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1. Introduction

All graphs considered in this paper are simple and finite. Undefined terminologies and notion are referred to [4]. As
in [4], V(G), E(G), A(G) and x(G) denoted the vertex set, the edge set, the maximum degree and the chromatic number
of a graph G. For v € V(G), let Ng(v) denote the set of vertices adjacent to v in G, and dg(v) = |[Ng(v)|. A list of a graph G
is an assignment L : V(G) — 2N that assigns every v € V(G) a list of colors L(v) available at v. If L is a list of G, and H is
a vertex induced subgraph of G, then Ly is a restriction of L to H. For an integer k € N, a list L of a graph G is a k-list if
|L(v)| = k for any v € V(G). Let r be an integer, for a given assignment L : V(G) — 2" in a graph G, an (L, r)-coloring c is
a mapping ¢ : V(G) — N satisfying the following conditions.

(C1) : c(u) # c(v) for every edge uv € E(G);

(C2) : |c(Ng(v))] = min{dg(v), r} for any v € V(G);

(C3): c(v) € L(v), for every v € V(G).

For a fixed integer r > 0, the r-hued list chromatic number of G, denoted by y; .(G), is the smallest integer k, such that
for any v € V(G) and every k-list L of G, G has an (L, r)-coloring. If for every v € V(G), we have L(v) = {1, 2, 3, ..., k}, then
an (L, r)-coloring of G is a (k, r)-coloring of G. Accordingly, the r-hued chromatic number of G, denoted by x;(G), is the
smallest integer k such that G has a (k, r)-coloring. In particular, when r = 1, it follows from definition that y;(G) = x(G),
the chromatic number of a graph G. Thus r-hued coloring and r-hued list coloring are generalization of the vertex coloring
of graphs.

The notion of r-hued coloring was first introduced in [12,15]. When r = 2, x»(G) is often called the dynamic chromatic
number of G. In [5], Brooks proved a popular theorem on graph colorings states that a connected graph G satisfies
x(G) < A(G) + 1, where the equality holds if and only if G is an odd cycle or a complete graph. Earlier Brooks type
upper bounds for r-hued colorings can be found in [11,12,15], among others. Upper bounds of the r-hued list chromatic
number for generic graphs have also been studied.
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Theorem 1.1. Let G be a connected graph.
(i) (Kim et al. [10]) If G is a planar graph, then x »(G) < 5.
(ii) (Akbari et al. [1]) If G # Cs and A(G) < 3, then x2(G) < 4.
(iii) (Akbari et al. [1]) If A(G) > 4, then x12(G) < A(G) + 1.

It is natural to consider upper bounds of the r-hued chromatic number and the r-hued list chromatic number of a
planar graph G. For any planar graph G, it is proved that x,(G) < 5 in [6] without using the 4-Color Theorem. Utilizing the
4-Color Theorem [2,3,16], Kim et al. in [10] showed that 5-cycle is the only planar graph with 2-hued chromatic number
being 5, which was conjectured in [6]. More recently, Loeb et al. in [14] proved that x3(G) < 10. In [18,19], Song et al.
proved that any planar graph G with girth at least 6 satisfies x,(G) < r + 5 when r > 3, and for all planar graph G with
r > 8, xr(G) < 2r + 16. For further literature on r-hued coloring and r-hued list coloring of planar graphs, see [8]. In
1977, Wegner [20] posed the following conjecture.

Conjecture 1.2 (Wegner. [20]). If G is a planar graph, then

A(G) + 5, if4<AG)<T7;
Xm@m)f{ 13A(G)/2] +1, if A(G) > 8.

This conjecture remains open as of today. For a graph H, a graph G has an H minor if H can be obtained from a subgraph
of G by contracting edges. A graph G is called H-minor free if G does not have H as a minor. For a given collection K of
graphs, define EX(K) = {G : G does not have a minor isomorphic to a member in £}, and let

) r+3, ifl<r<3;
””—{Buu+Lihz4 (1)

There have been quite a few efforts made towards Conjecture 1.2. Among them are the following.

Theorem 1.3. Let G € EX(Ky) be a graph and let r > 2 be an integer. Then each of the following holds.
(i) (Lih et al. [13]) xa(c)(G) < K(A(G)).
(i) (Hetherington and Woodall [9]) x1.A(G) < K(A).
(iii) (Song et al. [17]) Both x,(G) < K(r) and x; ,(G) < K(r) + 1.

Let H be a graph. An edge e € E(H) is said to be subdivided when it is deleted and replaced by a path of length
two connecting its end vertices. A subdivision of H is a graph obtained from H by a (possibly empty) sequence of
edge subdivisions. If a graph contains subgraph ] isomorphic to a subdivision of H, we call ] an H-subdivision. Thus,
by definition, if A(H) < 3, then G contains an H-minor if and only if G contains an H-subdivision. For an integer n > 4,
define K4(n) to be the collection of all non-isomorphic subdivisions of K4 on n vertices. Thus K4(4) = {K4} and there is
only one graph in K4(5). When it is understood in the context, we sometimes use K4(4) and K4(5) to represent the only
member in the corresponding collection.

