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Chvátal and Erdös (1972) [5] proved that, for a k-connected graph G , if the stability number 
α(G) ≤ k − s, then G is Hamilton-connected (s = 1) or Hamiltonian (s = 0) or traceable 
(s = −1). Motivated by the result, we focus on tight sufficient spectral conditions for 
k-connected graphs to possess Hamiltonian s-properties. We say that a graph possesses 
Hamiltonian s-properties, which means that the graph is Hamilton-connected if s = 1, 
Hamiltonian if s = 0, and traceable if s = −1.
For a real number a ≥ 0, and for a k-connected graph G with order n, degree diagonal 
matrix D(G) and adjacency matrix A(G), we have identified best possible upper bounds 
for the spectral radius λ1(aD(�) + A(�)), where � is either G or the complement of G , 
to warrant that G possesses Hamiltonian s-properties. Sufficient conditions for a graph G
to possess Hamiltonian s-properties in terms of upper bounds for the Laplacian spectral 
radius as well as lower bounds of the algebraic connectivity of G are also obtained. Other 
best possible spectral conditions for Hamiltonian s-properties are also discussed.

© 2021 Published by Elsevier B.V.

1. Introduction

We consider simple, undirected and connected graphs with undefined terms and notation reference to [3]. As in [3], 
G , α(G), κ(G), δ(G) and d(v) denote the complement, the stability number (also call the independence number), the 
connectivity, the minimum degree of a graph G and the degree of vertex v in G , respectively. Let Ka,b denote complete 
bipartite graphs on n vertices, where a + b = n.

A well-known result of Whitney [28] states that κ(G) ≤ δ(G) for any graph G . A graph G is k-connected if κ(G) ≥ k. A 
cycle (path, respectively) passing through all the vertices of a graph is called a Hamilton cycle (Hamilton path, respectively). 
A graph G is called Hamilton-connected if every two vertices of G are connected by a Hamilton path. A graph containing 
a Hamilton cycle is called a Hamiltonian graph. It is known that all Hamilton-connected graphs are Hamiltonian. A graph 
containing a Hamilton path is said to be traceable.

For any graph G with the adjacency matrix A(G) and the diagonal degree matrix D(G), we define λ1(aD(G) + b A(G))

to be the spectral radius of aD(G) + b A(G), where a ≥ 0 and b > 0 are two real numbers. When a = 0 and b = 1, the value 
λ1(aD(G) +b A(G)) is called the spectral radius of a graph G , denoted by ρ1(G). If a = 1 and b = 1, then λ1(aD(G) +b A(G))

is called the Q -index of a graph G , and is denoted by q1(G). Furthermore, for a real number α ∈ [0, 1), λ1(Aα(G)) =
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λ1(αD(G) + (1 − α)A(G)) is called the Aα-spectral radius of G , formerly introduced by Nikiforov in [26]. We denote by 
λn(G) the least eigenvalue of G . The matrix L(G) = D(G) − A(G) is known as the Laplacian matrix of G . Let μ1(G) ≥
μ2(G) ≥ · · · ≥ μn−1(G) ≥ μn(G) be the Laplacian eigenvalues of G . It is known that μn(G) = 0. The values μ1(G) and 
μn−1(G) are called the Laplacian spectral radius of G and the algebraic connectivity of G , respectively.

The investigation on sufficient spectral conditions which warrant Hamiltonian s-properties of a graph was initiated by 
Fielder and Nikiforov [11]. However, the results in the literature mainly focus on the spectral radius and the Q -index of 
dense graphs. Hardly any of them involve graphs with uniform edge density and the Laplacian eigenvalues. Recently, Li [17]
initially proved sufficient conditions of ρ1(G) based on the connectivity to assure a connected graph to be Hamiltonian 
and traceable. Inspired by a well-known theorem of Chvatál and Erdös [5], we present tight sufficient spectral conditions 
on certain matrices arisen from graphs by taking a unified approach to assure a k-connected graph to possess Hamiltonian 
s-properties. For an integer s with s ∈ {1, 0, −1}, we say that a graph G possesses Hamiltonian s-properties if each of the 
following holds: if s = 1, then G is Hamilton-connected; if s = 0, then G is Hamiltonian; and if s = −1, then G is traceable.

Our ideas are also motivated by the literatures [6,8,13,19,18,20–24]. One of our goals is to investigate the relationship 
between Hamiltonian s-properties, the spectral radius λ1(aD(G) + b A(G)) and λ1(aD(G) + b A(G)) of a k-connected graph 
G . This provides a mechanism to take a unified approach to the adjacency spectral radius, the signless Laplacian spectral 
radius, and the Aα-spectral radius of G . Another goal of this research is to initiate studies to find tight bounds of μ1(G), 
μn−1(G) and μ1(G) + λn(G) to predict k-connected graphs to possess Hamiltonian s-properties. The main results are as 
follows.

