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a b s t r a c t

For a given list assignment L of a graph G, an (L, r)-coloring of G is a proper coloring
c such that for any vertex v with degree d(v), v is adjacent to vertices of at least
min{d(v), r} different color with c(v) ∈ L(v). The r-hued list chromatic number of
G, denoted as χL,r (G), is the least integer k, such that for any v ∈ V (G) and every list
assignment L with |L(v)| = k, G has an (L, r)-coloring. Let K (r) = r + 3 if 2 ≤ r ≤ 3,
K (r) = ⌊3r/2⌋ + 1 if r ≥ 4. In Song et al. (2014), it is proved that if G is a K4-minor-
free graph, then χL,r (G) ≤ K (r) + 1. Let K4(n) be the set of all subdivisions of K4 on n
vertices. Utilizing the decompositions by Chen et al for K4(7)-minor free graphs in Chen
et al. (2020), we prove that if G is a K4(7)-minor free graph, then χL,r (G) ≤ K (r) + 1.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

All graphs considered in this paper are simple and finite. Undefined terminologies and notion are referred to [4]. As
n [4], V (G), E(G), ∆(G) and χ (G) denoted the vertex set, the edge set, the maximum degree and the chromatic number
f a graph G. For v ∈ V (G), let NG(v) denote the set of vertices adjacent to v in G, and dG(v) = |NG(v)|. A list of a graph G

is an assignment L : V (G) → 2N that assigns every v ∈ V (G) a list of colors L(v) available at v. If L is a list of G, and H is
vertex induced subgraph of G, then LH is a restriction of L to H . For an integer k ∈ N, a list L of a graph G is a k-list if

L(v)| = k for any v ∈ V (G). Let r be an integer, for a given assignment L : V (G) → 2N in a graph G, an (L, r)-coloring c is
a mapping c : V (G) → N satisfying the following conditions.

(C1) : c(u) ̸= c(v) for every edge uv ∈ E(G);
(C2) : |c(NG(v))| ≥ min{dG(v), r} for any v ∈ V (G);
(C3) : c(v) ∈ L(v), for every v ∈ V (G).
For a fixed integer r > 0, the r-hued list chromatic number of G, denoted by χL,r (G), is the smallest integer k, such that

for any v ∈ V (G) and every k-list L of G, G has an (L, r)-coloring. If for every v ∈ V (G), we have L(v) = {1, 2, 3, . . . , k}, then
an (L, r)-coloring of G is a (k, r)-coloring of G. Accordingly, the r-hued chromatic number of G, denoted by χr (G), is the
smallest integer k such that G has a (k, r)-coloring. In particular, when r = 1, it follows from definition that χ1(G) = χ (G),
the chromatic number of a graph G. Thus r-hued coloring and r-hued list coloring are generalization of the vertex coloring
of graphs.

The notion of r-hued coloring was first introduced in [12,15]. When r = 2, χ2(G) is often called the dynamic chromatic
number of G. In [5], Brooks proved a popular theorem on graph colorings states that a connected graph G satisfies
χ (G) ≤ ∆(G) + 1, where the equality holds if and only if G is an odd cycle or a complete graph. Earlier Brooks type
upper bounds for r-hued colorings can be found in [11,12,15], among others. Upper bounds of the r-hued list chromatic
number for generic graphs have also been studied.
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heorem 1.1. Let G be a connected graph.
(i) (Kim et al. [10]) If G is a planar graph, then χL,2(G) ≤ 5.
(ii) (Akbari et al. [1]) If G ̸= C5 and ∆(G) ≤ 3, then χL,2(G) ≤ 4.
(iii) (Akbari et al. [1]) If ∆(G) ≥ 4, then χL,2(G) ⩽ ∆(G) + 1.

It is natural to consider upper bounds of the r-hued chromatic number and the r-hued list chromatic number of a
lanar graph G. For any planar graph G, it is proved that χ2(G) ≤ 5 in [6] without using the 4-Color Theorem. Utilizing the
-Color Theorem [2,3,16], Kim et al. in [10] showed that 5-cycle is the only planar graph with 2-hued chromatic number
eing 5, which was conjectured in [6]. More recently, Loeb et al. in [14] proved that χ3(G) ≤ 10. In [18,19], Song et al.
roved that any planar graph G with girth at least 6 satisfies χr (G) ≤ r + 5 when r ≥ 3, and for all planar graph G with
≥ 8, χr (G) ≤ 2r + 16. For further literature on r-hued coloring and r-hued list coloring of planar graphs, see [8]. In
977, Wegner [20] posed the following conjecture.

onjecture 1.2 (Wegner. [20]). If G is a planar graph, then

χ∆(G)(G) ≤

{
∆(G) + 5, if 4 ≤ ∆(G) ≤ 7;
⌊3∆(G)/2⌋ + 1, if ∆(G) ≥ 8.

This conjecture remains open as of today. For a graph H , a graph G has an Hminor if H can be obtained from a subgraph
f G by contracting edges. A graph G is called H-minor free if G does not have H as a minor. For a given collection K of
raphs, define EX(K) = {G : G does not have a minor isomorphic to a member in K}, and let

K (r) =

{
r + 3, if 1 ≤ r ≤ 3;
⌊3r/2⌋ + 1, if r ≥ 4. (1)

here have been quite a few efforts made towards Conjecture 1.2. Among them are the following.

heorem 1.3. Let G ∈ EX(K4) be a graph and let r ≥ 2 be an integer. Then each of the following holds.
(i) (Lih et al. [13]) χ∆(G)(G) ≤ K (∆(G)).
(ii) (Hetherington and Woodall [9]) χL,∆(G) ≤ K (∆).
(iii) (Song et al. [17]) Both χr (G) ≤ K (r) and χL,r (G) ≤ K (r) + 1.