By definition, for each n > 4, we have

EX(Ka) € -+ € EX(Ka(n)) € EX(Ka(n + 1)) € ---

and for each fixed integer n > 4, EX(K4(n)) contains all graphs with order less than n. Hence U;2 ,EX(K4(n)) contains all
graphs. Chen et al. in [7] initiated the study of upper bounds of x.(G) for graphs G € EX(K4(7)) and prove the following
theorem.

Theorem 1.4 (Chen et al. Theorem 1.5 of [7]). Let G be a graph and r > 2 be an integer. If G € EX(K4(7)), and if G has no
block isomorphic to Kg, then x,(G) < K(r).

Our current study is motivated by Theorems 1.3 and 1.4. We investigate the upper bound of x; ,(G) for K4(7)-minor
free graphs G. The following is the main result obtained in this research.

Theorem 1.5. Let G be a 2-connected graph and r > 2 be an integer. If G € EX(K4(7)), then x.,(G) < K(r)+ 1.
2. Preliminaries

For an integer n € {5, 6, 7}, a number of results on the decompositions of K4(n)-minor free graphs have been developed
in [7]. We present the related definitions, and results here for a complete understanding of the article.

Throughout the rest of this paper, by H C G we mean that G contains a subgraph isomorphic to H, and when there is
no confusion arises, we also view that H is a subgraph of G. For a graph G and a collection F of subgraphs of G, we define

[F,G]={H: forsome F € F,F CH C G}.

As in [4], K, and Ky, , denote the complete graph of order n and complete bipartite graph with partite set sizes m and n,
respectively. Throughout this paper, we take the convention to also use K, or Ky, , to denote a specified copy of K, or Kp, p,
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respectively. We follow [4] to define the union of graphs. Let G and G’ be two graphs. The union of G and G/, denoted by
G UG, has vertex set V(G) U V(G') and edge set E(G) U E(G).

Definition 2.1. Let k > 1 be an integer, G, G, Hy, Ha, ..., H be vertex disjoint simple graphs.

(01) Suppose that u € V(G) and v’ € V(G'). Define G &1 G’ to be the simple graph obtained from G U G’ by identifying
u with v’ to form a new vertex, which is still denoted by u. We sometimes write G &, G’ for G ®; G’ to emphasize the
vertex u.

(02) Suppose that u,v € V(G) and u’,v' € V(G'). Define G @,,, G’ to be the simple graph obtained from G U G’ by
identifying u with v’ to form a new vertex (again denoted by u), and v with v’ to form a new vertex (again denoted by
v), respectively. The vertices u, v are called the base vertices of G &, , G'. Thus if either uv € E(G) or u'v’ € E(G'), then
the edge uv € E(G ®,,, G'). If u, v are understood or not to be emphasized, we often use G &, G’ for G @, , G'.

(03) For each j with 1 < j < k, assuming that G@z(U’ (H;) is obtained, we define G@®, (U 1H;) = (G®,(U_,H:))®2Hj41

in such a way that the base vertices of G ®, (U’ H,) are in V(G), and for each H;j, the base vertices may be different.
We often also take the convention to assume that in (01), V(G) N V(G') = {u}, and in (02), V(G) N V(G') = {u, v}. For

an integer j > 1, define D;(G) = {v € V(G) : d¢(v) = j}. We now can use the operations in Definition 2.1 to define some
related constructions.

Definition 2.2. Lett > 1 be an integer, and k; > 0 be an integer for 1 <i < t.
(i) Let K, be a complete bipartite graph with w;, w, being the two nonadjacent vertices in K, of degree t, and

V(Ky) — {w1, wa} = {uq, uz, ..., u}. Hence if t # 2, then Dy(Ky () = {us, ua, ..., us}. The vertices wq, w, are called the
special vertices of K; ;. Define Kz/,r to be the graph obtained by adding a matching uqu,, usuy, ..., u;_ou,_q if t is odd,
Uqly, Usly, ..., Ur_1U. if t is even, among the non special vertices in V(K ) — {w1, w}. The special vertices of Kz/,r are

the special vertices of the related K5 ;.

(ii) Let T = (kq, k, . .., k¢) be a t-tuple of non-negative integers. LetJ, J1, . .., J; be graphs such that ] = K ; with special
vertices w1 and w,, and for 1 < i < t, J; = Ky ,. Define SK; ; r to be the family of graphs each of which is isomorphic
to] @, ( _,Ji) in such a way that the special vertices of SK; ;1 are special vertices of J, for each j with 1 < j < t, the
base vertlces X, yj in | @, ( _,Ji) are special vertices of each j], and e; = x;y; is an edge e; € E(J) such that all the edges
ey, ey, ..., e are mutually dlstmct and such that for distinct i and j, any vertex incident with both e; and e; must be in
{wn, wz}-

As in Definition 2.2(ii), each e¢; = x;y; can be any one of the two edges in a path joining the two special vertices of
J = Ky, SKyr. 7 in general contains more than one graph. For notational convention, we often also use SK ;,r to denote a
typical number of the family.

