On r-hued list coloring of $K_{4}(7)$-minor free graphs ${ }^{\text {T }}$

Wenjuan Wei ${ }^{\text {a }}$, Fengxia Liu ${ }^{\text {a,* }}$, Wei Xiong ${ }^{\text {a }}$, Hong-Jian Lai ${ }^{\text {b }}$
${ }^{\text {a }}$ College of Mathematics and System Sciences, Xinjiang University, Urumqi, Xinjiang, 830046, PR China
${ }^{\text {b }}$ Department of Mathematics, West Virginia University, Morgantown, WV 26506, USA

ARTICLE INFO

Article history:

Received 30 March 2021
Received in revised form 4 December 2021
Accepted 8 December 2021
Available online xxxx

Keywords:

(L, r)-coloring
r-hued list chromatic number
Graph minor

Abstract

For a given list assignment L of a graph G, an (L, r)-coloring of G is a proper coloring c such that for any vertex v with degree $d(v), v$ is adjacent to vertices of at least $\min \{d(v), r\}$ different color with $c(v) \in L(v)$. The r-hued list chromatic number of G, denoted as $\chi_{L, r}(G)$, is the least integer k, such that for any $v \in V(G)$ and every list assignment L with $|L(v)|=k, G$ has an (L, r)-coloring. Let $K(r)=r+3$ if $2 \leq r \leq 3$, $K(r)=\lfloor 3 r / 2\rfloor+1$ if $r \geq 4$. In Song et al. (2014), it is proved that if G is a K_{4}-minorfree graph, then $\chi_{L, r}(G) \leq K(r)+1$. Let $K_{4}(n)$ be the set of all subdivisions of K_{4} on n vertices. Utilizing the decompositions by Chen et al for $K_{4}(7)$-minor free graphs in Chen et al. (2020), we prove that if G is a $K_{4}(7)$-minor free graph, then $\chi_{L, r}(G) \leq K(r)+1$.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

All graphs considered in this paper are simple and finite. Undefined terminologies and notion are referred to [4]. As in [4], $V(G), E(G), \Delta(G)$ and $\chi(G)$ denoted the vertex set, the edge set, the maximum degree and the chromatic number of a graph G. For $v \in V(G)$, let $N_{G}(v)$ denote the set of vertices adjacent to v in G, and $d_{G}(v)=\left|N_{G}(v)\right|$. A list of a graph G is an assignment $L: V(G) \rightarrow 2^{\mathbb{N}}$ that assigns every $v \in V(G)$ a list of colors $L(v)$ available at v. If L is a list of G, and H is a vertex induced subgraph of G, then L_{H} is a restriction of L to H. For an integer $k \in \mathbb{N}$, a list L of a graph G is a k-list if $|L(v)|=k$ for any $v \in V(G)$. Let r be an integer, for a given assignment $L: V(G) \rightarrow 2^{\mathbb{N}}$ in a graph G, an (L, r)-coloring c is a mapping $c: V(G) \rightarrow \mathbb{N}$ satisfying the following conditions.
(C1) : $c(u) \neq c(v)$ for every edge $u v \in E(G)$;
(C2) : $\left|c\left(N_{G}(v)\right)\right| \geq \min \left\{d_{G}(v), r\right\}$ for any $v \in V(G)$;
(C3) : $c(v) \in L(v)$, for every $v \in V(G)$.
For a fixed integer $r>0$, the r-hued list chromatic number of G, denoted by $\chi_{L, r}(G)$, is the smallest integer k, such that for any $v \in V(G)$ and every k-list L of G, G has an (L, r)-coloring. If for every $v \in V(G)$, we have $L(v)=\{1,2,3, \ldots, k\}$, then an (L, r)-coloring of G is a (k, r)-coloring of G. Accordingly, the r-hued chromatic number of G, denoted by $\chi_{r}(G)$, is the smallest integer k such that G has a (k, r)-coloring. In particular, when $r=1$, it follows from definition that $\chi_{1}(G)=\chi(G)$, the chromatic number of a graph G. Thus r-hued coloring and r-hued list coloring are generalization of the vertex coloring of graphs.

The notion of r-hued coloring was first introduced in [12,15]. When $r=2, \chi_{2}(G)$ is often called the dynamic chromatic number of G. In [5], Brooks proved a popular theorem on graph colorings states that a connected graph G satisfies $\chi(G) \leq \Delta(G)+1$, where the equality holds if and only if G is an odd cycle or a complete graph. Earlier Brooks type upper bounds for r-hued colorings can be found in [11,12,15], among others. Upper bounds of the r-hued list chromatic number for generic graphs have also been studied.

[^0]Theorem 1.1. Let G be a connected graph.
(i) (Kim et al. [10]) If G is a planar graph, then $\chi_{L, 2}(G) \leq 5$.
(ii) (Akbari et al. [1]) If $G \neq C_{5}$ and $\Delta(G) \leq 3$, then $\chi_{L, 2}(G) \leq 4$.
(iii) (Akbari et al. [1]) If $\Delta(G) \geq 4$, then $\chi_{L, 2}(G) \leqslant \Delta(G)+1$.

It is natural to consider upper bounds of the r-hued chromatic number and the r-hued list chromatic number of a planar graph G. For any planar graph G, it is proved that $\chi_{2}(G) \leq 5$ in [6] without using the 4-Color Theorem. Utilizing the 4-Color Theorem [2,3,16], Kim et al. in [10] showed that 5 -cycle is the only planar graph with 2-hued chromatic number being 5, which was conjectured in [6]. More recently, Loeb et al. in [14] proved that $\chi_{3}(G) \leq 10$. In [18,19], Song et al. proved that any planar graph G with girth at least 6 satisfies $\chi_{r}(G) \leq r+5$ when $r \geq 3$, and for all planar graph G with $r \geq 8, \chi_{r}(G) \leq 2 r+16$. For further literature on r-hued coloring and r-hued list coloring of planar graphs, see [8]. In 1977, Wegner [20] posed the following conjecture.

Conjecture 1.2 (Wegner. [20]). If G is a planar graph, then

$$
\chi_{\Delta(G)}(G) \leq \begin{cases}\Delta(G)+5, & \text { if } 4 \leq \Delta(G) \leq 7 \\ \lfloor 3 \Delta(G) / 2\rfloor+1, & \text { if } \Delta(G) \geq 8\end{cases}
$$

This conjecture remains open as of today. For a graph H, a graph G has an H minor if H can be obtained from a subgraph of G by contracting edges. A graph G is called \mathbf{H}-minor free if G does not have H as a minor. For a given collection \mathcal{K} of graphs, define $E X(\mathcal{K})=\{G: G$ does not have a minor isomorphic to a member in $\mathcal{K}\}$, and let

$$
K(r)= \begin{cases}r+3, & \text { if } 1 \leq r \leq 3 \tag{1}\\ \lfloor 3 r / 2\rfloor+1, & \text { if } r \geq 4\end{cases}
$$

There have been quite a few efforts made towards Conjecture 1.2. Among them are the following.
Theorem 1.3. Let $G \in E X\left(K_{4}\right)$ be a graph and let $r \geq 2$ be an integer. Then each of the following holds.
(i) (Lih et al. [13]) $\chi_{\Delta(G)}(G) \leq K(\Delta(G))$.
(ii) (Hetherington and Woodall [9]) $\chi_{L, \Delta}(G) \leq K(\Delta)$.
(iii) (Song et al. [17]) Both $\chi_{r}(G) \leq K(r)$ and $\chi_{L, r}(G) \leq K(r)+1$.

Let H be a graph. An edge $e \in E(H)$ is said to be subdivided when it is deleted and replaced by a path of length two connecting its end vertices. A subdivision of H is a graph obtained from H by a (possibly empty) sequence of edge subdivisions. If a graph contains subgraph J isomorphic to a subdivision of H, we call J an H-subdivision. Thus, by definition, if $\Delta(H) \leq 3$, then G contains an H-minor if and only if G contains an H-subdivision. For an integer $n \geq 4$, define $K_{4}(n)$ to be the collection of all non-isomorphic subdivisions of K_{4} on n vertices. Thus $K_{4}(4)=\left\{K_{4}\right\}$ and there is only one graph in $K_{4}(5)$. When it is understood in the context, we sometimes use $K_{4}(4)$ and $K_{4}(5)$ to represent the only member in the corresponding collection.

By definition, for each $n \geq 4$, we have

$$
E X\left(K_{4}\right) \subseteq \cdots \subseteq E X\left(K_{4}(n)\right) \subseteq E X\left(K_{4}(n+1)\right) \subseteq \cdots
$$

and for each fixed integer $n \geq 4, E X\left(K_{4}(n)\right)$ contains all graphs with order less than n. Hence $\cup_{n=4}^{\infty} E X\left(K_{4}(n)\right)$ contains all graphs. Chen et al. in [7] initiated the study of upper bounds of $\chi_{r}(G)$ for graphs $G \in E X\left(K_{4}(7)\right)$ and prove the following theorem.

Theorem 1.4 (Chen et al. Theorem 1.5 of [7]). Let G be a graph and $r \geq 2$ be an integer. If $G \in E X\left(K_{4}(7)\right)$, and if G has no block isomorphic to K_{6}, then $\chi_{r}(G) \leq K(r)$.

Our current study is motivated by Theorems 1.3 and 1.4. We investigate the upper bound of $\chi_{L, r}(G)$ for $K_{4}(7)$-minor free graphs G. The following is the main result obtained in this research.

Theorem 1.5. Let G be a 2 -connected graph and $r \geq 2$ be an integer. If $G \in E X\left(K_{4}(7)\right)$, then $\chi_{L, r}(G) \leq K(r)+1$.

2. Preliminaries

For an integer $n \in\{5,6,7\}$, a number of results on the decompositions of $K_{4}(n)$-minor free graphs have been developed in [7]. We present the related definitions, and results here for a complete understanding of the article.