For real number a, integers k and δ with a ≥ 0, 1 ≤ k ≤ δ, and s ∈ {1, 0, −1}, define

f (a,n,k, δ, s) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

δ

√
k−s+1

n−k+s−1 if a = 0,
δn

n−k+s−1 if a = 1,
aδn

n−k+s−1 if a ∈ (0,1),

max{aδ,
aδ(k−s+1)
n−k+s−1 } if a ∈ (1,+∞).

(1)

Theorem 1.1. Let G be a k-connected graph of order n ≥ 10 and minimum degree δ = δ(G). Suppose that

λ1(aD(G) + A(G)) ≤ f (a,n,k, δ, s). (2)

Then each of the following holds.
(i) If a ∈ {0, 1}, then G possesses Hamiltonian s-properties if and only if G � Kk,k−s+1 .
(ii) If 0 < a < 1 or if 1 < a < +∞, then G possesses Hamiltonian s-properties.

It can be seen that when a = 0 or 1, the upper bound on λ1(aD(G) + A(G)) is tight in some sense in Theorem 1.1. For 
graphs G and H , we use H ⊆ G to denote the fact that H is a subgraph of G . Let F(p, q) = {G : K p,q ⊆ G ⊆ K p ∨ qK1} be a 
family of graphs.

Theorem 1.2. Let G be a k-connected graph of order n ≥ 10. If

λ1(aD(G) + A(G)) ≤ (a + 1)(k − s),

then G possesses Hamiltonian s-properties if and only if G /∈F(k, k − s + 1).

For the Laplacian matrix, tight bounds on μ1(G) and μn−1(G) to assume a k-connected graph to possess Hamiltonian 
s-properties are proved as follows.

Theorem 1.3. Let G be a k-connected graph of order n ≥ 3 and minimum degree δ = δ(G). Each of the following holds.

(i) If μ1(G) <
nδ

n − k + s − 1
, then G possesses Hamiltonian s-properties.

(ii) If δ = n − k + s − 1 and μ1(G) ≤ nδ

n − k + s − 1
, then G possesses Hamiltonian s-properties if and only if G /∈F(k, k − s + 1).

Theorem 1.4. Let G be a k-connected graph of order n ≥ 3. If

μn−1(G) ≥ n − k + s − 1,

then G possesses Hamiltonian s-properties if and only if G /∈F(k, k − s + 1).

Theorem 1.5. Let G be a k-connected graph of order n ≥ 3 and minimum degree δ = δ(G). If

μ1(G) + λn(G) ≤ nδ −
√⌊n ⌋⌈n ⌉

,

n − k + s − 1 2 2
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then G possesses Hamiltonian s-properties if and only if G � Kk,k−s+1 for s ∈ {1, 0}.

It can be observed that the upper bound on μ1(G) + λn(G) in Theorem 1.5 is tight for s ∈ {1, 0} in some sense. In the 
next section, we display some tools to be employed in our arguments. The proofs of the main results are in the subsequent 
section.

2. Preliminaries

We in this section will present some important results that will be used in our arguments. Recall that a bipartite graph 
is called balanced if its two partite sets A and B have equal number of vertices.

Theorem 2.1. (Moon and Moser [25]) Let G be a balanced bipartite graph of order 2n with bipartition (A, B). If d(x) + d(y) > n for 
every pair of nonadjacent vertices x ∈ A and y ∈ B, then G is Hamiltonian.

Theorem 2.2. (Jackson [16]) Let G be a 2-connected bipartite graph with bipartition (A, B), where |A| ≥ |B|. If each vertex in A has 
degree at least k and each vertex in B has degree at least l, then G contains a cycle of length at least 2 min(|B|, k + l − 1, 2k − 2). 
Moreover, if |A| = |B| and k = l, then G contains a cycle of length at least 2 min(|B|, 2k − 1).

Theorem 2.3. (Dirac [9], Ore [27]) Let G be a graph of order n ≥ 3 and minimum degree δ(G). If

δ(G) ≥ n + s

2
,

then G possesses Hamiltonian s-properties.

Theorem 2.4. (Chvatál and Erdös [5]) Let G be a k-connected graph of order n ≥ 3. If

α(G) ≤ k − s,

then G possesses Hamiltonian s-properties.

Note that k ≥ 2 is a trivial condition in Theorem 2.4 for s ∈ {1, 0}.

Theorem 2.5. (Anderson and Morely [1]) Let G be a graph of order n ≥ 2. Then μ1(G) ≤ n with equality if and only if G is disconnected.

Theorem 2.6. (Fiedler [10]) Let G with n vertices contain an independent set of size t. Then μn−1(G) ≤ n − t.

