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a b s t r a c t

Let D be a digraph and let α(D), α′(D) and λ(D) be independence number, the matching
number and the arc-strong connectivity of D, respectively. Bang-Jensen and Thommassé
in 2011 conjectured that every digraph D with λ(D) ≥ α(D) is supereulerian. In [J. Graph
Theory, 81(4), (2016) 393-402], it is shown that every digraph D with λ(D) ≥ α′(D) is
supereulerian. In this paper, we introduced the symmetric core of a digraph and use it
to show that each of the following holds for a strong digraph D on n ≥ 3 vertices with
λ(D) ≥ α′(D) − 1.

(i) There exists a family D(n) of well-characterized digraphs such that for any digraph
D with α′(D) ≤ 2, D has a spanning trial if and only if D is not a member in D(n).

(ii) If α′(D) ≥ 3, then D has a spanning trail.
(iii) If α′(D) ≥ 3 and n ≥ 2α′(D) + 3, then D is supereulerian.
(iv) If λ(D) ≥ α′(D) ≥ 4 and n ≥ 2α′(D) + 3, then for any pair of vertices u and v of

D, D contains a spanning (u, v)-trail.
© 2021 Elsevier B.V. All rights reserved.

1. Introduction

Throughout this paper, we use G to denote a graph and D a digraph. Graphs and digraphs considered are finite with
ndefined terms and notation will follow [9] for graphs and [3] for digraphs. As in [3], a digraph D is one that does not

have loops and parallel arcs. Thus κ(G), κ ′(G), α(G) and α′(G) denote the connectivity, the edge connectivity, the stability
umber (also called the independence number), and the matching number of a graph G; and κ(D) and λ(D) denotes the
ertex-strong connectivity and the arc-strong connectivity of a digraph D, respectively. The indegree and outdegree of a
ertex v in a digraph D are denoted by d−

D (v) and d+

D (v), respectively. We often use G(D) to denote the underlying graph of
, the graph obtained from D by erasing all orientation on the arcs of D. The stability number and the matching number

of a digraph D are defined as

α(D) = α(G(D)) and α′(D) = α′(G(D)),

respectively. Throughout this paper, we use paths, cycles, and trails as defined in [9] when the discussion is on an
undirected graph G, and to denote directed paths, directed cycles and directed trails when the discussion is on a digraph
D. A directed trail (or path, respectively) from a vertex u to a vertex v in a digraph D is often refereed as to a (u, v)-trail
(a (u, v)-path, respectively).
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The supereulerian problem was introduced by Boesch, Suffel, and Tindell in [8], seeking to characterize graphs that
ave spanning Eulerian subgraphs. Pulleyblank in [19] proved that determining whether a graph is supereulerian, even
ithin planar graphs, is NP-complete. There have been lots of researches on this topic. For more literature on supereulerian
raphs, see Catlin’s informative survey [10], as well as the later updates in [11] and [17]. The supereulerian problem in
igraphs is considered by Gutin [13,14]. A strong digraph D is eulerian if for any v ∈ V (D), d+

D (v) = d−

D (v). A digraph D is
upereulerian if D contains a spanning eulerian subdigraph, or equivalently, a spanning closed trail. Thus supereulerian
igraphs must be strong, and every hamiltonian digraph is also a supereulerian digraph.
The supereulerian digraph problem is to characterize the strong digraphs that contains a spanning closed trail. Other

han the researches on hamiltonian digraphs, a number of studies on supereulerian digraphs have been conducted
ecently. In particular, Hong et al. in [15,16] and Bang-Jensen and Maddaloni [5] presented some best possible sufficient
egree conditions for supereulerian digraphs. Several researches on various conditions of supereulerian digraphs can be
ound in [2,4,18], among others.

A well known theorem of Chvátal and Erdös [12] states that every 2-connected graph G with κ(G) ≥ α(G) is
amiltonian. Thomassen [20] indicated that the Chvátal–Erdös Theorem does not extend to digraphs by presenting an
nfinite family of non hamiltonian (but supereulerian) digraphs D with κ(D) = α(D) = 2. This motivates Bang-Jensen and
hommassé (2011, unpublished, see [6]) to make the following conjecture.

onjecture 1.1 (Bang-Jensen and Thommassé [5,6]). Let D be a digraph. If λ(D) ≥ α(D), then D is supereulerian.

A number of studies have been conducted towards Conjecture 1.1, In [5], Bang-Jensen and Maddaloni verified the
alidity of Conjecture 1.1 for several families of digraphs, including semicomplete multipartite digraphs and quasitransitive
igraphs. The following have been proved.

heorem 1.2. Let D be a strong digraph.
(i) (Alfegari and Lai, Theorem 1.5 of [1]) If λ(D) ≥ α′(D), then D is supereulerian.
(ii) (Zhang et al. Theorem 1.5 of [21]) If G(D) is a bipartite digraph and λ(D) ≥

⌊
α(D)
2

⌋
+ 1, then D is supereulerian.

A digraph D is strongly trail-connected if for any two vertices u and v of D, D possess both a spanning (u, v)-trail and
a spanning (v, u)-trail. As the case when u = v is possible, every strongly trail-connected digraph is also supereulerian.
In Section 3, we shall introduce a digraph family D(n) each of whose members does not have a spanning trail with its
underlying graph spanned by a K2,n−2. The following is our main result.

