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ABSTRACT
A graph is supereulerian if it contains a spanning closed trail. We
prove several Erdős-type extremal size conditions with a lower
bounded minimum degree for a graph to be supereulerian and with
different edge-connectivity,with the corresponding extremal graphs
characterized. These results are then applied to prove sufficient con-
ditions involving adjacency spectral radius and signless Laplacian
spectral radius for a graph to be supereulerian.
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1. Introduction

Only finite and simple graphs are considered in this paper. Unless otherwise stated, we will
follow Bondy and Murty [1] for undefined terms and notation. We normally use n, δ(G),
κ(G) and κ ′(G) to denote |V(G)|, the minimum degree, the connectivity and the edge
connectivity of a graph G, respectively. The set of neighbours of a vertex u in a graph G is
denoted by NG(u), Thus NG(u) = {v ∈ V(G) : uv ∈ E(G)}. Define dG(u) = |NG(u)| and
NG[u] = NG(u) ∪ {u}. The adjacency matrix of G is defined to be a (0, 1)-matrix A(G) =
(aij), where aij = 1 if and only if vi and vj are adjacent inG. LetD(G) be the degree diagonal
matrix ofG, andQ(G) = D(G) + A(G) be the signless Laplacian matrix of G. Let λ1(G) ≥
λ2(G) ≥ · · · ≥ λn(G) and q1(G) ≥ q2(G) ≥ · · · ≥ qn(G) be the eigenvalues of A(G) and
Q(G), respectively. The largest eigenvalue of A(G) and Q(G), denoted by λ(G) := λ1(G)

and q(G) := q1(G), are called the spectral radius and the signless Laplacian spectral radius
of G, respectively. Let In be the identity matrix of order n.

The disjoint union of two graphs G1 and G2, denoted by G1 + G2, is the graph with the
vertex set V(G1) ∪ V(G2) and edge set E(G1) ∪ E(G2). The disjoint union of k copies of
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a graph G is denoted by kG. The join of G1 and G2, denoted by G1 ∨ G2, has vertex set
V(G1) ∪ V(G2) and edge set E(G1) ∪ E(G2) ∪ {xy : x ∈ V(G1), y ∈ V(G2)}.

A graph is called nontrivial if it includes at least one edge. A graph G is called eulerian
graph if it is connected andO(G) = ∅ whereO(G) is the set of all vertices of odd degree in
G. A graph is called supereulerian if it has a spanning eulerian subgraph.

Let H be a connected subgraph of a graph G, the contraction G/H is the multigraph
obtained from G by replacing H by a vertex vH in G/H such that the number of edges
joining any v ∈ V(G) − V(H) to vH in G/H equals the number of edges joining v to V(H)

in G. In this case, H is called the preimage of vH . A graph G is called collapsible if for any
subset R of V(G) of even cardinality, there is a spanning connected subgraphHR of Gwith
O(HR) = R. Then by the definition of collapsible, it is obvious that if G is collapsible, then
G is supereulerian.

The reduction of a graphG, denoted byG′, is obtained fromG by contracting allmaximal
collapsible subgraphs. A graphG is called reduced if it is the reduction of itself. In [2], Catlin
demonstrated that every vertex of G belongs to a unique maximal collapsible graph of G.

In 1977, Boesch et al. [3] put forward the supereulerian graph problem: when a graph
has a spanning eulerian subgraph? Pulleyblank [4] verified that judging a graph is supereu-
lerian or not is NP-complete in 1979. Since then, many researchers are keen on this topic.
As a major step forward in the study of supereulerian graphs and the related problems, a
reduction method proposed by Catlin [2] has become an important tool in this area, as
can be found in surveys [5–7] and the references therein, among others. The main goals
of this research are to investigate extremal conditions and spectral conditions to assure a
graph to be supereulerian. As Jaeger [8] and Catlin [2] indicated that every supereulerian
graph must be 2-edge-connected and every 4-edge-connected graph is supereulerian. Our
studies focus on simple graphs with edge-connectivity 2 or 3.

1.1. The extremal conditions for supereulerianicity of a graph

Cai [9] first provided an Ore type condition [10] for a 2-edge-connected graph to be
supereulerian.

Theorem 1.1 (Cai [9]): Let G be a simple graph with κ ′(G) ≥ 2 and n = |V(G)|. If

|E(G)| ≥
(
n − 4
2

)
+ 6, (1)

then exactly one of the following holds:

(i) G is supereulerian;
(ii) G = K2,5;
(iii) Equality holds in (1), and either G is the cube minus a vertex, or G contains a complete

subgraph H = Kn−4 such that G/H = K2,3.

Motivated by this result, Catlin and Chen [11] later extended Theorem 1.1 by ruling out
some graphs with a small order.
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Theorem 1.2 (Catlin and Chen [11]): Let G be a simple graph with κ ′(G) ≥ 2 and n =
|V(G)| ≥ 10. If

|E(G)| ≥
(
n − 6
2

)
+ 10, (2)

then exactly one of the following holds:

(i) G is supereulerian;
(ii) G is contractible to K2 or K2,3;
(iii) Equality holds in (2), andG contains a complete subgraphH = Kn−6 such that G/H =

K2,5.

Let K2,3(n) be the collection of graphs obtained from the K2,3 by replacing one of the
three vertices of degree 2 by a complete graphKn−10, and replacing the remain two vertices
of degree 2 by a complete graph K4, respectively. For any graph G ∈ K2,3(n), let E1 be the
edge set of E(G) whose endpoints are both in X with X = {v ∈ V(G) : d(v) ≥ n − 11}.
Then we define

K′
2,3(n) = {G′ : G′ = G − E′ whereG ∈ K2,3(n) and E′ ⊆ E1 with |E′| = 1}. (3)

Let P be the Petersen graph and let P(n) be the collection of graphs obtained from the
Petersen graph P by replacing one of the ten vertices by a complete graph Kn−9. For any
graph G ∈ P(n), let E2 be the edge set of E(G) whose endpoints are both in X with X =
{v ∈ V(G) : d(v) ≥ n − 10}. Then we define

P1(n) = {G1 : G1 = G − E′′ where G ∈ P(n),E′′ ⊆ E2 with |E′′| ≤ n − 12,G′ = P},
P ′(n) = {G′ : G′ = G − E′′ for any G ∈ P(n), and E′′ ⊆ E2 with |E′′| = 1}.

(4)
By definition, members in P(n) are all in P1(n) with |E′′| = 0. Then we obtain the
following result which sharpens Theorems 1.1 and 1.2 among the graphs with δ(G) ≥ 3.

Theorem 1.3: Let G be a simple graph with κ ′(G) ≥ 2, n = |V(G)| ≥ 15 and δ(G) ≥ 3. If

|E(G)| ≥
(
n − 10

2

)
+ 17, (5)

then G is supereulerian if and only if G /∈ K2,3(n) ∪ P1(n) ∪ K′
2,3(n).

Erdős [12] initiated an extremal sufficient condition involving the lower bound of the
minimum degree for a graph G to be Hamiltonian.

Theorem 1.4 (Erdős [12]): Let G be a graph of order n and the minimum degree δ(G) and
k be an integer with 1 ≤ k ≤ δ(G) ≤ n−1

2 . If

|E(G)| > max

{(
n − k
2

)
+ k2,

(
n+1
2 �
2

)
+

⌊
n + 1
2

⌋2
}
,

then G is Hamiltonian.
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This motivates our current study to seek an extremal sufficient condition involving the
lower bound of theminimumdegree for a graphG to be supereulerian. LetK′

2,3(n, k) be the
collection of graphs obtained from the K2,3 by replacing one of the three vertices of degree
2 by a complete graph Kn−4k−4, and replacing the remain vertices by a complete graph
Kk+1, respectively; and letK′′

2,3(n, k) be the collection of graphs obtained from the K2,3 by
replacing one of the two vertices of degree 3 by a complete graph Kn−4k−4, and replacing
the remain vertices by a complete graph Kk+1, respectively. Following Erdős’ footsteps,
we prove the following theorem, which can be viewed as a generalization of the theorems
above.