Theorem 2.7. (Godsil and Newman [12]) Let G be a loopless graph, and μ1(G) be the Laplacian spectral radius. For any independent 
set I of size t, we have t ≤ n μ1−dI

μ1
, where dI = 1

t

∑
i∈I di .

Theorem 2.8. (Constantine [7]) If G is a graph of order n, then

λn(G) ≥ −
√⌊n

2

⌋⌈n

2

⌉
,

with equality if and only if G ∼= K⌊ n
2

⌋
,
⌈ n

2

⌉ .

Let A = (aij) and B = (bij) be two n × n matrices. Define A ≤ B if aij ≤ bij for all i and j, and A < B if A ≤ B and A 
= B .

Theorem 2.9. (Berman and Plemmons [2], Horn and Johnson [15]) Let A = (aij) and B = (bij) be two n ×n matrices with the spectral 
radii λ1(A) and λ1(B). If 0 ≤ A ≤ B, then λ1(A) ≤ λ1(B). Furthermore, if B is irreducible and 0 ≤ A < B, then λ1(A) < λ1(B).

The main tool in our paper is the eigenvalue interlacing technique described below. Given two non-increasing real 
sequences θ1 ≥ θ2 ≥ · · · ≥ θn and η1 ≥ η2 ≥ · · · ≥ ηm with n > m, the second sequence is said to interlace the first one if 
θi ≥ ηi ≥ θn−m+i for i = 1, 2, . . . , m. The interlacing is tight if exists an integer k ∈ [0, m] such that θi = ηi for 1 ≤ i ≤ k and 
θn−m+i = ηi for k + 1 ≤ i ≤ m.

Consider an n × n real symmetric matrix

M =

⎛
⎜⎜⎜⎝

M1,1 M1,2 · · · M1,m

M2,1 M2,2 · · · M2,m
...

...
. . .

...

M M · · · M

⎞
⎟⎟⎟⎠ ,
m,1 m,2 m,m
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whose rows and columns are partitioned according to a partitioning X1, X2, . . . , Xm of {1, 2, . . . , n}. The quotient matrix
R(M) of the matrix M is the m × m matrix whose entries are the average row sums of the blocks Mi, j of M . The partition 
is equitable if each block Mi, j of M has constant row (and column) sum.

Theorem 2.10. (Brouwer and Haemers [4,14]) Let M be a real symmetric matrix. Then the eigenvalues of every quotient matrix of M
interlace the ones of M. Furthermore, if the interlacing is tight, then the partition is equitable.

3. Proofs

In the proofs of Theorems 1.1-1.5, we say that a graph possesses Hamiltonian s-properties, which means that the graph is 
Hamilton-connected if s = 1, Hamiltonian if s = 0, and traceable if s = −1. Before proceeding further, we present a technical 
lemma for the spectral radius of nonnegative matrices of bipartite graphs.

Lemma 3.1. Let H be a bipartite graph with bipartition (X, Y ). If |X | = x, |Y | = y and |E(H)| = r, then

λ1(aD(H) + A(H)) ≥ 1

2

(
a(

r

x
+ r

y
) +

√
(a2 − 1)(

r

x
− r

y
)2 + (

r

x
+ r

y
)2

)
.

Proof. Let R(aD(H) + A(H)) be the quotient matrix of aD(H) + A(H) with respect to the partition (X, Y ). One can see that

R(aD(H) + A(H)) =
( ar

x
r
x

r
y

ar
y

)
.

A direct computation shows that the characteristic polynomial of R(aD(H) + A(H)) is

λ2 − a(
r

x
+ r

y
)λ + (a2 − 1)

r2

xy
= 0,

which yields

λ1(R(aD(H) + A(H))) = 1

2

⎛
⎝a(

r

x
+ r

y
) +

√
a2(

r

x
+ r

y
)2 − 4(a2 − 1)

r2

xy

⎞
⎠

= 1

2

(
a(

r

x
+ r

y
) +

√
(a2 − 1)(

r

x
− r

y
)2 + (

r

x
+ r

y
)2

)
.

The result follows from Theorem 2.10. �
We are now in a position to present the proofs of Theorems 1.1-1.5.

Proof of Theorem 1.1. (i) It is routine to verify that G ∼= Kk,k−s+1 does not possess Hamiltonian s-properties. Therefore, it 
suffices to prove the sufficiency. We argue by contradiction and assume that

G � Kk,k−s+1 and G does not possess Hamiltonian s-properties. (3)

We shall justify two claims below.

Claim 1. n ≥ 2k − s + 1.

In fact, if n ≤ 2k − s, then δ(G) ≥ κ(G) ≥ k ≥ n+s
2 . By Theorem 2.3, G possesses Hamiltonian s-properties, a contradiction. 

