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Abstract Let G be a multigraph. Suppose that e = u1v1 and e′ = u2v2 are two edges of G. If e ̸= e′, then

G(e, e′) is the graph obtained from G by replacing e = u1v1 with a path u1vev1 and by replacing e′ = u2v2

with a path u2ve′v2, where ve, ve′ are two new vertices not in V (G). If e = e′, then G(e, e′), also denoted by

G(e), is obtained from G by replacing e = u1v1 with a path u1vev1. A graph G is strongly spanning trailable

if for any e, e′ ∈ E(G), G(e, e′) has a spanning (ve, ve′ )-trail.

The design of n processor network with given number of connections from each processor and with a desirable

strength of the network can be modelled as a degree sequence realization problem with certain desirable graphical

properties. A sequence d = (d1, d2, · · · , dn) is multigraphic if there is a multigraph G with degree sequence d,

and such a graph G is called a realization of d. A multigraphic degree sequence d is strongly spanning trailable

if d has a realization G which is a strongly spanning trailable graph, and d is line-hamiltonian-connected if

d has a realization G such that the line graph of G is hamiltonian-connected. In this paper, we prove that

a nonincreasing multigraphic sequence d = (d1, d2, · · · , dn) is strongly spanning trailable if and only if either

n = 1 and d1 = 0 or n ≥ 2 and dn ≥ 3. Applying this result, we prove that for a nonincreasing multigraphic

sequence d = (d1, d2, · · · , dn), if n ≥ 2 and dn ≥ 3, then d is line-hamiltonian-connected.

Keywords strongly spanning trailable graphs; multigraphic degree sequence; hamiltonian-connected graphs;

line graph
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1 Introduction

This paper studies finite and undirected graphs without loops, but multiple edges are allowed.
When we say graph in this paper, it always means multigraph, unless otherwise stated. Unde-
fined terms can be found in [2]. Let G be a graph. Denote by κ(G) and κ′(G) the connectivity
and edge-connectivity of a graph G, respectively. If X is a set of vertices, then G−X denotes
the graph obtained from G by deleting X. If Y is a set of edges, then G − Y and G + Y
denote the graphs obtained from G by deleting edges in Y and adding edges in Y , respectively.
Particularly, if Y = {e}, we write G− e for G− {e} and G+ e for G+ {e}.

A graph is hamiltonian if it has a spanning cycle, and is hamiltonian-connected if for any
distinct vertices u and v, G contains a spanning (u, v)-path. It is well known that every
hamiltonian-connected graph must be 3-connected. The line graph of a graph G, denoted by
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L(G), has E(G) as its vertex set, where two vertices in L(G) are adjacent if and only if the
corresponding edges in G have at least one vertex in common.

Let O(G) denote the set of odd degree vertices in G. If G is connected with O(G) = ∅,
then G is eulerian. If G has a spanning eulerian subgraph, then G is supereulerian. A graph
G is collapsible if for any subset R ⊆ V (G) with |R| ≡ 0 (mod 2), G has a spanning connected
subgraph H such that O(H) = R. If G is collapsible, then by definition, G is supereulerian and
so κ′(G) ≥ 2.

For u, v ∈ V (G), a (u, v)-trail is a trail of G from u to v. If u = v, a (u, v)-trail is an eulerian
subgraph of G. For e, e′ ∈ E(G), an (e, e′)-trail is a trail of G having end-edges e and e′. An
(e, e′)-trail is dominating if each edge of G is incident with at least one internal vertex of the
trail; it is spanning if it is a dominating trail and it contains all the vertices of G. A graph G
is spanning trailable if for each pair of edges e1 and e2, G has a spanning (e1, e2)-trail.

Suppose that e = u1v1 and e′ = u2v2 are two edges of G. If e ̸= e′, then G(e, e′) is the
graph obtained from G by replacing e = u1v1 with a path u1vev1 and by replacing e′ = u2v2
with a path u2ve′v2, where ve, ve′ are two new vertices not in V (G). If e = e′, then G(e, e′), also
denoted by G(e), is obtained from G by replacing e = u1v1 with a path u1vev1. A graph G is
strongly spanning trailable if for any e, e′ ∈ E(G), G(e, e′) has a spanning (ve, ve′)-trail. Since
e = e′ is possible, strongly spanning trailable graphs are a special class of supereulerian graphs.
By definition, a strongly spanning trailable graph is also spanning trailable. Supereulerian
graphs and strongly spanning trailable graphs are closely related to the study of hamiltonian
line graphs and hamiltonian-connected line graphs, respectively.

