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Abstract

In (J Graph Theory 4:241–242, 1980), Burr proved that vðGÞ�m1m2. . .mk if and

only if G is the edge-disjoint union of k graphs G1;G2; . . .;Gk such that vðGiÞ�mi

for 1� i� k. This result established the practice of describing the chromatic number

of a graph G which is the edge-disjoint union of k subgraphs G1;G2; . . .;Gk in terms

of the chromatic numbers of these subgraphs, and more specific results and con-

jectures followed. We investigate possible extensions of this theorem of Burr to

group coloring and DP-coloring of multigraphs, as well as extensions of another

vertex coloring theorem involving arboricity. In particular, we determine the DP-

chromatic number of all Halin graphs. In (J Graph Theory 50:123–129, 2005), it is

conjectured that for any graph G, the list chromatic number is not higher than the

group chromatic number of G. As related results, we show that the group list

chromatic number of all multigraphs is at most the DP-chromatic number, and

present an example G for which the group chromatic number of G is less than the

DP-chromatic number of G.
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1 Notation and Background

Graphs in this note are finite, loopless with multiple edge permitted. We follow

Bondy and Murty [2] for undefined terms and notation. Thus vðGÞ, vLðGÞ, dðGÞ and
jðGÞ denote the chromatic number, the list chromatic number, the minimum degree,

and the connectivity of a graph G. For a positive integer n, let Cn and Kn denote the

cycle of order n and the complete graph of order n, respectively. We use H � G to

mean that H is a subgraph of G. Let G be a graph and let X be a set of edges not in

E(G) and with ends in V(G), then G [ X denotes the graph (possibly with multiple

edges) with vertex set V(G) and edges set EðGÞ [ X. Given a graph G, define an

equivalence relation ‘‘� ‘‘ on E(G) such that e1 � e2 if and only if either e1 ¼ e2 or

e1 and e2 form a cycle of length two in G. Each equivalence is a parallel class. For

u; v 2 VðGÞ, let mGðu; vÞ denote the number of parallel edges between u and v. For

any graph G we define the simplification of G, denoted by Ĝ, to be the simple graph

formed by removing all but one edge from each parallel class. For a graph H and a

positive integer k, we define kH to be the graph obtained by replacing each edge of

H by a class of k parallel edges joining the same pair of end vertices. For V1;V2 �
VðGÞ and V1 \ V2 ¼ ;, let G½V1� denote the subgraph induced by V1 and let

EG½V1;V2� denote the set of edges between V1 and V2. We abbreviate EG½fug;V2� to
EG½u;V2�, and omit the subscript when it is clear from context.

Throughout this paper, A denotes an (additive) abelian group with identify 0.

Following [8], for any subset A0 � A, define FðG;A0Þ ¼ ff : EðGÞ ! A0g. Let D ¼
DðGÞ be an orientation of G. We use (u, v) to denote an arc oriented from u to v. For

a function f 2 FðG;AÞ, an (A , f)-coloring of G under the orientation D is a

function c : VðGÞ ! A such that for any arc e ¼ ðu; vÞ 2 AðDÞ, cðuÞ � cðvÞ 6¼ f ðeÞ.
A graph G is A -colorable under the orientation D if for any f 2 FðG;AÞ, G has an

(A, f)-coloring. It has been observed that (see Section 4 of [8], or Proposition 4.1 of

[16]), for a given A, whether G is A-colorable is independent of the choice of the

orientation D. The group chromatic number vgðGÞ of a graph G is the minimum

integer m such that G is A-colorable for any group A with jAj �m under the

orientation D.

By definition, for any graph G, vðGÞ� vgðGÞ. As noted in [14], vgðGÞ � vðGÞ

can be arbitrarily large. It is observed that, unlike classical coloring, vgðGÞ[ vgðĜÞ

is possible. For example, it follows from the results below in Theorem 1.1 that

vgð2K2Þ ¼ 3 and vgðK2Þ ¼ 2, though surely vð2K2Þ ¼ vðK2Þ ¼ 2.

Theorem 1.1 Let G be a graph.

(i) (Jaeger, Linial, Payan, and Tarsi, [8]) If G is simple and planar, then

vgðGÞ� 6.

(ii) (Theorem 1.2 of [13]) If G is simple and does not have a K5-minor, then

vgðGÞ� 5.

(iii) (Theorem 2.8 of [15]) If G simple and does not have a K3;3-minor, then

vgðGÞ� 5.
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(iv) (Theorem 4.2 of [14]) If G is simple and connected, then vgðGÞ�DðGÞ þ 1,

where equality holds if and only if G is a cycle or a complete graph.

(v) (Theorem 1.3 of [18]) If G is connected, then vgðGÞ�DðGÞ þ 1, where

equality holds if and only if G is a kCn or a kKn, for some positive integers

k and n.

The list coloring version of some of the results above can be found in [5] and [4].

Yet another type of coloring called DP-coloring or correspondence coloring

has been recently introduced by Dvořák and Postle in [6]. We use a notation

developed in [1].

Definition 1.2 Let G be a multigraph. A cover of G is a pair (L, H), where L is an

assignment of pairwise disjoint sets to the vertices of G and H is a graph with vertex

set
S

v2VðGÞ LðvÞ satisfying the following:

1. H[L(v)] is a complete graph for each v 2 VðGÞ.
2. For each u; v 2 VðGÞ, EH ½LðuÞ; LðvÞ� is the union of mGðu; vÞ (possibly empty)

matchings.

Now, let (L, H) be a cover of a multigraph G. An (L, H)-coloring of G is an

independent set in H of size |V(G)|, and a graph G with such a coloring is called

(L, H)-colorable. A cover (L, H) of a graph G is said to be a k-cover if jLðvÞj ¼ k

for each v 2 VðGÞ. If a graph G is (L, H)-colorable for any k-cover (L, H) then G is

DP-k-colorable. Similarly, we say that G is DP-degree-colorable if it is (L, H)-

colorable for any L where jLðvÞj ¼ dðvÞ for each v 2 VðGÞ. The DP-chromatic

number is defined as vDPðGÞ ¼ minfk 2 N : G is DP-k-colorableg. In some other

papers a slightly different definition for vDP is given, where we consider any cover

such that jLðvÞj � k for any v 2 VðGÞ. However, unlike in group colorings, it is

worth noting that if G is DP-k-colorable, then G is (L, H)-colorable for any (L, H)

such that jLðvÞj � k for each v 2 VðGÞ. Therefore the two definitions are equivalent,

and we state the simpler version here.