Claim 1 holds.
By Theorem 2.4, α(G) ≥ k − s + 1, and then there exists an independent set X = {ui ∈ V (G)|1 ≤ i ≤ k − s + 1}. Let 

Y = V (G) \ X = {v j|1 ≤ j ≤ n − k + s − 1}. Consider the bipartite spanning subgraph H of G with the partitions X and Y . 
Let r be the number of edges with one end-vertex in X and the other in Y . Then r ≥ δ(k − s + 1). For simplicity, define 
ξ = k − s + 1. By Theorem 2.9 and Lemma 3.1, we have

λ1(aD(G) + A(G)) ≥ λ1(aD(H) + A(H)) (4)

≥ 1

2

(
a(

r

ξ
+ r

n − ξ
) +

√
(a2 − 1)(

r

ξ
− r

n − ξ
)2 + (

r

ξ
+ r

n − ξ
)2

)
.

Claim 2. If a ∈ {0, 1}, then 2k − s + 1 ≤ n ≤ 2(k − s + 1).
4
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Assume first that a = 0. By (4) and the assumption of Theorem 1.1, we have

λ1(aD(G) + A(G)) ≥ λ1(aD(H) + A(H)) ≥ λ1(R(aD(H) + A(H)))

≥ r

√
1

ξ(n − ξ)
≥ δ

√
ξ

n − ξ
= δ

√
k − s + 1

n − k + s − 1

≥ λ1(aD(G) + A(G)). (5)

It follows that all the inequalities in (5) must be equalities. Hence G ∼= H and r = δ(k − s + 1). Furthermore, λn(aD(H) +
A(H)) = −λ1(aD(H) + A(H)) = −r

√
1

ξ(n−ξ)
= λ2(R(aD(H) + A(H))), and thus the interlacing is tight. By Theorem 2.10, 

the partition is equitable. That is to say, each vertex v j of Y in G has the same number of neighbors in X , and thus 
r

n−k+s−1 ≥ δ(G). Then we have n ≤ 2(k − s + 1). By Claim 1, we have 2k − s + 1 ≤ n ≤ 2(k − s + 1).
Next, we assume that a = 1. By (4) and assumption of Theorem 1.1, we have

λ1(aD(G) + A(G)) ≥ λ1(aD(H) + A(H)) ≥ λ1(R(aD(H) + A(H)))

≥ r

ξ
+ r

n − ξ
≥ δn

n − ξ
= δn

n − k + s − 1
≥ λ1(aD(G) + A(G)). (6)

It follows that all the inequalities in (6) must be equalities. Hence G ∼= H and r = δ(k − s + 1). Furthermore, λn(aD(H) +
A(H)) = 0 = λ2(R(aD(H) + A(H))), and hence the interlacing is tight. By Theorem 2.10, the partition is equitable. That is, 
each vertex v j of Y in G has the same number of neighbors in X , and thus r

n−k+s−1 ≥ δ(G). Then we have n ≤ 2(k − s + 1). 
By Claim 1, we have 2k − s + 1 ≤ n ≤ 2(k − s + 1). This proves Claim 2.

By the assumption of Theorem 1.1, s ∈ {1, 0, −1}. If s = 1, then n = 2k, and so both n − (k − s + 1) = k and d(v j) = δ(G). 
As d(ui) = d(v j) = δ(G) ≥ κ(G) ≥ k, we observe that G ∼= Kk,k = Kk,k−s+1, contrary to (3).

Assume that s = 0. Then by Claim 2, n ∈ {2k + 1, 2k + 2}. If n = 2k + 1, then n − (k − s + 1) = k and d(v j) > δ(G) ≥ k. 
As d(ui) = δ(G) ≥ κ(G) ≥ k, we have G ∼= Kk,k+1 = Kk,k−s+1, contrary to (3). If n = 2k + 2, then n − (k − s + 1) = k + 1 and 
d(v j) = δ(G). As d(ui) = d(v j) = δ(G) ≥ κ(G) ≥ k, it follows that G is a balanced bipartite graph of order 2k + 2 such that, 
as k ≥ 2, d(ui) + d(v j) ≥ 2k > k + 1 for any ui v j /∈ E(G). By Theorem 2.1, G is Hamiltonian, which is contrary to (3).