Let H be a graph. An edge e ∈ E(H) is said to be subdivided when it is deleted and replaced by a path of length
wo connecting its end vertices. A subdivision of H is a graph obtained from H by a (possibly empty) sequence of
dge subdivisions. If a graph contains subgraph J isomorphic to a subdivision of H , we call J an H-subdivision. Thus,
y definition, if ∆(H) ≤ 3, then G contains an H-minor if and only if G contains an H-subdivision. For an integer n ≥ 4,
efine K4(n) to be the collection of all non-isomorphic subdivisions of K4 on n vertices. Thus K4(4) = {K4} and there is
nly one graph in K4(5). When it is understood in the context, we sometimes use K4(4) and K4(5) to represent the only
ember in the corresponding collection.
By definition, for each n ≥ 4, we have

EX(K4) ⊆ · · · ⊆ EX(K4(n)) ⊆ EX(K4(n + 1)) ⊆ · · ·

nd for each fixed integer n ≥ 4, EX(K4(n)) contains all graphs with order less than n. Hence ∪
∞

n=4EX(K4(n)) contains all
raphs. Chen et al. in [7] initiated the study of upper bounds of χr (G) for graphs G ∈ EX(K4(7)) and prove the following
heorem.

heorem 1.4 (Chen et al. Theorem 1.5 of [7]). Let G be a graph and r ≥ 2 be an integer. If G ∈ EX(K4(7)), and if G has no
lock isomorphic to K6, then χr (G) ≤ K (r).

Our current study is motivated by Theorems 1.3 and 1.4. We investigate the upper bound of χL,r (G) for K4(7)-minor
ree graphs G. The following is the main result obtained in this research.

heorem 1.5. Let G be a 2-connected graph and r ≥ 2 be an integer. If G ∈ EX(K4(7)), then χL,r (G) ≤ K (r) + 1.

. Preliminaries

For an integer n ∈ {5, 6, 7}, a number of results on the decompositions of K4(n)-minor free graphs have been developed
n [7]. We present the related definitions, and results here for a complete understanding of the article.

Throughout the rest of this paper, by H ⊆ G we mean that G contains a subgraph isomorphic to H , and when there is
o confusion arises, we also view that H is a subgraph of G. For a graph G and a collection F of subgraphs of G, we define

[F,G] = {H : for some F ∈ F, F ⊆ H ⊆ G}.

s in [4], Kn and Km,n denote the complete graph of order n and complete bipartite graph with partite set sizes m and n,
espectively. Throughout this paper, we take the convention to also use K or K to denote a specified copy of K or K ,
n m,n n m,n
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espectively. We follow [4] to define the union of graphs. Let G and G′ be two graphs. The union of G and G′, denoted by
G ∪ G′, has vertex set V (G) ∪ V (G′) and edge set E(G) ∪ E(G′).

Definition 2.1. Let k ≥ 1 be an integer, G, G′, H1, H2, . . . ,Hk be vertex disjoint simple graphs.
(O1) Suppose that u ∈ V (G) and u′

∈ V (G′). Define G ⊕1 G′ to be the simple graph obtained from G ∪ G′ by identifying
with u′ to form a new vertex, which is still denoted by u. We sometimes write G ⊕u G′ for G ⊕1 G′ to emphasize the
ertex u.
(O2) Suppose that u, v ∈ V (G) and u′, v′

∈ V (G′). Define G ⊕u,v G′ to be the simple graph obtained from G ∪ G′ by
dentifying u with u′ to form a new vertex (again denoted by u), and v with v′ to form a new vertex (again denoted by
), respectively. The vertices u, v are called the base vertices of G ⊕u,v G′. Thus if either uv ∈ E(G) or u′v′

∈ E(G′), then
he edge uv ∈ E(G ⊕u,v G′). If u, v are understood or not to be emphasized, we often use G ⊕2 G′ for G ⊕u,v G′.

(O3) For each j with 1 ≤ j ≤ k, assuming that G⊕2 (∪
j
i=1Hi) is obtained, we define G⊕2 (∪

j+1
i=1Hi) = (G⊕2 (∪

j
i=1Hi))⊕2Hj+1

n such a way that the base vertices of G ⊕2 (∪j+1
i=1Hi) are in V (G), and for each Hi, the base vertices may be different.

We often also take the convention to assume that in (O1), V (G) ∩ V (G′) = {u}, and in (O2), V (G) ∩ V (G′) = {u, v}. For
an integer j ≥ 1, define Dj(G) = {v ∈ V (G) : dG(v) = j}. We now can use the operations in Definition 2.1 to define some
related constructions.

Definition 2.2. Let t ≥ 1 be an integer, and ki ≥ 0 be an integer for 1 ≤ i ≤ t .
(i) Let K2,t be a complete bipartite graph with w1, w2 being the two nonadjacent vertices in K2,t of degree t , and

(K2,t ) − {w1, w2} = {u1, u2, . . . , ut}. Hence if t ̸= 2, then D2(K2,t ) = {u1, u2, . . . , ut}. The vertices w1, w2 are called the
pecial vertices of K2,t . Define K ′

2,t to be the graph obtained by adding a matching u1u2, u3u4, . . . , ut−2ut−1 if t is odd,
1u2, u3u4, . . . , ut−1ut if t is even, among the non special vertices in V (K2,t ) − {w1, w2}. The special vertices of K ′

2,t are
he special vertices of the related K2,t .

(ii) Let T = (k1, k2, . . . , kt ) be a t-tuple of non-negative integers. Let J, J1, . . . , Jt be graphs such that J ∼= K2,t with special
ertices w1 and w2, and for 1 ≤ i ≤ t , Ji ∼= K2,ki . Define SK2,t,T to be the family of graphs each of which is isomorphic
o J ⊕2 (∪t

i=1Ji) in such a way that the special vertices of SK2,t,T are special vertices of J , for each j with 1 ≤ j ≤ t , the
ase vertices xj, yj in J ⊕2 (∪j

i=1Ji) are special vertices of each Jj, and ej = xjyj is an edge ej ∈ E(J) such that all the edges
1, e2, . . . , et are mutually distinct and such that for distinct i and j, any vertex incident with both ei and ej must be in
w1, w2}.

As in Definition 2.2(ii), each ej = xjyj can be any one of the two edges in a path joining the two special vertices of
∼= K2,t , SK2,t,T in general contains more than one graph. For notational convention, we often also use SK2,t,T to denote a
ypical number of the family.