Theorem 1.1[5]. Let G be a graph with |E(G)| ≥ 3. Then L(G) is hamiltonian if and only if
G has an eulerian subgraph H with E(G− V (H)) = ∅.

A graph G is nontrivial if E(G) ̸= ∅. An edge cut X of G is essential if G−X has at least
two nontrivial components. A graph G is essentially k-edge-connected if G does not have an
essential edge cut of size less than k. Let V1(G) be the set of vertices with degree 1 in G. The
core of a graph G, denoted by G0, is obtained from G− V1(G) by contracting exactly one edge
xy or yz for each path xyz in G with dG(y) = 2.

Theorem 1.2[8]. Let G be a connected nontrivial graph such that κ(L(G)) ≥ 3, and let G0

denote the core of G.
(i) G0 is uniquely determined by G with κ′(G0) ≥ 3.
(ii) (see also Lemma 2.9 of [6]) If any e, e′ ∈ E(G0), G0(e, e

′) has a spanning (ve, ve′)-trail,
then L(G) is hamiltonian-connected.
(iii) (see also Proposition 2.2 of [6]) L(G) is hamiltonian-connected if and only if for any pair
of edges e, e′ ∈ E(G), G has a dominating (e, e′)-trail.

The design of n processor network with given number of connections from each processor
and with a desirable strength of the network can be modelled as a degree sequence realization
problem with certain desirable graphical properties. Let V (G) = {v1, v2, · · · , vn} be the vertex
set of G, and d(vi) be the degree of vi in G. Then the sequence (d(v1), d(v2), · · · , d(vn)) is called
the degree sequence ofG. A sequence d = (d1, d2, · · · , dn) is nonincreasing if d1 ≥ d2 ≥ · · · ≥ dn.
A sequence is multigraphic if there is a multigraph G with degree sequence d. This graph G
is called a realization of d. A multigraphic degree sequence d is supereulerian (resp., strongly
spanning trailable) if d has a realization G which is a supereulerian graph (resp., strongly
spanning trailable graph), and d is line-hamiltonian (resp., line-hamiltonian-connected) if d has
a realization G such that the line graph of G is hamiltonian (resp., hamiltonian-connected).

Hakimi[4] gave a characterization for multigraphic degree sequences as follows.
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Theorem 1.3[4]. Let d = (d1, d2, · · · , dn) be a nonincreasing degree sequence with n ≥ 2 and
nonnegative integer di for 1 ≤ i ≤ n. Then the sequence d = (d1, d2, · · · , dn) is multigraphic if

and only if
n∑

i=1

di is even and d1 ≤ d2 + · · ·+ dn.

In [1], Boesch and Harary presented the following theorem which is due to Butler.

Theorem 1.4[1]. Let d = (d1, d2, · · · , dn) be a nonincreasing degree sequence with n ≥ 2 and
nonnegative integer di for 1 ≤ i ≤ n. Let j be an index with 2 ≤ j ≤ n. Then the se-
quence (d1, d2, · · · , dn) is multigraphic if and only if the sequence (d1 − 1, d2, · · · , dj−1, dj −
1, dj+1, · · · , dn) is multigraphic.

Gu et al.[3] characterized supereulerian degree sequences and line-hamiltonian degree se-
quences.

Theorem 1.5[3]. Let d = (d1, d2, · · · , dn) be a nonincreasing multigraphic sequence. Then d is
supereulerian if and if either n = 1 and d1 = 0, or n ≥ 2 and dn ≥ 2.

Theorem 1.6[3]. Let d = (d1, d2, · · · , dn) be a nonincreasing multigraphic sequence with n ≥ 3.
Then the following are equivalent.
(i) d is line-hamiltonian.
(ii) either d1 ≥ n− 1, or

∑
di=1

di ≤
∑

dj≥2

(dj − 2).