Theorem 1.3. Let D be a strong digraph on n ≥ 12 vertices satisfying λ(D) ≥ α′(D) − 1. Each of the following holds.
(i) If α′(D) ≤ 2, then D has a spanning trail if and only if D is not a member in D(n).
(ii) If α′(D) ≥ 3, then D has a spanning trail.
(iii) If α′(D) ≥ 3 and n ≥ 2α′(D) + 3, then D is supereulerian.
(iv) If λ(D) ≥ α′(D) ≥ 4 and n ≥ 2α′(D) + 3, then D is strongly trail-connected.

Theorem 1.3 (iii) and (iv) extended Theorem 1.2 (i) when α′(D) and |V (D)| are sufficiently large. In the next section,
we present some preliminaries including several structural analysis lemmas. The proof of the main result will be given
in the last section.

2. Preliminaries

Let D be a digraph on n vertices, and let k = α′(D). Thus n ≥ 2k. If G = G(D) for a digraph D, then as D may possess
a 2-cycle, it is possible for G to have parallel edges. Throughout our discussions, we use the notation (u, v) to denote an
arc oriented from u to v in a digraph D; and use [u, v] to denote either (u, v) or (v, u). When [u, v] ∈ A(D), we say that u
and v are adjacent. If two arcs of D have a common vertex, we say that these two arcs are adjacent in D. If X is a vertex
subset or an arc subset of D, we use D[X] to denote the subdigraph of D induced by X . If e is an edge in a graph G or
an arc in a digraph D incident with vertices u and v, define V (e) = {u, v}. As in [3], we define, for a vertex v ∈ V (D),
N+

D (v) = {w ∈ V (D) : (v, w) ∈ A(D)}, N−

D (v) = {u ∈ V (D) : (u, v) ∈ A(D)} and ND(v) = N+

D (v) ∪ N−

D (v). For a subset
⊆ V (D), define ND(X) = ∪x∈XND(x).
For an arc subset F ⊆ A(D), define V (F ) = ∪e∈FV (e) to be the set of vertices incident with an edge of F in D. For subsets

, Y ⊆ V (D), define

(X, Y )D = {(x, y) ∈ A(D) : x ∈ X, y ∈ Y }, and (X, Y )G(D) = (X, Y )D ∪ (Y , X)D.

If X = {x} or Y = {y}, we often use (x, Y )D for (X, Y )D or (X, y)D for (X, Y )D, respectively. Hence (x, y)D = ({x}, {y})D. For a
vertex v ∈ V (D), let ∂+

D (v) = (v, V (D) − v)D and ∂−

D (v) = (V (D) − v, v)D. Thus d+

D (v) = |∂+

D (v)| and d−

D (v) = |∂−

D (v)|. We
urther define

dD(v) = d+

D (v) + d−

D (v) and δ(D) = min{dD(v) : v ∈ V (D)}.

Let M be a matching in a graph G. A path P is an M-augmenting path if the edges of P are alternately in M and in
(G) − M , and if both end vertices of P are not in V (M). An M-augmenting path of a digraph D is an M-augmenting path
f G(D). The following theorem is fundamental.
418
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heorem 2.1 (Berge, [7]). A matching M in G is a maximum matching if and only if G does not have M-augmenting paths.

.1. The symmetric core of a digraph

Let D = (V (D), A(D)) be a digraph. An arc (u, v) ∈ A(D) is symmetric in D if (u, v), (v, u) ∈ A(D), and asymmetric
otherwise. Notice that a symmetric arc (u, v) together with the arc (v, u) form a pair of symmetric arcs of D. A digraph
D is symmetric if every arc of D is symmetric. Let S(D) = {e ∈ A(D) : e is symmetric in D}. If A(D) = S(D), then D is
symmetric. The symmetric core of D, denoted by J(D), has vertex set V (D) and arc set S(D). When D is understood from
the context, we often use J for J(D).

Let e = (v1, v2) ∈ A(D) be an arc of D. Define D/e to be the digraph obtained from D − e by identifying v1 and v2
into a new vertex ve, and deleting the possible resulting loop(s). If W ⊆ A(D) is a symmetric arc subset, then define the
contraction D/W to be the digraph obtained from D by contracting each arc e ∈ W , and deleting any resulting loops. Thus
even D does not have parallel arcs, a contraction D/W is loopless but may have parallel arcs, with A(D/W ) ⊆ A(D) − W .
If H is a subdigraph of D, then we often use D/H for D/A(H). If L is a connected symmetric component of H and vL is the
vertex in D/H onto which L is contracted, then L is the contraction preimage of vL. We adopt the convention to define
D/∅ = D, and define a vertex v ∈ V (D/W ) to be a trivial vertex if the preimage of v is a single vertex (also denoted by
v) in D. Hence we often view trivial vertices in a contraction D/W as vertices in D. We use Zk to denote the (additive)
group of integers modulo k.

Lemma 2.2. Let D be a digraph, J = J(D) and J0 be a symmetric subdigraph of J .
(i) For any v ∈ V (J0), d+

J0
(v) = d−

J0
(v).