Let t denoted a positive integer, K2,t be given with v1, v2 being the special vertices of K2,t , and K4 be given with
(K4) = {v1, v2, v3, v4} such that V (K4) ∩ V (K2,t ) = {v1, v2}. Define

L = ∪t≥1{K4 ⊕v1v2 K2,t − v1v2, K4 ⊕v1v2 K2,t}. (2)

hus by definition, K4 ⊕v1v2 K2,1 − v1v2 is the only graph in K4(5).

efinition 2.3. Let n, t1, t2, t3 be non-negative integers with n ≥ 4, T = (k1, k2, . . . , kt3 ) be a t3-tuple of positive integers.
n the definitions below, we always assume that F1 ∼= K2,t1 , F2 ∼= K ′

2,t1
, and F3 ∼= SK2,t3,T are graphs with the special vertices

of F1, F2, F3 being {v1, v2}. Let F ′

1
∼= K2,t2 be a graph with special vertices {v3, vl} with l ∈ {1, 4}, and any graph Kn here

with V (Kn) = {v1, v2, . . . , vn}.
(i) Define L1 := L1(t1, t2) = K4 ⊕v1,v2 F1 ⊕v3,vl F

′

1, N1 := N1(t1, t2) = L1(t1, t2) − {v1v2, v3vl}, and L1 = {G ∈ [N1, L1] :

V (G)| ≥ 6}.
(ii) Define L2 := L2(t1, t3, T ) = K4 ⊕v1,v2 F2 ⊕v1,v2 F3, where T = (k1, k2, . . . , kt3 ) is a t3-tuple with k1 ≥ k2 ≥ · · · ≥

t3 ≥ 0, N2 := N2(t1, t3, T ) = K4 ⊕v1,v2 F1 ⊕v1,v2 F3 − {v1v2} − ∪
t3
i=1ei, where the ei’s defined in Definition 2.2. Define

L2 = {G ∈ [N2, L2] : |V (G)| ≥ 6}.
(iii) Define L3 := L3(t1) = K5 ⊕v1,v2 F1, N3 := N3(t1) = L3 − {v1v2, v1v3, v2v5}, and L3 = {G ∈ [N3, L3] : |V (G)| ≥ 6}.

Theorem 2.4 (Chen et al. [7]). Let G be a 2-connected simple graph. Then each of the following holds.
(i) G ∈ EX(K4(5)) if and only if G ∈ {K4} ∪ EX(K4).
(ii) G ∈ EX(K4(6)) if and only if G ∈ EX(K4(5)) ∪ L ∪ [K4(5), K5].
(iii) G ∈ EX(K4(7)) if and only if G ∈ EX(K4(6)) ∪ L1 ∪ L2 ∪ L3 ∪ [K4(6), K6].

3. Proof of Theorem 1.3

Throughout this section, let r be an integer with r ≥ 2. Recall that K (r) is defined in (1). Next, we shall show that if
∈ EX(K4(7)) and be a 2-connected graph, then for any r ≥ 2, χL,r (G) ≤ K (r)+ 1. In the argument below, we often adopt

he notation in Definitions 2.1–2.3 for convenience.
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emma 3.1. Let s ≤ r − 2 be an integer and let L1, L2, . . . , Ls be list of color such that each i with 1 ≤ i ≤ s, |Li| ≥ r − 2.
hen there exists an injective mapping φ : {1, 2, . . . , s} → ∪

s
i=1Li such that each j with 1 ≤ j ≤ s, φ(j) ∈ Lj.

roof. Let G[L, C] be a bipartite graph with bipartition L = {L1, L2, . . . , Ls} and C = ∪
s
i=1Li = {c1, c2, . . . , ct}. Thus

≥ |L1| ≥ r − 2 ≥ s. Define an edge (Li, cj) in G if and only if cj ∈ Li. We need to show that G has a matching
covering all vertices in L. For any nonempty subset S ⊆ L, without loss of generality, we assume that Li ⊆ S, then
|N(S)| ≥ |Li| ≥ r − 2 ≥ s = |L| ≥ |S|, and so by Hall’s Theorem (see Theorem 16.4 of [4]), G[L, C] contains a matching
overing all vertices in L. This completes the proof of Lemma 3.1. □

emma 3.2. Let v1, v2 be the special vertices of K2,t with t > 0. For each graph G given below, let L be an (r + 3)-list of G.
hen each of the following holds.
(i) Let G = K4 ⊕v1,v2 K2,t − v1v2. There is an (L, r)-coloring of G.
(ii) Let G = K4 ⊕v1,v2 F2. There is an (L, r)-coloring of G.
(iii) Let G = K5 ⊕v1,v2 K2,t . There is an (L, r)-coloring of G.

roof. As (i), (ii) and (iii) can be proved in a similar way, we only prove (i). Let {v1, v2, v3, v4} denote the vertices of the
4 as in Definition 2.3, and let D2(G) = {u1, u2, . . . , ut}. For r = 2, we define c : V (G) → N in the following steps. As L
s a 5-list, for i ∈ {1, 2, 3, 4}, we assign c(vi) ∈ L(vi) such that c(v1), c(v2), c(v3) and c(v4) are distinct colors. To color the
ertices {u1, u2, . . . , ut}, for each u ∈ D2(G) choose c(u) ∈ L(u)− c(NG(u)). Since |L(u)| = 5, and |c(NG(u))| ≤ 2, such a c(u)
an always be found. By definition, the coloring c defined above is an (L, 2)-coloring of G.
Suppose that r ≥ 3. We construct a coloring c : V (G) → N as following. If t ≤ r − 2, by Lemma 3.1, an (L, r)-coloring

: V (G) → N of G exists. We assume that t ≥ r − 1. Applying Lemma 3.1 to G − {ur−1, . . . , ut}, G − {ur−1, . . . , ut} has
n (LG−{ur−1,...,ut }, r)-coloring c . For each i with r − 1 ≤ i ≤ t , as |L(ui)| = r + 3 and |c(NG(ui))| ≤ 2. We can always define
(ui) ∈ L(ui)−c(NG(ui)). Thus, the extended c is a proper coloring. Since G−{ur−1, . . . , ut} has an (LG−{ur−1,...,ut }, r)-coloring
, and the choice of c(ui) for r − 1 ≤ i ≤ t , the extended c is an (L, r)-coloring of G. □

roposition 3.3. Let r ≥ 2 be an integer and let G be a 2-connected graph. Each of the following holds.
(i) If G ∈ EX(K4(6)), then χL,r (G) ≤ K (r) + 1.
(ii) If G ∈ [K4(6), K6], then χL,r (G) ≤ K (r) + 1.