Definition 1.3 A k-cover (L, H) of a simple graph G is full if EH ½LðuÞ; LðvÞ� is a
perfect matching for each uv 2 EðGÞ. Similarly, a k-cover (L, H) of a multigraph G

is full if EH ½LðuÞ; LðvÞ� is a union of mGðu; vÞ perfect matchings for each uv 2 EðGÞ.

If we only use the definition for vDP given above, then we only need to consider

k-covers. Furthermore, we only need to consider full covers of a graph G when

determining vDPðGÞ, since if a cover (L, H) is not full then there exists a full cover

ðL;H0Þ where H is a proper subgraph of H0 so that if G is ðL;H0Þ-colorable then it

must also be (L, H)-colorable.

For a graph G, a group C, and some f 2 FðG;CÞ, the C-colorability of a

multigraph G corresponds to its (L, H)-colorability under a certain cover (L, H): We

identify L(v) with C for each v 2 VðGÞ and for each e 2 EðGÞ with endpoints

u; v 2 VðGÞ we use an appropriate matching in H between L(u) and L(v) to mimic

f(e). Therefore when G is DP-k-colorable, it is C-colorable for any C with jCj ¼ k,
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though the converse does not necessarily hold. It follows from the definitions then

that for any graph G we have vgðGÞ� vDPðGÞ.

For a graph G, we define �dðGÞ ¼ maxfdðHÞ : H is a subgraph of Gg. This is

sometimes called the degeneracy of G. Below are collected some coloring results,

some of which will be used throughout this paper. Part (ii) is not formally stated, but

mentioned in passing by Dvořák and Postle in [6]. The proof closely resembles other

similar degeneracy arguments, such as that for Theorem 1.4(i). Part (iii) is not used

in this paper, but serves as some good background, along with [10] which specifies

exactly which covers disallow a coloring in the context of (iii).

Theorem 1.4 Let G be a graph and let C be a group.

(i) ([18]) vgðGÞ� �dðGÞ þ 1

(ii) ([6]) vDPðGÞ�
�dðGÞ þ 1.

(iii) (Theorem 9 of [1]) If G is connected, then G is not DP-degree-colorable if

and only if each block of G is one of the graphs kKn and kCn for some n and

k.

(iv) (Theorem 2.2 of [14]) A graph G is C-colorable if and only if each block of

G is C-colorable.

Section 2 is devoted to investigations motivated by a theorem of Burr that

describes the chromatic number of a graph G in terms of those of its edge-disjoint

subgraphs. In Sect. 3, we determine the DP-chromatic number of all Halin graphs,

and apply this result to study the difference between DP-coloring and group

coloring. In particular we present a graph G for which vgðGÞ 6¼ vDPðGÞ.

2 Edge-Disjoint Decompositions

The research in this section is motivated by the coloring result proved by Burr in [3],

stated as follows:

Theorem 2.1 [3] Let G be a simple graph and m1;m2; . . .;mk be positive integers.

Then vðGÞ�m1m2. . .mk if and only if G is the edge-disjoint union of k graphs

G1;G2; . . .;Gk such that vðGiÞ�mi for 1� i� k.

It is natural to consider to what extent a group coloring version or even a DP-

coloring version of Theorem 2.1 can be justified. For a graph G that is the edge-

disjoint union of its subgraphs G1;G2; . . .;Gk, we may ask more generally: How else

can we describe vgðGÞ and vDPðGÞ using vgðG1Þ; vgðG2Þ; . . .; vgðGkÞ and

vDPðG1Þ; vDPðG2Þ; . . .; vDPðGkÞ, respectively? This section will have three subsec-

tions, presenting different attempts towards these goals.

2.1 Partial Group Coloring and DP-Coloring Versions of Burr’s Theorem

We will first show that Theorem 2.1 can only be partially extended to group

colorings. One direction closely resembles the proof given by Burr in [3] for
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Theorem 2.1. Unlike Burr’s theorem above, which concerns standard vertex

coloring, it is meaningful with group coloring to consider multigraphs as well.

Definition 2.2 [7] For a collection C1;C2; . . .;Ck of groups, we define the direct

product of these groups, denoted by ðC1 	 C2 	 � � � 	 CkÞ, as a group whose

elements are the Cartesian product of the elements of C1;C2; . . .;Ck and whose

operation is given by ða1; a2; . . .; akÞ þ ðb1; b2; . . .; bkÞ ¼ ða1 þ1 b1; a2 þ2 b2; . . .;
ak þk bkÞ, where ai; bi 2 Ci and þi is the group operation for Ci.

Theorem 2.3 If a multigraph G is the edge-disjoint union of k multigraphs

G1;G2; . . .;Gk such that each Gi is Ci-colorable, then G is ðC1 	 C2 	 � � � 	 CkÞ-
colorable.

Proof Let G be the edge-disjoint union of k graphs G1;G2; . . .;Gk such that each Gi

is Ci-colorable. Let C ¼ ðC1 	 C2 	 � � � 	 CkÞ and f 2 FðG;CÞ. To prove the

theorem, it is sufficient to find a ðC; f Þ-coloring of G. As C is a product of k groups, f

can be viewed as a k-tuple f ¼ ðf1; f2; . . .; fkÞ, where fi 2 FðG;CiÞ, for each

i 2 f1; 2; . . .; kg. Fix an i with 1� i� k. Since each Gi is Ci-colorable, there exists a

ðCi; fiÞ-coloring ci : VðGiÞ ! Ci of Gi. Define c : VðGÞ ! C by

cðvÞ ¼ ðc1ðvÞ; c2ðvÞ; . . .; ckðvÞÞ. Since G is the edge-disjoint union of

G1;G2; . . .;Gk, for any e ¼ uv 2 EðGÞ, there exists a unique ie 2 f1; 2; . . .; kg such

that uv 2 EðGieÞ. It follows that cieðuÞ � cieðvÞ 6¼ fieðuvÞ, and so cðuÞ � cðvÞ 6¼ f ðuvÞ
at the ie’s component. It follows that c is a proper ðC; f Þ-coloring of G. h

The converse of Theorem 2.3 does not hold, as we will see below. First we

introduce a useful result:

Lemma 2.4 For any nontrivial graph G, each of the following holds.