Throughout the rest of this paper, by $H \subseteq G$ we mean that G contains a subgraph isomorphic to H, and when there is no confusion arises, we also view that H is a subgraph of G. For a graph G and a collection \mathcal{F} of subgraphs of G, we define

$$
[\mathcal{F}, G]=\{H: \text { for some } F \in \mathcal{F}, F \subseteq H \subseteq G\}
$$

As in [4], K_{n} and $K_{m, n}$ denote the complete graph of order n and complete bipartite graph with partite set sizes m and n, respectively. Throughout this paper, we take the convention to also use K_{n} or $K_{m, n}$ to denote a specified copy of K_{n} or $K_{m, n}$,
respectively. We follow [4] to define the union of graphs. Let G and G^{\prime} be two graphs. The union of G and G^{\prime}, denoted by $G \cup G^{\prime}$, has vertex set $V(G) \cup V\left(G^{\prime}\right)$ and edge set $E(G) \cup E\left(G^{\prime}\right)$.

Definition 2.1. Let $k \geq 1$ be an integer, $G, G^{\prime}, H_{1}, H_{2}, \ldots, H_{k}$ be vertex disjoint simple graphs.
(O1) Suppose that $u \in V(G)$ and $u^{\prime} \in V\left(G^{\prime}\right)$. Define $G \oplus_{1} G^{\prime}$ to be the simple graph obtained from $G \cup G^{\prime}$ by identifying u with u^{\prime} to form a new vertex, which is still denoted by u. We sometimes write $G \oplus_{u} G^{\prime}$ for $G \oplus_{1} G^{\prime}$ to emphasize the vertex u.
(O2) Suppose that $u, v \in V(G)$ and $u^{\prime}, v^{\prime} \in V\left(G^{\prime}\right)$. Define $G \oplus_{u, v} G^{\prime}$ to be the simple graph obtained from $G \cup G^{\prime}$ by identifying u with u^{\prime} to form a new vertex (again denoted by u), and v with v^{\prime} to form a new vertex (again denoted by v), respectively. The vertices u, v are called the base vertices of $G \oplus_{u, v} G^{\prime}$. Thus if either $u v \in E(G)$ or $u^{\prime} v^{\prime} \in E\left(G^{\prime}\right)$, then the edge $u v \in E\left(G \oplus_{u, v} G^{\prime}\right)$. If u, v are understood or not to be emphasized, we often use $G \oplus_{2} G^{\prime}$ for $G \oplus_{u, v} G^{\prime}$.
(O3) For each j with $1 \leq j \leq k$, assuming that $G \oplus_{2}\left(\cup_{i=1}^{j} H_{i}\right)$ is obtained, we define $G \oplus_{2}\left(\cup_{i=1}^{j+1} H_{i}\right)=\left(G \oplus_{2}\left(\cup_{i=1}^{j} H_{i}\right)\right) \oplus_{2} H_{j+1}$ in such a way that the base vertices of $G \oplus_{2}\left(\cup_{i=1}^{j+1} H_{i}\right)$ are in $V(G)$, and for each H_{i}, the base vertices may be different.

We often also take the convention to assume that in (O1), $V(G) \cap V\left(G^{\prime}\right)=\{u\}$, and in $(O 2), V(G) \cap V\left(G^{\prime}\right)=\{u, v\}$. For an integer $j \geq 1$, define $D_{j}(G)=\left\{v \in V(G): d_{G}(v)=j\right\}$. We now can use the operations in Definition 2.1 to define some related constructions.

Definition 2.2. Let $t \geq 1$ be an integer, and $k_{i} \geq 0$ be an integer for $1 \leq i \leq t$.
(i) Let $K_{2, t}$ be a complete bipartite graph with w_{1}, w_{2} being the two nonadjacent vertices in $K_{2, t}$ of degree t, and $V\left(K_{2, t}\right)-\left\{w_{1}, w_{2}\right\}=\left\{u_{1}, u_{2}, \ldots, u_{t}\right\}$. Hence if $t \neq 2$, then $D_{2}\left(K_{2, t}\right)=\left\{u_{1}, u_{2}, \ldots, u_{t}\right\}$. The vertices w_{1}, w_{2} are called the special vertices of $K_{2, t}$. Define $K_{2, t}^{\prime}$ to be the graph obtained by adding a matching $u_{1} u_{2}, u_{3} u_{4}, \ldots, u_{t-2} u_{t-1}$ if t is odd, $u_{1} u_{2}, u_{3} u_{4}, \ldots, u_{t-1} u_{t}$ if t is even, among the non special vertices in $V\left(K_{2, t}\right)-\left\{w_{1}, w_{2}\right\}$. The special vertices of $K_{2, t}^{\prime}$ are the special vertices of the related $K_{2, t}$.
(ii) Let $T=\left(k_{1}, k_{2}, \ldots, k_{t}\right)$ be a t-tuple of non-negative integers. Let J, J_{1}, \ldots, J_{t} be graphs such that $J \cong K_{2, t}$ with special vertices w_{1} and w_{2}, and for $1 \leq i \leq t, J_{i} \cong K_{2, k_{i}}$. Define $S K_{2, t, T}$ to be the family of graphs each of which is isomorphic to $J \oplus_{2}\left(\cup_{i=1}^{t} J_{j}\right)$ in such a way that the special vertices of $S K_{2, t, T}$ are special vertices of J, for each j with $1 \leq j \leq t$, the base vertices x_{j}, y_{j} in $J \oplus_{2}\left(\cup_{i=1}^{j} J_{i}\right)$ are special vertices of each J_{j}, and $e_{j}=x_{j} y_{j}$ is an edge $e_{j} \in E(J)$ such that all the edges $e_{1}, e_{2}, \ldots, e_{t}$ are mutually distinct and such that for distinct i and j, any vertex incident with both e_{i} and e_{j} must be in $\left\{w_{1}, w_{2}\right\}$.

As in Definition 2.2(ii), each $e_{j}=x_{j} y_{j}$ can be any one of the two edges in a path joining the two special vertices of $J \cong K_{2, t}, S K_{2, t, T}$ in general contains more than one graph. For notational convention, we often also use $S K_{2, t, T}$ to denote a typical number of the family.

Let t denoted a positive integer, $K_{2, t}$ be given with v_{1}, v_{2} being the special vertices of $K_{2, t}$, and K_{4} be given with $V\left(K_{4}\right)=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ such that $V\left(K_{4}\right) \cap V\left(K_{2, t}\right)=\left\{v_{1}, v_{2}\right\}$. Define

$$
\begin{equation*}
\mathcal{L}=\cup_{t \geq 1}\left\{K_{4} \oplus_{v_{1} v_{2}} K_{2, t}-v_{1} v_{2}, K_{4} \oplus_{v_{1} v_{2}} K_{2, t}\right\} . \tag{2}
\end{equation*}
$$

Thus by definition, $K_{4} \oplus_{v_{1} v_{2}} K_{2,1}-v_{1} v_{2}$ is the only graph in $K_{4}(5)$.
Definition 2.3. Let n, t_{1}, t_{2}, t_{3} be non-negative integers with $n \geq 4, T=\left(k_{1}, k_{2}, \ldots, k_{t_{3}}\right)$ be a t_{3}-tuple of positive integers. In the definitions below, we always assume that $F_{1} \cong K_{2, t_{1}}, F_{2} \cong \bar{K}_{2, t_{1}}^{\prime}$, and $F_{3} \cong S K_{2, t_{3}, T}$ are graphs with the special vertices of F_{1}, F_{2}, F_{3} being $\left\{v_{1}, v_{2}\right\}$. Let $F_{1}^{\prime} \cong K_{2, t_{2}}$ be a graph with special vertices $\left\{v_{3}, v_{l}\right\}$ with $l \in\{1,4\}$, and any graph K_{n} here with $V\left(K_{n}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$.
(i) Define $L_{1}:=L_{1}\left(t_{1}, t_{2}\right)=K_{4} \oplus_{v_{1}, v_{2}} F_{1} \oplus_{v_{3}, v_{l}} F_{1}^{\prime}, N_{1}:=N_{1}\left(t_{1}, t_{2}\right)=L_{1}\left(t_{1}, t_{2}\right)-\left\{v_{1} v_{2}, v_{3} v_{l}\right\}$, and $\mathcal{L}_{1}=\left\{G \in\left[N_{1}, L_{1}\right]:\right.$ $|V(G)| \geq 6\}$.
(ii) Define $L_{2}:=L_{2}\left(t_{1}, t_{3}, T\right)=K_{4} \oplus_{v_{1}, v_{2}} F_{2} \oplus_{v_{1}, v_{2}} F_{3}$, where $T=\left(k_{1}, k_{2}, \ldots, k_{t_{3}}\right)$ is a t_{3}-tuple with $k_{1} \geq k_{2} \geq \cdots \geq$ $k_{t_{3}} \geq 0, N_{2}:=N_{2}\left(t_{1}, t_{3}, T\right)=K_{4} \oplus_{v_{1}, v_{2}} F_{1} \oplus_{v_{1}, v_{2}} F_{3}-\left\{v_{1} v_{2}\right\}-\cup_{i=1}^{t_{3}} e_{i}$, where the e_{i} 's defined in Definition 2.2. Define $\mathcal{L}_{2}=\left\{G \in\left[N_{2}, L_{2}\right]:|V(G)| \geq 6\right\}$.
(iii) Define $L_{3}:=L_{3}\left(t_{1}\right)=K_{5} \oplus_{v_{1}, v_{2}} F_{1}, N_{3}:=N_{3}\left(t_{1}\right)=L_{3}-\left\{v_{1} v_{2}, v_{1} v_{3}, v_{2} v_{5}\right\}$, and $\mathcal{L}_{3}=\left\{G \in\left[N_{3}, L_{3}\right]:|V(G)| \geq 6\right\}$.