roof. By Theorem 2.4, EX(K4(5)) = {K4} ∪ EX(K4). By Theorem 1.3, χL,r (K4) = 4 ≤ K (r) + 1. It follows that for any
∈ EX(K4(5)), χL,r (G) ≤ K (r) + 1. By Theorem 2.4, EX(K4(6)) − EX(K4(5)) ⊆ L ∪ [K4(5), K5], where L is defined in (2).

ince for any r ≥ 2, K (r) ≥ 5, to prove (i), it suffices to show that χL,r (G) ≤ K (r) + 1 for any G ∈ L with |V (G)| ≥ 6.
Let G ∈ L be a graph with |V (G)| ≥ 6. By (2), there exists an integer s such that G ∈ {K4⊕v1,v2 K2,s−v1v2, K4⊕v1,v2 K2,s}.

2(G) = {u1, u2, . . . , us}. Let L be an (r + 3)-list of G. By Lemma 3.2(i), the graph G has an (L, r)-coloring c : V (G) → N,
nd so χL,r (G) ≤ r + 3 ≤ K (r) + 1. This proves Proposition 3.3(i).
To justify (ii), we observe that for any G ∈ [K4(6), K6], χL,r (G) ≤ |V (G)| = 6 ≤ K (r) + 1. This completes the proof of

he proposition. □

By Theorem 2.4, EX(K4(7)) − (EX(K4(6)) ∪ [K4(6), K6]) ⊆ L1 ∪ L2 ∪ L3. Thus by Proposition 3.3, it suffices to assume
hat G ∈ L1 ∪ L2 ∪ L3 to prove that χL,r (G) ≤ K (r) + 1.

emma 3.4. Let t1, t2 be non-negative integers. If G = K4 ⊕2 K2,t1 ⊕2 K2,t2 , then χL,r (G) ≤ r + 3.

roof. It suffices to show that for any (r + 3)-list L of G, we can always find an (L, r)-coloring of G. Let {v1, v2, v3, v4}

enote the vertices of the K4 as in Definition 2.3. We may assume that G = K4 ⊕v1,v2 K2,t1 ⊕v3,v1 K2,t2 with v1 and v2 being
he special vertices of K2,t1 , and with v1 and v3 being the special vertices of K2,t2 . Thus by definition, v1, v2 ∈ NG(v3).
enoted D2(K2,t1 ) = {u1, u2, . . . , ut1} and D2(K2,t2 ) = {ut1+1, ut1+2, . . . , ut1+t2}.
Since L is an (r+3)-list of G, for any v ∈ V (G), |L(v)| = r+3. Let G′

= G−{ut1+1, ut1+2, . . . , ut1+t2}. Then by Lemma 3.2(i),
here exists a coloring c ′

: V (G′) → N such that c ′ is an (LG′ , r)-coloring of G′. Let

C(v3) = c ′(NG′ (v3)), d = |C(v3)|. (3)

ince dG′ (v3) = 3 and since c ′ is an (LG′ , r)-coloring, we have d ≥ min{r, 3}. To extend c ′ to an (L, r)-coloring c of G, for
ach vertex z ∈ V (G′), we set c(z) = c ′(z). Then we need to color the vertices in {ut1+1, ut1+2, . . . , ut1+t2} so that c satisfies
C1), (C2) and (C3).

ase 1. t1 ≥ r − 1. Then as v1 and v2 are the special vertices of K2,t1 and as t1 ≥ r − 1, we have |c ′(NG(v1))| ≥ r and
c ′(NG(v2))| ≥ r . By (3), if d ≥ r , then we also have |c ′(NG(v3))| ≥ r , and so we can pick a color subset C ′

⊆ C(v3) with
C ′

| = r . Since L is an (r + 3)-list of G, we have |L(ut1+i) − (C ′
∪ {c ′(v1), c ′(v3)})| ≥ (r + 3) − (r + 2) > 0. Hence for each i

ith 1 ≤ i ≤ t2, it is possible to choose
′ ′ ′
c(ut1+i) ∈ L(ut1+i) − (C ∪ {c (v1), c (v3)}). (4)
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t follows by (4) and min{|c ′(NG(v1))|, |c ′(NG(v2))|, |c ′(NG(v3))|} ≥ r that c is an (L, r)-coloring of G. Therefore, we may
ssume that d < r . As L is an (r + 3)-list, for any i with 1 ≤ i ≤ t2,

|L(ut1+i) − (C(v3) ∪ {c ′(v3)})| ≥ (r + 3) − (d + 1) > 0.

e define c(ut1+1) by choosing c(ut1+1) ∈ L(ut1+1) − (C(v3) ∪ {c ′(v3)}). Assume that inductively, we have defined c(ut1+i)
ith 1 ≤ i ≤ s for some s < min{r − d, t2} in such a way that

c(ut1+i) ∈ L(ut1+i) − (C(v3) ∪ {c ′(v3)} ∪ {c(ut1+j) : 1 ≤ j ≤ i − 1}). (5)

hen as L is an (r + 3)-list, we have

|L(ut1+s+1) − (C(v3) ∪ {c ′(v3)} ∪ {c(ut1+i) : 1 ≤ i ≤ s})| ≥ (r + 3) − (d + s + 1) > 0,

nd so it is possible to define c(ut1+s+1) by choosing

c(ut1+s+1) ∈ L(ut1+s+1) − (C(v3) ∪ {c ′(v3)} ∪ {c(ut1+i) : 1 ≤ i ≤ s}).