(i) (Theorem 3.1 of [14]) vgðGÞ ¼ 2 if and only if G is a forest.

(ii) vDPðGÞ ¼ 2 if and only if G is a forest.

Proof We only need to justify (ii). If vDPðGÞ� 2 then vgðGÞ� 2 and thus by

Lemma 2.4(i) that G must be a forest. If G is a forest then �dðGÞ ¼ 1 and thus by

Theorem 1.4(ii) we must have vDPðGÞ� 2. Since G is assumed to be nontrivial,

vDPðGÞ ¼ 2. h

Proposition 2.5 The graph K4;4 is ðZ2 	 Z2Þ-colorable, but cannot be decomposed
into two edge-disjoint Z2-colorable subgraphs.

Proof By Theorem 1.1, vgðK4;4Þ�DðK4;4Þ ¼ 4, so that K4;4 must be ðZ2 	 Z2Þ-

colorable. Now assume by way of contradiction that K4;4 is the edge-disjoint union

of two graphs G1 and G2, both of which are Z2-colorable. By Lemma 2.4, G1 and

G2 must both be forests, and thus they each have at most jVðGÞj � 1 ¼ 7 edges.

Then, since we assumed that K4;4 is the edge-disjoint union of G1 and G2, we must

have jEðK4;4Þj � 14, a contradiction. h

Utilizing Theorem 1.4(iv), it is possible to construct infinitely many graphs each

of which is ðZ2 	 Z2Þ-colorable, but cannot be decomposed into two edge-disjoint
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Z2-colorable subgraphs. Furthermore, it is important to recall now a property of

group colorings that will show us Theorem 2.3 is not quite as strong as it appears.

Knowing that a graph G is C-colorable does not necessarily imply that vgðGÞ� jCj.

To see an example of this, albeit in the dual group connectivity form, see [8].

We will now attempt another generalization of Theorem 2.1, this time to DP-

coloring. Just as Theorem 2.3 is stated in terms of C-colorability rather than vg, we

will again prove only a partial result, and this time the result is even weaker. We

include it here in the interest of examining the natural generalization of Burr’s

methods to DP-coloring and to introduce the idea of contracting portions of a cover

which we will revisit for more interesting results in a future paper. First, we will

introduce a specific type of cover.

Definition 2.6 Let G be a multigraph, let m1;m2 2 N, and let (L, H) be a full m1m2-

cover of G. We say that (L, H) is uniformly m1-collapsible if there exist partitions

fL1ðvÞ; L2ðvÞ; . . .; Lm1
ðvÞg for each v 2 VðGÞ such that:

1. jL1ðvÞj ¼ jL2ðvÞj ¼ � � � ¼ jLm1
ðvÞj ¼ m2 for each v 2 VðGÞ.

2. If u and v are adjacent vertices in G, and i 2 f1; 2; . . .;m1g then NHðLiðuÞÞ \
LðvÞ ¼ LjðvÞ for some j 2 f1; 2; . . .;m1g.

For acyclic graphs, it is not difficult to show that any m1m2-cover is uniformly

m1-collapsible. First, we may designate some arbitrary vertex v0 in a given

component as a root, then partition Lðv0Þ appropriately according to the first

property of Definition 2.6. Now, we partition the neighbors of v0 so that the second

property of Definition 2.6 is satisfied, and continue in this way to neighbors of

neighbors until each L(v) is partitioned.

However, for a cycle it is possible to construct an m1m2-cover that is not

uniformly m1-collapsible. The figure below illustrates a 6-cover for the graph K3

that is not uniformly 3-collapsible. To be uniformly 3-collapsible, we would need to

partition L(w) into 3 parts of size 2, but the second property of Definition 2.6

implies that, in this particular cover, no part may mix elements from inside and

outside of the set A. Therefore, a divisibility argument indicates that L(w) cannot be

appropriately partitioned.
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Theorem 2.7 Let G be a multigraph, and let (L, H) be a uniformly m1-collapsible

m1m2-cover of G. If G is the edge-disjoint union of G1 and G2 such that

vDPðGiÞ�mi for 1� i� 2, then G is (L, H)-colorable.

Proof Let G, (L, H), G1 and G2 be as described. To prove the theorem, we will

construct an (L, H)-coloring for G. For each v 2 VðGÞ, we have an appropriate

partition fL1ðvÞ; L2ðvÞ; . . .; Lm1
ðvÞg of L(v) that satisfies the two properties of

Definition 2.6. We now modify (L, H) to form a new m1-cover ðL
0;H0Þ as follows:

For each uv 2 EðG2Þ, remove EH ½LðuÞ; LðvÞ� from H. For each v 2 VðGÞ we identify
the vertices in each part LiðvÞ of the partition, removing any loops and new parallel

edges formed, to create the vertex vi 2 VðH0Þ. Thus L0ðvÞ ¼ fv1; v2; . . .; vm1
g for

each v 2 VðGÞ. The second property of Definition 2.6 implies that H0 is indeed a

cover of G1. If we now consider only the edges of G1, we may note that

vDPðG1Þ�m1 implies that there exists an independent set I0 � VðH0Þ with

jI0j ¼ jVðG1Þj. We use this set I0 to construct another graph H00 from H as follows:

Remove all u 2 VðHÞ except those contracted to form the vertices in I0, and for each

uv 2 EðG1Þ remove EH ½LðuÞ; LðvÞ�. We may also define, for each v 2 VðGÞ,
L00ðvÞ ¼ LðvÞ \ VðH00Þ. Then ðL00;H00Þ is an m2-cover of G2, and vDPðG2Þ�m2

implies that there is an independent set I00 � VðH00Þ with jI00j ¼ jVðG2Þj ¼ jVðGÞj.
We may now note that I00 is independent in H as well: by the construction of H0 and

H00, for any two u; v 2 I00 we have uv 62 EðHÞ, since uv cannot cover an edge of G1

nor of G2. Thus, we have by definition an (L, H)-coloring of G.h

It would be possible to write Theorem 2.7 with slightly weaker assumptions;

specifically we only need to require that the second property in Definition 2.6 holds

along edges of G1, but for the sake of clarity we elect to leave the theorem as

written. Likewise, it is possible to perform an induction to prove a version with

more subgraphs in the decomposition, but it would be cumbersome to read due to

the collapsibility requirements at each step.

Just as in Theorem 2.3, the converse of Theorem 2.7 does not hold. Indeed the

same graph K4;4 serves as a counter-example. By Theorem 1.4 (ii),

vDPðK4;4Þ�DðK4;4Þ ¼ 4, implying that any uniformly collapsible 4-cover (L, H)
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of K4;4 is colorable. We may be assured that a uniformly collapsible cover exists, as

it is evident that the covers equivalent to standard vertex coloring will be uniformly

collapsible for any graph. However, as previously demonstrated, K4;4 cannot be

decomposed into two edge-disjoint forests. Therefore by Corollary 2.4 K4;4 cannot

be decomposed into two graphs G1 and G2 with vDPðG1Þ� 2 and vDPðG2Þ� 2.

2.2 Forests and Arboricity

In this subsection we consider extending a well-known vertex coloring result

involving arboricity defined below. All results apply to both group coloring and DP-

coloring, with only trivial modifications of the proofs. Therefore the group coloring

result will be, for the most part, mentioned as a corollary.

Definition 2.8 The arboricity of a multigraph G, here denoted by a(G), is the

minimum number of edge-disjoint forests required to cover G.

The next result appears in part as an exercise in Section 21.4 of [2]. The proof is

omitted, since Theorem 2.9 follows from Corollary 2.12.

Theorem 2.9 For any multigraph G, if aðGÞ� k then vðGÞ� 2k.

To work towards a generalization, we revisit the proof using �dðGÞ.

Lemma 2.10 If a multigraph G is the edge-disjoint union of k multigraphs

G1;G2; . . .;Gk such that �dðGiÞ� pi for 1� i� k, then

�dðGÞ� b2ð1� 1
jVðGÞjÞ

Pk
i¼1 pic.

Proof Assume that G is the edge-disjoint union of k graphs G1;G2; . . .;Gk such that
�dðGiÞ� pi for 1� i� k. Then jEðGiÞj� ðjVðGÞj � 1Þpi and jEðGÞj � ðjVðGÞj�

1Þ
Pk

i¼1 pi. Likewise, for each subgraph H of G we can get jEðHÞj � ðjVðHÞj �

1Þ
Pk

i¼1 pi in the same way, since any such H is also the edge-disjoint union of some

fHi : 1� i� kg which are subgraphs of fGi : 1� i� kg, respectively. Now for any

subgraph H of G we have the following inequality:

dðHÞ�
2jEðHÞj

jVðHÞj

� �

�
2ðjVðHÞj � 1Þ

jVðHÞj

X

k

i¼1

pi

$ %

¼ 2 1�
1

jVðHÞj

� �

X

k

i¼1

pi

$ %

� 2 1�
1

jVðGÞj

� �

X

k

i¼1

pi

$ %

:

This completes the proof. h

Since graphs with vDPðGÞ ¼ 2 are so well-characterized by Corollary 2.4, we can

use Lemma 2.10 to further refine Theorem 2.7 in the special case where

m1 ¼ m2 ¼ � � � ¼ mk ¼ 2.

Theorem 2.11 If a multigraph G is the edge-disjoint union of k graphs

G1;G2; . . .;Gk such that each vDPðGiÞ� 2, then vDPðGÞ� b2kð1� 1
jVðGÞjÞc þ 1.
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Proof Assume that G is the edge-disjoint union of k graphs G1;G2; . . .;Gk such that

each Gi is Z2-colorable. Then by Theorem 2.4, each Gi is a forest and thus
�dðGiÞ� 1. Now by Lemma 2.10 we have �dðGÞ� b2kð1� 1

jVðGÞjÞc, and thus

vDPðGÞ� b2kð1� 1
jVðGÞjÞc þ 1. h

The above theorem will seem more familiar when restated in other terms;

Corollary 2.12 follows directly from Theorem 2.11 and Definition 2.8:

Corollary 2.12 For a multigraph G, if aðGÞ� k then we have

vgðGÞ� vDPðGÞ� b2kð1� 1
jVðGÞjÞc þ 1� 2k.

Ordinarily, when dealing with standard vertex colorings, there is no reason not to

simply round down the bound on chromatic number to 2k, since 2k will always be

smaller than |V(G)| for a minimum covering. However when dealing with

multigraphs it is possible for 2k to be greater than |V(G)|, so we have included

the intermediate result here to ensure that the bound remains tight for a larger family

of multigraphs. We may apply this bound in the following application on

multigraphs that are slightly larger than complete graphs.

Proposition 2.13 Let p[ 0 be odd and let G be a multigraph of the form

ð2pþ 1ÞK2tþ1 [ H, where H is an acyclic graph with at most t edges. Then

vgðGÞ ¼ vDPðGÞ ¼ 2tð2pþ 1Þ þ 1.