Theorem 1.5: Let G be a simple graph with κ ′(G) ≥ 2, n = |V(G)| ≥ 5k + 5 and δ(G) ≥
k ≥ 4. If

|E(G)| ≥
(
n − 4k − 4

2

)
+ 2k(k + 1) + 6, (6)

then G is supereulerian if and only if G /∈ K′
2,3(n, k) ∪ K′′

2,3(n, k).

Cai [9] conjectured that any 3-edge-connected graph G with order n is supereulerian if
|E(G)| ≥ (n−9

2
) + 16. In 1991, Catlin and Chen [11] proved this conjecture and obtained

a stronger conclusion as stated below. As collapsible graphs are supereulerian, this proves
Cai’s conjecture. It is shown in [11] that the edge lower bound is best possible both in Cai’s
conjecture and in Theorem 1.6.

Theorem 1.6 (Catlin and Chen [11]): Let G be a 3-edge-connected simple graph on n
vertices. If

|E(G)| ≥
(
n − 9
2

)
+ 16,

then G is collapsible.

For a sufficiently large n, let P(n, k) be the collection of graphs obtained from the P
by replacing one of the vertices by a complete graph Kn−9k−9, and replacing each of the
remain vertices by a complete graph Kk+1, respectively. Once again we follow the idea of
Erdős [12] to obtain a generalization of Theorem 1.6.

Theorem 1.7: Let G be a 3-edge-connected graph of order n ≥ 10k + 10 and δ(G) ≥ k ≥ 4.
If

|E(G)| ≥
(
n − 9k − 9

2

)
+ 9

2
k(k + 1) + 15, (7)

then G is supereulerian if and only if G /∈ P(n, k).

1.2. The spectral conditions for supereulerianicity of a graph

There have been many studies investigating the relationship between spectral radii of
a graph G and the Hamiltonian properties of G, as seen in [13–18] and the references
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therein, among others. These results alsomotivate the current research.We investigate suf-
ficient spectral conditions for a 2-edge-connected graph to be supereulerian with different
minimum degree constraints and prove the following Theorems 1.8 and 1.9.

Theorem 1.8: Let G be a 2-edge-connected graph of order n and δ(G) ≥ 3.

(1) If n ≥ 15 and λ(G) ≥ n − 10, then G is supereulerian if and only if G /∈ P(n).
(2) If n ≥ 63 and q(G) ≥ 2(n − 10), then G is supereulerian if and only if G /∈ P(n).

Theorem 1.9: Let G be a 2-edge-connected graph of order n ≥ 5k + 5 and δ(G) ≥ k ≥ 4.

(1) If λ(G) >
k−1+

√
4n2−36(k+1)n+81(k+1)2+48

2 , then G is supereulerian.
(2) If q(G) > 2n − 8k − 10 + 20k2+32k+24

n−1 , then G is supereulerian.

Among simple graphs with edge-connectivity 3, the sufficient spectral radii conditions
have smaller lower bounds, as expected.

Theorem 1.10: Let G be a 3-edge-connected graph of order n ≥ 10k + 10 and δ(G) ≥ k ≥
4.

(1) If λ(G) >
k−1+

√
4n2−76(k+1)n+361(k+1)2+120

2 , then G is supereulerian.
(2) If q(G) > 2n − 20 − 18k + 90k2+162k+102

n−1 , then G is supereulerian.

In the next section, we present the preliminaries, including some of tools that will be
used in the proofs of the main results.

2. Extremal size of supereulerian graphs

The main purpose of this section is to prove Theorems 1.3, 1.5 and 1.7, determining the
optimal sizes to assure a graph to be supereulerian under different edge connectivity and
minimum degree conditions. We start with some terms and notation that will be used in
our arguments. Let H1,H2, . . . ,Hc denote the list of all maximal collapsible subgraphs
of G, and let G′ be the reduction of G. Thus G′ is obtained from G by contracting the
H1,H2, . . . ,Hc to distinct vertices v1, v2, . . . , vc, respectively. We assume that the vertices
are so labelled that

dG′(v1) ≤ dG′(v2) ≤ · · · ≤ dG′(vc). (8)

We first state some former results which play important roles in this section. Define
Di(G) = {v ∈ V(G) : dG(v) = i} and di(G) = |Di(G)|.

Theorem 2.1 (Catlin [2]): Let G be a graph and G′ be the reduction of G. Then

(i) G is supereulerian if and only if G′ is supereulerian.
(ii) If G′ is nontrivial and 2-edge-connected, then d2(G′) + d3(G′) ≥ 4, and if d2(G′) +

d3(G′) = 4, then G′ is eulerian.
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(iii) If G′ /∈ {K1,K2}, then G′ is simple and K3-free with δ(G′) ≤ 3 and

|E(G′)| ≤ 2|V(G′)| − 4.

(iv) G is reduced if and only if G has no nontrivial collapsible subgraphs.
(v) If G is supereulerian, then any contraction of G is also supereulerian.

Theorem 2.2 (Catlin [2]): Let H1 and H2 be two subgraphs of H such that H1 ∪ H2 = H
and H1 ∩ H2 �= ∅. If H1 and H2 are collapsible, then H is collapsible.

Let F(G) denote theminimumnumber of extra edges thatmust be added toG so that the
resulting graph has two edge-disjoint spanning trees. Then Catlin obtained the following
Theorems 2.3 and 2.4 in 1987 and in 1996, respectively.

Theorem 2.3 (Catlin [19]): If G is a connected reduced graph, then F(G) = 2|V(G)| −
|E(G)| − 2.

Theorem 2.4 (Catlin et al. [20]): If G is a connected graph and F(G) ≤ 2, then either G is
collapsible, or the reduction of G is a K2 or a K2,t for some integer t ≥ 1.

Then we present two lemmas, namely Lemmas 2.5 and 2.6 which are useful tools to
prove Theorems 1.3, 1.5 and 1.7 in this section.

Lemma 2.5 (Liu et al., Lemma 3.1 of [21]): Let G′ be the reduction of G. If there exists an
i ∈ {1, 2, . . . , c} such that dG′(vi) ≤ δ(G) − 1, then |V(Hi)| ≥ δ(G) + 1.

Lemma 2.6: Let l, a1, a2, . . . , al be integers with l ≥ 2 and 0 ≤ a1 ≤ a2 ≤ · · · ≤ al, and let
f (x1, x2, . . . , xl) = ∑l

i=1
(xi
2
)
be an integral function with

∑l
i=1 xi = n, such that for any

i ∈ {1, 2, . . . , l}, ai ≤ xi. Then

f (x1, x2, . . . , xl) ≤
(
n − ∑l−1

i=1 ai
2

)
+

l−1∑
i=1

(
ai
2

)
.

Moreover, the equality holds if and only if xi = ai for any i ∈ {1, 2, . . . , l − 1} and xl = n −∑l
i=1 ai.