hus after we have colored all vertices in {ut1+i : 1 ≤ i ≤ min{r −d, t2}}, then (5) hold for all i with 1 ≤ i ≤ min{r −d, t2}.
e conclude by (5) that there are min{r, dG(v3)} differently colored vertices in NG(v3). If t2 ≤ r − d, then the mapping c

s already an (L, r)-coloring of G.
Assume that t2 > r − d. For i with r − d < i ≤ t2, set c(ut1+i) ∈ L(ut1+i) − {c ′(v1), c ′(v3)}. By (5), the extended

oloring c satisfies (C1), (C2) and (C3) as |c(NG(v3))| ≥ min{dG(v3), r} and for each u ∈ {ut1+1, ut1+2, . . . , ut1+t2},
c(NG(u))| = dG(u) = 2. Thus in Case 1, c ′ can be extended to c , which is an (L, r)-coloring of G.

ase 2. t1 < r − 1. Then as c ′ is an (LG′ , r)-coloring of G′ and t1 < r − 1. We have |c ′(NG(v2))| ≥ min{dG(v2), r}. Let

M(v1) = c ′(NG′ (v1)) and m = |M(v1)|.

f m ≥ r , then we also have |c ′(NG(v1))| ≥ r , and so we can color each vertex u ∈ {ut1+1, ut1+2, . . . , ut1+t2} the same way
hat we did in Case 1. Therefore, we may assume that m < r . As L is an (r + 3)-list, for any i with 1 ≤ i ≤ t2,

|L(ut1+i) − (M(v1) ∪ {c ′(v1)})| ≥ (r + 3) − (m + 1) > 0.

e define c(ut1+1) by choosing c(ut1+1) ∈ L(ut1+1)− (M(v1)∪ {c ′(v1)}). Assume that inductively, we have defined c(ut1+i)
ith 1 ≤ i ≤ h for some h < min{r − m, t2} in such a way that

c(ut1+i) ∈ L(ut1+i) − (M(v1) ∪ {c ′(v1)} ∪ {c(ut1+j) : 1 ≤ j ≤ i − 1}). (6)

hen as L is an (r + 3)-list, we have

|L(ut1+h+1) − (M(v1) ∪ {c ′(v1)} ∪ {c(ut1+i) : 1 ≤ i ≤ h})| ≥ (r + 3) − (m + h + 1) > 0,

nd so it is possible to define c(ut1+h+1) by choosing

c(ut1+h+1) ∈ L(ut1+h+1) − (M(v1) ∪ {c ′(v1)} ∪ {c(ut1+i) : 1 ≤ i ≤ h}).

hus after we have colored all vertices in {ut1+i : 1 ≤ i ≤ min{r − m, t2}}, then for any i with 1 ≤ i ≤ min{r − m, t2} (6)
olds. We conclude by (6) that there are min{r, dG(v1)} differently colored vertices in NG(v1). If t2 ≤ r − m, then the
apping c is already an (L, r)-coloring of G.
Assume that t2 > r − m. We have defined c(ut1+j) with 1 ≤ j ≤ i − 1 and r − m < i ≤ s for some s < min{r − d, t2},

hen as L is an (r + 3)-list, we have

|L(ut1+i) − (C(v3) ∪ {c ′(v3)} ∪ {c(ut1+j) : 1 ≤ j ≤ i − 1})| ≥ (r + 3) − (d + 1 + s − r + m) > 0,

nd so it is possible to define c(ut1+i) by choosing

c(ut1+i) ∈ L(ut1+i) − (C(v3) ∪ {c ′(v3)} ∪ {c(ut1+j) : 1 ≤ j ≤ i − 1}). (7)

hus after we have colored all vertices in {ut1+i : r − m < i ≤ min{r − d, t2}}, we conclude by (7) that there are
in{r, dG(v3)} differently colored vertices in NG(v3). If t2 ≤ r − d, then the mapping c is already an (L, r)-coloring of G.
Assume that t2 > r − d. For i with r − d < i ≤ t2, set c(ut1+i) ∈ L(ut1+i) − {c ′(v1), c ′(v3)}. By (6) and (7), the

xtended coloring c satisfies (C1), (C2) and (C3) as |c(NG(v1))| ≥ min{dG(v1), r}, |c(NG(v3))| ≥ min{dG(v3), r} and for each
∈ {ut1+1, ut1+2, . . . , ut1+t2}, |c(NG(u))| = dG(u) = 2. Thus in Case 2, c ′ can be extended to c , which is an (L, r)-coloring
f G.
Similarly, if G = K4 ⊕v1,v2 K2,t1 ⊕v3,v4 K2,t2 with v1 and v2 being the special vertices of K2,t1 , and with v3 and v4 being

he special vertices of K2,t2 . We also have χL,r (G) ≤ r + 3. □

roposition 3.5. Let r ≥ 2 be an integer and G ∈ L1 ∪ L2 ∪ L3 be a 2-connected graph. Then χL,r (G) ≤ K (r).

roof. We continue adopting the notation in Definition 2.3 in the arguments. Thus for some n ∈ {4, 5}, the construction
f G involves a complete graph K on n vertices. As in Definition 2.3, we let V (K ) = {v , v , . . . , v }.
1 2 n
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laim 1. If G ∈ L1, then χL,r (G) ≤ r + 3 ≤ K (r).

As G ∈ L1, K = K4. By Definition 2.3, there exist non-negative integers t1 and t2 such that G is spanned by N1(t1, t2)
ith possibly v1v2, v3vl ∈ E(G). Denote D2(F1) = {u1, u2, . . . , ut1} and D2(F ′

1) = {ut1+1, ut1+2, . . . , ut1+t2}. Let L be an
r + 3)-list of G. By Lemma 3.4, there exists a coloring c1 : V (G) → N is an (L, r)-coloring of G, independent of whether
he edge v1v2, v3vl are in E(G) or not. Thus χL,r (G) ≤ r + 3 ≤ K (r).

laim 2. If G ∈ L3, then χL,r (G) ≤ r + 3 ≤ K (r).

As G ∈ L3, K = K5. By Definition 2.3, for an integer t1 ≥ 1, G is a spanning subgraph of L3 := L3(t1) = K5 ⊕v1,v2 F1
here F1 = K2,t1 . Let D2(F ) = {u1, u2, . . . , ut1}. Let L be an (r + 3)-list of G. By Lemma 3.2(iii), there exists a coloring

2 : V (G) → N is an (L, r)-coloring of G, Thus χL,r (G) ≤ r + 3 ≤ K (r).

laim 3. If G ∈ L2, then χL,r (G) ≤ r + 3 ≤ K (r).