(iii) d has a realization G such that G− V1(G) is supereulerian.

In this paper, we investigate strongly spanning trailable sequences and line-hamiltonian-
connected sequences.

Theorem 1.7. Let d = (d1, d2, · · · , dn) be a nonincreasing multigraphic sequence. Then d is
strongly spanning trailable if and only if either n = 1 and d1 = 0 or n ≥ 2 and dn ≥ 3.

Theorem 1.8. Let d = (d1, d2, · · · , dn) be a nonincreasing multigraphic sequence. If n ≥ 2 and
dn ≥ 3, then d is line-hamiltonian-connected.

The rest of this paper is organized as follows. In Section 2, we present some useful lemmas.
In Section 3, using these lemmas, we prove Theorems 1.7 and 1.8.

2 Lemmas

Lemma 2.1 (Theorem 3.3 of [6]). Let G be a graph with κ′(G) ≥ 3. If every 3-edge-cut of G has
at least one edge in a 2-cycle or 3-cycle of G, then G(e, e′) is collapsible for any e, e′ ∈ E(G).

Lemma 2.2 (Theorem 2.3 (iii) of [6]). Let G be a graph. If G is collapsible, then for any pair
of vertices u, v ∈ V (G), G has a spanning (u,v)-trail.

Lemma 2.3 (Proposition 1.1.3 of [8]). If L(G) is k-connected, then G is essentially k-edge-
connected. Moreover, when L(G) is not complete, L(G) is k-connected if and only if G is
essentially k-edge-connected.

In the following, we shall define some strongly spanning trailable graphs.

Definition 2.4. Let s, l ≥ 0,t ≥ 3 and n ≥ 4 be integers.

(i) Let K
(3)
2 be the graph with 2 vertices and 3 multiple edges. For convienience, we call one

vertex of K
(3)
2 the center vertex.

(ii) Let Pt be a path v1v2 · · · vt with t vertices. Denote by P ′
t the graph obtained from Pt by
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adding a new vertex v and t−2 edges v2v, v3v, · · · , vt−1v, and adding two parallel edges between
v and vi for i = 1, t, where v is called the center vertex of P ′

t .
(iii) Let Ps,t be the graph obtained from s vertex disjoint P ′

2 and one P ′
t by identifying their

center vertices.
(iv) Let P ′

s,l be the graph obtained from s vertex disjoint P ′
2 and l vertex disjoint K

(3)
2 by

identifying their center vertices (Pt, P
′
t , Ps,t and P ′

s,l are depicted in Figure 2.1).

..
t vertices

.

Pt

..

v

.

P ′
t

..... .v.sP2

. Pt

.

Ps,t

..... .v. ....sP2

. lP1

.

P ′
s,l

Figure 2.1. Graphs Pt, P ′
t , Ps,t and P ′

s,l

Lemma 2.5. Let K4 be a complete graph on 4 vertices. For integers s, l ≥ 0 and t ≥ 3, let

K
(3)
2 , P ′

t , Ps,t and P ′
s,l be the multigraphs defined in Definition 2.4. Then K

(3)
2 , K4, P

′
t , Ps,t

and P ′
s,l are strongly spanning trailable. Moreover, each of the following results holds:

(i) K
(3)
2 has 2 vertices and the degree sequence of K

(3)
2 is (3, 3);

(ii) K4 has 4 vertices and the degree sequence of K4 is (3, 3, 3, 3);
(iii) P ′

t has t+ 1 vertices and the degree sequence of P ′
t is (t+ 2, 3, · · · , 3);

(iv) Ps,t has 2s+ t+ 1 vertices and the degree sequence of Ps,t is (4s+ t+ 2, 3, · · · , 3);
(v) P ′

s,l has 2s+ l + 1 vertices and the degree sequence of P ′
s,l is (4s+ 3l, 3, · · · , 3).