(ii) If J0 is connected, then J0 is an eulerian subdigraph of D and so J0 is strongly connected.
(iii) Suppose that J0 is connected. Then for any vertices u, v ∈ V (J0), J0 contains a spanning (u, v)-trail.
(iv) If D is strong and for some vertices u, v ∈ V (D), D has a (u, v)-trail P such that D − A(P) contains a connected

symmetric subdigraph J ′ of J such that V (P) ∪ V (J ′) = V (D), u, v /∈ V (J ′) and there exist two vertices v+, v−
∈ V (J ′) with

(v, v+), (v−, u) ∈ A(D), then D is supereulerian.
(v) If D/J0 has a hamiltonian cycle, then D is supereulerian. In particular, if D is strong and J0 is a spanning subdigraph of

D with at most two connected components, then D is supereulerian.
(vi) If D is strong and D[A(D) − A(J0)] has a trail T ′ that intersects every component of J0 with V (D) − V (J0) ⊆ V (T ′), then

T = D[A(T ′) ∪ A(J0)] is a spanning trail in D.
(vii) Suppose λ(D) ≥ 2. If G(D − V (J0)) is spanned by a 3-cycle, then D is supereulerian.

Proof. As (i) and (ii) are immediate consequences of the definitions, it suffices to justify the other conclusions. Let
u, v ∈ V (J0). By (ii), we assume that J0 is strong and u ̸= v. Let P be a shortest (v, u)-path in J0. As P is shortest, if
an arc e = (x, y) ∈ A(P), then (y, x) /∈ A(P). By (i), T = J0 − A(P) is a connected digraph such that d+

T (u) = d−

T (u) + 1,
d+

T (v) = d−

T (v)−1 and for any vertex w ∈ V (T )−{u, v}, d+

T (w) = d−

T (w). Thus T is a spanning (u, v)-trail of J0. This proves
(iii).

By assumption, J ′ is a connected symmetric subdigraph, and so J ′ is the symmetric core of itself. By (iii) with J0 = J ′, J ′
contains a spanning (v+, v−)-trail T . As A(T )∩ A(P) ⊆ A(J ′)∩ A(P) = ∅, the arc set A(T )∪ A(P)∪ {(v, v+), (v−, u)} induces
a spanning closed trail of D, and so D is supereulerian. Hence (iv) is justified.

To prove (v), let D′
= D/J0 and denote n = |V (D′)|. Suppose that D′ has a hamiltonian cycle C with V (C) =

{v1, v2, . . . , vn} and A(C) = {ei = (vi, vi+1) : i ∈ Zn}. Let J1, J2, . . . , Jn be the preimage of v1, v2, . . . , vn, respectively.
By definition, each Ji is a connected component of J0, and so a connected symmetric subdigraph of J . By the definition
of contraction, A(D′) ⊆ A(D), and so for each i ∈ Zn, the arc ei ∈ A(D). Therefore, there exist vertices v′

i ∈ V (Ji) and
v′′

i+1 ∈ V (Ji+1) with ei = (v′

i , v
′′

i+1) ∈ A(D). Since each Ji is a connected symmetric subdigraph of J , it follows by (iii) that Ji
has a spanning (v′′

i , v
′

i )-trail Ti. Let A1 = {(v′

i , v
′′

i+1) : i ∈ Zn}. Then H = D[A1 ∪ (
⋃

i∈Zn
A(Ti))] is a spanning closed trail of D,

and so D is supereulerian. Now we assume that D is strong and J0 is a spanning subdigraph of Dwith at most two connected
components. Then D/J0 is strong with |V (D/J0)| ≤ 2. It follows that D/J0 is hamiltonian, and so D is supereulerian. Thus
(v) follows.

Let T ′ be a trail of D[A(D)− A(J0)] that intersects every component of J0 with V (D)− V (J0) ⊆ V (T ′), and let J1, J2, . . . , Jc
be the connected components of J0. Since for each i with 1 ≤ i ≤ c , V (T ′) ∩ V (Ji) ̸= ∅ and so T = D[A(T ′) ∪ A(J0)] is
connected. As V (D) − V (J0) ⊆ V (T ′), T = D[A(T ′) ∪ A(J0)] is spanning in D. Let v ∈ V (T ). If v ∈ V (D) − V (T ′), we define
d+

T ′ (v) = d−

T ′ (v) = 0. By (i), d+

T (v) = d+

T ′ (v)+d+

J0
(v) = d−

T ′ (v)+d−

J0
(v) = d−

T (v), and so T is a spanning trail of D. This justifies
(vi).

To prove (vii), we assume that λ(D) ≥ 2 and V (D−V (J0)) = {v1, v2, v3} such that G(D−V (J0)) has a hamiltonian cycle.
Suppose first that D[{v1, v2, v3}] is spanned by a 3-cycle. Then as D is strong, there must be arcs (v′, v−), (v+, v′′) ∈

A(D) for some v′, v′′
∈ {v1, v2, v3} and v−, v+

∈ V (J0). It follows by Lemma 2.2 (iv) that D is supereulerian. Hence
we assume that D[{v1, v2, v3}] does not contain a 3-cycle. Since D is a digraph, we may assume, by symmetry, that
(v1, v2), (v2, v3), (v1, v3) ∈ A(D) and (v3, v1) /∈ A(D). Since d−