As G ∈ L2, K = K4. By Definition 2.3, every graph in L2 is a planar graph. Thus by Theorem 1.1, if G ∈ L2, then
L,2(G) ≤ 5 = K (2). Therefore, we assume that r ≥ 3 and |V (G)| ≥ K (3) + 1 = 7, and continue using the notation in
efinition 2.3. Let N2 := N2(t1, t3, T ) = K4 ⊕v1,v2 F1 ⊕v1,v2 F3 −{v1v2}−∪

t3
i=1ei, and L2 := L2(t1, t3, T ) = K4 ⊕v1,v2 F2 ⊕v1,v2 F3

ith t1 ≥ 0 and t3 ≥ 0, where T = (k1, k2, . . . , kt3 ) with k1 ≥ k2 ≥ · · · ≥ kt3 ≥ 0. Let G ∈ [N2, L2]. As in Definition 2.3 we
ave F1 ∼= K2,t1 , F2 ∼= K ′

2,t1
, and F3 ∼= SK2,t3,T . For each j ∈ {1, 2, . . . , t3}, let xj, yj denote the special vertices of Jj ∼= K2,kj

n Definition 2.2(ii) with x1 = x2 = · · · = xf = v1, yf+1 = yf+2 = · · · = yt3 = v2, and D2(Jj) = {w
j
1, w

j
2, . . . , w

j
kj
}. As

∈ [N2, L2], v1v2 may or may not be in E(G). By Definition 2.3(ii), we may view F1 as a spanning subgraph of F2, and so
ome of the edges in E(F2) − E(F1) may not be in G as well. Denote V (K ) = {v1, v2, v3, v4} and V (F ′

1) = {u1, u2, . . . , ut1},
uch that for some t ′1 ≥ 0 with 2t ′1 ≤ t1, we have {u2i−1u2i : 1 ≤ i ≤ t ′1} ⊆ E(G), and such that 2t ′1 + 1 ≤ j ≤ t1,
u2t ′+1, . . . , ut1} is an independent set.

Let L be an (r + 3)-list of G. We shall construct an (L, r)-coloring c3 : V (G) → N of G in the following steps. Before the
oloring, we let

W1 = w1
1, w

1
2, . . . , w

1
k1 , w

2
1, w

2
2, . . . , w

2
k2 , . . . , w

f
1, w

f
2, . . . , w

f
kf

,

W2 = w
f+1
1 , w

f+1
2 , . . . , w

f+1
kf+1

, w
f+2
1 , w

f+2
2 , . . . , w

f+2
kf+2

, . . . , w
t3
1 , w

t3
2 , . . . , w

t3
kt3

. (8)

e two sequences of vertices of G.

tep 1. Let G1 = G[V (K ) ∪ V (F ′

1)], and L1 = L|V (G1) be the restriction of L to V (G1). (See Fig. 1, where G1 is spanned by a
ubgraph in the graph depicted in Fig. 1.) Since L is an (r + 3)-list with r ≥ 2, the vertices in V (K ) can be so colored that
3(vi) ∈ L(vi) with |c3(V (K ))| = 4. Thus |c3(NG(vi))| ≥ 2, for any vi ∈ V (K ). As r ≥ 2 and L is an (r + 3)-list of G, we have
L(ui) − c3(V (K ))| = r − 1 > 0, and so the color c3(u1) ∈ L(u1) − c3(V (K )) can be chosen.

Let N0 = min{r − 2, t1}. Color c3(u1) ∈ L(u1) − c3(V (K )). For each i = 2, 3, . . . ,N0, set

c3(ui) ∈ L(ui) − ({c3(v1), c3(v2)} ∪ {c3(uj) : 1 ≤ j ≤ i − 1}). (9)

f t1 ≤ r − 2, then the coloring of this step is done. If t1 > r − 2, then for any i = N0 + 1, . . . , t1, set

c3(ui) ∈ L(ui) − {c3(v1), c3(v2), c3(ui−1)}. (10)

y (9) and (10), c3 is an (L1, r)-coloring of G1.

tep 2. In Step 2, we are to color the vertices in {y1, y2, . . . , yf } ∪ {xf+1, xf+2, . . . , xt3}. By Definition 2.3, there exists an
ndex f ′ with 0 ≤ f ′

≤ f such that for all i with 1 ≤ i ≤ f ′, v1yi ∈ E(G), and for any j with f ′
+ 1 ≤ j ≤ f , v1yj /∈ E(G).

hus if f ′
= 0, then for any j with 1 ≤ j ≤ f , v1yj /∈ E(G). Similarly, there exists an index f ′′ with 0 ≤ f ′′

≤ t3 − f such
hat for all i with 1 ≤ i ≤ f ′′, v2xf+i ∈ E(G), and for any j with f ′′

+ 1 ≤ j ≤ t3, v2xf+j /∈ E(G). Thus if f ′′
= 0, then for any

with 1 ≤ j ≤ t3 − f , v2xf+j /∈ E(G).
We shall use the following notation in the arguments throughout the rest of the proof. For all i with 0 ≤ i ≤ f ′

whence v1yi ∈ E(G)), let ut1+i = yi; and for all j with 0 ≤ j ≤ f ′′ (whence v2xf+j ∈ E(G)), let ut1+f ′+j = xf+j. Define
′

2 = G[V (G1) ∪ {ut1+1, ut1+2, . . . , ut1+f ′+f ′′}], and L′

2 = L|V (G′
2)

be the restriction of L to V (G′

2). (See Fig. 1, where G′

2 is
panned by a subgraph in the graph depicted in Fig. 1.)
Let C1 = c3(NG1 (v2) − {v1}) = c3(NG1 (v1) − {v2}), d1 = |C1|, and define

N1 =

{
0 if d1 ≥ r ,
min{r − d1, f ′

+ f ′′
} if d1 < r .

uppose first that N1 = 0 and so d1 ≥ r . Then each of v1 and v2 has already r differently colored neighbors. In this case,
or each i with 1 ≤ i ≤ f ′

+ f ′′, we choose

c (u ) ∈ L(u ) − {c (v ), c (v )}.
3 t1+i t1+i 3 1 3 2
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Fig. 1. Graph G, where G1 = G − (W1 ∪ W2 ∪ {y1, y2, . . . , yf } ∪ {xf+1, xf+2, . . . , xt3 }).

