') \cup S''_2]$, this implies that $u, w \in V(H)$, and so e must be incident with a vertex in V(H). It follows by definition that H is a dominating Eulerian subgraph of G - X, and so by Observation 3.6(i), L(G) - X is hamiltonian. This proves Observation 3.6(ii).

To prove Theorem 1.3(ii), we let $k = \alpha'(G)$ and G_0 denote the core of G. Then, we will justify the following claim.

Claim 1 If k = 1 or $k \ge 4$, then L(G) is 1-hamiltonian.

Suppose first that k = 1. By Proposition 3.2(ii), $G \in \{K_3, K_{1,n-1}\}$. As $\kappa(L(G)) \ge 3$, $G \in \{K_{1,n-1}\}$ where $n \ge 5$. By the definition of a line graph, $L(G) = K_{n-1}$ is 1-hamiltonian. Next we assume that $k = \alpha'(G) \ge 4$. By Theorem 2.3, $\kappa'(G) \ge 4$. By Lemma 3.5(i), for any $e \in E(G)$, G - e is collapsible, and so is superculerian. Thus by Observation 3.6, L(G) is 1-hamiltonian. This proves Claim 1.

By Claim 1, it remains to discuss the cases when $k \in \{2, 3\}$. Suppose that k = 2. Let M be a maximum matching of G_0 and X be the set of vertices in G_0 not incident with any edges in M. As $\delta(G_0) \ge \kappa'(G_0) \ge 3$, it follows by Lemma 2.2 that $|X| \le 1$ and so $|V(G_0)| \le 5$. Thus for any edge $e \in E(G_0)$, we have $|V(G_0 - e)| \le |V(G_0)| \le 5$. As $\kappa'(G_0) \ge 3$, we have $|D_1(G_0 - e)| = 0$ and $|D_2(G_0 - e)| \le 2$. By Lemma 3.5(iii), the reduction of $G_0 - e$ is in $\{K_1, K_2, K_{2,3}\}$. Again by $\kappa'(G_0) \ge 3$, $\kappa'(G_0 - e) \ge 2$ and $G_0 - e$ has at most two edge cuts of size 2. Thus, the reduction of $G_0 - e$ is 2-edge-connected and has at most two edge cuts of size 2. Then, the reduction of $G_0 - e$ is collapsible. By Observation 3.6, L(G) is 1-hamiltonian.

Hence, we assume that k = 3. We shall show that

for any
$$e \in E(G_0)$$
, $G_0 - e$ is collapsible. (3)

We prove (3) by contradiction, and assume that for some $e_0 = z_1 z_2 \in E(G_0)$, $G_0 - e_0$ is not collapsible. Let G'_0 denote the reduction of $G_0 - e_0$. Since $G_0 - e_0$ is not collapsible, $|V(G'_0)| \ge 2$.

Let w_1 , w_2 be the vertices in $V(G'_0)$, each of whose preimages in $G_0 - e_0$ contains an end vertex of e_0 . We claim that $w_1 \neq w_2$. By contradiction, we assume that $w_1 = w_2$. As G'_0 is the reduction of $G_0 - e_0$, there exists a collapsible subgraph H in $G_0 - e_0$ with $V(e_0) \subseteq V(H)$, and so $(G_0 - e_0)/H = G_0/H$. Since G_0/H is a contraction of G_0 , we have $\kappa'(G_0/H) \ge \kappa'(G_0) \ge 3$ and $\alpha'(G_0/H) \le \alpha'(G) = k \le 3$. It follows that $\kappa'(G_0/H) \ge 3$ and $circ(G_0/H) \le 7$. By Corollary 3.4(i), G_0/H is collapsible which implies that $(G_0 - e_0)/H$ is collapsible. Thus by Theorem 2.4(i), $G_0 - e_0$ is collapsible, which is contrary to the assumption that $G_0 - e_0$ is not collapsible. This proves $w_1 \ne w_2$.

Define G_0^+ to be the graph obtained from G'_0 by adding a new edge linking w_1 and w_2 . Thus, G_0^+ is a contraction of G_0 , and $G'_0 = G_0^+ - e_0$. As G_0 is a contraction of G and G'_0 is a contraction of $G_0 - e_0$, it follows that $\alpha'(G'_0) \leq \alpha'(G_0) \leq \alpha'(G) = k \leq 3$. Since $\kappa'(G_0) \geq 3$ and G_0^+ is a contraction of G_0 , we have $\kappa'(G_0^+) \geq 3$. As $G'_0 = G_0^+ - e_0$, we conclude that $\kappa'(G'_0) \geq 2$, $|D_2(G'_0)| \leq 2$ and $ess'(G'_0) \geq 3$. Thus by Corollary 3.4(i), G'_0 is collapsible. As G'_0 is the reduction of $G_0 - e_0$, we have $G'_0 = K_1$ and so $G_0 - e_0$ is collapsible. This leads to a contradiction to the assumption that $G_0 - e_0$ is not collapsible, and completes the proof of Theorem 1.3(ii).

Acknowledgements This research of Lan Lei is supported by General Project of Natural Science Foundation of Chongqing, China (No. cstc2019jcyj-msxmX0579). This research of Jia Wei is supported by China Scholarship Council (File No. 201906150105).

