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A NOTE ON GROUP COLORINGS AND GROUP STRUCTURE\ast 

HONG-JIAN LAI\dagger AND LUCIAN MAZZA\ddagger 

Abstract. Abelian group colorings were first introduced by Jaeger et al. in [J. Combin. The-
ory Ser. B, 56 (1992), pp. 165--182] as the dual concept of group connectivity of graphs. For given
groups \Gamma 1 and \Gamma 2 with | \Gamma 1| = | \Gamma 2| , the dual version of a problem raised by Jaeger et al. suggests to
investigate whether every \Gamma 1-colorable graph G is also \Gamma 2-colorable. Recently, H\v usek, Moheln\'{\i}kov\'a,
and \v S\'amal [J. Graph Theory, 93 (2019), pp. 317--327] used computer testing to find the first examples
of \BbbZ 4-connected but not \BbbZ 2

2-connected graphs as well as \BbbZ 2
2-connected but not \BbbZ 4-connected graphs.

As their examples are nonplanar, the group coloring problem remains unanswered. Group coloring
was extended to non-abelian groups in Li and Lai [Discrete Math., 313 (2013), pp. 101--104]. We
introduce a group coloring local structure (defined as a snarl in the paper) and use it to construct
infinitely many ordered triples (G,\Gamma 1,\Gamma 2) in which G is a graph and \Gamma 1 and \Gamma 2 are groups with
| \Gamma 1| = | \Gamma 2| , such that G is \Gamma 1-colorable but not \Gamma 2-colorable.
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1. Introduction. We consider finite graphs without loops but permitting mul-
tiple edges and follow [1] for undefined terms and notation in graph theory and [3]
for those in group theory. We define a relation ``\sim "" on E(G) such that e1 \sim e2
if e1 = e2, or if e1 and e2 form a cycle in G. It is routine to check that \sim is an
equivalence relation and edges in the same equivalence class are parallel edges with
the same endpoints. We use [uv] to denote the set of all edges between u and v in
a graph or a digraph, without regard to orientation, and shorten | [uv]| to | uv| . For
a multigraph G, we denote the simplification of G (i.e., the simple graph formed by
replacing each parallel class of edges [uv] with a single edge uv) by \^G. In a digraph
D, we use (u, v) to denote an arc oriented from u to v. For an integer k > 0, define
kG to be the graph obtained by replacing each edge in G with k parallel edges joining
the same end vertices. Throughout this paper, \Gamma will denote a (multiplicative) group
with identity 1, and 2\Gamma will denote the power set of \Gamma .

Group coloring of a graph is introduced in [5] for an abelian group as the dual
concept of group connectivity of graphs. In [8], the group coloring problem is relaxed
to arbitrary groups. Let F (G,\Gamma ) = \{ f : E(G) \rightarrow \Gamma \} denote the set of all mappings
from E(G) to \Gamma . Fix an orientation D of G. For an f \in F (G,\Gamma ), a mapping c :
V (G) \rightarrow \Gamma is a (\Gamma , f)-coloring if c(u)c(v) - 1 \not = f(e) for any arc e = (u, v) \in A(D). If
for any f \in F (G,\Gamma ), G always admits a (\Gamma , f)-coloring, then G is \Gamma -colorable. It is
indicated in [5, 7] that whether G is \Gamma -colorable is independent of the choice of the
orientation. The group chromatic number, denoted by \chi g(G), is the minimum m such
that G is \Gamma -colorable for any group \Gamma with | \Gamma | \geq m. When f : E(G) \rightarrow \{ 1\} is the
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2536 HONG-JIAN LAI AND LUCIAN MAZZA

constant map, a (\Gamma , f)-coloring is a proper | \Gamma | -coloring. Therefore, it is known that
group coloring is a generalization of vertex coloring and furthermore that \chi (G) \leq 
\chi g(G).

Early research on group chromatic number and group choice number was almost
entirely restricted to simple graphs and usually considered only abelian groups in
the definition of \chi g(G). To make a distinction here, we will define \chi a(G) to be the
minimum m such that G is A-colorable for any abelian group A with | A| \geq m. While
it follows from the definitions that \chi a(G) \leq \chi g(G) for any given graph G, it has been
remarked in [6] that the difference between these two values is not well understood.
Indeed, we are not aware of an example of a graph G for which \chi a(G) < \chi g(G).