D (v1) ≥ λ(D) ≥ 2, we must have (v+, v1) ∈ A(D) for some
v+

∈ V (J0). Likewise, as d+

D (v3) ≥ λ(D) ≥ 2, we must have (v3, v
−) ∈ A(D) for some v−

∈ V (J0). It follows by Lemma 2.2
(iv) that D is supereulerian. This justifies (vii) and completes the proof of the lemma. ■
419



J. Liu, O. Lasfar, J. Wei et al. Discrete Applied Mathematics 304 (2021) 417–431

2

l

D

.2. Structural properties

The rest of this section is devoted to the structural analysis for strong digraphs whose arc-strong connectivity is at
east as big as the stability number minus one. We start with a definition.

efinition 2.3. Let M be a matching of a digraph D. For each w ∈ V (D) − V (M), define

M2,2
w = {e = [uw(e), vw(e)] ∈ M : |(w, {uw(e), vw(e)})G(D)| = 4}, (1)

M2,1
w = {e = [uw(e), vw(e)] ∈ M : |(w, {uw(e), vw(e)})G(D)| = 3},

M2,0
w = {e = [uw(e), vw(e)] ∈ M :

for some v ∈ {uw(e), vw(e)}, |(w, v)G(D)| = |(w, {uw(e), vw(e)})G(D)| = 2},
M1,1

w = {e = [uw(e), vw(e)] ∈ M : |(w, uw(e))G(D)| = |(w, vw(e))G(D)| = 1},
M1,0

w = {e = [uw(e), vw(e)] ∈ M :

for some v ∈ {uw(e), vw(e)}, |(w, v)G(D)| = |(w, {uw(e), vw(e)})G(D)| = 1},
M0,0

w = {e = [uw(e), vw(e)] ∈ M : |(w, uw(e))G(D)| = |(w, vw(e))G(D)| = 0}.

The following observation follows from Definition 2.3 and Theorem 2.1.

Observation 2.4. Let n = |V (D)| and M = {[u1, v1], [u2, v2], . . . , [uk, vk]} be a maximum matching of a digraph D.
(i) As M is a maximum matching, V (D)− V (M) is a stable set. This implies that for any w ∈ V (D)− V (M), ND(w) ⊆ V (M),

and so by Definition 2.3, dD(w) = 4|M2,2
w | + 3|M2,1

w | + 2(|M2,0
w | + |M1,1

w |) + |M1,0
w |, and |M2,2

w | + |M2,1
w | + |M2,0

w | + |M1,1
w | +

|M1,0
w | + |M0,0

w | = k.
(ii) Let x, y ∈ V (D) − V (M) are distinct vertices, and [u, v] ∈ M. By Theorem 2.1, D does not have an M-augmenting path,

and so if x ∈ ND(u), then y /∈ ND(v).
(iii) As a consequence of (ii), if x, y ∈ V (D) − V (M) are distinct vertices, then

(M2,2
x ∪ M2,1

x ∪ M1,1
x ) ∩ (M2,2

y ∪ M2,1
y ∪ M2,0

y ∪ M1,1
y ∪ M1,0

y ) = ∅.

Throughout the rest of this section, we always assume that D is a digraph with k = α′(D) ≥ 3, n = |V (D)| ≥ 2k + 3,
J = J(D) is the symmetric core of D, and let X = V (D) − V (M). For each x ∈ X , define

k1(x) = |M2,2
x | + |M2,1

x | + |M1,1
x | and k2(x) = |M2,0

x | + |M1,0
x |. (2)

Lemma 2.5. Let D be a digraph with k = α′(D) ≥ 3 and δ(D) ≥ 2k − 2, and M be a maximum matching of D. If for some
vertex x1 ∈ X, both dD(x1) ≥ 2k − 1 and k1(x1) > 0, then each of the following holds.

(i) k1(x1) = 1, k2(x1) ∈ {k − 2, k − 1}, and for any vertex x ∈ X − {x1}, k1(x) = 0.
(ii) D has a stable set {v1, v2, . . . , vk} such that M = {[u1, v1], [u2, v2], . . . , [uk, vk]} with M2,2

x1 ∪ M2,1
x1 ∪ M1,1

x1 =

{[u1, v1]} and {u1, u2, . . . , uk−1, v1} ⊆ ND(x1) ⊆ {u1, u2, . . . , uk, v1}, and such that J has a connected component J ′ with
(X − {x1}) ∪ {u2, u3, . . . , uk} ⊆ V (J ′).

(iii) {v2, . . . , vk} ⊆ V (J ′). Moreover, if k ≥ 4, then v1 lies in a nontrivial connected component of J .
(iv) If λ(D) ≥ 2, then D is supereulerian.
(v) If, in addition, dD(x1) ≥ 2k, then either (x1, v1), (v1, x1) ∈ A(D), or there exist at least k−1 vertices u ∈ {u1, u2, . . . , uk}

with (x1, u), (u, x1) ∈ A(D).