Proof: As ai ≤ xi for any i ∈ {1, 2, . . . , l} and a1 ≤ a2 ≤ · · · ≤ al, we observe that xl ≥ ai
for any i ∈ {1, 2, . . . , l}. Thus for any i ∈ {1, 2, . . . , l − 1},

l−1∑
j=1

(xj − aj) + 2xl − xi − ai =
l−1∑

j=1,j�=i

(xj − aj) + xi − ai + 2xl − xi − ai

=
l−1∑

j=1,j�=i

(xj − aj) + 2xl − 2ai ≥ 0.
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This, together with
∑l

i=1 xi = n, yields
(
n − ∑l−1

i=1 ai
2

)
+

l−1∑
i=1

(
ai
2

)
−

l∑
i=1

(
xi
2

)

=
(
n − ∑l−1

i=1 ai
2

)
−

(
xl
2

)
+

l−1∑
i=1

(
ai
2

)
−

l−1∑
i=1

(
xi
2

)

=
(
n − ∑l−1

i=1 ai − xl
) (

n − ∑l−1
i=1 ai − 1 + xl

)
2

−
l−1∑
i=1

((
xi
2

)
−

(
ai
2

))

=
∑l−1

i=1(xi − ai)
(
n − ∑l−1

j=1 aj − 1 + xl
)

2
−

∑l−1
i=1(xi − ai)(xi − 1 + ai)

2

=
∑l−1

i=1(xi − ai)
(∑l−1

j=1(xj − aj) + 2xl − xi − ai
)

2
≥ 0.

Observe that the equality holds if and only if xi = ai for any i ∈ {1, 2, . . . , l − 1} and xl =
n − ∑l−1

i=1 ai. This completes the proof of the Lemma 2.6. �

Catlin and Chen [11] showed a sufficient condition to judge a class of graphs to be 3-
edge-connected.

Lemma 2.7 (Catlin and Chen [11]): Let n be the smallest natural number such that there
is a 2-edge-connected reduced graph G of order n and size 2n−4, such that G is not K2,n−2.
Then n ≥ 14 and G is 3-edge-connected.

Wenext define a family of graphswhichwill be used to summarize the results of reduced
graphs with small orders. And we will show some graphs in F with small parameters
in Figure 1.

Definition 2.8 (Chen and Lai [22]): Let s1, s2, s3,m, l, t be natural numbers with t ≥ 2
and m, l ≥ 1. Let K ∼= K1,3 with centre a and ends a1, a2, a3. Define K1,3(s1, s2, s3) to
be the graph obtained from K by adding si vertices with neighbours {ai, ai+1}, where
i ≡ 1, 2, 3(mod 3). Let K2,t(u, u′) be a K2,t with u, u′ being the nonadjacent vertices of
degree t. Let K′

2,t(u, u
′, u′′) be the graph obtained from a K2,t(u, u′) by adding a new ver-

tex u′′ that joins to u′ only. Hence u′′ has degree 1 and u has degree t in K ′
2,t(u, u

′, u′′).
Let K ′′

2,t(u, u
′, u′′) be the graph obtained from a K2,t(u, u′) by adding a new vertex u′′

that joins to a vertex of degree 2 of K2,t . Hence u′′ has degree 1 and both u and u′
have degree t in K ′′

2,t(u, u
′, u′′). We shall use K ′

2,t and K ′′
2,t for a K ′

2,t(u, u
′, u′′) and a

K ′′
2,t(u, u

′, u′′), respectively. Let S(m, l) be the graph obtained from a K2,m(u, u′) and a
K ′
2,l(w,w

′,w′′) by identifying u with w, and w′′ with u′; let J(m, l) denote the graph
obtained from a K2,m+1 and a K ′

2,l(w,w
′,w′′) by identifying w,w′′ with the two ends of

an edge in K2,m+1, respectively; let J′(m, l) denote the graph obtained from a K2,m+2 and
a K ′

2,l(w,w
′,w′′) by identifying w,w′′ with two vertices of degree 2 in K2,m+2, respec-

tively. Define F = {K1,K2,K2,t ,K ′
2,t ,K

′′
2,t ,K1,3(s, s′, s′′), S(m, l), J(m, l), J′(m, l),P}, where

t, s, s′, s′′,m, l are both nonnegative integers.
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Figure 1. Some graphs inF with small parameters.

The following theorem which researched the reduced graphs with at most 11 ver-
tices is obtained by Chen and Lai in 1998, which will be the main tool to demonstrate
Corollary 2.10.

Theorem2.9 (Chen and Lai [22]): If G is a connected reduced graph with |V(G)| ≤ 11 and
F(G) ≤ 3, then G ∈ F .

By Theorem 2.9, we can obtain the following corollary which will play an important role
to prove Theorem 1.3.

Corollary 2.10: Let G be a 2-edge-connected reduced graph with |V(G)| ≤ 11 and F(G) ≤
3. If d2(G) ≤ 2, then G ∈ {K1,P}.

Proof: By Theorem 2.9, G ∈ F . By Definition 2.8, if G ∈ {K2,K ′
2,t ,K

′′
2,t ,K1,3(s, s′, s′′)}

with ss′s′′ = 0, then d1(G) ≥ 1, which contrary to G is 2-edge-connected. Thus G ∈
{K1,K2,t ,K1,3(s, s′, s′′), S(m, l), J(m, l), J′(m, l),P} with ss′s′′ �= 0. By Definition 2.8, it is a
routine matter to prove that if G ∈ {K2,t , K1,3(s, s′, s′′), S(m, l), J(m, l), J′(m, l)} with t ≥ 3
and ss′s′′ �= 0, then d2(G) ≥ 3, contrary to the fact that d2(G) ≤ 2. Thus G ∈ {K1,P}. This
proves Corollary 2.10. �

We next present a theorem by Chen for reduced 3-edge-connected graphs with at most
11 vertices. This will be applied to prove Theorem 1.7.



LINEAR ANDMULTILINEAR ALGEBRA 6003

Theorem 2.11 (Chen [23]): Let G be a reduced graph of order at most 11 with κ ′(G) ≥ 3,
then G ∈ {K1,P}.

2.1. Proof of Theorem 1.3

As any collapsible graphs are supereulerian, we prove the following slightly stronger result,
which implies Theorem 1.3.

Theorem 2.12: Let G be a 2-edge-connected graph of order n ≥ 15 and δ(G) ≥ 3. Suppose
that (5) holds. Then G is collapsible if and only if G /∈ K2,3(n) ∪ P1(n) ∪ K′

2,3(n).

Proof: Suppose first that G ∈ K2,3(n) ∪ P1(n) ∪ K′
2,3(n). Then by definition, G can be

contracted to a non-collapsible graph K2,3 or P, and so by Theorem 2.1, G cannot be col-
lapsible. It remains to assume (5) and G /∈ K2,3(n) ∪ P1(n) ∪ K′

2,3(n) to show that G is
collapsible.

Let G′ be the reduction of G with c = |V(G′)|. Then by Theorem 2.3,

F(G′) = 2|V(G′)| − |E(G′)| − 2. (9)

Let h = d2(G′). By (8), for any h + 1 ≤ i ≤ c, both dG′(vi) ≥ 3 and |V(Hi)| ≥ 1. If h ≥ 1,
then for any 1 ≤ i ≤ h, dG′(vi) = 2; and as δ(G) ≥ 3, by Lemma 2.5, |V(Hi)| ≥ δ(G) +
1 ≥ 4. It follows that

n =
c∑

i=1
|V(Hi)| =

h∑
i=1

|V(Hi)| +
c∑

i=h+1

|V(Hi)| ≥ 4h + (c − h) = 3h + c

and |E(G)| ≤ ∑c
i=1

(|V(Hi)|
2

) + |E(G′)|. Then by (9) and |V(G′)| = c, we conclude that
|E(G)| ≤ ∑c

i=1
(|V(Hi)|

2
) + 2|V(G′)| − |F(G′)| − 2. For x ≥ 1, define f (x) =(n−(c−x)−4(x−1)

2
) + (x − 1)

(4
2
) + 2c − 2 = (n−3x+4−c

2
) + 6x + 2c − 8. Thus by Lemma 2.6,

|E(G)| ≤
{
f (h) − F(G′), if h ≥ 1;
f (1) − F(G′), if h = 0.

(10)

Claim 1: F(G′) ≤ 3.