In [5], a problem is posed: for any two abelian groups \Gamma 1 and \Gamma 2 with | \Gamma 1| = | \Gamma 2| ,
is a \Gamma 1-connected graph also \Gamma 2-connected? In [4], H\v usek, Moheln\'{\i}kov\'a, and \v S\'amal
first answer this question with the following conclusion.

Theorem 1.1 (H\v usek, Moheln\'{\i}kov\'a, and \v S\'amal, Theorem 3 of [4]). Let \BbbZ n

denote the cyclic group of order n, and let \BbbZ 2
n = \BbbZ n\times \BbbZ n. Each of the following holds:

(i) There exists a graph that is \BbbZ 4-connected but not \BbbZ 2
2-connected.

(ii) There exists a graph that is \BbbZ 2
2-connected but not \BbbZ 4-connected.

Naturally, there is a corresponding problem in group coloring (see Problems 4.11
and 4.12 of [6]): for given groups \Gamma 1 and \Gamma 2 with | \Gamma 1| = | \Gamma 2| , is a \Gamma 1-colorable graph
also \Gamma 2-colorable? Equivalently, we may ask whether any aspect of group structure
(other than the cardinality of the group) plays a role in group colorings. The purpose
of this research is an attempt to address this question. More precisely, we are to
investigate answers to the following question.

Question 1. Is the \Gamma -colorability of a graph G entirely dependent on G and | \Gamma | ?
As the graphs showing the validity of Theorem 1.1 in [4] are nonplanar, we cannot

apply duality and quote Theorem 1.1 to answer Question 1. In this paper, we show
that there are infinitely many ordered triples (G,\Gamma 1,\Gamma 2) in which G is a graph, \Gamma 1

and \Gamma 2 are groups with | \Gamma 1| = | \Gamma 2| , and G is \Gamma 1-colorable but not \Gamma 2-colorable. While
the justification of Theorem 1.1 uses computer checking, we develop a concept called
snarls which characterizes certain phenomena observed in group colorings and use the
snarl to construct our examples. The next section will be devoted to the development
of snarls, followed by a section dedicated to constructing examples negating Question
1, and finally a section outlining possible refinements of Question 1.

2. The snarls. To give a negative answer to Question 1, it is useful to first
introduce the concept of a snarl. This section will define this phenomenon as well as
give sufficient and necessary conditions for a snarl to occur. Throughout this section,
G denotes a graph, \Gamma denotes a multiplicative group with identity 1, and as in [3], for
a subset F \subseteq \Gamma , we define F - 1 = \{ x - 1 : x \in F\} . Before we consider the definition
of a snarl, it will be useful to prove a small proposition that will remove some cases
from consideration and significantly simplify the notation.

Definition 2.1. Let G be a multigraph under an orientation D such that any
two parallel edges have the same direction, and let \Gamma be a group such that | uv| \leq | \Gamma | 
for each uv \in E( \^G). If f \in F (G,\Gamma ) such that f | [uv] is injective for each uv \in E( \^G),
then we say that f is piecewise injective.

Proposition 2.2. Let G be a multigraph, and let \Gamma be a group such that | uv| \leq | \Gamma | 
for each uv \in \^E(G). If G is (\Gamma , f)-colorable for every piecewise injective f \in F (G,\Gamma ),
then G is \Gamma -colorable.
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A NOTE ON GROUP COLORINGS AND GROUP STRUCTURE 2537

Proof. Let G and \Gamma be as described above, and fix some orientation D of G
such that any two parallel edges have the same direction. Assume that G is (\Gamma , f)-
colorable for any f \in F (G,\Gamma ) such that f is piecewise injective. Let f0 \in F (G,\Gamma )
such that f0| [uv] is not piecewise injective. We now recursively define, for some p \in \BbbN ,
f1, f2, . . . , fp as follows: Choose [uv] such that uv \in E( \^G) and any e1, e2 \in [uv] with
e1 \not = e2 such that fi(e1) = fi(e2). Let fi+1(e1) = fi(e1) and fi+1(e2) \in \Gamma  - \{ fi(e) :
e \in [uv]\} . Since we consider only finite graphs, this recursion will eventually halt,
yielding fp \in F (G,\Gamma ) such that fp| [uv] is piecewise injective. By assumption, there

exists a (\Gamma , fp)-coloring c of G under D. Since f0([uv]) \subseteq fp([uv]) for each uv \in E( \^G),
c must also be a (\Gamma , f0)-coloring of G under D. Since f0 was arbitrarily chosen, it
follows directly from the definition that G is \Gamma -colorable.