Let t denoted a positive integer, K, be given with vy, v, being the special vertices of K, and K4 be given with
V(K4) = {U], v, U3, U4} such that V(K4) N V(Kz't) = {U], Uz}. Define

L =U=1{Ks @0, Kot — V12, Kg Dy, Kot} (2)
Thus by definition, K4 ©,,,, K2,1 — v1v; is the only graph in Ky(5).

Definition 2.3. Letn, ty, t;, t3 be non-negative integers withn > 4, T = (kq, ka, ..., k;) be a t3-tuple of positive integers.
In the definitions below, we always assume that F; = K, ¢,, F, = K2 o and F3 = SK2 t;,7 are graphs with the special vertices
of Fy, F,, F5 being {vy, v,}. Let F; = K, 1, be a graph with special vertlces {vs, vy} with I € {1, 4}, and any graph K, here
with V(K,) = {vq, va, ..., vn}.

(l) Define L] = L](f], fz) = K4 EBU]»UZ F] @1)3.1)1 Fl/' N] = N](t], tz) = L](f], fz) — {U]Uz, U3U[}, and Ly = {G € [N], L]] :
[V(G)| = 6}.

(if) Define L, := Ly(t1,t3, T) = K4 @v,,0, F2 ®u;0, F3, Where T = (ky, kz, ..., ki) is a t3-tuple with ky > ky > -+ >
ki, > 0, Ny == Ny(t1, 83, T) = Ky @y, 0, F1 Doy0p F3 — {102} — U; 180, where the e;’s defined in Definition 2.2. Define
Ly = {G € [Ny, L] : [V(G)| > 6}.

(iii) Define L3 := L3(t1) = Ks @y,.v, F1, N3 := N3(t1) = L3 — {v1v2, v1v3, v20s}, and L3 = {G € [N3, L3] : |[V(G)| > 6}.

Theorem 2.4 (Chen et al. [7]). Let G be a 2-connected simple graph. Then each of the following holds.
(i) G € EX(K4(5)) if and only if G € {K4} U EX(Ky).
(i1) G € EX(K4(6)) if and only if G € EX(K4(5)) U £ U [K4(5), K5].
(iii) G € EX(K4(7)) if and only if G € EX(K4(6)) U £1 U £3 U L3 U [K4(6), Kg].

3. Proof of Theorem 1.3

Throughout this section, let r be an integer with r > 2. Recall that K(r) is defined in (1). Next, we shall show that if
G € EX(K4(7)) and be a 2-connected graph, then for any r > 2, x; -(G) < K(r)+ 1. In the argument below, we often adopt
the notation in Definitions 2.1-2.3 for convenience.
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Lemma 3.1. Lets <r — 2 be an integer and let Ly, L,, ..., Ls be list of color such that each i with 1 <i <s, |L;| > r — 2.
Then there exists an injective mapping ¢ : {1, 2, ...,s} — Ui_,L; such that each j with 1 < j <, ¢(j) € L;.

Proof. Let G[L, C] be a bipartite graph with bipartition L = {Ly,Ly,...,L} and C = Ui_,L; = {cy,c2,...,¢}. Thus
t > |L4] = r — 2 > s. Define an edge (L;, ¢;) in G if and only if ¢; € Li. We need to show that G has a matching
covering all vertices in L. For any nonempty subset S C L, without loss of generality, we assume that L; C S, then
IN(S)| > |Lj| = r—2 > s = |L| > |S]|, and so by Hall's Theorem (see Theorem 16.4 of [4]), G[L, C] contains a matching
covering all vertices in L. This completes the proof of Lemma 3.1. O

Lemma 3.2. Let vy, vy be the special vertices of K, with t > 0. For each graph G given below, let L be an (r + 3)-list of G.
Then each of the following holds.

(i) Let G = K4 @y, v, Ko, — vyvy. There is an (L, r)-coloring of G.

(ii) Let G = Ky @, 1, F2. There is an (L, r)-coloring of G.

(iii) Let G = K5 @y, v, K2,¢. There is an (L, r)-coloring of G.

Proof. As (i), (ii) and (iii) can be proved in a similar way, we only prove (i). Let {v, v2, v3, v4} denote the vertices of the
K4 as in Definition 2.3, and let Dy(G) = {uq, Uy, ..., us}. For r = 2, we define ¢ : V(G) — N in the following steps. As L
is a 5-list, for i € {1, 2, 3, 4}, we assign c(v;) € L(v;) such that c(vq), c(v2), c(v3) and c(v,4) are distinct colors. To color the
vertices {uq, Uy, ..., U}, for each u € D,(G) choose c(u) € L(u) — c(Ng(u)). Since |L(u)| = 5, and |c(Ng(u))| < 2, such a c(u)
can always be found. By definition, the coloring ¢ defined above is an (L, 2)-coloring of G.