Assume that N1 > 0. As L is an (r + 3)-list of G, we have |L(ut1+1) − C1 − {c3(v1), c3(v2)}| = r + 3 − d1 > 0, and so the
color c3(ut1+1) ∈ L(ut1+1) − C1 − {c3(v1), c3(v2)} can be chosen. For each i = 2, 3, . . . ,N1, set

c3(ut1+i) ∈ L(ut1+i) − (C1 ∪ {c3(ut1+j) : 1 ≤ j ≤ i − 1}) − {c3(v1), c3(v2)}. (11)

If f ′
+ f ′′ > r − d1, then for any i = N1 + 1, . . . , f ′

+ f ′′, set

c3(ut1+i) ∈ L(ut1+i) − {c3(v1), c3(v2)}. (12)

By (11) and (12), c3 is an (L′

2, r)-coloring of G′

2.
Let G2 = G[V (G′

2) ∪ {yf ′+1, yf ′+2, . . . , yf } ∪ {xf+f ′′+1, xf+f ′′+2, . . . , xt3}], and L2 = L|V (G2) be the restriction of L to V (G2).
(See Fig. 1, where G2 is spanned by a subgraph in the graph depicted in Fig. 1.)

Let C2 = c3(NG′
2
(v2) − {v1}), d2 = |C2|, and define

N2 =

{
0 if d2 ≥ r ,
min{r − d2, f − f ′

} if d2 < r .

Suppose first that N2 = 0 and so d2 ≥ r . Then each of v1 and v2 has already r differently colored neighbors. In this case,
for each i with f ′

+ 1 ≤ i ≤ f , we choose

c3(yi) ∈ L(yi) − {c3(v1), c3(v2)}.

Assume that N2 > 0. As L is an (r + 3)-list of G, we have |L(yf ′+1) − C2 − {c3(v1), c3(v2)}| = r + 3 − d2 > 0, and so the
color c3(yf ′+1) ∈ L(yf ′+1) − C2 − {c3(v1), c3(v2)} can be chosen. For each i = 2, 3, . . . ,N2, set

c3(yf ′+i) ∈ L(yf ′+i) − (C2 ∪ {c3(yf ′+j) : 1 ≤ j ≤ i − 1}) − {c3(v1), c3(v2)}. (13)

If f − f ′ > r − d2, then for any i = N2 + 1, . . . , f − f ′, set

c3(yf ′+i) ∈ L(yf ′+i) − {c3(v1), c3(v2)}. (14)

Let C ′

2 = c3(NG′
2
(v1) − {v2}), d′

2 = |C ′

2|, and define

N ′

2 =

{
0 if d′

2 ≥ r ,
min{r − d′

2, t3 − (f + f ′′)} if d′

2 < r .

Suppose first that N ′

2 = 0 and so d′

2 ≥ r . Then each of v1 and v2 has already r differently colored neighbors. In this case,
for each j with f + f ′′

+ 1 ≤ j ≤ t3, we choose

c3(xj) ∈ L(xj) − {c3(v1), c3(v2)}.

Assume that N ′

2 > 0. As L is an (r + 3)-list of G, we have |L(xf+f ′′+1) − C ′

2 − {c3(v1), c3(v2)}| = r + 3 − d′

2 > 0, and so the
color c3(xf+f ′′+1) ∈ L(xf+f ′′+1) − C ′

2 − {c3(v1), c3(v2)} can be chosen. For each i = 2, 3, . . . ,N ′

2, set

c3(xf+f ′′+i) ∈ L(xf+f ′′+i) − (C ′

2 ∪ {c3(xf+f ′′+j) : 1 ≤ j ≤ i − 1}) − {c3(v1), c3(v2)}. (15)

If t3 − (f + f ′′) > r − d2, then for any i = N ′

2 + 1, . . . , t3 − (f + f ′′), set

c3(xf+f ′′+i) ∈ L(xf+f ′′+i) − {c3(v1), c3(v2)}. (16)

After finishing coloring vertices in {yf ′+1, yf ′+2, . . . , yf } ∪ {xf+f ′′+1, xf+f ′′+2, . . . , xt3}, we have completed the coloring of
V (G2). By (13), (14), (15) and (16), c3 is an (L2, r)-coloring of G2.

Step 3. In Step 3, we are to color the vertices in W1 ∪ W2 using the notation in (8) for vertices in W1 and W2, and so
complete the coloring of V (G). We first color vertices in W .
1
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Let C3 = c3(NG2 (v1) − {v2}), d3 = |C3| and define

N3 =

{
0 if d3 ≥ r ,
min{r − d3, |W1|} if d3 < r .

uppose first that N3 = 0 and so d3 ≥ r . Then v1 has already r differently colored neighbors. In this case, for any ℓ with
≤ ℓ ≤ f , we have

|L(wℓ
1) − {c3(yℓ), c3(v1), c3(v2)}| ≥ r.

hus we can choose c3(wℓ
1) ∈ L(wℓ

1) − {c3(yℓ), c3(v1), c3(v2)}, and for any i with 2 ≤ i ≤ pℓ for some pℓ = min{r − 1, kℓ},
we can find a color c3(wℓ

i ) so that

c3(wℓ
i ) ∈ L(wℓ

i ) − ({c3(yℓ), c3(v1), c3(v2)} ∪ {c3(wℓ
t ) : 1 ≤ t ≤ i − 1}) (17)

f kℓ > r − 1, then for any i = pℓ + 1, . . . , kℓ, set

c3(wℓ
i ) ∈ L(wℓ

i ) − {c3(yℓ), c3(v1)}.