With Proposition 2.2 in mind, for the remainder of the paper we need only con-
sider piecewise injective f \in F (G,\Gamma ). While doing so, we will also work under the
assumption that G is under an orientation D such as is described in Definition 2.1.

Definition 2.3. For a fixed piecewise injective f \in F (G,\Gamma ) and an edge uv \in 
E(G), let f(Auv) = \{ f(e) : e \in Auv\} , where Auv \subseteq [uv]. A (u, v; f)-snarl is a 3-tuple
(Lu, Lv, Auv) with | Lu| = | Lv| = | Auv| and Lu, Lv \subseteq \Gamma , satisfying the property that
for any a \in Lu, f(Auv)

 - 1a = Lv.

To simplify our notation, when f is understood or assumed in the context, we
often use a (u, v)-snarl for a (u, v; f)-snarl. We further define that a (u, v)-snarl with
Auv = [uv] is a full width (u, v)-snarl.

Proposition 2.4. For a given piecewise injective f \in F (G,\Gamma ), if there exists a
(u, v)-snarl (Lu, Lv, Auv), then each of the following holds:

(i) For any ep \in Auv and aq \in Lu, there exists an element bz \in Lv such that
f(ep)

 - 1aq = bz.
(ii) For any ap \in Lu and bq \in Lv, there exists an ez \in Auv such that f(ez)

 - 1ap =
bq.

(iii) For any ep \in Auv and bq \in Lv, there exists an az \in Lu such that f(ep)
 - 1az =

bq.
(iv) For any a0 \in \Gamma  - Lu, we have \{ f(e) - 1a0 : e \in Auv\} \cap Lv = \emptyset .
Proof. By Definition 2.3, (i) and (ii) follow directly. We argue by contradiction

to prove (iii) and assume that for any az \in Lu, f(ep)
 - 1az \not = bq. Then f(ep)

 - 1Lu \subsetneq 
Lv. This implies that there exist distinct ar and as in Lu and bt \in Lv such that
f(ep)

 - 1ar = f(ep)
 - 1as = bt, which forces ar = as, a contradiction. Hence (iii) must

hold.
We also argue by contradiction to prove (iv) and assume that there exists an

a0 \in \Gamma  - Lu and an ep \in Auv such that f(ep)
 - 1a0 = bq for some bq \in Lv. Then, by

(iii), there must be an az \in Lu such that f(ep)
 - 1az = bq, forcing a0 = az \in Lu, a

contradiction.

We will now work towards necessary and sufficient conditions for a snarl to occur.
Through the rest of this subsection, we assume that G is a given graph and that
uv \in E(G), and unless otherwise stated, we always use (Lu, Lv, Auv) to denote a
(u, v)-snarl, assuming the existence of it.

Definition 2.5. For such a (u, v)-snarl, (Lu, Lv, Auv), we may define H1 =
\{ aia - 1

j : ai, aj \in Lu\} , H2 = \{ a - 1
i aj : ai, aj \in Lu\} , and H3 = \{ bib - 1

j : bi, bj \in Lv\} .
Proposition 2.6. For a given piecewise injective f \in F (G,\Gamma ) and a (u, v)-snarl

(Lu, Lv, Auv), each of the following holds:
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2538 HONG-JIAN LAI AND LUCIAN MAZZA

(i) If F1 = \{ fif - 1
j : fi, fj \in f(Auv)\} , then H1 = F1.

(ii) If F2 = \{ b - 1
i bj : bi, bj \in Lv\} , then H2 = F2.

(iii) If F3 = \{ f - 1
i fj : fi, fj \in f(Auv)\} , then H3 = F3.

(iv) Given any ai, aj , ak \in Lu, there exists al \in Lu such that aia
 - 1
j = ala

 - 1
k .

(v) Given any bi, bj , bk \in Lv, there exists bl \in Lv such that bib
 - 1
j = blb

 - 1
k .