Suppose that r > 3. We construct a coloring ¢ : V(G) — N as following. If t < r — 2, by Lemma 3.1, an (L, r)-coloring
¢ : V(G) - N of G exists. We assume that t > r — 1. Applying Lemma 3.1 to G — {u,_1, ..., U}, G — {uy_1, ..., U} has
an (Lg—q, ,,...,.u;)> 7)-coloring c. For each i withr — 1 <i <, as |[(u;)] =+ 3 and |c(Ng(u;))| < 2. We can always define
c(u;) € L(u;)—c(Ng(u;)). Thus, the extended c is a proper coloring. Since G—{u;_1, ..., u;} has an (Lg_g, ... 4}, I)-coloring
¢, and the choice of c(u;) for r — 1 < i < t, the extended c is an (L, r)-coloring of G. O

Proposition 3.3. Let r > 2 be an integer and let G be a 2-connected graph. Each of the following holds.
(1) If G € EX(K4(6)), then x.,(G) < K(r)+ 1.
(ii) If G € [K4(6), Kg], then x.(G) < K(r)+ 1.

Proof. By Theorem 2.4, EX(K4(5)) = {Ks} U EX(K4). By Theorem 1.3, x.,(K4) = 4 < K(r) + 1. It follows that for any
G € EX(K4(5)), xL.r(G) < K(r) + 1. By Theorem 2.4, EX(K4(6)) — EX(K4(5)) € £ U [K4(5), K51, where £ is defined in (2).
Since for any r > 2, K(r) > 5, to prove (i), it suffices to show that x; ,(G) < K(r)+ 1 for any G € £ with |V(G)| > 6.

Let G € £ be a graph with [V(G)| > 6. By (2), there exists an integer s such that G € {Ks@,, v, K2.s — v1V2, K4 Dy, v, K25}
Dy(G) = {uq, ua, ..., us}. Let L be an (r + 3)-list of G. By Lemma 3.2(i), the graph G has an (L, r)-coloring ¢ : V(G) — N,
and so x;r(G) <r+ 3 < K(r)+ 1. This proves Proposition 3.3(i).

To justify (ii), we observe that for any G € [K4(6), Ks], x1.-(G) < |[V(G)] = 6 < K(r) + 1. This completes the proof of
the proposition. O

By Theorem 2.4, EX(K4(7)) — (EX(K4(6)) U [K4(6), Ks]) € £1 U L, U £3. Thus by Proposition 3.3, it suffices to assume
that G € £1 U £; U L3 to prove that yx; (G) < K(r)+ 1.

Lemma 3.4. Let ty, t; be non-negative integers. If G = K4 @, Ky ¢, @2 Ky r,, then x;,(G) <1+ 3.

Proof. It suffices to show that for any (r + 3)-list L of G, we can always find an (L, r)-coloring of G. Let {v1, v,, v3, v4}
denote the vertices of the Ky as in Definition 2.3. We may assume that G = K4 @,,,v, K2,¢; ® 5,0, K2,,, With vy and v, being
the special vertices of K;,, and with v; and v3 being the special vertices of K;;,. Thus by definition, vy, v, € Ng(v3).
Denoted Dy(Kp¢,) = {us, Uz, ..., ug } and Da(Kp ) = {Ue, 41, Ugy 425 - - -5 Uy 4ty )

Since Lis an (r+4-3)-list of G, for any v € V(G), |L(v)| = r+43.Let G’ = G—{us, 41, U, 42, - - - » Uy 41, }. Then by Lemma 3.2(i),
there exists a coloring ¢’ : V(G') — N such that ¢’ is an (Lg, r)-coloring of G'. Let

C(v3) = ¢'(Ng/(v3)), d = |C(v3)]. (3)
Since d¢/(v3) = 3 and since ¢’ is an (Lg, r)-coloring, we have d > min{r, 3}. To extend ¢’ to an (L, r)-coloring c of G, for
each vertex z € V(G'), we set c(z) = c/(z). Then we need to color the vertices in {u, 41, U, 42, - . . , Ug 41, } 5O that ¢ satisfies

(C1), (C2) and (C3).

Case 1. t; > r — 1. Then as v; and v, are the special vertices of K, and as t; > r — 1, we have |c/(Ng(v1))| > r and
[c’(Ng(vp))| > r. By (3), if d > r, then we also have |c/(Ng(v3))| > r, and so we can pick a color subset C' C C(v3) with
|C’'| = r. Since L is an (r 4 3)-list of G, we have |L(u, ;) — (C" U {c'(vq), ¢'(v3)})| = (r 4+ 3) — (r +2) > 0. Hence for each i
with 1 <i < t,, it is possible to choose

c(Ug,+i) € L{ug4i) — (C"U{c'(v1), c'(v3)}). (4)
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It follows by (4) and min{|c’(N¢g(v1))|, |c'(Ng(v2))|, [c'(Ng(v3))|} > r that c is an (L, r)-coloring of G. Therefore, we may
assume that d < r. As L is an (r + 3)-list, for any i with 1 <i < ¢,

|L(ug,+1) — (C(u3) U {c'(v3)P) = (r +3) = (d + 1) > 0.

We define c(u, 1) by choosing c(us,4+1) € L(ug,+1) — (C(v3) U {c’(v3)}). Assume that inductively, we have defined c(uy, ;)
with 1 <i < s for some s < min{r — d, t;} in such a way that

c(uey4i) € Luey41) — (Clu3) U (w3)} U {c(ugy )t 1 < j < i— 1)) (5)
Then as L is an (r + 3)-list, we have

IL(ug4s41) — (Cuz) U{c (s U fc(ugy) s 1 <i<sP|=(r+3)—(d+s+1)> 0,
and so it is possible to define c(u, 4s4+1) by choosing

c(Upy4s41) € Lug ps41) — (Cuz) U {c'(v3)} U {c(ugy i) = 1 < i < s}).