Theorem 2.4 (Chen et al. [7]). Let G be a 2-connected simple graph. Then each of the following holds.
(i) $G \in E X\left(K_{4}(5)\right)$ if and only if $G \in\left\{K_{4}\right\} \cup E X\left(K_{4}\right)$.
(ii) $G \in E X\left(K_{4}(6)\right)$ if and only if $G \in E X\left(K_{4}(5)\right) \cup \mathcal{L} \cup\left[K_{4}(5), K_{5}\right]$.
(iii) $G \in E X\left(K_{4}(7)\right)$ if and only if $G \in E X\left(K_{4}(6)\right) \cup \mathcal{L}_{1} \cup \mathcal{L}_{2} \cup \mathcal{L}_{3} \cup\left[K_{4}(6), K_{6}\right]$.

3. Proof of Theorem 1.3

Throughout this section, let r be an integer with $r \geq 2$. Recall that $K(r)$ is defined in (1). Next, we shall show that if $G \in E X\left(K_{4}(7)\right)$ and be a 2 -connected graph, then for any $r \geq 2, \chi_{L, r}(G) \leq K(r)+1$. In the argument below, we often adopt the notation in Definitions 2.1-2.3 for convenience.

Lemma 3.1. Let $s \leq r-2$ be an integer and let $L_{1}, L_{2}, \ldots, L_{s}$ be list of color such that each i with $1 \leq i \leq s,\left|L_{i}\right| \geq r-2$. Then there exists an injective mapping $\phi:\{1,2, \ldots, s\} \rightarrow \cup_{i=1}^{s} L_{i}$ such that each j with $1 \leq j \leq s, \phi(j) \in L_{j}$.

Proof. Let $G[L, C]$ be a bipartite graph with bipartition $L=\left\{L_{1}, L_{2}, \ldots, L_{s}\right\}$ and $C=\cup_{i=1}^{s} L_{i}=\left\{c_{1}, c_{2}, \ldots, c_{t}\right\}$. Thus $t \geq\left|L_{1}\right| \geq r-2 \geq s$. Define an edge (L_{i}, c_{j}) in G if and only if $c_{j} \in L_{i}$. We need to show that G has a matching covering all vertices in L. For any nonempty subset $S \subseteq L$, without loss of generality, we assume that $L_{i} \subseteq S$, then $|N(S)| \geq\left|L_{i}\right| \geq r-2 \geq s=|L| \geq|S|$, and so by Hall's Theorem (see Theorem 16.4 of [4]), $G[L, C]$ contains a matching covering all vertices in L. This completes the proof of Lemma 3.1.

Lemma 3.2. Let v_{1}, v_{2} be the special vertices of $K_{2, t}$ with $t>0$. For each graph G given below, let L be an ($r+3$)-list of G. Then each of the following holds.
(i) Let $G=K_{4} \oplus_{v_{1}, v_{2}} K_{2, t}-v_{1} v_{2}$. There is an (L,r)-coloring of G.
(ii) Let $G=K_{4} \oplus_{v_{1}, v_{2}} F_{2}$. There is an (L, r)-coloring of G.
(iii) Let $G=K_{5} \oplus_{v_{1}, v_{2}} K_{2, t}$. There is an (L,r)-coloring of G.

Proof. As (i), (ii) and (iii) can be proved in a similar way, we only prove (i). Let $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ denote the vertices of the K_{4} as in Definition 2.3, and let $D_{2}(G)=\left\{u_{1}, u_{2}, \ldots, u_{t}\right\}$. For $r=2$, we define $c: V(G) \rightarrow \mathbb{N}$ in the following steps. As L is a 5 -list, for $i \in\{1,2,3,4\}$, we assign $c\left(v_{i}\right) \in L\left(v_{i}\right)$ such that $c\left(v_{1}\right), c\left(v_{2}\right), c\left(v_{3}\right)$ and $c\left(v_{4}\right)$ are distinct colors. To color the vertices $\left\{u_{1}, u_{2}, \ldots, u_{t}\right\}$, for each $u \in D_{2}(G)$ choose $c(u) \in L(u)-c\left(N_{G}(u)\right)$. Since $|L(u)|=5$, and $\left|c\left(N_{G}(u)\right)\right| \leq 2$, such a $c(u)$ can always be found. By definition, the coloring c defined above is an ($L, 2$)-coloring of G.

Suppose that $r \geq 3$. We construct a coloring $c: V(G) \rightarrow \mathbb{N}$ as following. If $t \leq r-2$, by Lemma 3.1, an (L, r)-coloring $c: V(G) \rightarrow \mathbb{N}$ of G exists. We assume that $t \geq r-1$. Applying Lemma 3.1 to $G-\left\{u_{r-1}, \ldots, u_{t}\right\}, G-\left\{u_{r-1}, \ldots, u_{t}\right\}$ has an $\left(L_{G-\left\{u_{r-1}, \ldots, u_{t}\right\}}, r\right)$-coloring c. For each i with $r-1 \leq i \leq t$, as $\left|L\left(u_{i}\right)\right|=r+3$ and $\left|c\left(N_{G}\left(u_{i}\right)\right)\right| \leq 2$. We can always define $c\left(u_{i}\right) \in L\left(u_{i}\right)-c\left(N_{G}\left(u_{i}\right)\right)$. Thus, the extended c is a proper coloring. Since $G-\left\{u_{r-1}, \ldots, u_{t}\right\}$ has an $\left(L_{G-\left\{u_{r-1}, \ldots, u_{t}\right\}}, r\right)$-coloring c, and the choice of $c\left(u_{i}\right)$ for $r-1 \leq i \leq t$, the extended c is an (L, r)-coloring of G.

Proposition 3.3. Let $r \geq 2$ be an integer and let G be a 2-connected graph. Each of the following holds.
(i) If $G \in E X\left(K_{4}(6)\right)$, then $\chi_{L, r}(G) \leq K(r)+1$.
(ii) If $G \in\left[K_{4}(6), K_{6}\right]$, then $\chi_{L, r}(G) \leq K(r)+1$.

Proof. By Theorem 2.4, $E X\left(K_{4}(5)\right)=\left\{K_{4}\right\} \cup E X\left(K_{4}\right)$. By Theorem 1.3, $\chi_{L, r}\left(K_{4}\right)=4 \leq K(r)+1$. It follows that for any $G \in E X\left(K_{4}(5)\right), \chi_{L, r}(G) \leq K(r)+1$. By Theorem 2.4, $E X\left(K_{4}(6)\right)-E X\left(K_{4}(5)\right) \subseteq \mathcal{L} \cup\left[K_{4}(5), K_{5}\right]$, where \mathcal{L} is defined in (2). Since for any $r \geq 2, K(r) \geq 5$, to prove (i), it suffices to show that $\chi_{L, r}(G) \leq K(r)+1$ for any $G \in \mathcal{L}$ with $|V(G)| \geq 6$.

Let $G \in \mathcal{L}$ be a graph with $|V(G)| \geq 6$. By (2), there exists an integer s such that $G \in\left\{K_{4} \oplus_{v_{1}, v_{2}} K_{2, s}-v_{1} v_{2}, K_{4} \oplus_{v_{1}, v_{2}} K_{2, s}\right\}$. $D_{2}(G)=\left\{u_{1}, u_{2}, \ldots, u_{s}\right\}$. Let L be an $(r+3)$-list of G. By Lemma 3.2(i), the graph G has an (L, r)-coloring $c: V(G) \rightarrow \mathbb{N}$, and so $\chi_{L, r}(G) \leq r+3 \leq K(r)+1$. This proves Proposition 3.3(i).

To justify (ii), we observe that for any $G \in\left[K_{4}(6), K_{6}\right], \chi_{L, r}(G) \leq|V(G)|=6 \leq K(r)+1$. This completes the proof of the proposition.

By Theorem 2.4, $E X\left(K_{4}(7)\right)-\left(E X\left(K_{4}(6)\right) \cup\left[K_{4}(6), K_{6}\right]\right) \subseteq \mathcal{L}_{1} \cup \mathcal{L}_{2} \cup \mathcal{L}_{3}$. Thus by Proposition 3.3, it suffices to assume that $G \in \mathcal{L}_{1} \cup \mathcal{L}_{2} \cup \mathcal{L}_{3}$ to prove that $\chi_{L, r}(G) \leq K(r)+1$.

Lemma 3.4. Let t_{1}, t_{2} be non-negative integers. If $G=K_{4} \oplus_{2} K_{2, t_{1}} \oplus_{2} K_{2, t_{2}}$, then $\chi_{L, r}(G) \leq r+3$.
Proof. It suffices to show that for any $(r+3)$-list L of G, we can always find an (L, r)-coloring of G. Let $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ denote the vertices of the K_{4} as in Definition 2.3. We may assume that $G=K_{4} \oplus_{v_{1}, v_{2}} K_{2, t_{1}} \oplus_{v_{3}, v_{1}} K_{2, t_{2}}$ with v_{1} and v_{2} being the special vertices of $K_{2, t_{1}}$, and with v_{1} and v_{3} being the special vertices of $K_{2, t_{2}}$. Thus by definition, $v_{1}, v_{2} \in N_{G}\left(v_{3}\right)$. Denoted $D_{2}\left(K_{2, t_{1}}\right)=\left\{u_{1}, u_{2}, \ldots, u_{t_{1}}\right\}$ and $D_{2}\left(K_{2, t_{2}}\right)=\left\{u_{t_{1}+1}, u_{t_{1}+2}, \ldots, u_{t_{1}+t_{2}}\right\}$.