Proof. For any ai, aj \in Lu, by Proposition 2.4(ii), there exist fy, fz \in f(Auv)
and bq \in Lv such that aia

 - 1
j = fyb

 - 1
q (fzb

 - 1
q ) - 1 = fyf

 - 1
z \in F1, implying H1 \subseteq F1.

Conversely, for any fi, fj \in f(Auv), by Proposition 2.4(iii) there exist ai, aj \in Lu and
bq \in Lv such that fif

 - 1
j = aibq(ajb

 - 1
q ) - 1 = aia

 - 1
j \in H1, implying F1 \subseteq H1. This

proves (i). The proofs for (ii) and (iii) are similar and so are omitted.
By Proposition 2.4(i), there exists an element bx \in Lv such that fz = akb

 - 1
x ,

and by Proposition 2.4(iii), there exists al \in Lu such that fy = alb
 - 1
x . Therefore,

aia
 - 1
j = fyf

 - 1
z = (alb

 - 1
x )(akb

 - 1
x ) - 1 = ala

 - 1
k . This proves (iv).

Finally, by Proposition 2.4(iii) there exists az \in Lu such that f - 1
x az = bk and by

Proposition 2.4(i) there exists bl \in Lv such that f - 1
w az = bl. Thus bib

 - 1
j = f - 1

w fx =

(azb
 - 1
l ) - 1(azb

 - 1
k ) = bla

 - 1
z azb

 - 1
k = blb

 - 1
k . This proves (v).

There is some symmetry at play here, so there are more properties similar to those
written in Proposition 2.6, including an ``f"" property corresponding to (iv) and (v).
In the interest of brevity, Proposition 2.6 is limited to include only what is needed to
prove Theorem 2.8.

Lemma 2.7. The subsets H1, H2, H3 defined in Definition 2.5 are conjugate sub-
groups of \Gamma .

Proof. Given h1, h2 \in H1, by Definition 2.5, there exist some ai, aj , ap, aq \in Lu

such that we have h1 = aia
 - 1
j and h2 = apa

 - 1
q . By Proposition 2.6(iv), we may also

write h1 = ala
 - 1
q for some element al so that h1h

 - 1
2 = ala

 - 1
q (apa

 - 1
q ) - 1 = ala

 - 1
p \in H1.

As H1 \not = \emptyset , H1 is a subgroup of \Gamma . To prove the lemma, we first justify the following
two claims.

Claim 1. For any element a \in Lu, aH2 = Lu = H1a.
By Definition 2.5, we have H2 = \{ a - 1

i aj : ai, aj \in Lu\} . Thus for any aj \in Lu, as
a \in Lu, we have aj = aa - 1aj \in aH2, and so Lu \subseteq aH2. Conversely, take an arbitrary
element aa - 1

i aj \in aH2. By Proposition 2.6(iv), there exists an element al \in Lu, with
which we may write aa - 1

i aj = ala
 - 1
j aj = al \in Lu. This implies that aH2 \subseteq Lu, and

so aH2 = Lu. Again by Definition 2.5, we have H1 = \{ aia - 1
j : ai, aj \in Lu\} . Thus

for any ai \in Lu, as a \in Lu, we have ai = aia
 - 1a \in H1a as well, and so Lu \subseteq H1a.

Conversely, pick an arbitrary element aia
 - 1
j a \in H1a. By Proposition 2.6(iv), there

exists an element al \in Lu so that aia
 - 1
j a = ala

 - 1a = al \in Lu. Thus H1a \subseteq Lu, and
so H1a = Lu. This completes the proof of the claim.

Claim 2. For any element b \in Lv, bH2 = Lv = H3b.
By Proposition 2.6(ii), we have H2 = \{ b - 1

i bj : bi, bj \in Lv\} . Thus for any bj \in Lv,
as b \in Lv, we have bj = bb - 1bj \in bH2, and so Lv \subseteq bH2. Conversely, take an
arbitrary element bb - 1

i bj \in bH2. By Proposition 2.6(v), there exists an element
bl \in Lv such that bb - 1

i bj = blb
 - 1
j bj = bl \in Lv. This proves bH2 = Lv. By Definition

2.5, we have H3 = \{ bib - 1
j : bi, bj \in Lv\} . Thus, for any bi \in Lv, as b \in Lv, we have

bi = bib
 - 1b \in H3b, and so Lv \subseteq H3b. Conversely, for any bib

 - 1
j b \in H3b, by Proposition

2.6(v), there exists an element bl \in Lv such that bib
 - 1
j b = blb

 - 1b = bl \in Lv, and so
H3b \subseteq Lv. This validates the claim.