Proof Let G ¼ ð2pþ 1ÞK2tþ1 [ H, where H is an acyclic graph with at most t

edges. First, we demonstrate that aðGÞ� ðpþ 1Þðt þ 1Þ. The subgraph 2pK2tþ1 can

be covered by pð2t þ 1Þ forests. Next, we cover the remaining edges which induce

K2tþ1 [ H as follows: Pick some vertex v that is not on H and remove it from K2tþ1

to form K2t. This copy of K2t can be covered by t trees which also span K2t. Each of

these trees can be extended so that it spans v as well by adding edges between t

vertices of K2t and v, but we will defer this choice until deciding which edges are

appropriate. Consider the graph H on the vertex set VðGÞ � v. Since H has at most t

edges, it must have at least t components, some of which may be isolated vertices.

Select t of these components, and select one vertex from each selected component

yielding fui : 1� i� tg. We form a forest F by starting with H and drawing the

edges uiv for 1� i� t. Finally we return to the choice we deferred earlier and extend

our spanning t trees to cover v as well by drawing edges from each u 2
VðGÞ � ðfvg [ fui : 1� i� tgÞ to v. Now K2tþ1 [ H is covered by t þ 1 forests, and

thus G is covered by pð2t þ 1Þ þ t þ 1 forests so aðGÞ� pð2t þ 1Þ þ t þ 1.

Now, by Corollary 2.12 we have vgðGÞ� vDPðGÞ� b2ðpð2t þ 1Þ þ t þ 1Þ

ð1� 1
2tþ1

Þc þ 1 ¼ 2tð2pþ 1Þ þ 1. By Theorem 1.1 (v), vgðð2pþ 1ÞK2tþ1Þ ¼

Dðð2pþ 1ÞK2tþ1Þ þ 1 ¼ 2tð2pþ 1Þ þ 1, and thus vgðGÞ ¼ vDPðGÞ ¼ 2tð2pþ 1Þ þ

1 exactly. h

A similar (and much simpler) calculation shows that just as we may add an

acyclic graph with t edges to ð2pþ 1ÞK2tþ1 without increasing the group chromatic

number or DP-chromatic number, we may say the same about adding an acyclic

graph with t edges to rK2t for any integers r and t. In general, the value of �dðGÞ is
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not always obvious so for some classes of graphs, like in Proposition 2.13, it may be

easier to bound the value of �dðGÞ with a(G).

2.3 Analysis

In this subsection we attempt to generalize Theorems 2.3 and 2.7 to look more like

Theorem 2.1, while relaxing the conclusion. To do so using methods similar to

Sect. 2.2, a lower bound on vgðGÞ in terms of �dðGÞ is necessary so we may say

vgðGÞ�N implies �dðGÞ�M for some M depending only on N. It seems that

theorems of this form are more difficult than the converse form, since they cannot

rely on techniques developed for vertex coloring. We may note that a graph with

vðGÞ ¼ 2 may have an arbitrarily high �dðGÞ. This is not true of group chromatic

number, and in general it has been shown that sufficiently high �dðGÞ will imply that

vgðGÞ is as large as required, which is the type of bound that is useful here.

Theorem 2.14 [11] If a graph G contains a subgraph H with dðHÞ� 2 then

vgðGÞ[ dðHÞ=2 lnðdðHÞÞ.

Corollary 2.15 For any integer N 2 N, there exists an integer M 2 N, depending

only on N, such that vgðGÞ�N implies �dðGÞ\M.

Proof We prove an equivalent statement: For each N 2 N there exists M 2 N,

depending only on N, such that �dðGÞ�M implies vgðGÞ[N. By Theorem 2.14,

vgðGÞ[ dðHÞ=2 lnðdðHÞÞ if dðHÞ� 2 for some subgraph H of G. Therefore, since

x=2 lnðxÞ is increasing on ðe;1Þ, we may say that for �dðGÞ[ e we have the

following:

vgðGÞ[ max
H�G

dðHÞ

2 lnðdðHÞÞ
¼

�dðGÞ

2 lnð�dðGÞÞ
:

Furthermore since limx!1 x=2 lnðxÞ ¼ 1 we may say that sufficiently high �dðGÞ
will ensure that vgðGÞ is as large as required. h

Theorem 2.16 For any m1;m2; . . .;mk 2 N there exists M 2 N such that if G is the

edge-disjoint union of k graphs G1;G2; . . .;Gk with vgðGiÞ�mi for 1� i� k then

vgðGÞ�M.

Proof This follows from Corollary 2.15 and Lemma 2.10. h

Furthermore, using only the fact that vgðGÞ� vDPðGÞ for any graph G, we can

adapt the results from Theorem 2.15 for DP-coloring to produce a bound analogous

to Theorem 2.16:

Theorem 2.17 For any m1;m2; . . .;mk 2 N there exists M 2 N such that if G is the

edge-disjoint union of k graphs G1;G2; . . .;Gk with vDPðGiÞ�mi for 1� i� k then

vDPðGÞ�M.
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Now that the existence of such bounds has been established, it is natural to seek

the best bounds. We might ask the following questions:

Question 2.18 What is the smallest integer a 2 N such that if G is the edge-disjoint

union of k graphs G1;G2; . . .;Gk with vgðGiÞ�mi for 1� i� k then

vgðGÞ� am1m2. . .mk?

Question 2.19 What is the smallest integer a 2 N such that if G is the edge-disjoint

union of k graphs G1;G2; . . .;Gk with vDPðGiÞ�mi for 1� i� k then

vDPðGÞ� am1m2. . .mk?

It is clear that in both questions we have a� 1 since K4 can be written as the

disjoint union of two paths T1 and T2, and vgðK4Þ ¼ vDPðK4Þ ¼

4 ¼ vgðT1ÞvgðT2Þ ¼ vDPðT1ÞvDPðT2Þ. We are not aware of an example that requires

a[ 1, so it may well be that a ¼ 1 as with Theorem 2.1.