Since L is an $(r+3)$-list of G, for any $v \in V(G),|L(v)|=r+3$. Let $G^{\prime}=G-\left\{u_{t_{1}+1}, u_{t_{1}+2}, \ldots, u_{t_{1}+t_{2}}\right\}$. Then by Lemma 3.2(i), there exists a coloring $c^{\prime}: V\left(G^{\prime}\right) \rightarrow \mathbb{N}$ such that c^{\prime} is an $\left(L_{G^{\prime}}, r\right)$-coloring of G^{\prime}. Let

$$
\begin{equation*}
C\left(v_{3}\right)=c^{\prime}\left(N_{G^{\prime}}\left(v_{3}\right)\right), d=\left|C\left(v_{3}\right)\right| \tag{3}
\end{equation*}
$$

Since $d_{G^{\prime}}\left(v_{3}\right)=3$ and since c^{\prime} is an $\left(L_{G^{\prime}}, r\right)$-coloring, we have $d \geq \min \{r, 3\}$. To extend c^{\prime} to an (L, r)-coloring c of G, for each vertex $z \in V\left(G^{\prime}\right)$, we set $c(z)=c^{\prime}(z)$. Then we need to color the vertices in $\left\{u_{t_{1}+1}, u_{t_{1}+2}, \ldots, u_{t_{1}+t_{2}}\right\}$ so that c satisfies (C1), (C2) and (C3).
Case 1. $t_{1} \geq r-1$. Then as v_{1} and v_{2} are the special vertices of $K_{2, t_{1}}$ and as $t_{1} \geq r-1$, we have $\left|c^{\prime}\left(N_{G}\left(v_{1}\right)\right)\right| \geq r$ and $\left|c^{\prime}\left(N_{G}\left(v_{2}\right)\right)\right| \geq r$. By (3), if $d \geq r$, then we also have $\left|c^{\prime}\left(N_{G}\left(v_{3}\right)\right)\right| \geq r$, and so we can pick a color subset $C^{\prime} \subseteq C\left(v_{3}\right)$ with $\left|C^{\prime}\right|=r$. Since L is an $(r+3)$-list of G, we have $\left|L\left(u_{t_{1}+i}\right)-\left(C^{\prime} \cup\left\{c^{\prime}\left(v_{1}\right), c^{\prime}\left(v_{3}\right)\right\}\right)\right| \geq(r+3)-(r+2)>0$. Hence for each i with $1 \leq i \leq t_{2}$, it is possible to choose

$$
\begin{equation*}
c\left(u_{t_{1}+i}\right) \in L\left(u_{t_{1}+i}\right)-\left(C^{\prime} \cup\left\{c^{\prime}\left(v_{1}\right), c^{\prime}\left(v_{3}\right)\right\}\right) \tag{4}
\end{equation*}
$$

It follows by (4) and $\min \left\{\left|c^{\prime}\left(N_{G}\left(v_{1}\right)\right)\right|,\left|c^{\prime}\left(N_{G}\left(v_{2}\right)\right)\right|,\left|c^{\prime}\left(N_{G}\left(v_{3}\right)\right)\right|\right\} \geq r$ that c is an (L, r)-coloring of G. Therefore, we may assume that $d<r$. As L is an $(r+3)$-list, for any i with $1 \leq i \leq t_{2}$,

$$
\left|L\left(u_{t_{1}+i}\right)-\left(C\left(v_{3}\right) \cup\left\{c^{\prime}\left(v_{3}\right)\right\}\right)\right| \geq(r+3)-(d+1)>0
$$

We define $c\left(u_{t_{1}+1}\right)$ by choosing $c\left(u_{t_{1}+1}\right) \in L\left(u_{t_{1}+1}\right)-\left(C\left(v_{3}\right) \cup\left\{c^{\prime}\left(v_{3}\right)\right\}\right)$. Assume that inductively, we have defined $c\left(u_{t_{1}+i}\right)$ with $1 \leq i \leq s$ for some $s<\min \left\{r-d, t_{2}\right\}$ in such a way that

$$
\begin{equation*}
c\left(u_{t_{1}+i}\right) \in L\left(u_{t_{1}+i}\right)-\left(C\left(v_{3}\right) \cup\left\{c^{\prime}\left(v_{3}\right)\right\} \cup\left\{c\left(u_{t_{1}+j}\right): 1 \leq j \leq i-1\right\}\right) \tag{5}
\end{equation*}
$$

Then as L is an $(r+3)$-list, we have

$$
\left|L\left(u_{t_{1}+s+1}\right)-\left(C\left(v_{3}\right) \cup\left\{c^{\prime}\left(v_{3}\right)\right\} \cup\left\{c\left(u_{t_{1}+i}\right): 1 \leq i \leq s\right\}\right)\right| \geq(r+3)-(d+s+1)>0
$$

and so it is possible to define $c\left(u_{t_{1}+s+1}\right)$ by choosing

$$
c\left(u_{t_{1}+s+1}\right) \in L\left(u_{t_{1}+s+1}\right)-\left(C\left(v_{3}\right) \cup\left\{c^{\prime}\left(v_{3}\right)\right\} \cup\left\{c\left(u_{t_{1}+i}\right): 1 \leq i \leq s\right\}\right) .
$$

Thus after we have colored all vertices in $\left\{u_{t_{1}+i}: 1 \leq i \leq \min \left\{r-d, t_{2}\right\}\right\}$, then (5) hold for all i with $1 \leq i \leq \min \left\{r-d, t_{2}\right\}$. We conclude by (5) that there are $\min \left\{r, d_{G}\left(v_{3}\right)\right\}$ differently colored vertices in $N_{G}\left(v_{3}\right)$. If $t_{2} \leq r-d$, then the mapping c is already an (L, r)-coloring of G.

Assume that $t_{2}>r-d$. For i with $r-d<i \leq t_{2}$, set $c\left(u_{t_{1}+i}\right) \in L\left(u_{t_{1}+i}\right)-\left\{c^{\prime}\left(v_{1}\right), c^{\prime}\left(v_{3}\right)\right\}$. By (5), the extended coloring c satisfies (C1), (C2) and (C3) as $\left|c\left(N_{G}\left(v_{3}\right)\right)\right| \geq \min \left\{d_{G}\left(v_{3}\right), r\right\}$ and for each $u \in\left\{u_{t_{1}+1}, u_{t_{1}+2}, \ldots, u_{t_{1}+t_{2}}\right\}$, $\left|c\left(N_{G}(u)\right)\right|=d_{G}(u)=2$. Thus in Case $1, c^{\prime}$ can be extended to c, which is an (L, r)-coloring of G.
Case 2. $t_{1}<r-1$. Then as c^{\prime} is an $\left(L_{G^{\prime}}, r\right)$-coloring of G^{\prime} and $t_{1}<r-1$. We have $\left|c^{\prime}\left(N_{G}\left(v_{2}\right)\right)\right| \geq \min \left\{d_{G}\left(v_{2}\right), r\right\}$. Let

$$
M\left(v_{1}\right)=c^{\prime}\left(N_{G^{\prime}}\left(v_{1}\right)\right) \text { and } m=\left|M\left(v_{1}\right)\right| .
$$

If $m \geq r$, then we also have $\left|c^{\prime}\left(N_{G}\left(v_{1}\right)\right)\right| \geq r$, and so we can color each vertex $u \in\left\{u_{t_{1}+1}, u_{t_{1}+2}, \ldots, u_{t_{1}+t_{2}}\right\}$ the same way that we did in Case 1. Therefore, we may assume that $m<r$. As L is an $(r+3)$-list, for any i with $1 \leq i \leq t_{2}$,

$$
\left|L\left(u_{t_{1}+i}\right)-\left(M\left(v_{1}\right) \cup\left\{c^{\prime}\left(v_{1}\right)\right\}\right)\right| \geq(r+3)-(m+1)>0
$$

We define $c\left(u_{t_{1}+1}\right)$ by choosing $c\left(u_{t_{1}+1}\right) \in L\left(u_{t_{1}+1}\right)-\left(M\left(v_{1}\right) \cup\left\{c^{\prime}\left(v_{1}\right)\right\}\right)$. Assume that inductively, we have defined $c\left(u_{t_{1}+i}\right)$ with $1 \leq i \leq h$ for some $h<\min \left\{r-m, t_{2}\right\}$ in such a way that

$$
\begin{equation*}
c\left(u_{t_{1}+i}\right) \in L\left(u_{t_{1}+i}\right)-\left(M\left(v_{1}\right) \cup\left\{c^{\prime}\left(v_{1}\right)\right\} \cup\left\{c\left(u_{t_{1}+j}\right): 1 \leq j \leq i-1\right\}\right) \tag{6}
\end{equation*}
$$

Then as L is an $(r+3)$-list, we have

$$
\left|L\left(u_{t_{1}+h+1}\right)-\left(M\left(v_{1}\right) \cup\left\{c^{\prime}\left(v_{1}\right)\right\} \cup\left\{c\left(u_{t_{1}+i}\right): 1 \leq i \leq h\right\}\right)\right| \geq(r+3)-(m+h+1)>0
$$

and so it is possible to define $c\left(u_{t_{1}+h+1}\right)$ by choosing

$$
c\left(u_{t_{1}+h+1}\right) \in L\left(u_{t_{1}+h+1}\right)-\left(M\left(v_{1}\right) \cup\left\{c^{\prime}\left(v_{1}\right)\right\} \cup\left\{c\left(u_{t_{1}+i}\right): 1 \leq i \leq h\right\}\right) .
$$

Thus after we have colored all vertices in $\left\{u_{t_{1}+i}: 1 \leq i \leq \min \left\{r-m, t_{2}\right\}\right\}$, then for any i with $1 \leq i \leq \min \left\{r-m, t_{2}\right\}$ (6) holds. We conclude by (6) that there are $\min \left\{r, d_{G}\left(v_{1}\right)\right\}$ differently colored vertices in $N_{G}\left(v_{1}\right)$. If $t_{2} \leq r-m$, then the mapping c is already an (L, r)-coloring of G.