Finally we assume that s = −1. Then by Claim 2, n ∈ {2k + 2, 2k + 3, 2k + 4}. If n = 2k + 2, then n − (k − s + 1) = k and 
d(v j) > δ(G), and in this case, d(ui) = δ(G) ≥ κ(G) ≥ k. Then G ∼= Kk,k+2 = Kk,k−s+1, contrary to (3). If n = 2k + 3, then 
n − (k − s + 1) = k + 1 and d(v j) > δ(G) ≥ k with d(ui) = δ(G) ≥ κ(G) ≥ k. Since n ≥ 9, we have k ≥ 3, and so k + 1 ≤ 2k − 2. 
By Theorem 2.2, G contains a cycle of length 2k + 2. Since n = 2k + 3 and k ≥ 3, it follows that G has a path containing all 
the vertices of G , and therefore G is traceable, contrary to (3). Assume that n = 2k +4. Then n − (k − s +1) = k +2 = k − s +1
and d(v j) = δ(G). By n ≥ 10, we have k ≥ 3. As d(ui) = d(v j) = δ(G) ≥ κ(G) ≥ k, it follows by Theorem 2.2 that G contains 
a cycle of length 2k + 4 which implies that G is traceable, contrary to (3). This completes the proof of Theorem 1.1(i).

(ii) We argue by contradiction and assume that G does not possess Hamiltonian s-properties. If 0 < a < 1, then a2 −1 < 0, 
and so by (4),

λ1(aD(H) + A(H)) ≥ 1

2

(
a(

r

ξ
+ r

n − ξ
) +

√
(a2 − 1)(

r

ξ
− r

n − ξ
)2 + (

r

ξ
+ r

n − ξ
)2

)

>
1

2

(
a(

r

ξ
+ r

n − ξ
) +

√
(a2 − 1)(

r

ξ
+ r

n − ξ
)2 + (

r

ξ
+ r

n − ξ
)2

)

= a(
r

ξ
+ r

n − ξ
).

It follows that

λ1(aD(G) + A(G)) ≥ λ1(aD(H) + A(H))

> a(
r

ξ
+ r

n − ξ
) ≥ aδn

n − ξ
= aδn

n − k + s − 1
,

contrary to (2).
If 1 < a < +∞, then a2 − 1 > 0, and so by (4),

λ1(aD(H) + A(H)) ≥ 1

2

(
a(

r

ξ
+ r

n − ξ
) +

√
(a2 − 1)(

r

ξ
− r

n − ξ
)2 + (

r

ξ
+ r

n − ξ
)2

)

>
1

2

(
a(

r

ξ
+ r

n − ξ
) +

√
(a2 − 1)(

r

ξ
− r

n − ξ
)2 + (

r

ξ
− r

n − ξ
)2

)

= max{ar
,

ar }.

ξ n − ξ

5
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It follows that

λ1(aD(G) + A(G)) ≥ λ1(aD(H) + A(H))

> max{ar

ξ
,

ar

n − ξ
} ≥ max{aδ,

aδ(k − s + 1)

n − k + s − 1
},

contrary to (2). We complete the proof of Theorem 1.1(ii). �
By definition, any graph G ∈ F(k, k − s +1) is not Hamilton-connected if s = 1, not Hamiltonian if s = 0, and not traceable 

if s = −1. Thus we have the following observation.

If G ∈ F(k,k − s + 1), then G does not possess Hamiltonian s-properties. (7)

Proof of Theorem 1.2. By (7), it suffices to prove the sufficiency. We assume that

G /∈ F(k,k − s + 1) and G does not possess Hamiltonian s-properties. (8)

By Theorem 2.4, α(G) ≥ k − s + 1, and thus there exists an independent set X = {ui ∈ V (G)|1 ≤ i ≤ k − s + 1} in G . Let 
Y = V (G) \ X = {v j |1 ≤ j ≤ n − k + s − 1}.

If G[Y ] is a clique in G , then Kk−s+1 ∪ (n − k + s − 1)K1 is a spanning subgraph of G . It follows by the hypothesis of 
Theorem 1.2 and Theorem 2.9 that

(a + 1)(k − s) ≥ λ1(aD(G) + A(G))

≥ λ1(aD(Kk−s+1 ∪ (n − k + s − 1)K1) + A(Kk−s+1 ∪ (n − k + s − 1)K1))

= (a + 1)(k − s). (9)

Thus all the inequalities in (9) must be equalities. Hence G ∼= Kk−s+1 ∪ (n −k + s −1)K1, and so G ∼= Kn−k+s−1 ∨ (k − s +1)K1. 
Since G does not possess Hamiltonian s-properties, by Theorem 2.3, we must have n − k + s − 1 = δ(G) < n+s

2 , and so 
2(n − k + s − 1) ≤ n + s − 1. This implies n − k + s − 1 ≤ k. Note that G is k-connected. Then n − k + s − 1 = δ(G) ≥ k. Thus 
G ∼= Kk ∨ (k − s + 1)K1, which contradicts (8).