Thus after we have colored all vertices in {us,4; : 1 < i < min{r —d, t,}}, then (5) hold for all i with 1 < i < min{r —d, t,}.
We conclude by (5) that there are min{r, ds(v3)} differently colored vertices in N¢g(v3). If t;, < r — d, then the mapping ¢
is already an (L, r)-coloring of G.

Assume that t, > r —d. Fori withr —d < i < t, set c(uy+i) € L(ug i) — {c'(v1), c’(v3)}. By (5), the extended
coloring ¢ satisfies (C1), (C2) and (C3) as [c(Ng(v3))] = min{dg(vs), 7} and for each u € {ug 41, Us42, ..., Uyti )
|c(Ng(u))| = dg(u) = 2. Thus in Case 1, ¢’ can be extended to ¢, which is an (L, r)-coloring of G.

Case 2. t; <r — 1. Then as ¢’ is an (Lg, r)-coloring of G’ and t; < r — 1. We have |c’(Ng(v2))| > min{dg(v,), r}. Let
M(v1) = ¢'(Ng/(v1)) and m = [M(v1)].

If m > r, then we also have |c’(Ng(v1))| > 1, and so we can color each vertex u € {us 11, U 42, - - . , U4, } the same way
that we did in Case 1. Therefore, we may assume that m < r. As L is an (r + 3)-list, for any i with 1 <i < t,,

|L(ugy+1) — (M(v1) U{c'(v)})| = (r +3) — (m+ 1) > 0.

We define c(ut,41) by choosing c(us,4+1) € L(ug,+1) — (M(v1) U {c’(v1)}). Assume that inductively, we have defined c(u, +i)
with 1 <i < h for some h < min{r — m, t,} in such a way that

C(uey+) € L +1) — (M) U{c' (v1)} U{c(ug 1) 1 1T <j<i—1)). (6)
Then as L is an (r + 3)-list, we have

L(ue, +h+1) — (M(v1) U {c' ()} U {c(ug4i) : 1< i< hp)l = (r+3)—(m+h+1)> 0,
and so it is possible to define c(u¢, +4+1) by choosing

c(uey+ht1) € Lluey4nr1) — (M(v1) U {c'(v1)}u {c(ur, i) s 1 < i< h}).

Thus after we have colored all vertices in {ug; : 1 <i < min{r —m, t}}, then for any i with 1 <i < min{r —m, t,} (6)
holds. We conclude by (6) that there are min{r, dg(v;)} differently colored vertices in Ng(v). If t; < r — m, then the
mapping c is already an (L, r)-coloring of G.

Assume that f, > r — m. We have defined c(u;,4;j) with 1 <j<i—1andr —m < i < s for some s < min{r — d, t;},
then as L is an (r + 3)-list, we have

L(ue, +1) = (Cu3) U (w3)} U {c(ue ) : 1 <j<i—=1) = (r+3)—(d+1+s—r+m)>0,

and so it is possible to define c(u, ;) by choosing

c(uey+i) € Lug+i) — (Cu3) U {c'(v3)} U {c(ug4) s 1 <j < i— 1)) (7)

Thus after we have colored all vertices in {u;,4; : r —m < i < min{r — d, t,}}, we conclude by (7) that there are
min{r, dg(v3)} differently colored vertices in Ng(v3). If t; < r — d, then the mapping c is already an (L, r)-coloring of G.

Assume that t; > r —d. Fori withr —d < i < 1, set c(uy4i) € L(ug4i) — {c'(v1), c’(v3)}. By (6) and (7), the
extended coloring c satisfies (C1), (C2) and (C3) as |c(Ng(v1))| = min{dg(v1), r}, |c(Ng(v3))| = min{ds(vs), r} and for each
u € {Ug41, Ugy42, - -+ U415 1 [C(NG())| = dg(u) = 2. Thus in Case 2, ¢’ can be extended to c, which is an (L, r)-coloring
of G.

Similarly, if G = K4 @y,,v, Ko,t; @30, Ko, With v1 and v, being the special vertices of K3 ¢,, and with v3 and v4 being
the special vertices of K, ;,. We also have x; ,(G) <r+3. O

Proposition 3.5. Letr > 2 be an integer and G € £1 U £ U L3 be a 2-connected graph. Then x; -(G) < K(r).

Proof. We continue adopting the notation in Definition 2.3 in the arguments. Thus for some n € {4, 5}, the construction
of G involves a complete graph K on n vertices. As in Definition 2.3, we let V(K) = {vq, va, ..., Un}.
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Claim 1. If G € £4, then x; (G) <1+ 3 < K(r).