Assume that $t_{2}>r-m$. We have defined $c\left(u_{t_{1}+j}\right)$ with $1 \leq j \leq i-1$ and $r-m<i \leq s$ for some $s<\min \left\{r-d, t_{2}\right\}$, then as L is an $(r+3)$-list, we have

$$
\left|L\left(u_{t_{1}+i}\right)-\left(C\left(v_{3}\right) \cup\left\{c^{\prime}\left(v_{3}\right)\right\} \cup\left\{c\left(u_{t_{1}+j}\right): 1 \leq j \leq i-1\right\}\right)\right| \geq(r+3)-(d+1+s-r+m)>0
$$

and so it is possible to define $c\left(u_{t_{1}+i}\right)$ by choosing

$$
\begin{equation*}
c\left(u_{t_{1}+i}\right) \in L\left(u_{t_{1}+i}\right)-\left(C\left(v_{3}\right) \cup\left\{c^{\prime}\left(v_{3}\right)\right\} \cup\left\{c\left(u_{t_{1}+j}\right): 1 \leq j \leq i-1\right\}\right) \tag{7}
\end{equation*}
$$

Thus after we have colored all vertices in $\left\{u_{t_{1}+i}: r-m<i \leq \min \left\{r-d, t_{2}\right\}\right\}$, we conclude by (7) that there are $\min \left\{r, d_{G}\left(v_{3}\right)\right\}$ differently colored vertices in $N_{G}\left(v_{3}\right)$. If $t_{2} \leq r-d$, then the mapping c is already an (L, r)-coloring of G.

Assume that $t_{2}>r-d$. For i with $r-d<i \leq t_{2}$, set $c\left(u_{t_{1}+i}\right) \in L\left(u_{t_{1}+i}\right)-\left\{c^{\prime}\left(v_{1}\right), c^{\prime}\left(v_{3}\right)\right\}$. By (6) and (7), the extended coloring c satisfies (C1), (C2) and (C3) as $\left|c\left(N_{G}\left(v_{1}\right)\right)\right| \geq \min \left\{d_{G}\left(v_{1}\right), r\right\},\left|c\left(N_{G}\left(v_{3}\right)\right)\right| \geq \min \left\{d_{G}\left(v_{3}\right), r\right\}$ and for each $u \in\left\{u_{t_{1}+1}, u_{t_{1}+2}, \ldots, u_{t_{1}+t_{2}}\right\},\left|c\left(N_{G}(u)\right)\right|=d_{G}(u)=2$. Thus in Case $2, c^{\prime}$ can be extended to c, which is an (L, r)-coloring of G.

Similarly, if $G=K_{4} \oplus_{v_{1}, v_{2}} K_{2, t_{1}} \oplus_{v_{3}, v_{4}} K_{2, t_{2}}$ with v_{1} and v_{2} being the special vertices of $K_{2, t_{1}}$, and with v_{3} and v_{4} being the special vertices of $K_{2, t_{2}}$. We also have $\chi_{L, r}(G) \leq r+3$.

Proposition 3.5. Let $r \geq 2$ be an integer and $G \in \mathcal{L}_{1} \cup \mathcal{L}_{2} \cup \mathcal{L}_{3}$ be a 2-connected graph. Then $\chi_{L, r}(G) \leq K(r)$.
Proof. We continue adopting the notation in Definition 2.3 in the arguments. Thus for some $n \in\{4,5\}$, the construction of G involves a complete graph K on n vertices. As in Definition 2.3, we let $V(K)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$.

Claim 1. If $G \in \mathcal{L}_{1}$, then $\chi_{L, r}(G) \leq r+3 \leq K(r)$.
As $G \in \mathcal{L}_{1}, K=K_{4}$. By Definition 2.3, there exist non-negative integers t_{1} and t_{2} such that G is spanned by $N_{1}\left(t_{1}, t_{2}\right)$ with possibly $v_{1} v_{2}, v_{3} v_{l} \in E(G)$. Denote $D_{2}\left(F_{1}\right)=\left\{u_{1}, u_{2}, \ldots, u_{t_{1}}\right\}$ and $D_{2}\left(F_{1}^{\prime}\right)=\left\{u_{t_{1}+1}, u_{t_{1}+2}, \ldots, u_{t_{1}+t_{2}}\right\}$. Let L be an ($r+3$)-list of G. By Lemma 3.4, there exists a coloring $c_{1}: V(G) \rightarrow \mathbb{N}$ is an (L, r)-coloring of G, independent of whether the edge $v_{1} v_{2}, v_{3} v_{l}$ are in $E(G)$ or not. Thus $\chi_{L, r}(G) \leq r+3 \leq K(r)$.

Claim 2. If $G \in \mathcal{L}_{3}$, then $\chi_{L, r}(G) \leq r+3 \leq K(r)$.
As $G \in \mathcal{L}_{3}, K=K_{5}$. By Definition 2.3, for an integer $t_{1} \geq 1, G$ is a spanning subgraph of $L_{3}:=L_{3}\left(t_{1}\right)=K_{5} \oplus_{v_{1}, v_{2}} F_{1}$ where $F_{1}=K_{2, t_{1}}$. Let $D_{2}(F)=\left\{u_{1}, u_{2}, \ldots, u_{t_{1}}\right\}$. Let L be an $(r+3)$-list of G. By Lemma 3.2(iii), there exists a coloring $c_{2}: V(G) \rightarrow \mathbb{N}$ is an (L, r)-coloring of G, Thus $\chi_{L, r}(G) \leq r+3 \leq K(r)$.

Claim 3. If $G \in \mathcal{L}_{2}$, then $\chi_{L, r}(G) \leq r+3 \leq K(r)$.
As $G \in \mathcal{L}_{2}, K=K_{4}$. By Definition 2.3, every graph in \mathcal{L}_{2} is a planar graph. Thus by Theorem 1.1, if $G \in \mathcal{L}_{2}$, then $\chi_{L, 2}(G) \leq 5=K(2)$. Therefore, we assume that $r \geq 3$ and $|V(G)| \geq K(3)+1=7$, and continue using the notation in Definition 2.3. Let $N_{2}:=N_{2}\left(t_{1}, t_{3}, T\right)=K_{4} \oplus_{v_{1}, v_{2}} F_{1} \oplus_{v_{1}, v_{2}} F_{3}-\left\{v_{1} v_{2}\right\}-\cup_{i=1}^{t_{3}} e_{i}$, and $L_{2}:=L_{2}\left(t_{1}, t_{3}, T\right)=K_{4} \oplus_{v_{1}, v_{2}} F_{2} \oplus_{v_{1}, v_{2}} F_{3}$ with $t_{1} \geq 0$ and $t_{3} \geq 0$, where $T=\left(k_{1}, k_{2}, \ldots, k_{t_{3}}\right)$ with $k_{1} \geq k_{2} \geq \cdots \geq k_{t_{3}} \geq 0$. Let $G \in\left[N_{2}, L_{2}\right]$. As in Definition 2.3 we have $F_{1} \cong K_{2, t_{1}}, F_{2} \cong K_{2, t_{1}}^{\prime}$, and $F_{3} \cong S K_{2, t_{3}, T}$. For each $j \in\left\{1,2, \ldots, t_{3}\right\}$, let x_{j}, y_{j} denote the special vertices of $J_{j} \cong K_{2, k_{j}}$ in Definition 2.2 (ii) with $x_{1}=x_{2}=\cdots=x_{f}=v_{1}, y_{f+1}=y_{f+2}=\cdots=y_{t_{3}}=v_{2}$, and $D_{2}\left(J_{j}\right)=\left\{w_{1}^{j}, w_{2}^{j}, \ldots, w_{k_{j}}^{j}\right\}$. As $G \in\left[N_{2}, L_{2}\right], v_{1} v_{2}$ may or may not be in $E(G)$. By Definition 2.3(ii), we may view F_{1} as a spanning subgraph of F_{2}, and so some of the edges in $E\left(F_{2}\right)-E\left(F_{1}\right)$ may not be in G as well. Denote $V(K)=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ and $V\left(F_{1}^{\prime}\right)=\left\{u_{1}, u_{2}, \ldots, u_{t_{1}}\right\}$, such that for some $t_{1}^{\prime} \geq 0$ with $2 t_{1}^{\prime} \leq t_{1}$, we have $\left\{u_{2 i-1} u_{2 i}: 1 \leq i \leq t_{1}^{\prime}\right\} \subseteq E(G)$, and such that $2 t_{1}^{\prime}+1 \leq j \leq t_{1}$, $\left\{u_{2 t^{\prime}+1}, \ldots, u_{t_{1}}\right\}$ is an independent set.

Let L be an $(r+3)$-list of G. We shall construct an (L, r)-coloring $c_{3}: V(G) \rightarrow \mathbb{N}$ of G in the following steps. Before the coloring, we let

$$
\begin{align*}
& W_{1}=w_{1}^{1}, w_{2}^{1}, \ldots, w_{k_{1}}^{1}, w_{1}^{2}, w_{2}^{2}, \ldots, w_{k_{2}}^{2}, \ldots, w_{1}^{f}, w_{2}^{f}, \ldots, w_{k_{f}}^{f} \\
& W_{2}=w_{1}^{f+1}, w_{2}^{f+1}, \ldots, w_{k_{f+1}}^{f+1}, w_{1}^{f+2}, w_{2}^{f+2}, \ldots, w_{k_{f+2}}^{f+2}, \ldots, w_{1}^{t_{3}}, w_{2}^{t_{3}}, \ldots, w_{k_{t_{3}}}^{t_{3}} \tag{8}
\end{align*}
$$

be two sequences of vertices of G.
Step 1. Let $G_{1}=G\left[V(K) \cup V\left(F_{1}^{\prime}\right)\right]$, and $L_{1}=\left.L\right|_{V\left(G_{1}\right)}$ be the restriction of L to $V\left(G_{1}\right)$. (See Fig. 1 , where G_{1} is spanned by a subgraph in the graph depicted in Fig. 1.) Since L is an $(r+3)$-list with $r \geq 2$, the vertices in $V(K)$ can be so colored that $c_{3}\left(v_{i}\right) \in L\left(v_{i}\right)$ with $\left|c_{3}(V(K))\right|=4$. Thus $\left|c_{3}\left(N_{G}\left(v_{i}\right)\right)\right| \geq 2$, for any $v_{i} \in V(K)$. As $r \geq 2$ and L is an $(r+3)$-list of G, we have $\left|L\left(u_{i}\right)-c_{3}(V(K))\right|=r-1>0$, and so the color $c_{3}\left(u_{1}\right) \in L\left(u_{1}\right)-c_{3}(V(K))$ can be chosen.