If G[Y ] is not a clique in G , then Kk−s+1 ∪ G[Y ] is a spanning subgraph of G . By the assumption of Theorem 1.2 and 
Theorem 2.9, we have

(a + 1)(k − s) ≥ λ1(aD(G) + A(G))

≥ λ1(aD(Kk−s+1 ∪ G[Y ]) + A(Kk−s+1 ∪ G[Y ])). (10)

Note that (10) holds for any G[Y ]. Then we have |Y | = n − k + s − 1 ≤ k − s + 1, and so n ≤ 2(k − s + 1). By Claim 1 in the 
proof of Theorem 1.1, we obtain that n ≥ 2k − s + 1. Therefore, 2k − s + 1 ≤ n ≤ 2(k − s + 1).

Assume that s = 1. Then n = 2k, that is, |Y | = |X | = k. As d(ui) ≥ δ(G) ≥ k for any ui ∈ X , we obtain that G ∈ F(k, k) =
F(k, k − s + 1), which is contrary to (8).

Next we assume that s = 0. Then n ∈ {2k + 1, 2k + 2}. If n = 2k + 1, then |Y | = k and |X | = k + 1. Since d(ui) ≥ δ(G) ≥ k, 
then we have G ∈ F(k, k + 1) = F(k, k − s + 1), contrary to (8). If n = 2k + 2, then |Y | = |X | = k + 1. For any G[Y ], we 
assume that G is not Hamiltonian in (8). However, when G[Y ] is an independent set, we observe that G is a balanced 
bipartite graph of order 2k + 2 such that, as k ≥ 2, d(ui) + d(v j) ≥ 2k > k + 1 for any ui v j /∈ E(G). By Theorem 2.1, G is 
Hamiltonian, a contradiction.

Finally we suppose that s = −1. Then n ∈ {2k + 2, 2k + 3, 2k + 4}. If n = 2k + 2, then |Y | = k and |X | = k + 2. Note that 
d(ui) ≥ δ(G) ≥ k. Then G ∈ F(k, k + 2) = F(k, k − s + 1), contrary to (8). If n = 2k + 3, then |Y | = k + 1 and |X | = k + 2. 
As n ≥ 9, then we have k ≥ 3, and therefore k + 1 ≤ 2k − 2. For any G[Y ], we always assume that G is not traceable in 
(8). However, when G[Y ] is an independent set, we observe that G is a 3-connected bipartite graph with bipartition (X, Y )

and |X | > |Y |. Note that d(ui) ≥ δ(G) ≥ k and d(v j) ≥ δ(G) ≥ k. By Theorem 2.2, G contains a cycle of length 2k + 2. Note 
that n = 2k + 3 and k ≥ 3, it follows that G has a path containing all the vertices of G , and therefore G is traceable, a 
contradiction. If n = 2k + 4, then |Y | = |X | = k + 2. By n ≥ 10, we have k ≥ 3 and k + 2 ≤ 2k − 1. For any G[Y ], we always 
assume that G is not traceable in (8). However, when G[Y ] is an independent set, G is a 3-connected bipartite graph with 
bipartition (X, Y ) and |X | = |Y |. Note that d(ui) ≥ δ(G) ≥ k and d(u j) ≥ δ(G) ≥ k. It follows by Theorem 2.2 that G contains 
a cycle of length 2k + 4, then G is traceable, a contradiction. This completes the proof of Theorem 1.2. �

Before proving Theorem 1.3, we shall indicate that it suffices to consider graphs satisfying the inequality δ ≤ n −k + s − 1
when discussing Theorem 1.3. In fact, assume that G is a graph with δ > n − k + s − 1. Then as δ ≥ κ(G) ≥ k, we have 2δ ≥
n + s, and so δ ≥ n+s

2 . By Theorem 2.3, G possesses Hamiltonian s-properties. Thus we only need to consider δ ≤ n −k + s −1, 
or equivalently, nδ ≤ n. By Theorem 2.5, the upper bound on μ1(G) in Theorem 1.3 is well-defined.
n−k+s−1

6
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Proof of Theorem 1.3. Suppose, to the contrary, that G does not possess Hamiltonian s-properties. By Theorems 2.3 and 2.4, 
then n ≥ 2δ − s + 1 and α(G) ≥ k − s + 1. Let X be an independent set in G such that |X | = k − s + 1. Let r be the number of 
edges between X and V (G)\X . Then r ≥ δ|X |. Accordingly, the quotient matrix R(L) of L(G) on the partition (X, V (G)\X)

becomes:

R(L) =
( r

k−s+1 − r
k−s+1− r

n−k+s−1
r

n−k+s−1

)
.

Let μ1(R(L)), μ2(R(L)) be the eigenvalues of R(L). Then μ1(R(L)) ≥ μ2(R(L)) = 0. By algebraic manipulations, we have

μ1(R(L)) = r

k − s + 1
+ r

n − k + s − 1
.