We argue by contradiction and assume that F(G′) ≥ 4. As |V(G′)| = ∑
i≥1 di(G

′),
2|E(G′)| = ∑

i≥1 idi(G
′) and by (9), we have

2d2(G′) + d3(G′) ≥ 12 +
∑
i≥5

(i − 4)di(G′) ≥ 12 +
∑
i≥5

di(G′). (11)

If h ≥ 1, then (11) implies that n ≥ 3h + c ≥ 4d2(G′) + d3(G′) ≥ 14. As F(G′) ≥ 4,(
n − 10

2

)
+ 17 − [f (h) − F(G′)]

≥ (3h + c − 14)(2n − 7 − 3h − c)
2

+ 29 − 6h − 2c
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≥ 1
2
(3h + c)2 − 25

2
(3h + c) + 78 > 0. (12)

If h = 0, then by (11), n ≥ c ≥ d3(G′) ≥ 12. This, together with facts that n ≥ 15 and
F(G′) ≥ 4, implies

(
n − 10

2

)
+ 17 − [f (1) − F(G′)] ≥ 1

2
(c − 11)(2n − 14 − c) + 1 > 0. (13)

It follows from (10), (12) and (13), and by algebraic manipulations that for all values of
h ≥ 0, |E(G)| <

(n−10
2

) + 17, contrary to (5). This proves Claim 1.

Claim 2: c ≤ 11.

Again by contradiction, we assume that c = |V(G′)| ≥ 12, and soG′ /∈ {K1,K2}. By (iii)
of Theorem 2.1,

|E(G′)| ≤ 2|V(G′)| − 4. (14)

Then by (9), (10) and (14),

|E(G)| ≤
{
f (h) − 2, if h ≥ 1;
f (1) − 2, if h = 0.

(15)

If h ≥ 1, then n ≥ 3h + c ≥ 15. Thus(
n − 10

2

)
+ 17 − [f (h) − 2]

= (3h + c − 14)(2n − 7 − 3h − c)
2

+ 27 − 6h − 2c

≥ 1
2
(3h + c)2 − 25

2
(3h + c) + 76 > 0. (16)

If h = 0, by c ≥ 12 and n ≥ 15,
(
n − 10

2

)
+ 17 − [f (1) − 2] ≥ (c − 11)(2n − 14 − c)

2
− 1 > 0. (17)

Hence by (15), (16) and (17), for h ≥ 0, we have |E(G)| <
(n−10

2
) + 17, contrary to (5).

This proves Claim 2.

Claim 3: Each of the following holds:

(i) d2(G′) ≤ 3.
(ii) If d2(G′) ≤ 2, then G′ ∈ {K1,P}.
(iii) If d2(G′) = 3, then G′ = K2,3.
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By contradiction. Assume that h = d2(G′) ≥ 4. As |V(G′)| = ∑
i≥1 di(G

′), 2|E(G′)| =∑
i≥1 idi(G

′) and by (14),

2d2(G′) + d3(G′) ≥ 8 +
∑
i≥5

(i − 4)di(G′) ≥ 8 +
∑
i≥5

di(G′). (18)

By (18) and h ≥ 4, we have n ≥ 3h + c ≥ 4d2(G′) + d3(G′) + d4(G′) ≥ 16. Thus using the
algebraic manipulations similar to those in the proof of (16) above, we conclude that when
h ≥ 4, |E(G)| <

(n−10
2

) + 17, contrary to (5). This proves Claim 3(i).
As d2(G′) ≤ 2, then byClaims 1, 2 andCorollary 2.10, we haveG′ ∈ {K1,P}. This proves

Claim 3(ii).
If 2d2(G′) + d3(G′) + d4(G′) ≥ 9, then byd2(G′) = 3,we haven ≥ 3h + c ≥ 4d2(G′) +

d3(G′) + d4(G′) ≥ 15. Thus with the same proof of (16) in Claim 2, |E(G)| <
(n−10

2
) + 17

when h ≥ 3, which is contrary to the condition that |E(G)| ≥ (n−10
2

) + 17. Thus 2d2(G′) +
d3(G′) + d4(G′) ≤ 8, and so by (18), we have 2d2(G′) + d3(G′) = 8 and

∑
i≥4 di(G

′) = 0,
which imply that d2(G′) = 3, d3(G′) = 2 and for any i ≥ 4, di(G′) = 0. Thus |E(G′)| =
2|V(G′)| − 4. As d2(G′) = 3, G′ cannot be 3-edge-connected. Thus by Lemma 2.7, G′ =
K2,3. This proves Claim 3(iii), and so Claim 3 holds.

By Claims 1, 2 and 3,

G′ ∈ {K1,K2,3,P}. (19)

If G′ ∈ {K2,3,P}, then by δ(G) ≥ 3 and |E(G)| ≥ (n−10
2

) + 17, it is routine to verify that
G ∈ K2,3(n) ∪ P1(n) ∪ K′

2,3(n), contrary to the assumption that G /∈ K2,3(n) ∪ P1(n) ∪
K′

2,3(n). Thus by (19), we haveG
′ = K1, and soG is collapsible. This proves Theorem 2.12.

�

2.2. Proof of Theorem 1.5

Let G′ be the reduction of G with c = |V(G′)|. And let f1(n, k) = (n−4k−4
2

) + 2k(k + 1) +
6. If G ∈ K′

2,3(n, k) ∪ K′′
2,3(n, k), then G′ = K2,3. As K2,3 is not supereulerian, then by (i)

of Theorem 2.1, G is not supereulerian. Thus if G is supereulerian, then G /∈ K′
2,3(n, k) ∪

K′′
2,3(n, k).
To prove the converse, we may assume that G /∈ K′

2,3(n, k) ∪ K′′
2,3(n, k) to prove G is

supereulerian. We argue by contradiction and assume thatG is not supereulerian. By (i) of
Theorem 2.1, G′ is not supereulerian.

Claim 4: F(G′) ≤ 2.

Suppose, to the contrary, that F(G′) ≥ 3. By Theorem 2.3,

2|V(G′)| − |E(G′)| ≥ 5. (20)

As |V(G′)| = ∑
i≥1 di(G

′) and 2|E(G′)| = ∑
i≥1 idi(G

′),

2d2(G′) + d3(G′) ≥ 10 +
∑
i≥5

(i − 4)di(G′) ≥ 10 +
∑
i≥5

di(G′). (21)

By (25), algebraic manipulation leads to d2(G′) + d3(G′) ≥ 5. Thus c ≥ 5 and by (8), we
have dG′(v5) ≤ 3. Since δ(G) ≥ k ≥ 4, by Lemma 2.5, |V(Hi)| ≥ δ(G) + 1 ≥ k + 1 for any
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1 ≤ i ≤ 5. Thus n = ∑c
i=1 |V(Hi)| = ∑5

i=1 |V(Hi)| + ∑c
i=6 |V(Hi)| ≥ 5(k + 1) + (c −

5) = 5k + c. Let

g(c) = f1(n, k) −
[(

n − 4k − c + 1
2

)
+ 2k(k + 1) + 2c − 5

]
.