Let $N_{0}=\min \left\{r-2, t_{1}\right\}$. Color $c_{3}\left(u_{1}\right) \in L\left(u_{1}\right)-c_{3}(V(K))$. For each $i=2,3, \ldots, N_{0}$, set

$$
\begin{equation*}
c_{3}\left(u_{i}\right) \in L\left(u_{i}\right)-\left(\left\{c_{3}\left(v_{1}\right), c_{3}\left(v_{2}\right)\right\} \cup\left\{c_{3}\left(u_{j}\right): 1 \leq j \leq i-1\right\}\right) \tag{9}
\end{equation*}
$$

If $t_{1} \leq r-2$, then the coloring of this step is done. If $t_{1}>r-2$, then for any $i=N_{0}+1, \ldots, t_{1}$, set

$$
\begin{equation*}
c_{3}\left(u_{i}\right) \in L\left(u_{i}\right)-\left\{c_{3}\left(v_{1}\right), c_{3}\left(v_{2}\right), c_{3}\left(u_{i-1}\right)\right\} \tag{10}
\end{equation*}
$$

By (9) and (10), c_{3} is an ($\left.L_{1}, r\right)$-coloring of G_{1}.
Step 2. In Step 2, we are to color the vertices in $\left\{y_{1}, y_{2}, \ldots, y_{f}\right\} \cup\left\{x_{f+1}, x_{f+2}, \ldots, x_{t_{3}}\right\}$. By Definition 2.3, there exists an index f^{\prime} with $0 \leq f^{\prime} \leq f$ such that for all i with $1 \leq i \leq f^{\prime}, v_{1} y_{i} \in E(G)$, and for any j with $f^{\prime}+1 \leq j \leq f, v_{1} y_{j} \notin E(G)$. Thus if $f^{\prime}=0$, then for any j with $1 \leq j \leq f, v_{1} y_{j} \notin E(G)$. Similarly, there exists an index $f^{\prime \prime}$ with $0 \leq f^{\prime \prime} \leq t_{3}-f$ such that for all i with $1 \leq i \leq f^{\prime \prime}, v_{2} x_{f+i} \in E(G)$, and for any j with $f^{\prime \prime}+1 \leq j \leq t_{3}, v_{2} x_{f+j} \notin E(G)$. Thus if $f^{\prime \prime}=0$, then for any j with $1 \leq j \leq t_{3}-f, v_{2} x_{f+j} \notin E(G)$.

We shall use the following notation in the arguments throughout the rest of the proof. For all i with $0 \leq i \leq f^{\prime}$ (whence $v_{1} y_{i} \in E(G)$), let $u_{t_{1}+i}=y_{i}$; and for all j with $0 \leq j \leq f^{\prime \prime}$ (whence $v_{2} x_{f+j} \in E(G)$), let $u_{t_{1}+f^{\prime}+j}=x_{f+j}$. Define $G_{2}^{\prime}=G\left[V\left(G_{1}\right) \cup\left\{u_{t_{1}+1}, u_{t_{1}+2}, \ldots, u_{t_{1}+f^{\prime}+f^{\prime \prime}}\right\}\right]$, and $L_{2}^{\prime}=\left.L\right|_{V\left(G_{2}^{\prime}\right)}$ be the restriction of L to $V\left(G_{2}^{\prime}\right)$. (See Fig. 1 , where G_{2}^{\prime} is spanned by a subgraph in the graph depicted in Fig. 1.)

Let $C_{1}=c_{3}\left(N_{G_{1}}\left(v_{2}\right)-\left\{v_{1}\right\}\right)=c_{3}\left(N_{G_{1}}\left(v_{1}\right)-\left\{v_{2}\right\}\right), d_{1}=\left|C_{1}\right|$, and define

$$
N_{1}= \begin{cases}0 & \text { if } d_{1} \geq r \\ \min \left\{r-d_{1}, f^{\prime}+f^{\prime \prime}\right\} & \text { if } d_{1}<r\end{cases}
$$

Suppose first that $N_{1}=0$ and so $d_{1} \geq r$. Then each of v_{1} and v_{2} has already r differently colored neighbors. In this case, for each i with $1 \leq i \leq f^{\prime}+f^{\prime \prime}$, we choose

$$
c_{3}\left(u_{t_{1}+i}\right) \in L\left(u_{t_{1}+i}\right)-\left\{c_{3}\left(v_{1}\right), c_{3}\left(v_{2}\right)\right\} .
$$

Fig. 1. Graph G, where $G_{1}=G-\left(W_{1} \cup W_{2} \cup\left\{y_{1}, y_{2}, \ldots, y_{f}\right\} \cup\left\{x_{f+1}, x_{f+2}, \ldots, x_{t_{3}}\right\}\right)$.

Assume that $N_{1}>0$. As L is an $(r+3)$-list of G, we have $\left|L\left(u_{t_{1}+1}\right)-C_{1}-\left\{c_{3}\left(v_{1}\right), c_{3}\left(v_{2}\right)\right\}\right|=r+3-d_{1}>0$, and so the color $c_{3}\left(u_{t_{1}+1}\right) \in L\left(u_{t_{1}+1}\right)-C_{1}-\left\{c_{3}\left(v_{1}\right), c_{3}\left(v_{2}\right)\right\}$ can be chosen. For each $i=2,3, \ldots, N_{1}$, set

$$
\begin{equation*}
c_{3}\left(u_{t_{1}+i}\right) \in L\left(u_{t_{1}+i}\right)-\left(C_{1} \cup\left\{c_{3}\left(u_{t_{1}+j}\right): 1 \leq j \leq i-1\right\}\right)-\left\{c_{3}\left(v_{1}\right), c_{3}\left(v_{2}\right)\right\} . \tag{11}
\end{equation*}
$$

If $f^{\prime}+f^{\prime \prime}>r-d_{1}$, then for any $i=N_{1}+1, \ldots, f^{\prime}+f^{\prime \prime}$, set

$$
\begin{equation*}
c_{3}\left(u_{t_{1}+i}\right) \in L\left(u_{t_{1}+i}\right)-\left\{c_{3}\left(v_{1}\right), c_{3}\left(v_{2}\right)\right\} . \tag{12}
\end{equation*}
$$

By (11) and (12), c_{3} is an ($\left.L_{2}^{\prime}, r\right)$-coloring of G_{2}^{\prime}.
Let $G_{2}=G\left[V\left(G_{2}^{\prime}\right) \cup\left\{y_{f^{\prime}+1}, y_{f^{\prime}+2}, \ldots, y_{f}\right\} \cup\left\{x_{f+f^{\prime \prime}+1}, x_{f+f^{\prime \prime}+2}, \ldots, x_{t_{3}}\right\}\right]$, and $L_{2}=\left.L\right|_{V\left(G_{2}\right)}$ be the restriction of L to $V\left(G_{2}\right)$. (See Fig. 1, where G_{2} is spanned by a subgraph in the graph depicted in Fig. 1.)

Let $C_{2}=c_{3}\left(N_{G_{2}^{\prime}}\left(v_{2}\right)-\left\{v_{1}\right\}\right), d_{2}=\left|C_{2}\right|$, and define

$$
N_{2}= \begin{cases}0 & \text { if } d_{2} \geq r \\ \min \left\{r-d_{2}, f-f^{\prime}\right\} & \text { if } d_{2}<r\end{cases}
$$

Suppose first that $N_{2}=0$ and so $d_{2} \geq r$. Then each of v_{1} and v_{2} has already r differently colored neighbors. In this case, for each i with $f^{\prime}+1 \leq i \leq f$, we choose

$$
c_{3}\left(y_{i}\right) \in L\left(y_{i}\right)-\left\{c_{3}\left(v_{1}\right), c_{3}\left(v_{2}\right)\right\}
$$

Assume that $N_{2}>0$. As L is an $(r+3)$-list of G, we have $\left|L\left(y_{f^{\prime}+1}\right)-C_{2}-\left\{c_{3}\left(v_{1}\right), c_{3}\left(v_{2}\right)\right\}\right|=r+3-d_{2}>0$, and so the color $c_{3}\left(y_{f^{\prime}+1}\right) \in L\left(y_{f^{\prime}+1}\right)-C_{2}-\left\{c_{3}\left(v_{1}\right), c_{3}\left(v_{2}\right)\right\}$ can be chosen. For each $i=2,3, \ldots, N_{2}$, set

$$
\begin{equation*}
c_{3}\left(y_{f^{\prime}+i}\right) \in L\left(y_{f^{\prime}+i}\right)-\left(C_{2} \cup\left\{c_{3}\left(y_{f^{\prime}+j}\right): 1 \leq j \leq i-1\right\}\right)-\left\{c_{3}\left(v_{1}\right), c_{3}\left(v_{2}\right)\right\} . \tag{13}
\end{equation*}
$$

If $f-f^{\prime}>r-d_{2}$, then for any $i=N_{2}+1, \ldots, f-f^{\prime}$, set

$$
\begin{equation*}
c_{3}\left(y_{f^{\prime}+i}\right) \in L\left(y_{f^{\prime}+i}\right)-\left\{c_{3}\left(v_{1}\right), c_{3}\left(v_{2}\right)\right\} . \tag{14}
\end{equation*}
$$

Let $C_{2}^{\prime}=c_{3}\left(N_{G_{2}^{\prime}}\left(v_{1}\right)-\left\{v_{2}\right\}\right), d_{2}^{\prime}=\left|C_{2}^{\prime}\right|$, and define

$$
N_{2}^{\prime}= \begin{cases}0 & \text { if } d_{2}^{\prime} \geq r \\ \min \left\{r-d_{2}^{\prime}, t_{3}-\left(f+f^{\prime \prime}\right)\right\} & \text { if } d_{2}^{\prime}<r\end{cases}
$$