By Claims 1 and 2, for elements a \in Lu and b \in Lv, we have H1 = aH2a
 - 1
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and H3 = bH2b
 - 1. Thus H2 and H3 are conjugates of H1, and so H1, H2, and H3

are conjugates of one another. It is well known (see [3, Chapter II, section 4]) that
the conjugates of a subgroup is itself a subgroup. Thus H1, H2, H3 are conjugate
subgroups of \Gamma .

Now we may show some sufficient and necessary conditions for a snarl to occur.

Theorem 2.8. Let f \in F (G,\Gamma ) be a given piecewise injective mapping. For some
uv \in E(G), let Lu, Lv, F \subseteq \Gamma such that for some Auv \subseteq [uv], we have F = f(Auv).
Then the following are equivalent:

(i) (Lu, Lv, Auv) is a (u, v)-snarl.
(ii) There exist conjugate subgroups H1, H2, and H3 of \Gamma and elements a, b, f \in \Gamma 

satisfying ab - 1 = f such that Lu = H1a = aH2, Lv = H3b = bH2, and F = H1f =
fH3.

Proof. By Lemma 2.7, (i) implies (ii). Assume that (ii) holds. We are to show
that Definition 2.3 must hold. For any aj \in Lu, there exists an element h1 \in H1

such that aj = h1a, and so \{ f(e) - 1aj : e \in Auv\} = F - 1aj = (H1f)
 - 1h1a. As

h1 \in H1 and as H1 is a subgroup, H - 1
1 h1 = H - 1

1 , and so we have (H1f)
 - 1h1a =

f - 1H - 1
1 h1a = f - 1H - 1

1 a = (H1f)
 - 1a = (fH3)

 - 1a = H - 1
3 f - 1a = H3b = Lv. It

follows, by Definition 2.3, that (Lu, Lv, Auv) is a (u, v)-snarl.

Corollary 2.9 follows from Theorem 2.8 immediately.

Corollary 2.9. Let G be a graph, let A be an abelian group, and let f \in F (G,A)
be a fixed piecewise injective mapping. For some uv \in E(G), let Lu, Lv, F \subseteq A be
subsets of A such that for some Auv \subseteq [uv], we have F = f(Auv). Then the following
are equivalent:

(i) (Lu, Lv, Auv) is a (u, v)-snarl.
(ii) There exists a subgroup H of A and elements a, b, f \in A satisfying ab - 1 = f

such that Lu = aH, Lv = bH, and F = fH.

Proof. By Theorem 2.8, Corollary 2.9(i) holds if and only if there exist conjugate
subgroups H1, H2, and H3 of A and elements a, b, f \in A satisfying ab - 1 = f such that
Lu = H1a = aH2, Lv = H3b = bH2, and F = H1f = fH3. Since A is abelian, and
since H1, H2, and H3 are conjugate subgroups of A, we have H := H1 = H2 = H3,
and so in this case, Theorem 2.8(ii) holds if and only if Corollary 2.9(ii) holds.

3. Counterexamples. We now use the characterization of a snarl developed in
the previous section to give a counterexample for Question 1 in the two propositions
that follow. We denote by A4 the alternating group of degree 4. Recall that | A4| = 12.
As in [1], \delta (G) denotes the minimum degree of a graph G. Define \=\delta (G) = max\{ \delta (H) :
for any subgraph H of G\} . This value is known as the degeneracy of G, and \=\delta (G)+ 1
is often called the coloring number of G, sometimes denoted by col(G). It is shown
in Lemma 4.2 of [7] (see also Corollary 2.3 of [8]) that for any multigraph G,

(1) \chi g(G) \leq \=\delta (G) + 1.

The inequality holds for standard vertex coloring, as well as many other coloring
notions, including list coloring and DP-coloring. The proof is essentially the same for
any of these and can be routinely verified.

Proposition 3.1. The graph 6K3 is A4-colorable.