Since k ≥ 4, n ≥ 5k + c and c ≥ 5, we have

g(c) = f1(n, k) −
[(

n − 4k − c + 1
2

)
+ 2k(k + 1) + 2c − 5

]

= (c − 5)(2n − 8k − c − 4)
2

+ 11 − 2c

≥ (c − 5)(2k + c − 4)
2

+ 11 − 2c

= c2

2
+

(
k − 13

2

)
c − 5k + 21 ≥ 1 > 0. (22)

Thus by Lemma 2.6, (20) and (22), we observe that

|E(G)| ≤
c∑

i=1

(|V(Hi)|
2

)
+ |E(G′)|

≤
(
n − (c − 5) − 4(k + 1)

2

)
+ 4

(
k + 1
2

)
+ 2|V(G′)| − 5

≤
(
n − 4k − c + 1

2

)
+ 2k(k + 1) + 2c − 5

< f1(n, k) =
(
n − 4k − 4

2

)
+ 2k(k + 1) + 6,

contrary to (6). This proves Claim 1.
By Theorem 2.4 and Claim 1, eitherG′ is collapsible, orG′ is aK2 or aK2,t for some inte-

ger t ≥ 1. SinceG′ is reduced, nonsupereulerian and κ ′(G′) ≥ κ ′(G) ≥ 2, it follows thatG′
is aK2,t for some odd integer t ≥ 3. AsG′ = K2,t , we have c = t+ 2. Then by (8), dG′(vi) =
2 for any 1 ≤ i ≤ t and dG′(vt+1) = dG′(vt+2) = t. Since δ(G) ≥ k ≥ 4, by Lemma 2.5,
|V(Hi)| ≥ δ(G) + 1 ≥ k + 1 for any 1 ≤ i ≤ t and |V(Hi)| ≥ 1 for any i ∈ {t + 1, t + 2}.
It follows that n ≥ t(k + 1) + 2. Thus by Lemma 2.6,

|E(G)| ≤
c∑

i=1

(|V(Hi)|
2

)
+ |E(G′)| ≤

(
n − 2 − (t − 1)(k + 1)

2

)
+ (t − 1)

(
k + 1
2

)
+ 2t.

(23)

Claim 5: t = 3.

By contradiction, we assume that t �= 3. Since t ≥ 3 and t is an odd number, we have
t ≥ 5. Let θ(t) = f1(n, k) − [

(n−2−(t−1)(k+1)
2

) + (t − 1)
(k+1

2
) + 2t]. As n ≥ t(k + 1) + 2

and k ≥ 4, we have

θ(t) = f1(n, k) −
[(

n − 2 − (t − 1)(k + 1)
2

)
+ (t − 1)

(
k + 1
2

)
+ 2t

]
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= 1
2
(t(k + 1) − 5k − 3)(2n − 3k − 6 − t(k + 1)) + 1

2
k(k + 1)(5 − t) + 6 − 2t

≥ 1
2
(t(k + 1) − 5k − 3)(t(k + 1) − 3k − 2) + 1

2
k(k + 1)(5 − t) + 6 − 2t

≥ 1
2
(t(k + 1) − 5k − 3)(2k + 3) + 1

2
k(k + 1)(5 − t) + 6 − 2t

= 1
2
(t − 5)k2 +

(
2k − 1

2

)
t − 8k + 3

2
≥ 2k − 1 > 0. (24)

Thus by (23) and (24), |E(G)| < f1(n, k) = (n−4k−4
2

) + 2k(k + 1) + 6, contrary to the
condition |E(G)| ≥ (n−4k−4

2
) + 2k(k + 1) + 6. Thus G′ = K2,3. As δ(G) ≥ k ≥ 4 and

|E(G)| ≥ (n−4k−4
2

) + 2k(k + 1) + 6, it is routine to prove that G ∈ K′
2,3(n, k) ∪ K′′

2,3(n, k),
contrary to the assumption that G /∈ K′

2,3(n, k) ∪ K′′
2,3(n, k). Thus we have G

′ is supereu-
lerian. The proof of the theorem is completed. �

2.3. Proof of Theorem 1.7

LetG′ be the reduction ofGwith c = |V(G′)|. As P is not supereulerian, and P is the reduc-
tion for anyG ∈ P(n, k), by (i) of Theorem 2.1, for anyG ∈ P(n, k),G is not supereulerian.
Thus if G is supereulerian, then G /∈ P(n, k).

Therefore, in the rest of the proof, we may assume G /∈ P(n, k) to prove that G is
supereulerian. We argue by contradiction, and assume that G is not supereulerian. By (i)
of Theorem 2.1, G′ is not supereulerian. Then the following claim holds.

Claim 6: F(G′) ≥ 3.

Assume that F(G′) ≤ 2. By Theorem 2.4, eitherG′ is collapsible orG′ is aK2 or aK2,t for
some integer t ≥ 1, contrary to the assumption G′ is not supereulerian or δ(G′) ≥ δ(G) ≥
k ≥ 3. This proves Claim 1.

Then by Theorem 2.3 and Claim 1,

2|V(G′)| − |E(G′)| ≥ 5. (25)

By (25) and by the facts |V(G′)| = ∑
i≥1 di(G

′) and 2|E(G′)| = ∑
i≥1 idi(G

′), we have

d3(G′) ≥ 10 +
∑
i≥5

(i − 4)di(G′) ≥ 10 +
∑
i≥5

di(G′). (26)

Claim 7: c = 10.

By contradiction, we assume that c ≥ 11. Since δ(G) ≥ k ≥ 4, by Lemma 2.5, |V(Hi)| ≥
δ(G) + 1 ≥ k + 1 for any 1 ≤ i ≤ 10. Thus n = ∑c

i=1 |V(Hi)| = ∑10
i=1 |V(Hi)| +∑c

i=11 |V(Hi)| ≥ 10(k + 1) + c − 10 = 10k + c. By Lemma 2.6 and (25),

|E(G)| ≤
c∑

i=1

(|V(Hi)|
2

)
+ |E(G′)| ≤

(
n − (c − 10) − 9(k + 1)

2

)
+ 9

(
k + 1
2

)
+ 2c − 5
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=
(
n − 9k − c + 1

2

)
+ 9

2
k(k + 1) + 2c − 5.

As n ≥ 10k + c, k ≥ 4 and c ≥ 11, we have(
n − 9k − 9

2

)
+ 9

2
k(k + 1) + 15 −

[(
n − 9k − c + 1

2

)
+ 9

2
k(k + 1) + 2c − 5

]

= 1
2
(c − 10)(2n − 18k − 13 − c) ≥ (c − 10)(2k + c − 13) > 0.

It follows that |E(G)| ≤ (n−9k−c+1
2

) + 9
2k(k + 1) + 2c − 5 <

(n−9k−9
2

) + 9
2k(k + 1) + 15,

contrary to (7). This proves Claim 2.
Then by Claim 2 and Theorem 2.11,G′ = P. As δ(G) ≥ k ≥ 4 and |E(G)| ≥ (n−9k−9

2
) +

9
2k(k + 1) + 15, it is routine to show thatG ∈ P(n, k), contrary to the fact thatG /∈ P(n, k).
Thus G′ is supereulerian. This completes the proof of Theorem 1.7. �

3. Eigenvalues of supereulerian graphs

In this section, we aim to prove Theorems 1.8, 1.9 and 1.10. We start with the following
two lemmas, which be utilized in this section.

Lemma 3.1 (Hong et al. [24] and Nikiforov [25]): Let G be a graph of order n with the
minimum degree δ(G) ≥ k. Then

λ(G) ≤ k − 1 +
√

(k + 1)2 + 4(2|E(G)| − nk)
2

.

Remark: AsG is a simple graph, if n = |V(G)|, then 2|E(G)| ≤ n(n − 1). Standard calcu-

lus arguments can be applied to show that the function h(x) = x−1+
√

(x+1)2+4(2|E(G)|−nx)
2

is decreasing in x for x ∈ [1, n − 1].

Lemma 3.2 (Feng [26]): Let G be a graph of order n. Then

q(G) ≤ 2|E(G)|
n − 1

+ n − 2.

Let π = (V1, . . . ,Vt) be a partition of V(G). For 1 ≤ i, j ≤ t, let bij denote the average
number of neighbours inVj of the vertices inVi. The quotient matrix of this partition is the
t × t matrix B = G/π whose (i, j)th entry equals bij. The partition is called equitable if for
each i, j, every vertex in Vi has same number of neighbours in Vj. The following theorems
are useful.

Lemma 3.3 (Godsil and Royle [27]): If the partition of graph G is equitable, then the
spectral radius of the quotient matrix is equal to the spectral radius of G.