Suppose first that $N_{2}^{\prime}=0$ and so $d_{2}^{\prime} \geq r$. Then each of v_{1} and v_{2} has already r differently colored neighbors. In this case, for each j with $f+f^{\prime \prime}+1 \leq j \leq t_{3}$, we choose

$$
c_{3}\left(x_{j}\right) \in L\left(x_{j}\right)-\left\{c_{3}\left(v_{1}\right), c_{3}\left(v_{2}\right)\right\}
$$

Assume that $N_{2}^{\prime}>0$. As L is an $(r+3)$-list of G, we have $\left|L\left(x_{f+f^{\prime \prime}+1}\right)-C_{2}^{\prime}-\left\{c_{3}\left(v_{1}\right), c_{3}\left(v_{2}\right)\right\}\right|=r+3-d_{2}^{\prime}>0$, and so the color $c_{3}\left(x_{f+f^{\prime \prime}+1}\right) \in L\left(x_{f+f^{\prime \prime}+1}\right)-C_{2}^{\prime}-\left\{c_{3}\left(v_{1}\right), c_{3}\left(v_{2}\right)\right\}$ can be chosen. For each $i=2,3, \ldots, N_{2}^{\prime}$, set

$$
\begin{equation*}
c_{3}\left(x_{f+f^{\prime \prime}+i}\right) \in L\left(x_{f+f^{\prime \prime}+i}\right)-\left(C_{2}^{\prime} \cup\left\{c_{3}\left(x_{f+f^{\prime \prime}+j}\right): 1 \leq j \leq i-1\right\}\right)-\left\{c_{3}\left(v_{1}\right), c_{3}\left(v_{2}\right)\right\} . \tag{15}
\end{equation*}
$$

If $t_{3}-\left(f+f^{\prime \prime}\right)>r-d_{2}$, then for any $i=N_{2}^{\prime}+1, \ldots, t_{3}-\left(f+f^{\prime \prime}\right)$, set

$$
\begin{equation*}
c_{3}\left(x_{f+f^{\prime \prime}+i}\right) \in L\left(x_{f+f^{\prime \prime}+i}\right)-\left\{c_{3}\left(v_{1}\right), c_{3}\left(v_{2}\right)\right\} . \tag{16}
\end{equation*}
$$

After finishing coloring vertices in $\left\{y_{f^{\prime}+1}, y_{f^{\prime}+2}, \ldots, y_{f}\right\} \cup\left\{x_{f+f^{\prime \prime}+1}, x_{f+f^{\prime \prime}+2}, \ldots, x_{t_{3}}\right\}$, we have completed the coloring of $V\left(G_{2}\right)$. By (13), (14), (15) and (16), c_{3} is an ($\left.L_{2}, r\right)$-coloring of G_{2}.

Step 3. In Step 3, we are to color the vertices in $W_{1} \cup W_{2}$ using the notation in (8) for vertices in W_{1} and W_{2}, and so complete the coloring of $V(G)$. We first color vertices in W_{1}.

Let $C_{3}=c_{3}\left(N_{G_{2}}\left(v_{1}\right)-\left\{v_{2}\right\}\right), d_{3}=\left|C_{3}\right|$ and define

$$
N_{3}= \begin{cases}0 & \text { if } d_{3} \geq r \\ \min \left\{r-d_{3},\left|W_{1}\right|\right\} & \text { if } d_{3}<r\end{cases}
$$

Suppose first that $N_{3}=0$ and so $d_{3} \geq r$. Then v_{1} has already r differently colored neighbors. In this case, for any ℓ with $1 \leq \ell \leq f$, we have

$$
\left|L\left(w_{1}^{\ell}\right)-\left\{c_{3}\left(y_{\ell}\right), c_{3}\left(v_{1}\right), c_{3}\left(v_{2}\right)\right\}\right| \geq r
$$

Thus we can choose $c_{3}\left(w_{1}^{\ell}\right) \in L\left(w_{1}^{\ell}\right)-\left\{c_{3}\left(y_{\ell}\right), c_{3}\left(v_{1}\right), c_{3}\left(v_{2}\right)\right\}$, and for any i with $2 \leq i \leq p_{\ell}$ for some $p_{\ell}=\min \left\{r-1, k_{\ell}\right\}$, we can find a color $c_{3}\left(w_{i}^{\ell}\right)$ so that

$$
\begin{equation*}
c_{3}\left(w_{i}^{\ell}\right) \in L\left(w_{i}^{\ell}\right)-\left(\left\{c_{3}\left(y_{\ell}\right), c_{3}\left(v_{1}\right), c_{3}\left(v_{2}\right)\right\} \cup\left\{c_{3}\left(w_{t}^{\ell}\right): 1 \leq t \leq i-1\right\}\right) \tag{17}
\end{equation*}
$$

If $k_{\ell}>r-1$, then for any $i=p_{\ell}+1, \ldots, k_{\ell}$, set

$$
c_{3}\left(w_{i}^{\ell}\right) \in L\left(w_{i}^{\ell}\right)-\left\{c_{3}\left(y_{\ell}\right), c_{3}\left(v_{1}\right)\right\}
$$

Assume that $N_{3}=\left|W_{1}\right|>0$. Then as L is an $(r+3)$-list of G, we have $\left|L\left(w_{1}^{1}\right)-\left(C_{3} \cup\left\{c_{3}\left(y_{1}\right), c_{3}\left(v_{1}\right), c_{3}\left(v_{2}\right)\right\}\right)\right|=$ $r+3-\left(d_{3}+3\right)>0$, and so the color $c_{3}\left(w_{1}^{1}\right) \in L\left(w_{1}^{1}\right)-\left(C_{3} \cup\left\{c_{3}\left(y_{1}\right), c_{3}\left(v_{1}\right), c_{3}\left(v_{2}\right)\right\}\right)$ can be chosen. For any ℓ with $1 \leq \ell \leq f$ and i with $1 \leq i \leq k_{\ell}$,

$$
\begin{equation*}
c_{3}\left(w_{i}^{\ell}\right) \in L\left(w_{i}^{\ell}\right)-\left(C_{3} \cup\left\{c_{3}\left(y_{\ell}\right), c_{3}\left(v_{1}\right), c_{3}\left(v_{2}\right)\right\} \cup\left\{c_{3}\left(w_{t}^{s}\right): 1 \leq t \leq i-1,1 \leq s \leq \ell\right\}\right) \tag{18}
\end{equation*}
$$

Now we assume that $N_{3}=r-d_{3}$. Then there exist $r-d_{3}$ distinct vertices $w_{1}, w_{2}, \ldots, w_{r-d_{3}}$ in W_{1}. As L is an $(r+3)$-list of G, it is possible to set $c_{3}\left(w_{1}\right) \in L\left(w_{1}\right)-\left(C_{3} \cup c_{3}\left(N_{G}\left(w_{1}\right)\right) \cup\left\{c_{3}\left(v_{2}\right)\right\}\right)$, and for any i with $1 \leq i \leq r-d_{3}-1$ we have

$$
\begin{equation*}
c_{3}\left(w_{i+1}\right) \in L\left(w_{i+1}\right)-\left(C_{3} \cup c_{3}\left(N_{G}\left(w_{i+1}\right)\right) \cup\left\{c_{3}\left(v_{2}\right)\right\} \cup\left\{c_{3}\left(w_{j}\right): 1 \leq j \leq i\right\}\right) \tag{19}
\end{equation*}
$$

Thus after we have colored all vertices in $\left\{w_{i}: 1 \leq i \leq r-d_{3}\right\}$, then (18) hold for all such vertex. For other vertices in $w_{i}^{\ell} \in W_{1}-\left\{w_{1}, w_{2}, \ldots, w_{r-d_{3}}\right\}$ with $1 \leq \ell \leq f, 1 \leq i \leq p_{\ell}$ for some $p_{\ell}=\min \left\{r-1, k_{\ell}\right\}$, set

$$
c_{3}\left(w_{i}^{\ell}\right) \in L\left(w_{i}^{\ell}\right)-\left(\left\{c_{3}\left(y_{\ell}\right), c_{3}\left(v_{1}\right), c_{3}\left(v_{2}\right)\right\} \cup\left\{c_{3}\left(w_{t}^{\ell}\right): 1 \leq t \leq i-1\right\}\right.
$$

$$
\begin{equation*}
\left.\cup\left\{c_{3}\left(w_{q}\right): 1 \leq q \leq r-d_{3}, w_{q} \in N_{G}\left(y_{\ell}\right)\right\}\right) \tag{20}
\end{equation*}
$$

If $k_{\ell}>r-1$, then for any $i=p_{\ell}+1, \ldots, k_{\ell}$, set

$$
c_{3}\left(w_{i}^{\ell}\right) \in L\left(w_{i}^{\ell}\right)-\left\{c_{3}\left(y_{\ell}\right), c_{3}\left(v_{1}\right)\right\}
$$

We then extend c_{2} to color vertices in W_{2} using similar strategy. Let $C_{3}^{\prime}=c_{3}\left(N_{G_{2}}\left(v_{2}\right)-\left\{v_{1}\right\}\right), d_{3}^{\prime}=\left|C_{3}^{\prime}\right|$ and define

$$
N_{3}^{\prime}= \begin{cases}0 & \text { if } d_{3}^{\prime} \geq r \\ \min \left\{r-d_{3}^{\prime},\left|W_{2}\right|\right\} & \text { if } d_{3}^{\prime}<r\end{cases}
$$

Suppose first that $N_{3}^{\prime}=0$ and so $d_{3}^{\prime} \geq r$. Then v_{2} has already r differently colored neighbors. In this case, for any ℓ with $f+1 \leq \ell \leq t_{3}$, we have

$$
\left|L\left(w_{1}^{\ell}\right)-\left\{c_{3}\left(x_{\ell}\right), c_{3}\left(v_{1}\right), c_{3}\left(v_{2}\right)\right\}\right| \geq r
$$