Proof. Throughout the proof of this lemma, we let k1 = k1(x1) and k2 = k2(x1). Denote M2,2
x1 ∪ M2,1

x1 ∪ M1,1
x1 =

{[u1, v1], . . . , [uk1 , vk1 ]} and M2,0
x1 ∪ M1,0

x1 = {[uk1+1, vk1+1], . . . , [uk1+k2 , vk1+k2 ]} with {uk1+1, . . . , uk1+k2} ⊆ ND(x1).
Choose x2 ∈ X − {x1} such that

k1(x2) = max{k1(x) : x ∈ X − {x1}}, and let k′′

2 =

⏐⏐⏐⋃2
j=1(M

2,0
xj ∪ M1,0

xj )
⏐⏐⏐.

By Observation 2.4 (i) and (iii),

2k − 1 ≤ dD(x1) = 4|M2,2
x1 | + 3|M2,1

x1 | + 2(|M2,0
x1 | + |M1,1

x1 |) + |M1,0
x1 | ≤ 4k1 + 2k2,

2k − 2 ≤ dD(x2) = 4|M2,2
x2 | + 3|M2,1

x2 | + 2(|M2,0
x2 | + |M1,1

x2 |) + |M1,0
x2 | ≤ 4k1(x2) + 2k′′

2.

By adding the inequalities above side by side, and by Observation 2.4 (iii), we have

4k − 3 ≤ 4(k1 + k1(x2) + k′′

2) ≤ 4k − 4(|M0,0
x1 | + |M0,0

x2 |).

It follows that |M0,0
x1 | + |M0,0

x2 | = 0. By Observation 2.4 (iii),

2⋃
(M2,0

xj ∪ M1,0
xj ) ⊆ M −

⎛⎝ 2⋃
(M2,2

xj ∪ M2,1
xj ∪ M1,1

xj )

⎞⎠ ,
j=1 j=1

420
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a
nd so by Observation 2.4 (i) and by k1 > 0, we have

ND(x) ⊆

2⋃
j=1

(
V (M2,0

xj ∪ M1,0
xj ) ∩ ND(xj)

)
, for any x ∈ X − {x1, x2}, (3)

k − 1 − k1(x2) ≥ k − (k1 + k1(x2)) ≥

⏐⏐⏐⏐⏐⏐
2⋃

j=1

(M2,0
xj ∪ M1,0

xj )

⏐⏐⏐⏐⏐⏐ . (4)

If k1 = 1 and k1(x2) = 0, then as dD(x1) ≥ 2k − 1, it would follow that k2 ∈ {k − 2, k − 1}. Hence to prove Lemma 2.5
(i), it suffices to show that k1 = 1 and k1(x2) = 0. By contradiction, we assume that either k1 ≥ 2 or k1(x2) > 0. Then by
(4), 2(k− 2) ≥ |

⋃2
j=1 V (M2,0

xj ∪ M1,0
xj )|. Since n = |V (D)| ≥ 2k+ 3, there exists a vertex x3 ∈ X − {x1, x2}. By δ(D) ≥ 2k− 2,

(3) and by Observation 2.4 (iii), 2(k − 1) ≤ |dD(x3)| ≤ |
⋃2

j=1 V (M2,0
xj ∪ M1,0

xj )| ≤ 2(k − 2), a contradiction. This proves that
Lemma 2.5 (i).

By (i), k1 = 1. Let [u1, v1] denote the only arc in M2,2
x1 ∪M2,1

x1 ∪M1,1
x1 . As k2 ∈ {k−2, k−1}, we can label the vertices and

denote M = {[u1, v1], [u2, v2], . . . , [uk, vk]} such that {u1, u2, . . . , uk−1} ⊆ ND(x1), and such that if (X, {uk, vk})G(D) ̸= ∅,
then (X, {uk})G(D) ̸= ∅. Hence {u1, u2, . . . , uk−1, v1} ⊆ ND(x1) ⊆ {u1, u2, . . . , uk, v1}. Fix a vertex x ∈ X − {x1}. By k1 = 1
and by Observation 2.4 (i) and (ii), (x, {u1, v1, v2, . . . , vk})D = ∅, and so by δ(D) ≥ 2k − 2, ND(x) = {u2, . . . , uk}. It follows
by δ(D) ≥ 2k − 2 that {(uj, x), (x, uj) ∈ A(D)} for any 2 ≤ j ≤ k, and so J has a connected component J ′ containing the
vertices (X − {x1})∪ {u2, u3, . . . , uk}. As ND(x) = {u2, u3, . . . , uk}, k ≥ 3 and u1, v1 ∈ ND(x1), We conclude by Theorem 2.1
that {v1, v2, . . . , vk} is a stable set of D as any arc in D incident with two distinct vertices in {v1, v2, . . . , vk} would give
rise to an M-augmenting path in D. This proves Lemma 2.5 (ii).

For any vi with 2 ≤ i ≤ k, as {v1, v2, . . . , vk} is a stable set, ND(vi) ⊆ V (D) − {v1, . . . , vk}. By Observation 2.4 (iii)
and by Lemma 2.5 (ii), we further conclude that ND(vi) ⊆ {u2, u3, . . . , uk}. This, together with δ(D) ≥ 2k − 2, forces that
{(uj, vi), (vi, uj)} ⊆ A(D), for any j with 2 ≤ j ≤ k. Hence {v2, . . . , vk} ⊆ V (J ′). By Observation 2.4, ({X −{x1}}, {v1})G(D) = ∅,
and so ND(v1) ⊆ {u1, u2, u3, . . . , uk, x1}. It follow that |({u1, u2, u3, . . . , uk, x1}, {v1})G(D)| ≥ |dD(v1)| ≥ 2k− 2, and so there
exist at least (2k− 2)− (k+ 1) ≥ k− 3 vertices z ∈ {u1, u2, u3, . . . , uk, x1} satisfying (z, v1), (v1, z) ∈ A(D). Hence if k ≥ 4,
then v1 lies in a nontrivial connected component of J . This proves Lemma 2.5 (iii).