3 A Comparison of DP-Coloring and Group Coloring of Graphs

So far in this paper, we have seen methods that work just as well for DP-coloring as

they do for group coloring. It is important to note that, as with many such

generalizations, some properties are lost. In this section, we explore methods and

constructions that have been applied to group coloring, but break when applied to

DP-coloring. The first, and possibly most important construction that is lost is the

dual. Group coloring, from its conception in [8], has been closely tied to group

connectivity. This leads us to extend a former group chromatic number result on

Halin graphs to its DP-coloring version, for which no duality argument is known. In

[11], it is conjectured that for any graph G, vLðGÞ� vgðGÞ. In [12], Král and

Nejedlý first introduced the list group chromatic number vglðGÞ of a graph G (to be

formally defined in Sect. 3.2). Further studies of vglðGÞ can be found in

[4, 5, 12, 17], among others. As the invariants vLðGÞ, vgðGÞ, vglðGÞ and vDPðGÞ

are considered to be closely related, we in this section will also investigate their

relationships, and present an example of a graph G such that vgðGÞ\vDPðGÞ.

3.1 DP-Colorings of Halin Graphs

In this subsection, we will, in the lack of the duality argument, determine the DP-

chromatic number of all Halin graphs. We start with the definition of Halin graphs

and a former result.

Definition 3.1 A graph G is a Halin Graph if it is the edge-disjoint union of a tree

T with at least 4 vertices, none of which has degree 2, and a cycle C, constructed by

first embedding T on a plane, and then traversing the boundary of T in the clockwise

direction connecting each leaf encountered with the next.

Theorem 3.2 [19] Let G be a Halin graph. Then vgðGÞ ¼ 4 if G is isomorphic to an

odd wheel and vgðGÞ ¼ 3 otherwise.
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The proof of Theorem 3.2 in [19] relies heavily on group connectivity of the dual

graph. A corresponding theorem for DP-coloring would have to use much different

methods. We will prove such a corresponding theorem for DP-coloring below, but

we will need to introduce some notation and a lemma first. In the discussions below,

for a positive integer k, we define ½k� ¼ f1; 2; 3; . . .; kg, and let Sk denote the

symmetric group in k letters, also viewed as the set of all permutations on [k].

In [9], a generalization of DP-coloring is introduced which we will find useful.

Let S be a subset of Sk, the symmetric group on k letters for some integer k[ 0,

such that S is closed under taking inverses. Let r : EðGÞ ! S such that ruv ¼

ðrvuÞ
�1

for each pair u, v of adjacent vertices in G. We say that G is r-colorable if

there exists a function c : VðGÞ ! ½k� such that ruvðcðuÞÞ 6¼ cðvÞ for any uv 2 EðGÞ.
We say that G is S- k -colorable if G is r-colorable for any r : EðGÞ ! S with the

inverse value requirement as described above. We will demonstrate that, in some

sense, this concept generalizes DP-coloring.

Proposition 3.3 A graph G is Sk-k-colorable if and only if vDPðGÞ� k.

Proof First we assume that G is Sk-k-colorable and let (L, H) be a k-cover of G. We

may assume without loss of generality that (L, H) is full, otherwise we might

consider a more ‘‘difficult’’ H with the desired property. For each v 2 VðGÞ, we may

arbitrarily identify L(v) with [k]. Now for each uv 2 EðGÞ we may convert

H[L(u), L(v)] into a permutation ruv where ruvðiÞ ¼ j when ij 2 EH ½LðuÞ; LðvÞ�. If c
is a r-coloring of G, then it is also an (L, H)-coloring of G. Since we assumed that G

is Sk-k-colorable, and (L, H) was arbitrarily chosen, we have vDPðGÞ� k.

Conversely, we assume that vDPðGÞ� k. Let r : EðGÞ ! Sk be such that ruv ¼

ðrvuÞ
�1

for each pair u, v of adjacent vertices in G. We covert r to a cover (L, H) of

G as follows: For each v 2 VðGÞ let LðvÞ ¼ ½k�. For each uv 2 EðGÞ let

EH ½LðuÞ; LðvÞ� ¼ fxy : x 2 LðuÞ, y 2 LðvÞ, and ruvðxÞ ¼ yg. Finally, let H½LðvÞ� ¼
Kk for each v 2 VðGÞ. No other edges are present in H, besides those described

above. Now as c is an (L, H)-coloring of G, then it is also a r-coloring of G. Since

vDPðGÞ� k, G is (L, H)-colorable for any k-cover (L, H) of G. Therefore G is r-

colorable for any r as described, so by definition G is Sk-k-colorable. h

Note that in the proof of Proposition 3.3 above, when converting a covering

(L, H) of G into a mapping r : EðGÞ ! Sk, we arbitrarily identify each L(v) with

[k]. Given a k-covering (L, H) of G, there are in fact ðk!ÞjVðGÞj different ways to

identify all L(v) with [k]. We will see below that if we are more careful with an

assignment of L(v) to [k] then we can ensure that r has some desirable properties.

Definition 3.4 For a k-cover (L, H) of G, we say that r : EðGÞ ! Sk represents

(L, H) when, as in Proposition 3.3, G is r-colorable if and only if G is (L, H)-

colorable.

Lemma 3.5 Given any full k-cover (L, H) of a graph G and any acyclic subgraph T

of G, there exists some r : EðGÞ ! Sk such that r represents (L, H) and ruv ¼ 1Sk
for each uv 2 EðTÞ.
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Proof Let (L, H) be a k-cover of a graph G, and let T be an acyclic subgraph of G.

Choose some v 2 VðTÞ and arbitrarily identify L(v) with [k]. Now for each neighbor

u of v in T, we identify L(u) with [k] so that for i 2 ½k�, we assign i to the element of

L(u) that is adjacent in H to the element of L(v) which was assigned i. Now

ruvðiÞ ¼ i for i 2 ½k� (i.e. ruv ¼ 1Sk ). We may repeat this process until we have

identified L(w) with [k] for each w 2 VðTÞ. Since T is acyclic, there can be no

conflict in assigning [k] to any L(w) for w 2 VðTÞ. For w 62 VðTÞ, we may arbitrarily

assign [k] to L(w). Now r represents (L, H) and ruv ¼ 1Sk for each uv 2 EðTÞ. h

Lemma 3.5 is well-suited to Halin graphs, since Halin graphs can be decomposed

into a spanning tree and a cycle along the leaves of the spanning tree. We apply it

below to prove a theorem analogous to Theorem 3.2.