Proof. Let f \in F (6K3, A4), and let v1, v2, and v3 denote the three vertices of
6K3. To show that 6K3 is A4-colorable, it suffices to construct an (A4, f)-coloring
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2540 HONG-JIAN LAI AND LUCIAN MAZZA

of 6K3. First, we arbitrarily choose c(v1) \in A4. With Proposition 2.2 in mind, we
may assume that f is piecewise injective. This leaves us with exactly six choices for
c(v2) (which we denote by L2) and exactly six choices for c(v3) (which we denote by
L3). We may also assume without loss of generality that each arc in [v2v3] is oriented
towards v3.

Assume by way of contradiction that for each \gamma \in L2 we have (f [v2v3])
 - 1\gamma = L3.

Then we have, by Definition 2.3, a full-width v2v3-snarl. By Theorem 2.8, A4 must
then have a subgroup H with | H| = 6, although it is well known that A4 has no
subgroup of order 6. We assume then that there exists \gamma \in L2 such that L3 \not \subset 
(f [v2v3])

 - 1\gamma , and so we may set c(v2) = \gamma and c(v3) \in (f [v2v3])
 - 1\gamma  - L3 to complete

the coloring.

Proposition 3.2. The graph 6K3 is not \BbbZ 12-colorable.

Proof. Define \Gamma e = 2\BbbZ 12 to be the cyclic subgroup of \BbbZ 12 with six elements, and
let \Gamma o = \BbbZ 12  - \Gamma e. Let v1, v2, and v3 denote the three vertices of 6K3. We may
assume without loss of generality that arcs are oriented from v1 to v2, v2 to v3, and v3
to v1. We define f \in F (G,\BbbZ 12) with f [v1v2] = f [v2v3] = f [v3v1] = \Gamma e. To complete
the proof, it suffices to show that 6K3 is not (\BbbZ 12, f)-colorable. Indeed, if we choose
c(v1) \in \Gamma o, then by the definition of f , we must have c(v2) \in \Gamma e (yielding a conflict at
[v3v1]), and so we cannot choose c(v1) \in \Gamma o. A similar argument shows that c(v1) \in \Gamma e

cannot be chosen either, and thus there can be no (\BbbZ 12, f)-coloring of 6K3.

Later, we shall show that for any abelian group \Gamma with | \Gamma | = 12, 6K3 is not
\Gamma -colorable. The important structural distinction here lies in the fact that A4 has
no subgroup of order 6, whereas \BbbZ 12 does. Since | A4| = | \BbbZ 12| , it is clear that group
structure does play some role in group coloring, and we can answer Question 1 in the
negative.

Before constructing more counterexamples it will be useful to define some termi-
nology. First, consider the following well-known theorem of Lagrange.

Theorem 3.3. If H is a subgroup of a finite group \Gamma , then | H| divides | \Gamma | .
It is important to note that the converse of Theorem 3.3 does not always hold;

there exist many groups \Gamma such that h divides | \Gamma | but \Gamma has no subgroup of order
h. Furthermore, this failure of the converse was vital to constructing the counter-
example for Question 1 in Propositions 3.1 and 3.2. The converse of Theorem 3.3 has
in fact been studied widely, but there is no known characterization of all groups for
which it holds.

Definition 3.4. A group \Gamma is called a CLT group or a Lagrangian group if for
each h such that h divides | \Gamma | there is a subgroup H of \Gamma with | H| = h.

It is well known (see [3, Chapter II, Corollary 2.4]) that any abelian group is a CLT
group. Therefore, further counterexamples for Question 1 using the same technique
as above must have at least one of \Gamma 1 or \Gamma 2 be non-abelian. Any such counterexample
must specifically include a group that is not CLT. The following lemma appears as
an exercise in [9] and gives an infinite set of such non-CLT groups.

Lemma 3.5. For n \geq 5, the symmetric group Sn has no subgroup H with 2 <
[Sn : H] < n.

We shall use Lemma 3.5 to construct an infinite set of counterexamples for Ques-
tion 1.

Theorem 3.6. For each n \geq 5 and 2 < t < n, n!
t Kt+1 is Sn-colorable.
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Proof. Let G = n!
t Kt+1, and let f \in F (G,Sn) be piecewise injective.