Let J0 = J[V (D)−{u1, v1, x1}]. By (ii) and (iii), J0 is a connected symmetric subdigraph of J . As [u1, v1], [v1, x1], [x1, u1] ∈

A(D), it follows by λ(D) ≥ 2 and Lemma 2.2 (vii) that D is supereulerian. This proves (iv).
Finally, we assume that dD(x1) ≥ 2k but |({x1}, {v1})G(D)| = 1. Then |({x1}, {u1, . . . , uk})G(D)| ≥ 2k − 1, implying that

there exist at least k−1 vertices u ∈ {u1, u2, . . . , uk} with (x1, u), (u, x1) ∈ A(D). Hence (v) holds. This completes the proof
of Lemma 2.5. ■

A digraph D with vertex set V = V (D) is a complete digraph if for any pair of distinct vertices u, v ∈ V , (u, v), (v, u) ∈

A(D). A complete digraph on n vertices will be denoted by K ∗
n . Define D0 to be the vertex disjoint union of three complete

digraphs of order 3.

Lemma 2.6. Let D be a digraph with k = α′(D) ≥ 3, δ(D) ≥ 2k − 2 and M be a maximum matching of D. Then each of the
following holds.

(i) If for some vertex x1 ∈ X, dD(x1) ≥ 2k − 1 and k1(x1) = 0, then for any x ∈ X, k1(x) = 0.
(ii) If for some vertex x1 ∈ X, k1(x1) > 0, then either D ∼= D0, or k1(x1) = 1 and k1(x) = 0 for any x ∈ X − {x1}.

Proof. Arguing by contradiction to prove (i), we may assume that x2 ∈ X − {x1} and k1(x2) > 0. Let [u2, v2] ∈

M2,2
x2 ∪M2,1

x2 ∪M1,1
x2 . Then by Observation 2.4 (i), ND(x1) ⊆ V (M−{[u2, v2]}). As dD(x1) ≥ 2k−1, and as |M − {[u2, v2]}| = k−1,

there exists an arc [u1, v1] ∈ M − {[u2, v2]} such that |(x1, {u1, v1})D| ≥ 3. Hence we must have k1(x1) > 0, contrary to
the assumption that k1(x1) = 0. This proves Lemma 2.6 (i).

Now assume that for some vertex x1 ∈ X , k1(x1) > 0. Then there exists an arc [u1, v1] ∈ M such that u1, v1 ∈ ND(x1).
By Observation 2.4 (ii), for any x ∈ X − {x1}, u1, v1 /∈ ND(x). Suppose that we have another vertex x2 ∈ X − {x1} with
k1(x2) > 0, or we have k1(x1) ≥ 2. Then there must be an arc [u2, v2] ∈ M − {[u1, v1]} such that u2, v2 ∈ ND(x2) (if
k1(x2) > 0), or u2, v2 ∈ ND(x1) (if k1(x1) ≥ 2). If there exists a vertex x ∈ X with k1(x) = 0, then by dD(x) ≥ 2k − 2, either
(x, {u1, v1})G(D) ̸= ∅ or (x, {u2, v2})G(D) ̸= ∅. In either case, a contradiction to Observation 2.4 (ii) is obtained. Thus, either
k1(x) > 0 for any x ∈ X , or k1(x1) = 1 and k1(x) = 0 for any x ∈ X − {x1}.

To complete the proof of (ii), in the following we assume that k1(x) > 0 for any x ∈ X . If D ∼= D0, then done. Hence we by
contradiction assume that D ≇ D0. Define S = ∪x∈X (M2,0

x ∪M1,0
x ), m′

= min{k1(x) : x ∈ X} and m′′
=
∑

x∈X,k1(x)>0(k1(x)−1).
Since k1(x) > 0 for any x ∈ X , m′ > 0. By Observation 2.4 (iii), (

⋃
x∈X (M

2,2
x ∪M2,1

x
⋃

M1,1
x ))∪ S is a disjoint union and is a

subset of M . This, together with |X | = n − 2k, implies that

k = |M| ≥

∑
x∈X

k1(x) + |S| = m′′
+ (n − 2k) + |S|. (5)
421
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laim 2.7. We have m′′
= 0, n = 2k + 3, |X | = 3.