Theorem 3.6 Let G be a Halin graph. Then vDPðGÞ ¼ 4 if G is isomorphic to an

odd wheel and vDPðGÞ ¼ 3 otherwise.

Proof LetWk denote the wheel graph on k þ 1 vertices. Let G be a Halin graph. We

consider the two cases depending on whether G is a wheel or not.

Case 1. G is a wheel. Thus G ¼ Wk for some integer k� 3.

Let (L, H) be a 3-cover of G. Without loss of generality, we may assume that

(L, H) is full. We label the vertices of G so v0 is the ‘‘hub‘‘ of the wheel and

v1; v2; . . .; vk are placed in order around the ‘‘rim’’. By Lemma 3.5, there exists

r : EðGÞ ! S3 such that r represents (L, H) and rv0vi ¼ 1S3 for each i 2 k. To prove

this case, we prove a stronger property: If G is not r-colorable then ruv ¼ 1S3 for

each uv 2 EðGÞ, and thus G must be an odd wheel. First, we construct two partial

colorings. Let c0ðv0Þ ¼ 0 and c0ðv1Þ ¼ 2. Let c1ðv0Þ ¼ 1 and c1ðv1Þ ¼ 2. Note that

our choice for c0ðv1Þ disallows exactly one choice of c0ðv2Þ, so

c0ðv2Þ 6¼ rv1v2ðc0ðv1ÞÞ. Similarly, c0ðv2Þ 6¼ rv0v2ðc0ðv0ÞÞ. Therefore there must be

at least one choice remaining for c0ðv2Þ. We may continue to extend c0 and c1 to

v3. . .vk�1 in this way without fear of conflict. h

Claim If for some i with 1� i� k � 1 our choices of c0ðv0Þ and c0ðviÞ both forbid

the same color at viþ1 (i.e. rviviþ1
ðc0ðviÞÞ ¼ rv0viþ1

ðc0ðv0ÞÞ) then c0 can be extended

to a r-coloring of G. The same applies to c1.

Proof of Claim First assume that our choices of c0ðv0Þ and c0ðvk�1Þ both forbid the

same color at vk. Then we have two choices remaining for c0ðvkÞ that are

consistent with c0ðv0Þ; c0ðv1Þ; . . .; c0ðvk�1Þ, if we disregard rvkv1 . Only one of these

two choices may cause conflict with respect to rvkv1 , so the other must be a r-

coloring of G. Now we note that if for some i with 1� i� k � 2 our choices of

c0ðv0Þ and c0ðviÞ both forbid the same color at viþ1, then the two options for

c0ðviþ1Þ that are consistent with previous c0ðv0Þ; c0ðv1Þ; . . .; c0ðviÞ must yield two

options for c0ðviþ2Þ. By induction we see that this reduces to the case where

i ¼ k � 1, and thus c0 can again be extended to a r-coloring of G. This completes

the proof of the claim. h

We therefore assume that the condition of the claim does not hold, so that

possible extensions of c0 and c1 to v2; v3; . . .; vk are uniquely determined by the
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colors they first assign to v0 and v1. Now, c0ðv0Þ ¼ 0 implies c0ðv2Þ 6¼ 0 and

c1ðv0Þ ¼ 1 implies c1ðv2Þ 6¼ 1. Therefore, since the condition of the claim does not

hold and since c0ðv1Þ ¼ c1ðv1Þ ¼ 2, we must have rv1v2ð2Þ 6¼ 0 and rv1v2ð2Þ 6¼ 1.

This leaves rv1v2ð2Þ ¼ 2. Similar arguments with different colors at v0 and v1 show

that rv1v2ð0Þ ¼ 0 and rv1v2ð1Þ ¼ 1 so that rv1v2 ¼ 1S3 . We may also repeat the same

argument to show that rviviþ1
¼ 1S3 for 2� i� k � 1. It remains to show that

rvkv1 ¼ 1S3 .

Now we consider two more partial colorings c3 and c4 where c3ðv0Þ ¼ 2,

c3ðv1Þ ¼ 0, c4ðv0Þ ¼ 2 and c4ðv1Þ ¼ 1. Since rviviþ1
¼ 1S3 for 1� i� k � 1, we must

have:

c3ðviÞ ¼ 0 when 1� i� k and i is odd,

c3ðviÞ ¼ 1 when 1� i� k and i is even,

c4ðviÞ ¼ 1 when 1� i� k and i is odd,

c4ðviÞ ¼ 0 when 1� i� k and i is even.

8

>

>

>

<

>

>

>

:

Since we assume that c3 and c4 are not r-colorings, we can see that when k is even

we must have rvkv1ð1Þ ¼ 0 and rvkv1ð0Þ ¼ 1, so rvkv1 ¼ ð01Þ. However, we then

have c0ðv1Þ ¼ 2 and c0ðvkÞ ¼ 1 so c0 is a r-coloring, a contradiction. If instead k is

odd then we must have rvkv1ð0Þ ¼ 0 and rvkv1ð1Þ ¼ 1 so rvkv1 ¼ 1S3 . To summarize,

Wk is not r-colorable if and only if ruv ¼ 1S3 for each uv 2 EðGÞ and k is odd. Such

a r-coloring of G would be equivalent to a vertex coloring of an odd wheel with

three colors, obviously not possible. Therefore, vDPðWkÞ ¼ 3 when k is even, and

vDPðWkÞ[ 3 when k is odd. Since vDP � �dðWkÞ þ 1 ¼ 4, we must have vDPðWkÞ ¼
4 when k is odd.

Case 2: G is not a wheel.

By definition, G is an edge-disjoint union of a spanning tree T and a cycle C

through the leaves of T. Let (L, H) be a full 3-cover of G, and let r : EðGÞ ! S3
such that r represents (L, H) and re ¼ 1S3 for each e 2 EðTÞ. Again, we assume by

way of contradiction that G is not r-colorable.