Given two distinct vertices u, v in a graph G, the graph G′ = G′(u, v) is obtained from
G by replacing all edges vw by uw for each w ∈ NG(v) \ (NG(u) ∪ {u}). This operation
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is called the Kelmans transformation [28]. By utilizing this transformation, the following
results have been proved.

Lemma 3.4: Let G be a graph and G′ be the graph obtained from G by some Kelmans
transformation. Then

(i) (Csikvári [29]) λ(G) ≤ λ(G′).
(ii) (Li and Ning [14]) q(G) ≤ q(G′).

Let u1, u2 ∈ V(G) denote the two vertices of degree 3 in K2,3, and denote V(K2,3) −
{u1, u2} = {v1, v2, v3}. Suppose that K1 ∼= Kn−10, K2 ∼= K3 ∼= K4 are three vertex disjoint
graphs. Define K2,3(n) to be the graph formed from K2,3 by identifying vi with a vertex in
Ki, for each 1 ≤ i ≤ 3. Equivalently, we have

K2,3(n) = {G : G ∈ K2,3(n) with NK2,3(n)(u1) = NK2,3(n)(u2)}.

Let u ∈ P be a vertex with NP(u) = {v1, v2, v3} and let K ∼= Kn−9. Define P(n) to be the
graph formed from P by identifying a vertex in K with u. Equivalently, we have

P(n) = {G : G ∈ P(n) with NP(n)(v1) ∩ NP(n)(v2) ∩ NP(n)(v3) �= ∅}.

As illustrations, both K2,3(n) and P(n) are shown below. And they will be used to prove
Lemma 3.5.

Lemma 3.5: Each of the following holds:

(i) for any G ∈ K2,3(n) ∪ K′
2,3(n) with n ≥ 15, λ(G) < n − 10 and q(G) < 2n − 20;

(ii) for any G ∈ P1(n) \ P(n), if n ≥ 15, then λ(G) < n − 10. And if n ≥ 30, then
q(G) < 2n − 20.

Proof of Lemma 3.5(i): Adopting the notation in the definition ofK2,3(n) andK2,3(n), we
justify the following claim.

Claim 8: For any G ∈ K2,3(n) with n ≥ 15, λ(G) ≤ λ(K2,3(n)) and q(G) ≤ q(K2,3(n)).
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For any G ∈ K2,3(n) with G �= K2,3(n), by the definition of graphs in K2,3(n), there
exists an edge ab ∈ E(G) with a ∈ NG(u1) and b ∈ NG(u2). For such an ab ∈ E(G), we
let u = a, v = b in G. Thus NG(v)\(NG(u) ∪ {u}) = {u2}. Let G′

1 = G′
1(u, v) be a Kel-

mans transformation of G. Then by Lemma 3.4, λ(G) ≤ λ(G′
1) and q(G) ≤ q(G′

1). If there
exists such an edge ab ∈ E(G′

1), we repeat the above step until there is no such ab. And
let G′

2 be the final graph we obtained, then it is obvious that G′
2 = K2,3(n). Thus we have

λ(G) ≤ λ(G′
2) = λ(K2,3(n)) and q(G) ≤ q(G′

2) = q(K2,3(n)). This proves Claim 1.
For graph K2,3(n), define X = {v ∈ V(K2,3(n)) : dK2,3(n)(v) = n − 9}, Y = {v ∈

V(K2,3(n)) : dK2,3(n)(v) = n − 11 and v ∈ NK2,3(n)(X)}, U = {v ∈ V(K2,3(n)) : dK2,3(n)(v)
= 3 and v ∈ NK2,3(n)(X)}, V = {v ∈ V(K2,3(n)) : dK2,3(n)(v) = 5 and v ∈ NK2,3(n)(U)}, and
W = {v ∈ V(K2,3(n)) : dK2,3(n)(v) = 3andv ∈ NK2,3(n)(V)}. Then the following claim
holds.

Claim 9: For any G ∈ K2,3(n) ∪ K′
2,3(n), λ(G) < n − 10.

Let K2,3(n)/π be the quotient matrix of K2,3(n) of the partition π = (U,V ,W,X,Y).
Then by definition, this partition is equitable and

K2,3(n)/π =

⎛
⎜⎜⎜⎜⎝
0 2 0 1 0
2 0 3 0 0
0 1 2 0 0
2 0 0 0 n − 11
0 0 0 1 n − 12

⎞
⎟⎟⎟⎟⎠ .

Thus the characteristic polynomial det(λIn − K2,3(n)/π) of matrix K2,3(n)/π is equal to

f (λ) = λ5 + (10 − n)λ4 + (n − 22)λ3 + (11n − 118)λ2 + (73 − 5n)λ + 160 − 14n.

As n ≥ 15, by algebraic manipulations, we have the following inequalities holds:

f (n − 10) = (n2 − 21n + 90)(n − 10)2 + (7n − 61)(n − 10) + 20 > 0,

f ′(n − 10) = 5λ4 + 4(10 − n)λ3 + 3(n − 22)λ2 + 2(11n − 118)λ + 73 − 5n
∣∣
λ=n−10

= (n2 − 17n + 34)(n − 10)2 + (22n − 241)(n − 10) + 23 > 0,

f ′′(n − 10) = 20λ3 + 12(10 − n)λ2 + 6(n − 22)λ + 2(11n − 118)
∣∣
λ=n−10

= (8n2 − 154n + 668)(n − 10) + 2(11n − 118) > 0,

f ′′′(n − 10) = 60λ2 + 24(10 − n)λ + 6(n − 22)
∣∣
λ=n−10 = 6(6n2 − 119n + 578) > 0,

f (4)(n − 10) = 120λ + 24(10 − n)
∣∣
λ=n−10 = 96(n − 10) > 0,

f (5)(n − 10) = 120 > 0.

Thus by the Fourier–Budan theorem [30], there is no root of the polynomial f (λ) in the
interval [n − 10,+∞). Then λ(K2,3(n)/π) < n − 10. As the partition π is equitable, by
Lemma 3.3, we have λ(K2,3(n)) < n − 10. And by the definition ofK2,3(n) andK′

2,3(n), it
is obvious that for any G1 ∈ K′

2,3(n), there exists a graph G2 ∈ K2,3(n) such that G1 ⊆ G2.
Thus by Claim 1, for any G ∈ K2,3(n) ∪ K′

2,3(n), λ(G) < n − 10. This proves Claim 2.
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Claim 10: For any G ∈ K2,3(n) ∪ K′
2,3(n), q(G) < 2n − 20.

Let Q(K2,3(n))/π be the quotient matrix of Q(K2,3(n)) of the partition π =
(U,V ,W,X,Y). Then by definition, this partition is equitable and

Q(K2,3(n))/π =

⎛
⎜⎜⎜⎜⎝
3 2 0 1 0
2 5 3 0 0
0 1 5 0 0
2 0 0 n − 9 n − 11
0 0 0 1 2n − 23

⎞
⎟⎟⎟⎟⎠ .

Thus the characteristic polynomial det(λIn − Q(K2,3(n))/π) of matrix Q(K2,3(n))/π is
equal to

g(q) = q5 + (19 − 3n)q4 + (2n2 − 3n − 152)q3 − (26n2 − 406n + 1370)q2

+ (96n2 − 1918n + 9408)q − 92n2 + 2020n − 11040.