Thus we can choose $c_{3}\left(w_{1}^{\ell}\right) \in L\left(w_{1}^{\ell}\right)-\left\{c_{3}\left(x_{\ell}\right), c_{3}\left(v_{1}\right), c_{3}\left(v_{2}\right)\right\}$, and for any i with $2 \leq i \leq q_{\ell}$ for some $q_{\ell}=\min \left\{r-1, k_{\ell}\right\}$, we can find a color $c_{3}\left(w_{i}^{\ell}\right)$ so that

$$
\begin{equation*}
c_{3}\left(w_{i}^{\ell}\right) \in L\left(w_{i}^{\ell}\right)-\left(\left\{c_{3}\left(x_{\ell}\right), c_{3}\left(v_{1}\right), c_{3}\left(v_{2}\right)\right\} \cup\left\{c_{3}\left(w_{t}^{\ell}\right): 1 \leq t \leq i-1\right\}\right) \tag{21}
\end{equation*}
$$

If $k_{\ell}>r-1$, then for any $i=q_{\ell}+1, \ldots, k_{\ell}$, set

$$
c_{3}\left(w_{i}^{\ell}\right) \in L\left(w_{i}^{\ell}\right)-\left\{c_{3}\left(x_{\ell}\right), c_{3}\left(v_{2}\right)\right\}
$$

Assume that $N_{3}^{\prime}=\left|W_{2}\right|>0$. Then as L is an $(r+3)$-list of G, we have $\left|L\left(w_{1}^{f+1}\right)-\left(C_{3}^{\prime} \cup\left\{c_{3}\left(x_{f+1}\right), c_{3}\left(v_{1}\right), c_{3}\left(v_{2}\right)\right\}\right)\right|=$ $r+3-\left(d_{3}^{\prime}+3\right)>0$, and so the color $c_{3}\left(w_{1}^{f+1}\right) \in L\left(w_{1}^{f+1}\right)-\left(C_{3}^{\prime} \cup\left\{c_{3}\left(x_{f+1}\right), c_{3}\left(v_{1}\right), c_{3}\left(v_{2}\right)\right\}\right)$ can be chosen. For any ℓ with $f+1 \leq \ell \leq t_{3}$ and i with $1 \leq i \leq k_{\ell}$,

$$
\begin{equation*}
c_{3}\left(w_{i}^{\ell}\right) \in L\left(w_{i}^{\ell}\right)-\left(C_{3}^{\prime} \cup\left\{c_{3}\left(x_{\ell}\right), c_{3}\left(v_{1}\right), c_{3}\left(v_{2}\right)\right\} \cup\left\{c_{3}\left(w_{t}^{s}\right): 1 \leq t \leq i-1, f+1 \leq s \leq \ell\right\}\right) \tag{22}
\end{equation*}
$$

Now assume that $N_{3}^{\prime}=r-d_{3}^{\prime}$. Then there exist $r-d_{3}^{\prime}$ distinct vertices $w_{1}^{\prime}, w_{2}^{\prime}, \ldots, w_{r-d_{3}^{\prime}}^{\prime}$ in W_{2}, As L is an $(r+3)$-list of G, it is possible to set $c_{3}\left(w_{1}^{\prime}\right) \in L\left(w_{1}^{\prime}\right)-\left(C_{3}^{\prime} \cup c_{3}\left(N_{G}\left(w_{1}^{\prime}\right)\right) \cup\left\{c_{3}\left(v_{1}\right)\right\}\right)$, and for any i with $1 \leq i \leq r-d_{3}^{\prime}-1$ we have

$$
\begin{equation*}
c_{3}\left(w_{i+1}^{\prime}\right) \in L\left(w_{i+1}^{\prime}\right)-\left(C_{3}^{\prime} \cup c_{3}\left(N_{G}\left(w_{i+1}^{\prime}\right)\right) \cup\left\{c_{3}\left(v_{1}\right)\right\} \cup\left\{c_{3}\left(w_{j}^{\prime}\right): 1 \leq j \leq i\right\}\right) \tag{23}
\end{equation*}
$$

Thus after we have colored all vertices in $\left\{w_{i}^{\prime}: 1 \leq i \leq r-d_{3}^{\prime}\right\}$, then (22) hold for all such vertex. For other vertices in $w_{i}^{\ell} \in W_{2}-\left\{w_{1}^{\prime}, w_{2}^{\prime}, \ldots, w_{r-d_{3}^{\prime}}^{\prime}\right\}$ with $f+1 \leq \ell \leq t_{3}, 1 \leq i \leq q_{\ell}$ for some $q_{\ell}=\min \left\{r-1, k_{\ell}\right\}$, set

$$
\begin{align*}
c_{3}\left(w_{i}^{\ell}\right) \in & L\left(w_{i}^{\ell}\right)-\left(\left\{c_{3}\left(x_{\ell}\right), c_{3}\left(v_{1}\right), c_{3}\left(v_{2}\right)\right\} \cup\left\{c_{3}\left(w_{t}^{\ell}\right): 1 \leq t \leq i-1\right\}\right. \\
& \left.\cup\left\{c_{3}\left(w_{q}\right): 1 \leq q \leq r-d_{3}^{\prime}, w_{q} \in N_{G}\left(x_{\ell}\right)\right\}\right) \tag{24}
\end{align*}
$$

If $k_{\ell}>r-1$, then for any $i=q_{\ell}+1, \ldots, k_{\ell}$, set

$$
c_{3}\left(w_{i}^{\ell}\right) \in L\left(w_{i}^{\ell}\right)-\left\{c_{3}\left(x_{\ell}\right), c_{3}\left(v_{2}\right)\right\}
$$

After finishing coloring vertices in $W_{1} \cup W_{2}$, we have completed the coloring of $V(G)$. By (17), (18), (19),(20), (21), (22), (23), and (24), c_{3} is an (L, r)-coloring of G.

Proof of Theorem 1.5. By Proposition 3.3, $G \in E X\left(K_{4}(6)\right) \cup\left[K_{4}(6), K_{6}\right]$ is a 2-connected graph, we have $\chi_{L, r}(G) \leq K(r)+1$. By Proposition 3.5, $G \in \mathcal{L}_{1} \cup \mathcal{L}_{2} \cup \mathcal{L}_{3}$ is a 2-connected graph, we have $\chi_{L, r}(G) \leq K(r)$. By Theorem 2.4, the validity of these Propositions completes the proof of Theorem 1.5.

References

[1] S. Akbari, M. Ghanbari, S. Jahanbekam, On the list dynamic coloring of graphs, Discrete Appl. Math. 157 (2009) $3005-3007$.
[2] K. Appel, W. Haken, Every planar map is four colorable, Part I: Discharging, Illinois J. Math. 21 (1977) 429-490.
[3] K. Appel, W. Haken, J. Koch, Every planar map is four colorable, Part II: Reducibility, Illinois J. Math. 21 (1977) 491-567.
[4] J.A. Bondy, U.S.R. Murty, Graph Theory, Springer, New York, 2008.
[5] R.L. Brooks, On colouring the nodes of a network, Proc. Cambridge Philos. Soc. 37 (1941) 194-197.
[6] Y. Chen, S.H. Fan, H.J. Lai, H.M. Song, L. Sun, On dynamic colorings of planar graphs and graphs of higher genus, Discrete Math. 160 (2012) 1064-1071.
[7] Y. Chen, S. Fan, H.-J. Lai, H. Song, M. Xu, Decomposition and r-hued coloring of $K_{4}(7)$-minor free graphs, Appl. Math. Comput. 384 (2020) 125206.
[8] Y. Chen, S. Fan, H.-J. Lai, M. Xu, Graph r-hued colorings - a survey, submitted for publication.
[9] T.J. Hetherington, D.R. Woodall, List-colouring the square of a K_{4}-minor-free graph, Discrete Math. 308 (2008) 4037-4043.
[10] S.-J. Kim, S.-J. Lee, W.-J. Park, Dynamic coloring and list dynamic coloring of planar graphs, Discrete Appl. Math. 161 (2013) $2207-2212$.
[11] H.-J. Lai, J. Lin, B. Montgomery, T. Shui, S. Fan, Conditional coloring of graphs, Discrete Math. 306 (2006) 1997-2004.
[12] H.-J. Lai, B. Montgomery, H. Poon, Upper bounds of dynamic chromatic number, Ars Combin. 68 (2003) 193-201.
[13] K.-W. Lih, W.-F. Wang, X. Zhu, Coloring the square of a K_{4}-minor free graph, Discrete Math. 269 (2003) 303-309.
[14] S. Loeb, T. Mahoney, B. Reiniger, J. Wise, Dynamic coloring parameters for graphs with given genus, Discrete Appl. Math. 235 (2018) 129-141.
[15] B. Montgomery, (Ph.D. dissertation), West Virginia University, 2001.
[16] N. Robertson, D. Sanders, P. Seymour, R. Thomas, The four-color theorem, J. Combin. Theory Ser. B 70 (1997) 2-44.
[17] H. Song, S. Fan, Y. Chen, L. Sun, H.J. Lai, On r-hued coloring of K_{4}-minor free graphs, Discrete Math. 315 (2014) 47-52.
[18] H. Song, H.-J. Lai, Upper bounds of r-hued colorings of planar graphs, Discrete Appl. Math. 243 (2018) 262-269.
[19] H.-M. Song, H.-J. Lai, J.-L. Wu, On r-hued coloring of planar graphs with girth at least 6, Discrete Appl. Math. 198 (2016) $251-263$.
[20] G. Wegner, Graphs with Given Diameter and a Coloring Problem, Technical Report, University of Dortmund, 1977.

[^0]: * Research supported by NSFC, China (Nos. 11961067, 12001465, 11771039, 11771443).
 * Corresponding author.

 E-mail address: xjulfx@163.com (F. Liu).