By Theorem 2.10, then

μ1(G) ≥ μ1(R(L)) = r

k − s + 1
+ r

n − k + s − 1
(11)

≥ (
1

k − s + 1
+ 1

n − k + s − 1
)(k − s + 1)δ = nδ

n − k + s − 1
,

which contradicts the assumption of this theorem.
Furthermore, if μ1(G) ≤ nδ

n−k+s−1 , then all the inequalities in (11) must be equalities. So r = (k − s +1)δ, and the partition 
is equitable. That is to say, each vertex of X has δ neighbors in V (G)\X , and each vertex of V (G)\X has (k−s+1)δ

n−k+s−1 neighbors 
in X . Note that δ = n −k + s − 1. As G is k-connected, we have δ ≥ k. Thus 2δ − s + 1 ≥ δ +k − s + 1 = n ≥ 2δ − s + 1, forcing 
δ = k and n = 2k − s + 1. Hence G ∈ F(k, k − s + 1), a contradiction. Conversely, it is obvious that G ∈ F(k, k − s + 1) does 
not possess Hamiltonian s-properties. �
Proof of Theorem 1.4. By (7), it suffices to prove the sufficiency. Let G /∈F(k, k − s + 1) be a graph. We assume that G does 
not possess Hamiltonian s-properties. As n ≥ 3, G cannot be a complete graph. By Theorems 2.3 and 2.4, then n ≥ 2δ − s + 1
and α(G) ≥ k − s + 1. Let I be an independent set with size α(G) in G . By Theorem 2.6 and the hypothesis of Theorem 1.4, 
we have

n − k + s − 1 ≤ μn−1(G) ≤ n − α(G) ≤ n − k + s − 1.

Hence

n − k + s − 1 = n − α(G) = μn−1(G) ≤ κ(G) ≤ δ,

and so

δ + k − s + 1 ≥ n ≥ 2δ − s + 1 ≥ δ + κ(G) − s + 1 ≥ δ + k − s + 1.

Therefore n = 2δ − s + 1, δ = κ(G) = k and α(G) = k − s + 1, implying that |V (G)\I| = k = δ. Note that for each vertex v ∈ I , 
d(v) ≥ δ. Then G ∈F(k, k − s + 1), a contradiction. �
Proof of Theorem 1.5. It is routine to verify that G ∼= Kk,k−s+1 does not possess Hamiltonian s-properties, where s ∈ {1, 0}
be an integer. Therefore, it suffices to prove the sufficiency. We assume that

G � Kk,k−s+1, where s ∈ {1,0}, (12)

and

G does not possess Hamiltonian s-properties, where s ∈ {1,0,−1}. (13)

By Theorems 2.3 and 2.4, then n ≥ 2δ − s + 1 ≥ 2k − s + 1, and α(G) ≥ k − s + 1. Let I be an independent set with 
size α(G) in G . By Theorem 2.7, α(G) ≤ n μ1−dI

μ1
, and hence μ1 ≥ ndI

n−α(G)
. Note that dI ≥ δ and α(G) ≥ k − s + 1. Then 

μ1 ≥ ndI
n−α(G)

≥ nδ
n−k+s−1 . Combining Theorem 2.8 and the condition of Theorem 1.5, we have

nδ

n − k + s − 1
−

√⌊n

2

⌋⌈n

2

⌉
≤ ndI

n − α(G)
−

√⌊n

2

⌋⌈n

2

⌉
≤ μ1 + λn ≤ nδ

n − k + s − 1
−

√⌊n

2

⌋⌈n

2

⌉
,

and therefore all the inequalities must be equalities, that is,

μ1 = ndI = nδ
, λn = −

√⌊n ⌋⌈n ⌉
.

n − α(G) n − k + s − 1 2 2

7
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So α(G) = k − s + 1, G ∼= K n
2 , n

2
if n is even, and G ∼= K n−1

2 , n+1
2

if n is odd. Next we consider three different values of s, 
respectively.

• s = 1. Note that G is not Hamiltonian-connected by (13). Then G ∼= K n
2 , n

2
if n is even, and G ∼= K n−1

2 , n+1
2

if n is odd. 
Consider even n. Note that α(G) = k. Then n

2 = k, and hence G ∼= Kk,k , contrary to (12). For odd n. Note that α(G) = k. Then 
n+1

2 = k, and hence n = 2k − 1, which contradicts n ≥ 2k.
• s = 0. Note that G is not Hamiltonian by (13). Then G ∼= K n−1

2 , n+1
2

. Note that α(G) = k + 1. Then n+1
2 = k + 1, and hence 

n = 2k + 1. So G ∼= Kk,k+1, which is contrary to (12).
• s = −1. It is obvious that K n

2 , n
2

and G ∼= K n−1
2 , n+1

2
are traceable, which contradicts (13). �

4. Corollaries of Theorems 1.1 and 1.2

Throughout this section, we assume that a and b are real numbers with a ≥ 0 and b > 0, k, s and δ are integers with 
1 ≤ k ≤ δ and s ∈ {1, 0, −1}. Next we consider the nonnegative matrix aD(G) + b A(G). Theorems 1.1 and 1.2 have the 
following more general forms.