Fix two vertices u, v \in V (G), and define J = G  - [uv] to be the graph formed
by removing all parallel edges in [uv]. Then \=\delta (J) = (t  - 1)n!t < n! = | Sn| . By (1),
| Sn| \geq \=\delta (J) + 1 \geq \chi g(J), and so J is Sn-colorable. In particular, J has an (Sn, f | J)-
coloring c. We will show that at least one such (Sn, f | J)-coloring of J is also an
(Sn, f)-coloring of G. Since dJ(u) = dJ(v) = (t  - 1)n!t < | Sn| , we may modify c by
changing c(u) and c(v), and it will still be an (Sn, f | J)-coloring of J . To be precise,
we have at least | Sn|  - dJ(u) =

n!
t choices for modifying c(u) and likewise at least n!

t
choices for modifying c(v). Let Lu, Lv \subset Sn denote the sets of choices for c(u) and
c(v), respectively. We may assume without loss of generality that each arc in [uv] is
oriented towards v.

First we consider the case where | Lu| > n!
t or | Lv| > n!

t . Without loss of generality,

we assume | Lu| > n!
t . Then we may arbitrarily choose c(v) \in Lv and be assured

that at least one choice remains for c(u) \in u. Now we consider the case where
| Lu| = | Lv| = n!

t . Assume by way of contradiction that for each \gamma \in Lu we have
(f [uv]) - 1\gamma = Lv. Then we have, by Definition 2.3, a full-width uv-snarl. By Theorem
2.8, Sn must then have a subgroupH with | H| = | uv| = n!

t . However, this would imply
that [Sn : H] = t, contradicting Lemma 3.5. We assume then that there exists \gamma \in Lu

such that Lv \not \subset (f [uv]) - 1\gamma , and so we may set c(u) = \gamma and c(v) \in (f [uv]) - 1\gamma  - Lv.
Now c is an (Sn, f)-coloring of G, and thus G is Sn-colorable.

Theorem 3.7. Let \Gamma be a group with | \Gamma | = st, and let H be a subgroup of \Gamma such
that | H| = t. Then tKs+1 is not \Gamma -colorable.

Proof. Let \Gamma be a group with | \Gamma | = st and H be a subgroup of \Gamma such that | H| = t
and G = tKs+1. We shall construct a mapping f \in F (G,\Gamma ) such that G is not (\Gamma , f)-
colorable. For each u, v \in V (Ks+1), let f [uv] = H. Assume by contradiction that
there exists a (\Gamma , f)-coloring c : V (G) \rightarrow \Gamma .

Claim 1. For any pair of vertices u, v \in V (tKs+1), c(u) and c(v) must be in
different right cosets of H in \Gamma .

By way of contradiction, we assume there exist such vertices u, v \in V (tKs+1) such
that c(u), c(v) \in Hg for some g \in \Gamma . We may assume without loss of generality that
each arc in [uv] is oriented towards v. It is well known that two cosets of a subgroup
are either identical or disjoint since congruence modulo H is an equivalence relation
(see, for example, Chapter I, Theorem 4.2, and Corollary 4.3 of [3]). Therefore,
since c(v) \in Hg, we have Hc(v) \cap Hg \not = \emptyset , and so Hc(v) = Hg. As we also have
c(u) \in Hg = Hc(v), it follows that c(u)[c(v)] - 1 \in H. As f [uv] = H, c cannot be
a (\Gamma , f)-coloring, contrary to the assumption that c is a (\Gamma , f)-coloring. This proves
Claim 1.

By Claim 1, for any u, v \in V (tKs+1), c(u) and c(v) must be in different cosets of
H in \Gamma . However, as there are s+1 vertices and only s cosets, we conclude that such
a coloring c does not exist.

Corollary 3.8. Let A be an abelian group with | A| = st. Then tKs+1 is not
A-colorable.

Proof. Since A is abelian and t divides A, there must be a subgroup H with
| H| = t (see [3, Chapter II, Corollary 2.4]). Corollary 3.8 now follows directly from
Theorem 3.7.

By Corollary 3.8 with s = 2 and t = 6, we observe that the conclusion of Propo-
sition 3.2 can be extended to the form that for every abelian group A with | A| = 12,
6K3 is not A-colorable, as mentioned earlier. Moreover, it is not difficult to see that
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Theorems 3.6 and 3.7 together constitute an infinite and somewhat diverse set of ex-
amples for graphs where group structure matters in group coloring. As stated before,
the CLT property has not been characterized but has been otherwise studied. A look
at [2] tells us that CLT groups are solvable, a more well known property than CLT.
Therefore, one could create more examples using nonsolvable groups.