By (5), k ≥ m′(n−2k)+|S|. Let x′
∈ X satisfying k1(x′) = m′. Then 4m′

+2|S| ≥ dD(x′) ≥ 2k−2, and so |S| ≥ k−1−2m′.
Hence we have

k ≥ m′(n − 2k) + |S| ≥ m′(n − 2k) + k − 1 − 2m′
= m′(n − 2k − 2) + k − 1. (6)

With n ≥ 2k + 3, (6) leads to the conclusion that 1 ≥ m′(n − 2k − 2) ≥ m′
≥ 1, forcing m′

= 1 and n = 2k + 3. Thus
|X | = n − 2k = 3. By (5) and by |S| ≥ k − 1 − 2m′

= k − 3, we have k ≥ m′′
+ 3 + (k − 3) = m′′

+ k. This implies m′′
= 0

and proves Claim 2.7.
By Claim 2.7, we may assume that X = {x1, x2, x3}. As m′′

= 0, for any x ∈ X , k1(x) = 1. Fix an xi ∈ X for
1 ≤ i ≤ 3. As k1(xi) = 1, we may assume that ui, vi ∈ ND(xi), and ({xi}, {vj})G(D) = ∅ for any j with j ̸= i.
By Observation 2.4 (ii), we observe that ({xi}, {uh, vh})G(D) = ∅ for any 1 ≤ i ≤ 3 and h ̸= i. This implies that
4 + 2(k − 3) ≥ |({xi}, {ui, vi})G(D)| +

∑k
j=4 |(xi, uj)G(D)| = dD(xi) ≥ 2k − 2, and so we must have dD(xi) = 2k − 2,

|({xi}, {ui, vi})G(D)| = 4, and for j with 4 ≤ j ≤ k, |(xi, uj)G(D)| = 2.
We further claim that {v1, . . . , vk} is a stable set in D. By contradiction, we assume that there exists an arc [vi, vj] ∈ A(D)

for some 1 ≤ i < j ≤ k. If j ≤ 3, then {[xi, ui], [ui, vi], [vi, vj], [vj, uj], [uj, xj]} induces an M-augmenting path in D.
If i ≤ 3 < j, then choosing an index i′ ̸= i and 1 ≤ i′ ≤ 3, then {[xi, ui], [ui, vi], [vi, vj], [vj, uj], [uj, xi′ ]} induces an
-augmenting path in D. If i ≥ 4, then {[x1, ui], [ui, vi], [vi, vj], [vj, uj], [uj, x2]} induces an M-augmenting path in D. In
ny case, Theorem 2.1 is violated. Hence {v1, . . . , vk} must be a stable set.
If k ≥ 4, then ND(v4) ⊆ {u1, u2, . . . , uk}. Since dD(v4) ≥ 2k − 2, there must be an i with 1 ≤ i ≤ 3 such that

ui, v4] ∈ A(D). Pick i′ ̸= i and 1 ≤ i′ ≤ 3. Then {[xi, vi], [ui, vi], [ui, v4], [v4, u4], [u4, xi′ ]} induces an M-augmenting path in
D, violating Theorem 2.1. Hence we must have k = 3. Recall that for each i ∈ {1, 2, 3}, |({xi}, {ui, vi})G(D)| = 4. Since D ≇ D0
and dD(ui) ≥ 2k − 2 = 4, we may assume that, either [ui, vj] ∈ A(D) or [ui, uj] ∈ A(D), for 1 ≤ i, j ≤ 3 with i ̸= j. Once
gain, {[xi, vi], [vi, ui], [ui, vj], [vj, uj], [uj, xj]} or {[xi, vi], [vi, ui], [ui, uj], [uj, vj], [vj, xj]} induces an M-augmenting path in
. These contradictions indicate that if k1(x) > 0 for any x ∈ X , then we must have D ≇ D0. This proves Lemma 2.6(ii). ■

orollary 2.8. Let k ≥ 4 be an integer, D be a digraph with λ(D) ≥ α′(D) = k, δ(D) ≥ 2k − 2 and n = |V (D)| ≥ 2k + 3.
Then J = J(D) is connected.

Lemma 2.9. Let D be a digraph with k = α′(D) ≥ 3 and M be a maximum matching of D. Suppose that for some vertex
x1 ∈ X, dD(x1) ≥ 2k − 1 with k1(x1) = 0. If δ(D) ≥ 2k − 2, then there exists a labeling of the vertices of V (M) such that
M = {[u1, v1], [u2, v2], . . . , [uk, vk]} and each of the following holds.

(i) ND(x1) = {u1, u2, u3, . . . , uk}, (X, {v1, v2, . . . , vk})G(D) = ∅, and there exist at least k − 1 vertices u ∈ {u1, u2, . . . , uk}

ith (x1, u), (u, x1) ∈ A(D). Moreover, if dD(x1) ≥ 2k, then for any u ∈ {u1, u2, . . . , uk}, we have (x1, u), (u, x1) ∈ A(D).
(ii) For any x ∈ X − {x1}, ND(x) ⊆ {u1, u2, . . . , uk}; and there exist at least k − 2 vertices u ∈ {u1, u2, . . . , uk} satisfying

(x, u), (u, x) ∈ A(D).
(iii) The vertex subset {v1, v2, . . . , vk} is a stable set in D. Furthermore, for each vj with 1 ≤ j ≤ k, ND(vj) ⊆ {u1, u2, . . . , uk}

nd there exist at least k − 2 vertices u ∈ {u1, u2, . . . , uk} satisfying (vj, u), (u, vj) ∈ A(D).
(iv) J has at most two components; and if λ(D) ≥ 1, then D is supereulerian.

roof. By Lemma 2.6 (i), for any x ∈ X , k1(x) = 0. By Observation 2.4 (i), ND(x1) ⊆ V (M). Hence by dD(x1) ≥ 2k − 1 and
k1(x1) = 0, we can labelM = {[u1, v1], [u2, v2], . . . , [uk, vk]} so that ND(x1) = {u1, u2, u3, . . . , uk}. Again by dD(x1) ≥ 2k−1,
here must be at least k−1 vertices u ∈ {u1, u2, . . . , uk} satisfying (x1, u), (u, x1) ∈ A(D). Similarly, if dD(x1) ≥ 2k, then for
ny u ∈ {u1, u2, . . . , uk}, we have (x1, u), (u, x1) ∈ A(D). It follows by ND(x1) = {u1, u2, u3, . . . , uk} and by Observation 2.4
hat (X, {v1, v2, . . . , vk})G(D) = ∅. This verifies Lemma 2.9 (i).