Proof. It is routine to verify (i)-(v). It is sufficient to show that for any graph G ∈ {K(3)
2 ,K4, P

′
t ,

Ps,t, P
′
s,l}, G is strongly spanning trailable. For any graphG ∈ {K(3)

2 ,K4, P
′
t , Ps,t, P

′
s,l}, κ′(G) ≥

3 and every 3-edge-cut of G has at least one edge in a 2-cycle or 3-cycle of G. By Lemma 2.1, for
any e, e′ ∈ E(G), G(e, e′) is collapsible. Then by Lemma 2.2, G(e, e′) has a spanning (ve, ve′)-
trail. By definition, G is strongly spanning trailable. This completes the proof of Lemma
2.5.

..
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.
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.

v1

.

u1

.
v2.

u2
.

v3

.
u3

.

H(k)

..

vk+t

.

vk+2

.

vk+1

.
uk

.

vk
.

v1

.

u1

.
v2.

u2
.

v3

.
u3

.

H ′(k; t)

Figure 2.2. Graphs H(k) and H′(k; t)

Definition 2.6. Let C1 = v1v2 · · · vkv1 and C2 = u1u2 · · ·uku1 be two cycles, where k is an
integer and k ≥ 3.



804 R.S. MA, A.M. YU, K.K. WANG, H.J. LAI

(i) Let H(k) be the graph obtained from C1 and C2 by adding all the edges in E(C1, C2) =
{v1u1, v2u2, · · · , vkuk}.
(ii) Let H ′(k; t) be the graph obtained from H(k+t) by identifying the vertices uk, uk+1, uk+2, · · · ,
uk+t to a new vertex (which is also denoted by uk) and deleting the resulting loops.

Lemma 2.7. Let H(k) and H ′(k; t) be the graphs defined in Definition 2.6. Then H(k) and
H ′(k; t) are strongly spanning trailable simple graphs, and each of the following results holds:
(i) H(k) has 2k vertices and the degree sequence of H(k) is (3, 3, · · · , 3).
(ii) H ′(k; t) has 2k + t vertices and the degree sequence of H ′(k; t) is (t+ 3, 3, · · · , 3).

Proof. It is easy to verify (i) and (ii). Firstly we show that H(k) is strongly spanning trail-
able. By definition, it suffices to show that for any e, e′ ∈ E(H(k)), H(k)(e, e′) has a s-

panning (ve, ve′)-trail T . In the following proof, if 1 ≤ m < n ≤ k, we denote
+

vmvn =

vmvm+1 · · · vn and
−

unum = unun−1 · · ·um. If 1 ≤ n ≤ k and k − n is odd, we denote
−

ũkun = ukvkvk−1uk−1uk−2vk−2vk−3uk−3 · · ·un−1vn−1vnun; if 1 ≤ n ≤ k and k − n is even, we

denote
−

ũkun = ukvkvk−1uk−1uk−2vk−2vk−3uk−3 · · · vn−2vn−2vn−1un−1un and
−

ũkvn =
−

ũkunvn.
If e = e′ ∈ E(C1) or E(C2), without loss of generality, we assume that e = e′ = vkv1 ∈

E(C1), and let T = vev1u1

−
uku2

+
v2vkve′(= ve). If e = e′ ∈ E(C1, C2), we assume that e = e′ =

v1u1, and let T = veu1

−
uku2

+
v2vkv1ve′(= ve). For any case, T is a spanning (ve, ve′)-trail of

H(k)(e, e′).
If e ̸= e′, by symmetry, we distinguish the following four cases (see Table 2.1). For conve-

nience, if s = k, let vs+1 = v1 and us+1 = u1 in Table 2.1. For any case, we can find a spanning
(ve, ve′)-trail T of H(k)(e, e′). Hence H(k) is strongly spanning trailable.

Now we show that H ′(k; t) is also strongly spanning trailable. Recall that H ′(k; t) is the
graph obtained from H(k + t) by identifying the vertices uk, uk+1, uk+2, · · · , uk+t and deleting
the resulting loops. For any e, e′ ∈ E(H ′(k; t)), we have e, e′ ∈ E(H(k + t)). Since H(k + t)
is strongly spanning trailable, H(k + t)(e, e′) has a spanning (ve, ve′)-trail T . Then we obtain
a spanning trail of H ′(k; t)(e, e′) from T by by identifying the vertices vk, vk+1, vk+2, · · · , vk+t

and deleting the resulting loops. Hence H ′(k; t) is strongly spanning trailable. This completes
the proof of Lemma 2.7.