Let J ¼ T � VðCÞ, and let w2 be a leaf of J. We label V(C) with v1; v2; . . .; vk in
order such that v2. . .vt are adjacent to w2 in G and vtþ1; . . .; vk; v1 are not adjacent to
w2 in G. Let w1 be the vertex of J adjacent to v1. By the same reasoning as in Case 1,

a fixed partial r-coloring of G� fv2; . . .; vkg must uniquely determine any possible

extension to G� fv3; . . .; vkg. Thus, if c is a partial r-coloring of G� fv2; . . .; vkg,
then rv1v2ðcðv1ÞÞ 6¼ rw2v2ðcðw2ÞÞ ¼ cðw2Þ. Now we consider a partial r-coloring

c0 : VðJÞ [ fv1g ! f1; 2; 3g with c0ðv1Þ ¼ 0, c0ðw1Þ ¼ 1, and c0ðw2Þ ¼ 0. Before

proceeding, we will demonstrate that such a proper partial coloring exists.

We define J0 ¼ G½VðJÞ [ fv1g�, a subgraph of the tree T, so that we have re ¼
1S3 for each e 2 EðJ0Þ, and thus c0 is proper under r if and only if c0 is proper when

considered as a standard vertex coloring problem. We further define P to be the

unique ðv1;w2Þ-path in J0, and since v1 is a leaf of J
0, we may write a V(P) in order

as v1;w1; . . .;w2. If the distance between w1 and w2 on P is odd, then we may color

P by alternating 0 and 1. Note that we may then change the color of w2 if necessary,

though this is not required for c0. If instead the distance between w1 and w2 is even,
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define wp to be the unique vertex on P adjacent to w2. As before, we color

v1;w1; . . .;wp�1 by alternating 0 and 1, but then let c0ðwpÞ ¼ 2. Now we may set

c0ðw2Þ ¼ 0 as required. In either case, after coloring P it is routine to greedily

extend c0 to J0, since �dðJ0Þ þ 1� 3.

Now that this partial coloring is established, we may note that rv1v2ð0Þ 6¼ 0, or

else our choice of c0ðv1Þ and c0ðw2Þ forbid the same choice for c0ðv2Þ. By similar

reasoning as with c0, we may construct a partial coloring c1 : VðJÞ [ fv1g !
f1; 2; 3g with c1ðv1Þ ¼ 0, c1ðw1Þ ¼ 2, and c1ðw2Þ ¼ 1, so rv1v2ð0Þ 6¼ 1, and another

partial coloring c2 with c2ðv1Þ ¼ 0, c2ðw1Þ ¼ 1, and c2ðw2Þ ¼ 2, so rv1v2ð0Þ 6¼ 2.

Since any r 2 S3 must map 0, we have a contradiction. h

So in the case of Halin graphs, while the dual methods used for group coloring

cannot be applied to DP-coloring, the result still holds.

3.2 Comparing vgðGÞ, vglðGÞ and vDPðGÞ

We now examine another result in group coloring which cannot be applied to DP-

coloring, and give an example to show that a DP-coloring analogue does not hold.

Recall that a block of a multigraph G is a maximal 2-connected subgraph.

Theorem 3.7(ii) is a consequence of Theorem 3.7(i).

Theorem 3.7 Let G be a multigraph.

(i) [18] G is C-colorable if and only if each block of G is C-colorable.

(ii) vgðGÞ ¼ maxfvgðBÞ : B is a block of G g

Theorem 3.7(ii) does not hold if we replace vg with vDP. To show this, we will

re-use a counter-example found in [5]. First, we give some definitions for group list

coloring and show that list coloring problems can be converted into DP-coloring

problems. It is worth noting that we are not aware of a graph G where the inequality

vglðGÞ� vDPðGÞ proved below is strict.

Definition 3.8 Let G be a multigraph and let C be a finite group. For a function

f 2 FðG;CÞ and a list assignment L : VðGÞ ! 2C, a (C; f ; LÞ-coloring of G under

the orientation D is a function c : VðGÞ ! A such that for any arc

e ¼ ðu; vÞ 2 AðDÞ, cðuÞ � cðvÞ 6¼ f ðeÞ and such that cðwÞ 2 LðwÞ for each

w 2 VðGÞ. The group list chromatic number vglðGÞ of a graph G is the minimum

integer m such that G is ðC; f ; LÞ-colorable for any f 2 FðG;CÞ and list assignment

L : VðGÞ ! 2C where jCj �m and jLðwÞj �m for each w 2 VðGÞ.

Proposition 3.9 For any multigraph G we have vglðGÞ� vDPðGÞ.

Proof Let G be a multigraph with vDPðGÞ� k. Let C be a finite group, let f 2

FðG;CÞ and let L : VðGÞ ! 2C with jCj � k and jLðwÞj � k. Now to show that

vglðGÞ� k (and thus prove the proposition) it suffices to show that G is ðC; f ; LÞ-

colorable for such arbitrarily chosen ðC; f ; LÞ. We construct a k-cover (K, H) as

follows. For each w 2 VðGÞ label K(w) with L(w). For each e 2 EðGÞ, define a
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matching Je on KðuÞ [ KðvÞ by EðJeÞ : fxy : x 2 LðuÞ; y 2 LðvÞ; x� y ¼ f ðuvÞg.
Now let EH ½LðuÞ; LðvÞ� ¼

S

fJe : e 2 ½uv�g. Then since vDPðGÞ� k, G is (K, H)-

colorable, so by the construction of (K, H) we see that G is ðC; f ; LÞ-colorable as

well.h

Now, consider the following graph G:

w1

w2w3

w4

v1

v2v3

v4

u1

u2u3

u4

q

By Theorem 3.2 and Corollary 3.7 we have vgðGÞ ¼ 3, but it is proven in [5] that

vglðGÞ ¼ 4. Therefore, by Proposition 3.9 and Theorem 1.4 we must also have

vDPðGÞ ¼ 4. Furthermore, we can see that Corollary 3.7 does not hold for DP-

colorings, since vDPðBÞ ¼ 3 for each block B of G by Theorem 3.6.
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