All of the previous examples in this section have only one of \Gamma 1 and \Gamma 2 as a non-
abelian group, but this is not a necessary condition for a counterexample to exist. We
may note that there is a (non-abelian) dicyclic group Dic3 (also written as Q12) with
order 12 and a subgroup of order 6. Using virtually the same proof as in Theorem
3.7, we see that 6K3 is not Dic3-colorable. However, as previously stated, 6K3 is
A4-colorable even though | Dic3| = | A4| = 12.

4. Further questions. After answering Question 1 in the negative, there are
some natural first steps toward determining whether \chi a(G) and \chi g(G) can differ. In
this last section, we state these further questions and discuss them briefly.

Question 2. Is there a graph G such that G is A-colorable but not \Gamma -colorable
where A is an abelian group, \Gamma is a non-abelian group, and | A| = | \Gamma | ?

Question 3. Is there a graph G such that G is A1-colorable but not A2-colorable
where A1 and A2 are two abelian groups with | A1| = | A2| ?

Questions 2 and 3 can, like Question 1, be considered steps toward determin-
ing whether \chi a(G) and \chi g(G) can differ. The methods used in this note to answer
Question 1 cannot be easily applied to these further questions since abelian groups
are CLT; i.e., they always have subgroups of order k for any k that divides the order
of the group (see [3, Chapter II, Corollary 2.4]). Indeed, Corollary 3.8 demonstrates
that a new approach is needed in answering these further questions. Finally, the goal
of all previously mentioned questions is to work towards answering the following.

Question 4. Does there exist a graph G such that \chi a(G) < \chi g(G)?

5. Appendix: Proof of Lemma 3.5. Notation: For a group G, let G\prime denote
the commutator subgroup of G, the subgroup generated by the subset \{ aba - 1b - 1 :
a, b \in G\} in G, and let the center of a G be C(G) = \{ a \in G : gag - 1 = a for each
g \in G\} .

Lemma 5.1. Let N  \triangleright G such that N \cap G\prime = \{ 1\} . Then N \subseteq C(G).

Proof. Let n \in N and g \in G. Then gng - 1n - 1 = n\prime n - 1 \in N (where n\prime \in N). By
definition, gng - 1n - 1 \in G\prime as well. Since N \cap G\prime = \{ 1\} , we must have gng - 1n - 1 = 1
so that gng - 1 = n and thus n \in C(G).

Lemma 5.2. An is the only nontrivial normal subgroup of Sn for n \geq 5.

Proof. Assume by way of contradiction that N is a nontrivial normal subgroup
of Sn and N \not = An. Then N \cap An  \triangleright An. Since An is simple for n \not = 4 (see Chapter
I and Theorem 6.10 of [3]), we must have either N \cap An = \{ 1\} or An  \triangleright N  \triangleright Sn.
Since [Sn : An] = 2, we cannot have An  \triangleright N  \triangleright Sn. Therefore, we may assume that
N \cap An = \{ 1\} . In this case, we first note that An = S\prime 

n. Now by Lemma 5.1, we have
N \subseteq C(Sn) = \{ 1\} , a contradiction.

Lemma 5.3. For each n \geq 5, the symmetric group Sn has no subgroup H with
2 < [Sn : H] < n.

Proof. Let H be a nontrivial subgroup of Sn such that [Sn : H] < n. To complete
the proof, it suffices to show that [Sn : H] \leq 2. First, we note that Sn acts on
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the set Sn/H of all left cosets of H in Sn by left translation. This group action
induces a homomorphism f : Sn \rightarrow A(Sn/H), where A(Sn/H) is the group of all
permutations on the set Sn/H, and furthermore ker(f) \subseteq H (see Chapter II, Theorem
4.5, and Proposition 4.8 of [3]). Now, ker(f) is a normal subgroup of Sn. Since
| Sn| = n! > [Sn : H]! = | A(Sn/H)| , f cannot be injective, and thus ker(f) \not = \{ 1\} .
Certainly, ker(f) \not = Sn since H is nontrivial and ker(f) \subseteq H. Therefore, by Lemma
5.2, we must have ker(f) = An. Since [Sn : ker(f)] = [Sn : An] = 2 and ker(f) \subseteq H,
we must have [Sn : H] \leq 2.
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