Lemma 2.8. Let G be a graph on n ≥ 2 vertices and e0 be an edge of G. If G∗ = G − e0 is
strongly spanning trailable, then G is also strongly spanning trailable.

Proof. Assume that G and e0 ∈ E(G) satisfy the hypothesis of Lemma 2.8. Then

G∗ = G− e0 is strongly spanning trailable. (2.1)

By definition, it suffices to show that for any e, e′ ∈ E(G), G(e, e′) has a spanning (ve, ve′)-trail.
According to the location of e and e′, we distinguish the following cases.

Case 1. e, e′ ∈ E(G∗).
By (2.1), G∗(e, e′) has a spanning (ve, ve′)-trail T . Then T is also a spanning (ve, ve′)-trail

of G(e, e′).

Case 2. e ∈ E(G∗) and e′ = e0 ̸∈ E(G∗).
Assume that e′ = e0 = ab. By (2.1), G∗ is 2-edge-connected. Let c ∈ V (G∗) and e1 = bc ∈

E(G∗). By (2.1), for e and e1, G
∗(e, e1) has a spanning (ve, ve1)-trail T . If ve1b ∈ E(T ), let

T ′ = T −{ve1b}+{ve′b}. If ve1b /∈ E(T ), then cve1 ∈ E(T ), and let T ′ = T −{cve1}+{cb, bve′}.
Then T ′ is a spanning (veve′)-trail of G(e, e′).
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Table 2.1. Spanning (ve, ve′ )-trails of H(k)(e, e′).

(e, e′) s k − s T

(vkv1, vsvs+1)
⌈k
2 ⌉ ≤ s ≤ k − 1 odd ve

+
v1vs

−
usu1

−
ũkvs+1ve′

⌈k
2 ⌉ ≤ s ≤ k − 2 even ve

+
v1vs−1

−
us−1u1

−
ũkvsve′

(v1u1, vsvs+1)
⌈k+1

2 ⌉ ≤ s ≤ k odd ve
+

v1vs
−

usu1

−
ũkvs+1ve′

3 ≤ ⌈k+1
2 ⌉ ≤ s ≤ k even ve

+
v1vs−1

−
us−1u1

−
ũkvsve′

(vkv1, usus+1)

⌈k
2 ⌉ ≤ s ≤ k − 1 odd ve

+
v1vs−1

−
us−1u1

−
ũkusve′

⌈k
2 ⌉ ≤ s ≤ k − 2 even ve

+
v1vs

−
usu1

−
ũkus+1ve′

s = k 0 ve
+

v1vk
−

uku1ve′

(v1u1, vsus)

4 ≤ ⌈k
2 ⌉+ 1 ≤ s ≤ k − 1 odd ve

+
v1vs−2

−
us−2u1

−
ũkvs+1vsvs−1us−1usve′

s = 3,k = 4 1 vev1v4v3v2u2u1u4u3ve′

4 ≤ ⌈k
2 ⌉+ 1 ≤ s ≤ k even ve

+
v1vs−2

−
us−2u1

−
ũkus+1usus−1vs−1vsve′

s = k = 3 0 vev1v3v2u2u1u3ve′

Case 3. e = e′ = e0 ̸∈ E(G∗).

Assume that e = e′ = e0 = ab. By (2.1), G∗ is 2-edge-connected. Let c, d ∈ V (G∗),
e1 = bc ∈ E(G∗) and e2 = ad ∈ E(G∗). If c = a, by (2.1), G∗(e1) has a supereulerian subgraph
T . Let T ′ = T − {ave1 , ve1b}+ {ave, veb}(ve = ve′), and then T ′ is a spanning (ve, ve′)-trail in
G(e, e′). If d = b, we prove the result similarly. Hence we assume that c ̸= a and d ̸= b.