References

- 1. Algefari, M.J., Lai, H.-J.: Supereulerian graphs with constraints on the matching number and minimum degree. Graphs Combin. **37**, 55–64 (2021)
- 2. Berge, C.: Two theorems in graph theory. Proc. Nat. Acad. Sci. USA 43, 842-844 (1957)
- 3. Bondy, J.A., Murty, U.S.R.: Graph Theory. Springer, New York (2008)
- 4. Broersma, H.J.: On some intriguing problems in hamiltonian graph theory-a survey. Discrete Math. **251**, 47–69 (2002)
- Catlin, P.A.: Super-Eulerian graphscollapsible graphs, and four-cycles. Congr. Numer. 58, 233–246 (1987)
- Catlin, P.A.: A reduction method to find spanning Eulerian subgraphs. J. Graph Theory 12, 29–44 (1988)
- Catlin, P. A., Lai, H.-J.: Spanning trails joining two given edges. In: Alavi, Y., et al (Eds.), Graph Theory, Combin. Appl., Vol. 1, Kalamazoo, MI. 1988, Wiley, New York, 207-222 (1991)
- Catlin, P.A., Lai, H.-J., Shao, Y.: Edge-connectivity and edge-disjoint spanning trees. Discrete Math. 309, 1033–1040 (2009)
- 9. Chvátal, V., Erdös, P.: A note on Hamiltonian circuits. Discrete Math. 2, 111-113 (1972)
- Han, L., Lai, H.-J., Xiong, L., Yan, H.: The Chvátal-Erdös condition for supereulerian graphs and the Hamiltonian index. Discrete Math. 310, 2082–2090 (2010)
- On eulerian and hamiltonian graphs and line graphs: Harary, F., Nash-Williams, C. St. J. A. Canad. Math. Bull. 8, 701–709 (1965)
- 12. Gould, R.J.: Advances on the Hamiltonian problem-a survey. Graphs Combin. 19, 7-52 (2003)
- 13. Gould, R.J.: Recent advances on the Hamiltonian problem: survey III. Graphs Combin. 30, 1–16 (2014)
- Kaiser, T., Ryjáček, Z., Vrána, P.: On 1-Hamilton-connected Claw-free graphs. Discrte Math. 321, 1–11 (2014)

- Kužel, R., Xiong, L.: Every 4-connected Line Graph is Hamiltonian if and only if it is Hamiltonian Connected. In R. Kučzel: Hamiltonian properties of graphs, Ph.D. Thesis, U.W.B. Pilsen, (2004)
- Lai, H.-J., Shao, Y., Yu, G., Zhan, M.: Hamiltonian connectedness in 3-connected line graphs. Discrete Appl. Math. 157, 982–990 (2009)
- 17. Lai, H.-J., Shao, Y.: On s-hamiltonian line graphs. J. Graph Theory 74, 344-358 (2013)
- Lai, H.-J., Shao, Y., Yan, H.: An update on Supereulerian graphs. WSEAS Trans. Math. 12, 926–940 (2013)
- Lai, H.-J., Wang, K., Xie, X., Zhan, M.: Catlin's reduced graphs with small orders. AKCE Int. J. Graphs Combin. 17, 679–690 (2020)
- 20. Lai, H.-J., Yan, H.Y.: Supereulerian graphs and matchings. Appl. Math. Lett. 24, 1867–1869 (2011)
- Lei, L., Li, X., Ma, X., Zhan, M., Lai, H.-J.: Chvátal-Erdős Conditions and Almost Spanning Trails, Bull. Malays. Math. Sci. Soc., (2020)
- Li, D., Lai, H.-J., Zhan, M.Q.: Eulerian subgraphs and hamiltonian connected line graphs. Discrete Appl. Math. 145, 422–428 (2005)
- Li, P., Wang, K., Zhan, M., Lai, H.-J.: Strongly spanning trailable graphs with short longest paths. Ars Combinatoria 137, 3–39 (2018)
- Luo, W., Chen, Z.-H., Chen, W.-G.: Spanning trails containing given edges. Discrete Math. 306, 87–98 (2006)
- 25. Ma, X., Wu, Y., Zhan, M., Lai, H.-J.: On s-hamiltonicity of net-free line graphs, Discrete Math, accepted
- Matthews, M.M., Sumner, D.P.: Hamiltonian results in K_{1,3}-free graphs. J. Graph Theory 8, 139–146 (1984)
- 27. Ryjáček, Z.: On a Closure Concept in Claw-free Graphs, J. Combin. Theory Ser. B, 70, 217-224 (1997)
- Ryjáček, Z., Vrána, P.: Line graphs of multigraphs and Hamiltonian-connectedness of claw-free graphs. J. Graph Theory 66, 152–173 (2011)
- Saito, A.: Chvátal-Erdös Theorem: Old Theorem with New Aspects, H. Ito et al. (Eds.): KyotoCGGT 2007, LNCS 4535, 191-200 (2008)
- 30. Shao, Y.: Claw-free graphs and line graphs, Ph. D. Dissertation, West Virginia University, (2005)
- Tian, R., Xiong, L.: The Chvátal-Erdös condition for a graph to have a spanning trail. Graphs Combin. 31, 1739–1754 (2015)
- 32. Thomassen, C.: Reflections on graph theory. J. Graph Theory 10, 309-324 (1986)
- 33. Wu, Y.: Circuits and Cycles in Graphs and Matroids, PhD dissertation, West Virginia University, (2020)
- Xu, J., Li, P., Miao, Z., Wang, K., Lai, H.-J.: Supereulerian graphs with small matching number and 2-connected hamiltonian claw-free graphs. Int. J. Comput. Math. 91, 1662–1672 (2014)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.