As G € £1, K = K4. By Definition 2.3, there exist non-negative integers t; and t, such that G is spanned by Ny(t1, t3)
with possibly vivy, v3v; € E(G). Denote Dy(F1) = {uq, uy, ..., Uy} and Dy(F]) = {ug 41, U425 - - ., Ug 4, ). Let L be an
(r + 3)-list of G. By Lemma 3.4, there exists a coloring ¢; : V(G) — N is an (L, r)-coloring of G, independent of whether
the edge vqv,, v3v; are in E(G) or not. Thus . (G) <r + 3 < K(r).

Claim 2. If G € L3, then x.,(G) <1+ 3 <K(r).

As G € L3, K = Ks. By Definition 2.3, for an integer t; > 1, G is a spanning subgraph of L3 = L3(t;) = Ks @, ., Fi
where F; = Ky,. Let D5(F) = {uy, ua, ..., u,}. Let L be an (r + 3)-list of G. By Lemma 3.2(iii), there exists a coloring
¢, : V(G) — Nis an (L, r)-coloring of G, Thus x; (G) <r + 3 < K(r).

Claim 3. If G € L5, then x.(G) <r +3 < K(r).

As G € £, K = K4. By Definition 2.3, every graph in £, is a planar graph. Thus by Theorem 1.1, if G € £, then
x12(G) < 5 = K(2). Therefore, we assume that r > 3 and |V(G)| > K(3) + 1 = 7, and continue using the notation in
Definition 2.3. Let Ny := Ny(t1, t3, T) = K4 Duyvy Fi Duy.vy F3—{vqvy} — U?:1€j, and Ly == Ly(ty,t3, T) = K4 Doy.vy F, Duyvy F5
with t; > 0 and t3 > 0, where T = (ky, k, ..., k) with ky > kp > -+ > k;; > 0. Let G € [Ny, L;]. As in Definition 2.3 we
have Fi = Ky, F, = Ké’[], and F3 = SK; 1, 1. For each j € {1, 2, ..., t3}, let x;, y; denote the special vertices of J; = Kz,kj

in Definition 2.2(i)) with X; = X, = ++- = Xy = V1, Yy41 = Y42 = -+ = Y, = V2, and Dy(Jj) = {wl, w’zu){g} As
G € [Ny, L], viv, may or may not be in E(G). By Definition 2.3(ii), we may view F; as a spanning subgraph of F,, and so
some of the edges in E(F,) — E(F;) may not be in G as well. Denote V(K) = {vy, v2, v3, v4} and V(F) = {uq, up, ..., uy},
such that for some t; > 0 with 2t; < t;, we have {uy_quy : 1 < i < t;} € E(G), and such that 2t] + 1 < j < ty,
{ur41, ..., Uy } is an independent set.

Let L be an (r + 3)-list of G. We shall construct an (L, r)-coloring c3 : V(G) — N of G in the following steps. Before the
coloring, we let

1.1 12 2 2
W1:w1,wz,...,w,q,w],wz,...,wkz,...,ufq,wg,...,uffkf,

W2:w’;ﬂ,wgﬁ,...,wfﬁ,w§+2,w£+2,...,wf+2 ..,w?,w?,...,w,ﬁl. (8)

kr 41 kezo
be two sequences of vertices of G.

Step 1. Let G; = G[V(K) U V(F)], and Ly = L|y(c,) be the restriction of L to V(G;). (See Fig. 1, where G; is spanned by a
subgraph in the graph depicted in Fig. 1.) Since L is an (r + 3)-list with r > 2, the vertices in V(K) can be so colored that
c3(v;) € L(v;) with |c3(V(K))| = 4. Thus |c3(Ng(v;))| > 2, for any v; € V(K). Asr > 2 and L is an (r + 3)-list of G, we have
|L(u;) — c3(V(K))] =r — 1 > 0, and so the color c3(u1) € L(uq) — c3(V(K)) can be chosen.

Let No = min{r — 2, t;}. Color c3(u;) € L(uq) — c3(V(K)). For each i = 2, 3, ..., Ny, set

cs(ui) € L(ui) — ({es(vr), e3(v)} Ud{es(uy) : 1 <j<i—1}). 9
If t; < r — 2, then the coloring of this step is done. If t; > r — 2, then forany i = Ng + 1, ..., t, set
c3(u;) € L(u;) — {c3(v1), c3(v2), c3(ui—1)}. (10)

By (9) and (10), c3 is an (Lq, r)-coloring of G;.

Step 2. In Step 2, we are to color the vertices in {y1, ¥, ..., ¥r} U {Xr41, X742, - . ., X5 }. By Definition 2.3, there exists an
index f" with 0 < f’ < f such that for all i with 1 < i < f’, v1y; € E(G), and for any j with f' + 1 < j < f, v1y; ¢ E(G).
Thus if f* = 0, then for any j with 1 < j < f, v1y; ¢ E(G). Similarly, there exists an index f” with 0 < f” < t;3 — f such
that for all i with 1 <i < f”, voxp4i € E(G), and for any j with f” + 1 < j < t3, vax74; ¢ E(G). Thus if f” = 0, then for any
jwith1 <j<t;—f, U2 Xf 1 ¢ E(G).