As n ≥ 15, by algebraic manipulations, we have the following inequalities holds:

g(2n − 20) = (4n2 − 110n + 750)(2n − 20)2 + (36n − 532)(2n − 20)

+ 180n − 1840 > 0,

g′(2n − 20) = 5q4 + 4(19 − 3n)q3 + 3(2n2 − 3n − 152)q2 − 2(26n2 − 406n + 1370)q

+ 96n2 − 1918n + 9408
∣∣
q=2n−20

= (n2 − 16n + 16)(2n − 20)2 + (2n2 − 44n + 210)(n − 15)(2n − 20)

+ 52n2 − 978n + 4408 > 0,

g′′(2n − 20) = 20q3 + 12(19 − 3n)q2 + 6(2n2 − 3n − 152)q − 52n2

+ 812n − 2740
∣∣
q=2n−20

= (20n2 − 468n + 2665)(2n − 20) + 18n > 0,

g′′′(2n − 20) = 60q2 + 24(19 − 3n)q + 6(2n2 − 3n − 152)
∣∣
q=2n−20

= 18(6n2 − 137n + 776) > 0,

g(4)(2n − 20) = 120q + 24(19 − 3n)
∣∣
q=2n−20 = 24(7n − 81) > 0,

g(5)(2n − 20) = 120 > 0.

Thus by the Fourier–Budan theorem [30], there is no root of the polynomial g(q) in the
interval [2n − 20,+∞). Then q(Q(K2,3(n))/π) < 2n − 20. As the partitionπ is equitable,
by Lemma 3.3(ii), we have q(K2,3(n)) < 2n − 20. And by the definition of K2,3(n) and
K′

2,3(n), it is obvious that for anyG1 ∈ K′
2,3(n), there exists a graphG2 ∈ K2,3(n) such that

G1 ⊆ G2. Thus by Claim 1, for any G ∈ K2,3(n) ∪ K′
2,3(n), q(G) < 2n − 20. This proves

Claim 3. Thus Lemma 3.5(i) follows from Claims 2 and 3. �

Proof of Lemma 3.5(ii): Adopting the notation in the definition of P(n), we let x ∈
V(P) ∩ V(K), and y1, y2 ∈ V(K) − V(P). Then up to isomorphism,G1 = P(n) − xy1 and
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G2 = P(n) − y1y2 are the only two graphs obtained from P(n) by deleting one edge not in
E(P).

Using the notation in Figure 2, let u = x, v = y2 in G1. Thus NG(v)\(NG(u) ∪ {u}) =
{y1}. LetG′

1 = G′
1(u, v) be a Kelmans transformation ofG1. ThenG′

1 = G2. By Lemma 3.4,
λ(G1) ≤ λ(G′

1) = λ(G2) and q(G1) ≤ q(G′
1) = q(G2). Then we obtain the following

Claim.

Claim 11: For any G ∈ P1(n) \ P(n) with n ≥ 15, λ(G) ≤ λ(G2) and q(G) ≤ q(G2).

For any G ∈ P ′(n) and G �= G2 with n ≥ 15, let e = ab /∈ E(G) and G is obtained
from one graph in P(n) by deleting e. If NG(a) �= NG(b) (equivalently, (

⋃3
i=1 NG(vi)) ∩

{a, b} �= ∅ ), by n ≥ 15, there exists such an edge cd ∈ E(G) such that NG(c) = NG(d)
(equivalently, (

⋃3
i=1 NG(vi)) ∩ {c, d} = ∅) and {a, b} ⊆ NG(c) = NG(d). let u = a, v = c

in G. Thus NG(v)\(NG(u) ∪ {u}) = {b}. Let G′
1 = G′

1(u, v) be a Kelmans transformation
of G1. By Lemma 3.4, λ(G) ≤ λ(G′

1) and q(G) ≤ q(G′
1). Let u = b, v = d in G′

1. Thus
NG′

1
(v)\(NG′

1
(u) ∪ {u}) = {c}. Let G′

2 = G′
2(u, v) be a Kelmans transformation of G′

1. By
Lemma 3.4, λ(G) ≤ λ(G′

1) ≤ λ(G′
2) and q(G) ≤ q(G′

1) ≤ q(G′
2).

For graph G′
2, if

⋂
i=1,2,3 NG′

2
(vi) = ∅, without loss of generality, we may assume

that a1a2 ∈ E(G′
2) such that a1 ∈ NG′

2
(v1) \ NG′

2
(v2) and a2 ∈ NG′

2
(v2) \ NG′

2
(v1). Let u =

a1, v = a2 in G′
2. Thus NG′

2
(v)\(NG′

2
(u) ∪ {u}) = {v1}. Let G′

3 = G′
3(u, v) be a Kelmans

transformation of G′
2. By Lemma 3.4, λ(G′

2) ≤ λ(G′
3) and q(G′

2) ≤ q(G′
3). For graph G′

3,
if

⋂
i=1,2,3 NG′

3
(vi) = ∅, then we repeat the step above until

⋂
i=1,2,3 NG′

3
(vi) �= ∅. And let

G′
4 be the final graph we obtained, then it’s routine to obtain that G′

4 = G2. By Lemma 3.4,
λ(G′

2) ≤ λ(G′
3) ≤ λ(G2) and q(G′

2) ≤ q(G′
3) ≤ q(G2). Thus for any G ∈ P ′(n), we have

λ(G) ≤ λ(G2) and q(G) ≤ q(G2).
As all complete graphs of order n ≥ 3 are collapsible, and so by Theorem2.2, for anyG ∈

P ′(n), G′ = P. Thus by the definition of P1(n) and P ′(n), we have for any H1 ∈ P1(n) \
P(n), there exists a graphH2 ∈ P ′(n) such thatH1 ⊆ H2. Thus for anyG ∈ P1(n) \ P(n),
we have λ(G) ≤ λ(G2) and q(G) ≤ q(G2). This proves Claim 1.

For graphG2, defineX = {v ∈ V(G2) : dP(n)(v) = n − 7}, Y = {v ∈ V(G2) : dG2(v) =
n − 11}, W = {v ∈ V(G2) : dG2(v) = n − 10}, U = {v ∈ V(G2) : dG2(v) = 3 and v /∈

Figure 2. The graphs obtained from P(n) by deleting one edge not in E(P).
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NG2(X)}, and V = {v ∈ V(G2) : dG2(v) = 3 and v ∈ NG2(X)}. Then we obtain the follow-
ing claim.

Claim 12: For any G ∈ P1(n) \ P(n) with n ≥ 15, λ(G) < n − 10.

Let G2/π be the quotient matrix of G2 of the partition π ′ = (U,V ,X,W,Y). Then by
definition, we get this partition is equitable and

G2/π
′ =

⎛
⎜⎜⎜⎜⎝
2 1 0 0 0
2 0 1 0 0
0 3 0 n − 12 2
0 0 1 n − 13 2
0 0 1 n − 12 0

⎞
⎟⎟⎟⎟⎠ .

Thus the characteristic polynomial det(λIn − G2/π
′) of matrix G2/π

′ is equal to

g(λ) = λ5 + (11 − n)λ4 + (3 − n)λ3 + (9n − 105)λ2 + (10n − 106)λ + 100 − 8n.

As n ≥ 15, by algebraic manipulations, we obtain the following evaluations of g and its
higher order of derivatives.

g(n − 10) = (2n − 35)(n − 10)2 + (10n − 114)(n − 10) + 20 > 0,

g′(n − 10) = 5λ4 + 4(11 − n)λ3 + 3(3 − n)λ2 + 2(9n − 105)λ + (10n − 106)
∣∣
λ=n−10

= (n2 − 19n + 69)(n − 10)2 + (18n − 210)(n − 10) + 10n − 106 > 0,

g′′(n − 10) = 20λ3 + 12(11 − n)λ2 + 6(3 − n)λ + 2(9n − 105)
∣∣
λ=n−10

= (8n2 − 154n + 698)(n − 10) + 18n − 210 > 0,

g′′′(n − 10) = 60λ2 + 24(11 − n)λ + 6(3 − n)
∣∣
λ=n−10 = 36(n − 10)2 + 18n − 222 > 0,

g(4)(n − 10) = 120λ + 24(11 − n)
∣∣
λ=n−10 = 96(n − 10) + 24 > 0,

g(5)(n − 10) = 120 > 0.