Corollary 4.1. Let G be a k-connected graph of order n ≥ 10 and minimum degree δ(G). If

λ1(aD(G) + b A(G)) ≤ bf (
a

b
,n,k, δ, s),

then each of the following holds.
(i) a = 0 or a = b. G possesses Hamiltonian s-properties if and only if G � Kk,k−s+1 .
(ii) 0 < a < b or a > b. G possesses Hamiltonian s-properties.

Proof. Suppose that G does not possess Hamiltonian s-properties.
(i) a = 0 or a = b. That is, a

b = 0 or 1. Notice that Kk,k−s+1 does not possess Hamiltonian s-properties. Therefore, it suffices 
to prove the sufficiency. Assume that G � Kk,k−s+1. By Theorem 1.1(i), λ1(aD(G) + A(G)) > f (a, n, k, δ, s). Note that aD(G) +
b A(G) = b( a

b D(G) + A(G)). It follows that λ1(aD(G) + b A(G)) = bλ1(
a

b
D(G) + A(G)) > bf (

a

b
, n, k, δ, s), a contradiction.

(ii) 0 < a < b or a > b, i.e., a
b ∈ (0, 1) or (1, +∞). Similar to the last part of proof of (i), (ii) follows immediately. �

As one of main results of this paper, Corollary 4.1 can be applied to obtain sufficient condition in terms of the Aα -spectral 
radius λ1(Aα(G)) for a k-connected graph G to possess Hamiltonian s-properties.

Corollary 4.2. Let G be a k-connected graph of order n ≥ 10 and minimum degree δ(G), and let α be a real number with α ∈ [0, 1). If

λ1(Aα(G)) ≤ (1 − α) f (
α

1 − α
,n,k, δ, s),

then each of the following holds.
(i) α = 0 or α = 1

2 . G possesses Hamiltonian s-properties if and only if G � Kk,k−s+1 .

(ii) α ∈ (0, 12 ) or α ∈ ( 1
2 , 1). G possesses Hamiltonian s-properties.

Particularly, sufficient conditions on ρ1(G) and q1(G) are as follows.

Corollary 4.3. Let G be a k-connected graph of order n ≥ 4 with minimum degree δ(G). If

ρ1(G) ≤ δ

√
k − s + 1

n − k + s − 1
,

then each of the following holds.
(i) G is Hamiltonian-connected if and only if G � Kk,k−s+1 for s = 1.
(ii) (R. Li [17]) G is Hamiltonian if and only if G � Kk,k−s+1 for s = 0, where n ≥ 6.
(iii) (R. Li [17]) G is traceable if and only if G � Kk,k−s+1 for s = −1, where n ≥ 10.

Corollary 4.4. Let G be a k-connected graph of order n ≥ 4 with minimum degree δ(G). If

q1(G) ≤ δn

n − k + s − 1
,

then each of the following holds.
(i) G is Hamiltonian-connected if and only if G � Kk,k−s+1 for s = 1.
8
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(ii) G is Hamiltonian if and only if G � Kk,k−s+1 for s = 0, where n ≥ 6.
(iii) G is traceable if and only if G � Kk,k−s+1 for s = −1, where n ≥ 10.

At the end of this paper, tight upper bound on λ1(aD(G) + b A(G)) are proposed.

Corollary 4.5. Let G be a k-connected graph of order n ≥ 10 and minimum degree δ(G). If λ1(aD(G) + b A(G)) ≤ (a + b)(k − s), then 
G possesses Hamiltonian s-properties if and only if G /∈F(k, k − s + 1).

Proof. Note that F(k, k − s + 1) does not possess Hamiltonian s-properties. Therefore, it suffices to prove the sufficiency. 
For G /∈ F(k, k − s + 1). Suppose that G does not possess Hamiltonian s-properties. By Theorem 1.2, λ1(aD(G) + A(G)) >
(a + 1)(k − s). Since aD(G) + b A(G) = b( a

b D(G) + A(G)), it follows that λ1(aD(G) + b A(G)) = bλ1(
a

b
D(G) + A(G)) > b(

a

b
+

1)(k − s) = (a + b)(k − s), a contradiction. �
By choosing different values of a and b, sufficient conditions in terms of ρ1(G), q1(G) and λ1(Aα(G)) for a k-connected 

graph G to possess Hamiltonian s-properties are easily obtained.
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