We shall use the following notation in the arguments throughout the rest of the proof. For all i with 0 < i < f’
(whence v1y; € E(G)), let ug,4; = y;; and for all j with 0 < j < f” (whence vyx;1; € E(G)), let u;,1y4j = X4y. Define
Gy = G[V(G1) U {ug 41, Uty425 - - -, Ury 57457 }], and L = Live,) be the restriction of L to V(G,). (See Fig. 1, where G, is
spanned by a subgraph in the graph depicted in Fig. 1.)

Let C; = ¢3(Ng, (v2) — {v1}) = ¢3(Ng,(v1) — {v2}), d1 = |C1|, and define

N0 if dy > r,
! min{r —dq,f' +f"} ifd; <r.

Suppose first that Ny = 0 and so d; > r. Then each of v; and v, has already r differently colored neighbors. In this case,
for each i with 1 <i < f’' + f”, we choose

C3(Uey+i) € Llug14) — {c3(v1), c3(v2)}-
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Yrh U1, Xpg2, oo s Xey }).

Assume that Ny > 0. As L is an (r + 3)-list of G, we have [L(u;,41) — C1 — {c3(v1), c3(v2)}| =1 + 3 — dy > 0, and so the
color c3(ug,41) € L(ug,41) — G — {c3(vq), ¢3(v2)} can be chosen. For eachi =2, 3, ..., Ny, set

C3(Upy+i) € Llug i) — (Cr U {es(uy45) = 1 <j < i— 1}) — {c3(v1), c3(v2)}- (11)
Iff'+f">r—djthenforanyi=N;+1,...,f +f”, set

C3(Uey+i) € Llug,+i) — {e3(v1), c3(v2)} (12)

By (11) and (12), c3 is an (L}, r)-coloring of G,.

Let Gy = GIV(GY) U {¥r41, Y42, - - - Y5} U {Xppr1, X742, - - . X5 }], and Ly = L]y(c,) be the restriction of L to V(G).
(See Fig. 1, where G, is spanned by a subgraph in the graph depicted in Fig. 1.)

Let G, = c3(NG/z(v2) — {v1}), d2 = |G|, and define

o0 if dy > 1,
2 min{r —d,,f —f'} ifd, <r.

Suppose first that N, = 0 and so d, > r. Then each of v; and v, has already r differently colored neighbors. In this case,
for each i with f' +1 < i < f, we choose

c3(yi) € L{yi) — {es(vi), es(v2)}
Assume that N, > 0. As L is an (r + 3)-list of G, we have |L(yf41) — G — {c3(v1), c3(v2)}| =7+ 3 —dp > 0, and so the

color c3(yfr41) € L(¥fr4+1) — Co — {c3(v1), c3(v2)} can be chosen. For eachi =2, 3, ..., Ny, set
c3(Vp+i) € Lyp4i) — (G U{cs(ypry) 1 1 <J <i—1}) — {c3(v1), c3(v2)}- (13)
Iff—f >r—dy thenforanyi=N,+1,...,f —f/, set
3V i) € Lyp4) — {c3(v1), c3(va)}- (14)
Let ¢, = c;,(NG/z(vl) — {v2}), d, = |C;|, and define
N — 0 ifd, >r,
27| min{r—d,, ts —(f+f")} ifd, <r.

Suppose first that N; = 0 and so d;, > r. Then each of v, and v, has already r differently colored neighbors. In this case,
for each j with f + f” + 1 <j < t3, we choose

c3(x;) € L(x;) — {c3(v1), c3(v2)}-
Assume that NJ > 0. As L is an (r 4 3)-list of G, we have |L(Xfs7+1) — C; — {c3(v1), c3(v2)}| =7+ 3 —dj, > 0, and so the
color c3(X;4f741) € L(Xp45m11) — €5 — {c3(v1), c3(v2)} can be chosen. For eachi = 2,3, ..., NJ, set

c3(Xp171i) € Lixpyprai) — (G U {ea(Xpaprag) 1 1 <j < i—1}) — {c3(v1), c3(v2)}- (15)
Ift3 —(f+f")>r—dy, thenforanyi=N;, +1,...,t5 — (f +f"), set

c3(Xpipr4i) € LXpipr14) — {c3(v1), c3(v2)})- (16)

After finishing coloring vertices in {yy'11, Y42, .- ., ¥r} U {Xr4741, Xr4f742, . . ., X3}, wWe have completed the coloring of
V(G;). By (13), (14), (15) and (16), c3 is an (L,, r)-coloring of G,.

Step 3. In Step 3, we are to color the vertices in W; U W, using the notation in (8) for vertices in W; and W5, and so
complete the coloring of V(G). We first color vertices in Wj.
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Let C3 = C3(NGZ(U1) — {Uz}), d3 = |C3| and define

Na = 0 if d3 >,
3 min{r — ds, [W;|} ifd; <r.

Suppose first that N3 = 0 and so d; > r. Then vy has already r differently colored neighbors. In this case, for any £ with
1<¢ <f, we have

IL(w$) — {c3(ye), c3(v1), c3(va)}] > 1.