By (2.1), G′(e1, e2) has a spanning (ve1 , ve2)-trail T . If ve1b ∈ E(T ), let T ′ = T − {ve1b}+
{veb}; if ve1b /∈ T , let T ′ = T −{cve1}+{cb, bve}. If ave2 ∈ E(T ′), let T ′′ = T ′−{ave2}+{ave};
if ave2 /∈ E(T ′), let T ′′ = T ′−{dve2}+{da, ave}. Then T ′′ is a spanning (veve′)-trail in G(e, e′).
This completes the proof of Lemma 2.8.

3 Proofs of Theorems 1.7 and 1.8

Proof of Theorem 1.7. Let d = (d1, d2, · · · , dn) be a nonincreasing multigraphic sequence. The
case when n = 1 is trivial and so we shall assume that n ≥ 2. If d is strongly spanning trailable,
then d has a strongly spanning trailable realization G. If dn ≤ 2, G has a vertex v with degree 1
or 2. If G has a vertex v with degree 2, let NG(v) = {u1, u2} and e = u1v, e

′ = u2v. Obviously,
G(e, e′) has no spanning (ve, ve′)-trails. If G has a vertex u with degree 1, let NG(u) = v1 and
e = e′ = v1u. Then G(e, e′) has no spanning (ve, ve′)-trails. So dn ≥ 3.

We prove the sufficiency by induction on m =
n∑

i=1

di. If n = 2 and d = (3, 3), then m = 6

and by Lemma 2.5, graph K
(3)
2 is a strongly spanning trailable realization of d.

Suppose that theorem holds for all such multigraphic sequences with smaller value of m.
Next we shall prove the theorem holds for multigraphic sequences with value of m. We distin-
guish the following cases.

Case 1. d1 = d2 = 3.

Then d = (3, 3, · · · , 3). By Theorem 1.3,
n∑

i=1

di = 3n is even, and so n is even. If n = 2, let
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G = K
(3)
2 . If n = 4, let G = K4. If n ≥ 6, let G = H(n/2). By Lemmas 2.5 and 2.7, G is a

strongly spanning trailable realization of d.

Case 2. d1 ≥ 4, d2 = 3.
Then d = (d1, 3, · · · , 3). By Theorem 1.3, d1 + 3n − 3 is even and 4 ≤ d1 ≤ 3n − 3. Since

d1+3n−3 is even, d1 ̸= n−2 or n. If 4 ≤ d1 ≤ n−3, let G = H ′(n−d1+3
2 ; d1−3). If d1 = n−1,

let G = Wn. If n + 1 ≤ d1 ≤ 2n − 3, let s = d1−(n+1)
2 = d1−n−1

2 , t = n − 1 − 2s = 2n − d1,

and G = Ps,t. If 2n− 2 ≤ d1 ≤ 3n− 3, let s = n−1−(d1−2n+2)
2 = 3n−d1−3

2 , l = d1 − 2n+ 2 and
G = P ′

s,l. Then by Lemmas 2.5, 2.1 and 2.7, G is a strongly spanning trailable graph realization
of d.

Case 3. d1 ≥ d2 ≥ 4.
Since (d1, d2, d3, · · · , dn) is multigraphic degree sequence, by Theorem 1.4, (d1 − 1, d2 −

1, d3, · · · , dn) is also a multigraphic degree sequence. Since d1− 1 ≥ d2− 1 ≥ 3 and
n∑

i=1

di− 2 =

m−2, by induction, (d1−1, d2−1, d3, · · · , dn) has a strongly spanning trailable realization G∗.
By Lemma 2.8, we can obtain a strongly spanning trailable realization of d from G∗ by adding
an edge. This completes the proof of Theorem 1.7.

Proof of Theorem 1.8. Let d = (d1, d2, · · · , dn) be a nonincreasing multigraphic sequence with
n ≥ 2 and dn ≥ 3. By Theorem 1.7, d has a strongly spanning trailable realization G. If L(G)
is a complete graph, then L(G) is hamiltonian-connected. Now we assume that L(G) is not a
complete graph. Since dn ≥ 3, the core of G is isomorphic to G, and so κ′(G) ≥ 3 by Theorem
1.2. By Lemma 2.3, κ(L(G)) ≥ 3. Since G is strongly spanning trailable, by Theorem 1.2(ii),
L(G) is hamiltonian-connected. This completes the proof of Theorem 1.8.
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