Assume that N3 = |W1| > 0. Then as L is an (r + 3)-list of G, we have |L(w1
1) − (C3 ∪ {c3(y1), c3(v1), c3(v2)})| =

+ 3 − (d3 + 3) > 0, and so the color c3(w1
1) ∈ L(w1

1) − (C3 ∪ {c3(y1), c3(v1), c3(v2)}) can be chosen. For any ℓ with
≤ ℓ ≤ f and i with 1 ≤ i ≤ kℓ,

c3(wℓ
i ) ∈ L(wℓ

i ) − (C3 ∪ {c3(yℓ), c3(v1), c3(v2)} ∪ {c3(ws
t ) : 1 ≤ t ≤ i − 1, 1 ≤ s ≤ ℓ}). (18)

ow we assume that N3 = r − d3. Then there exist r − d3 distinct vertices w1, w2, . . . , wr−d3 in W1. As L is an (r + 3)-list
f G, it is possible to set c3(w1) ∈ L(w1) − (C3 ∪ c3(NG(w1)) ∪ {c3(v2)}), and for any i with 1 ≤ i ≤ r − d3 − 1 we have

c3(wi+1) ∈ L(wi+1) − (C3 ∪ c3(NG(wi+1)) ∪ {c3(v2)} ∪ {c3(wj) : 1 ≤ j ≤ i}). (19)

hus after we have colored all vertices in {wi : 1 ≤ i ≤ r − d3}, then (18) hold for all such vertex. For other vertices in
ℓ
i ∈ W1 − {w1, w2, . . . , wr−d3} with 1 ≤ ℓ ≤ f , 1 ≤ i ≤ pℓ for some pℓ = min{r − 1, kℓ}, set

c3(wℓ
i ) ∈ L(wℓ

i ) − ({c3(yℓ), c3(v1), c3(v2)} ∪ {c3(wℓ
t ) : 1 ≤ t ≤ i − 1}

∪ {c3(wq) : 1 ≤ q ≤ r − d3, wq ∈ NG(yℓ)}). (20)

f kℓ > r − 1, then for any i = pℓ + 1, . . . , kℓ, set

c3(wℓ
i ) ∈ L(wℓ

i ) − {c3(yℓ), c3(v1)}.

e then extend c2 to color vertices in W2 using similar strategy. Let C ′

3 = c3(NG2 (v2) − {v1}), d′

3 = |C ′

3| and define

N ′

3 =

{
0 if d′

3 ≥ r ,
min{r − d′

3, |W2|} if d′

3 < r .

uppose first that N ′

3 = 0 and so d′

3 ≥ r . Then v2 has already r differently colored neighbors. In this case, for any ℓ with
+ 1 ≤ ℓ ≤ t3, we have

|L(wℓ
1) − {c3(xℓ), c3(v1), c3(v2)}| ≥ r.

hus we can choose c3(wℓ
1) ∈ L(wℓ

1) − {c3(xℓ), c3(v1), c3(v2)}, and for any i with 2 ≤ i ≤ qℓ for some qℓ = min{r − 1, kℓ},
e can find a color c3(wℓ

i ) so that

c3(wℓ
i ) ∈ L(wℓ

i ) − ({c3(xℓ), c3(v1), c3(v2)} ∪ {c3(wℓ
t ) : 1 ≤ t ≤ i − 1}) (21)

f kℓ > r − 1, then for any i = qℓ + 1, . . . , kℓ, set

c3(wℓ
i ) ∈ L(wℓ

i ) − {c3(xℓ), c3(v2)}.

ssume that N ′

3 = |W2| > 0. Then as L is an (r + 3)-list of G, we have |L(wf+1
1 ) − (C ′

3 ∪ {c3(xf+1), c3(v1), c3(v2)})| =

+ 3 − (d′

3 + 3) > 0, and so the color c3(w
f+1
1 ) ∈ L(wf+1

1 ) − (C ′

3 ∪ {c3(xf+1), c3(v1), c3(v2)}) can be chosen. For any ℓ with
f + 1 ≤ ℓ ≤ t3 and i with 1 ≤ i ≤ kℓ,

c3(wℓ
i ) ∈ L(wℓ

i ) − (C ′

3 ∪ {c3(xℓ), c3(v1), c3(v2)} ∪ {c3(ws
t ) : 1 ≤ t ≤ i − 1, f + 1 ≤ s ≤ ℓ}). (22)

ow assume that N ′

3 = r − d′

3. Then there exist r − d′

3 distinct vertices w′

1, w
′

2, . . . , w
′

r−d′
3
in W2, As L is an (r + 3)-list of

, it is possible to set c3(w′

1) ∈ L(w′

1) − (C ′

3 ∪ c3(NG(w′

1)) ∪ {c3(v1)}), and for any i with 1 ≤ i ≤ r − d′

3 − 1 we have

c (w′ ) ∈ L(w′ ) − (C ′
∪ c (N (w′ )) ∪ {c (v )} ∪ {c (w′) : 1 ≤ j ≤ i}). (23)
3 i+1 i+1 3 3 G i+1 3 1 3 j
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T
w

I

B
P

R

hus after we have colored all vertices in {w′

i : 1 ≤ i ≤ r − d′

3}, then (22) hold for all such vertex. For other vertices in
ℓ
i ∈ W2 − {w′

1, w
′

2, . . . , w
′

r−d′
3
} with f + 1 ≤ ℓ ≤ t3, 1 ≤ i ≤ qℓ for some qℓ = min{r − 1, kℓ}, set

c3(wℓ
i ) ∈ L(wℓ

i ) − ({c3(xℓ), c3(v1), c3(v2)} ∪ {c3(wℓ
t ) : 1 ≤ t ≤ i − 1}

∪ {c3(wq) : 1 ≤ q ≤ r − d′

3, wq ∈ NG(xℓ)}). (24)

f kℓ > r − 1, then for any i = qℓ + 1, . . . , kℓ, set

c3(wℓ
i ) ∈ L(wℓ

i ) − {c3(xℓ), c3(v2)}.

After finishing coloring vertices in W1 ∪W2, we have completed the coloring of V (G). By (17), (18), (19),(20), (21), (22),
(23), and (24), c3 is an (L, r)-coloring of G. □

Proof of Theorem 1.5. By Proposition 3.3, G ∈ EX(K4(6))∪[K4(6), K6] is a 2-connected graph, we have χL,r (G) ≤ K (r)+1.
y Proposition 3.5, G ∈ L1 ∪L2 ∪L3 is a 2-connected graph, we have χL,r (G) ≤ K (r). By Theorem 2.4, the validity of these
ropositions completes the proof of Theorem 1.5.
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