Thus we can choose c;;(wf) € L(wf) — {c3(¥¢), c3(v1), c3(v2)}, and for any i with 2 < i < p, for some p, = min{r — 1, k;},
we can find a color c3(w!) so that

c3(wf) € L(w!) — ({e3(ve), c3(v1), e3(v2)} U fes(wl) 1 1 <t <i— 1)) (17)
Ifk, >r—1,thenforanyi=p, + 1, ...,k set

as(wf) € Lwf) — {c3(ve), c3(v1)}-
Assume that N3 = |W;| > 0. Then as L is an (r + 3)-list of G, we have |L(w}) — (C3 U {c3(y1), c3(v), c3(v2)})| =
r+ 3 —(ds +3) > 0, and so the color Q(w}) € L(w}) — (C3 U {c3(y1), c3(v1), c3(v2)}) can be chosen. For any ¢ with
1<¢<fandiwith1<i<k,

as(wf) € L(wf) — (G U {cs(ve), c3(v1), c3(v2)} Ufes(wf) : 1 <t <i—1,1<s<4¢}). (18)

Now we assume that N3 = r — d3. Then there exist r — ds distinct vertices w1, wy, ..., Wr—g, in Wq. As L is an (r + 3)-list
of G, it is possible to set c3(w1) € L(w1) — (C3 U c3(Ng(w1)) U {c3(v2)}), and for any i with 1 <i <r —d3 — 1 we have

c3(wir1) € Lwiy1) — (G U c3(No(wiv1)) U {cs(v2)} U {es(wy) : 1 <j < i}). (19)
Thus after we have colored all vertices in {w; : 1 < i < r — ds}, then (18) hold for all such vertex. For other vertices in
wf e Wiy —{wy, wy, ..., wg,} with1 <€ <f,1<i<p, for some p, = min{r — 1, k;}, set

c(wf) € Lwf) — ({es(ye), e3(v1), c3(va)} U fes(wf) : 1<t <i—1)

U{cs(wg) 1 1 <q <1 —ds, wg € No(ye)}). (20)
Ifk, >r—1,thenforanyi=p, + 1, ...,k set
c3(wf) € L(w{) — {cs(ye), c3(v1)}.

We then extend c, to color vertices in W, using similar strategy. Let C; = c3(Ng,(v2) — {v1}), d5 = |C}| and define

N — 0 ifd,>r,
371 min{r —dj, [W,|} ifd; <.

Suppose first that N; = 0 and so d; > r. Then v, has already r differently colored neighbors. In this case, for any £ with
f+1<4¢<t;, we have

IL(w!) — {c3(xe), c3(v1), c3(v2)}| > 1.

Thus we can choose Q(w{) € L(wf) — {c3(x¢), c3(v1), c3(v2)}, and for any i with 2 < i < q, for some q, = min{r — 1, k;},
we can find a color c3(wf) so that

as(wf) € L(wf) — ({e3(xe), e3(v1), c3(v2)} U {es(wy) : 1 <t <i—1}) (21)
Ifk,>r—1,thenforanyi=gq,+ 1, ...,k set
cs(wf) € L(wf) — {e3(xe), e3(v2)}-

Assume that N = |W,| > 0. Then as L is an (r + 3)-list of G, we have |L(w§+1) — (G5 U {c3(xr41), c3(v1), c3(v2)}) =
r+3 —(d; +3) > 0, and so the color c;(wﬁ“) IS L(w’i“) — (C5 U {c3(x711), c3(v1), c3(v2)}) can be chosen. For any £ with
f+1<t<tzandiwith1<i<k,

cs(w) € Lw;) — (G U{es(x). es(nn). cs()} Udes(wy) s 1<t <i—1.f +1 <5 <)), (22)
Now assume that N3 = r — d3. Then there exist r — dj distinct vertices wj, w, ..., w_, in W, As L is an (r + 3)-list of
3
G, it is possible to set c3(w]) € L(w}) — (C5 U c3(Ng(w])) U {c3(v1)}), and for any i with 1 <i <r —dj — 1 we have
c3(wiyg) € Lwiy4) — (G U cs(Ng(wiy 1)) U {es(vi)} U {es(w)) : 1 <j < i}). (23)
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Thus after we have colored all vertices in {w] : 1 <i < r — d3}, then (22) hold for all such vertex. For other vertices in
wf e Wy —{wi, wy, ... w,_, }withf +1 <€ <t31<1i<q for some q, = min{r — 1, k}, set
3

cs(wy) € Lwy) — ({es(xe), c3(v1), 3} Ufes(wy) : 1<t <i—1)
U{cs(wg) : 1 < g <1 —dj, wy € Ne(x0)}). (24)
Ifke >r—1,thenforanyi=q,+ 1,..., ke, set
as(wf) € L(wf) — {c3(xe), e3(v2)}.

After finishing coloring vertices in W; UW,, we have completed the coloring of V(G). By (17), (18), (19),(20), (21), (22),
(23), and (24), c3 is an (L, r)-coloring of G. O

Proof of Theorem 1.5. By Proposition 3.3, G € EX(K4(6)) U [K4(6), Kg] is a 2-connected graph, we have x; (G) < K(r)+ 1.
By Proposition 3.5, G € £ U £, U £3 is a 2-connected graph, we have y; (G) < K(r). By Theorem 2.4, the validity of these
Propositions completes the proof of Theorem 1.5.
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