Thus by the Fourier–Budan theorem [30], there is no root of the polynomial g(λ) in
the interval [n − 10,+∞). Then λ(G2/π

′) < n − 10. As the partition π ′ is equitable, by
Lemma 3.3, we have λ(G2) < n − 10. Then for any G ∈ P1(n) \ P(n), λ(G) < n − 10.
This proves Claim 2.

Claim 13: For any G ∈ P1(n) \ P(n) with n ≥ 30, q(G) < 2n − 20.

Let Q(G2)/π
′ be the quotient matrix of G2 of the partition π ′ = (U,V ,X,W,Y). Then

by definition, we get this partition is equitable and

Q(G2)/π
′ =

⎛
⎜⎜⎜⎜⎝
5 1 0 0 0
2 3 1 0 0
0 3 n − 7 n − 12 2
0 0 1 2n − 23 2
0 0 1 n − 12 n − 11

⎞
⎟⎟⎟⎟⎠ .
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Thus the characteristic polynomial det(qIn − Q(G2)/π
′) of matrix Q(G2)/π

′ is equal to

g(q) = q5 + (33 − 4n)q4 + (5n2 − 71n + 207)q3 − (2n3 − 22n2 − 152n + 1681)q2

+ (16n3 − 437n2 + 3789n − 10080)q − 26n3 + 836n2 − 8882n + 31104.

As n ≥ 30, by algebraic manipulations, we have the following inequalities holds:

g(2n − 20) = (2n2 − 85n + 776)(2n − 20) + 6n − 176 > 0,

g′(2n − 20) = 5q4 + 4(33 − 4n)q3 + 3(5n2 − 71n + 207)q2

− 2(2n3 − 22n2 − 152n + 1681)q

+ 16n3 − 437n2 + 3789n − 10080
∣∣
q=2n−20

= (n − 15)(n2 − 18n + 83)(4n − 40) + 3n2 + 5n − 240 > 0,

g′′(2n − 20) = 20q3 + 12(33 − 4n)q2 + 6(5n2 − 71n + 207)q − 2(2n3 − 22n2 − 152n

+ 1681)
∣∣
q=2n−20

= (3n2 − 68n + 373)(8n − 80) + 4n + 38 > 0,

g′′′(2n − 20) = 60q2 + 24(33 − 4n)q + 6(5n2 − 71n + 207)
∣∣
q=2n−20

= 6(13n2 − 287n + 1567) > 0,

g(4)(2n − 20) = 120q + 24(33 − 4n)
∣∣
q=2n−20 = 24(6n − 67) > 0,

g(5)(2n − 20) = 120 > 0.

Thus by the Fourier–Budan theorem [30], there is no root of the polynomial g(q) in the
interval [2n − 20,+∞). Then q(Q(G2)/π

′) < 2n − 20. As the partition π ′ is equitable, by
Lemma 3.3, we have q(G2) < 2n − 20. Then for any G ∈ P1(n) \ P(n), q(G) < 2n − 20.
This proves Claim 3. �

Proof of Theorem 1.8(1): By Lemma 3.1 and δ(G) ≥ 3, we have

n − 10 ≤ λ(G) ≤ 3 − 1 +
√

(3 + 1)2 + 4(2|E(G)| − 3n)
2

,

which implies that

|E(G)| ≥ n2 − 19n + 117
2

.

As n ≥ 15, we have

|E(G)| ≥ n2 − 19n + 117
2

≥
(
n − 10

2

)
+ 17.

Then by Theorem 1.3, G is supereulerian if and only if G /∈ K2,3(n) ∪ P1(n) ∪ K′
2,3(n).

Thus in the rest of the proof, we assume that G /∈ P(n) to prove that G is supereulerian.
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As for any graph G ∈ P(n), Kn−9 � G, it follows that λ(G) > n − 10. And by
Lemma 3.5, for any G ∈ K2,3(n) ∪ K′

2,3(n) ∪ P1(n) \ P(n), λ(G) < n − 10. Therefore, if
G /∈ P(n), then G is supereulerian. This proves (1). �

Proof of Theorem 1.8(2): By Lemma 3.2, we have

2n − 20 ≤ q(G) ≤ 2|E(G)|
n − 1

+ n − 2,

which implies that

|E(G)| ≥ n2 − 19n + 18
2

.

As n ≥ 63, it follows that

|E(G)| ≥ n2 − 19n + 18
2

≥
(
n − 10

2

)
+ 17.

Then by Theorem 1.3, G is supereulerian if and only if G /∈ K2,3(n) ∪ P1(n) ∪ K′
2,3(n).

As for any graph G ∈ P(n), Kn−9 � G, it follows that q(G) > 2n − 20. And by
Lemma 3.5, for any G ∈ K2,3(n) ∪ K′

2,3(n) ∪ P1(n) \ P(n), q(G) < 2n − 20. Therefore,
if G /∈ P(n), then G is supereulerian. This proves (2). �

Proof of Theorem 1.9(1): By Lemma 3.1 and δ(G) ≥ k, we have

k − 1 +
√
4n2 − 36(k + 1)n + 81(k + 1)2 + 48

2
< λ(G)

≤ k − 1 +
√

(k + 1)2 + 4(2|E(G)| − nk)
2

,

which implies that

|E(G)| >

(
n − 4k − 4

2

)
+ 2k(k + 1) + 6.

Thus by Theorem 1.5, G is supereulerian if and only if G /∈ K′
2,3(n, k) ∪ K′′

2,3(n, k). And
for any G ∈ K′

2,3(n, k) ∪ K′′
2,3(n, k), |E(G)| = (n−4k−4

2
) + 2k(k + 1) + 6. Thus if |E(G)| >(n−4k−4

2
) + 2k(k + 1) + 6, then G is supereulerian. This proves (1). �

Proof of Theorem 1.9(2): By Lemma 3.2, we have

2n − 8k − 10 + 20k2 + 32k + 24
n − 1

< q(G) ≤ 2|E(G)|
n − 1

+ n − 2,

which implies that

e(G) >

(
n − 4k − 4

2

)
+ 2k(k + 1) + 6.

Thus by Theorem 1.5, G is supereulerian if and only if G /∈ K′
2,3(n, k) ∪ K′′

2,3(n, k). And
for any G ∈ K′

2,3(n, k) ∪ K′′
2,3(n, k), |E(G)| = (n−4k−4

2
) + 2k(k + 1) + 6. Thus if |E(G)| >(n−4k−4

2
) + 2k(k + 1) + 6, then G is supereulerian. This proves (2). �
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Proof of Theorem 1.10(1): By Lemma 3.1 and δ(G) ≥ k, we have

k − 1 +
√
4n2 − 76(k + 1)n + 361(k + 1)2 + 120

2
< λ(G)

≤ k − 1 +
√

(k + 1)2 + 4(2|E(G)| − nk)
2

,

which implies that

|E(G)| >

(
n − 9k − 9

2

)
+ 9

2
k(k + 1) + 15.

Thus by Theorem 1.7,G is supereulerian if and only ifG /∈ P(n, k). As for anyG ∈ P(n, k),
|E(G)| = (n−9k−9

2
) + 9

2k(k + 1) + 15, then we have G is supereulerian when |E(G)| >(n−9k−9
2

) + 9
2k(k + 1) + 15. This proves (1). �

Proof of Theorem 1.10(2): By Lemma 3.2, we have

2n − 20 − 18k + 90k2 + 162k + 102
n − 1

< q(G) ≤ 2|E(G)|
n − 1

+ n − 2,

which implies that

|E(G)| >

(
n − 9k − 9

2

)
+ 9

2
k(k + 1) + 15.

Thus by Theorem 1.7,G is supereulerian if and only ifG /∈ P(n, k). As for anyG ∈ P(n, k),
|E(G)| = (n−9k−9

2
) + 9

2k(k + 1) + 15, then we have G is supereulerian when |E(G)| >(n−9k−9
2

) + 9
2k(k + 1) + 15. This proves (2). �
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