By (i), ND(x1) = {u1, u2, u3, . . . , uk}. For any x ∈ X − {x1}, by Observation 2.4 (i) and (ii), ND(x) ⊆ {u1, u2, . . . , uk}. By
(D) ≥ 2k − 2, dD(x) ≥ 2k − 2, and so there must be at least k − 2 vertices u ∈ {u1, u2, . . . , uk} with (x, u), (u, x) ∈ A(D).
his proves Lemma 2.9 (ii).
To prove (iii), we argue by contradiction and assume that for some 1 ≤ i < j ≤ k, an arc [vi, vj] is in A(D). Since
≥ 2k + 3, there exists a vertex x2 ∈ X − {x1}. By Lemma 2.9 (ii), ND(x2) ⊆ {u1, u2, . . . , uk}. As dD(x2) ≥ 2k − 2,
e may assume that ui ∈ ND(x2), and so {[x2, ui], [ui, vi], [vi, vj], [vj, uj], [uj, x1]} induced an M-augmenting path in D,
ontrary to Theorem 2.1. Hence {v1, v2, . . . , vk} must be a stable set in D. Likewise, by Lemma 2.9 (i) and (ii), and arc in
X, {v1, v2, . . . , vk})G(D) will give rise to an M-augmenting path, contrary to Theorem 2.1. Thus (X, {v1, v2, . . . , vk})G(D) = ∅.
onsequently, for each vj with 1 ≤ j ≤ k, ND(vj) ⊆ {u1, u2, . . . , uk}. By dD(vj) ≥ 2k − 2, there exist at least k − 2 vertices
∈ {u1.u2, . . . , uk} satisfying (vj, u), (u, vj) ∈ A(D).
To show (iv), we first assume by (i) and by symmetry that for any i with 1 ≤ i ≤ k − 1, (x1, ui) is a symmetric

rc in D and [x1, uk] ∈ A(D). Thus J has a connected component of J ′ with {x1, u1, . . . , uk−1} ⊆ V (J ′). Let J ′′ denote the
onnected component of J with uk ∈ V (J ′′). As k ≥ 3, it follows by (ii) that, for every x ∈ X − {x1}, either x ∈ V (J ′) or
∈ V (J ′′). Similarly, by (iii), for every v ∈ {v1, v2, . . . , vk}, either v ∈ V (J ′) or v ∈ V (J ′′). Hence J has at most two connected
omponents J ′ and J ′′. It now by Lemma 2.2 (v) that if D is strong, then D must be supereulerian. This completes the proof
f the lemma. ■
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emma 2.10. Let D be a digraph with k = α′(D) ≥ 3, δ(D) ≥ 2k−2 and let M be a maximum matching of D and J = J(D) be
the symmetric core of D. If for any x ∈ X, k1(x) = 0, and if there exists an arc e ∈ M with (X, V (e))G(D) = ∅, then there exists
a labeling of the vertices of V (M) with M = {[u1, v1], [u2, v2], . . . , [uk, vk]} and e = [uk, vk] such that each of the following
holds.

(i) (X, {v1, v2, . . . , vk})G(D) = ∅, {v1, v2, . . . , vk−1} is a stable set in D and J has a connected component J ′ with
X ∪ {u1, u2, . . . , uk−1} ⊆ V (J ′).

(ii) If {v1, v2, . . . , vk} is a stable set in D, then for any j ∈ {1, 2, . . . , k}, there exist k− 2 vertices u ∈ {u1, u2, . . . , uk} with
(vj, u), (u, vj) ∈ A(D), and J has at most two connected components.

(iii) Suppose that {v1, v2, . . . , vk} is not a stable set in D and [vk−1, vk] ∈ A(D). Then (uk, {v1, . . . , vk−2})G(D) = ∅. Moreover,
if k ≥ 4, then {v1, . . . , vk−2} ⊆ V (J ′); and if λ(D) ≥ 2, then D is supereulerian.

Proof. By Observation 2.4 (i), for any x ∈ X , ND(x) ⊆ V (M). As for some e ∈ M , we have (X, V (e))G(D) = ∅, and by
k1(x) = 0 and dD(x) ≥ 2k − 2, we can label M = {[u1, v1], [u2, v2], . . . , [uk, vk]} with e = [uk, vk] such that for any x ∈ X ,
ND(x) = {u1, u2, . . . , uk−1}, and for any i with 1 ≤ i ≤ k − 1, (x, ui), (ui, x) ∈ A(D). As k ≥ 3 and |X | = n − 2k ≥ 3, it
follows that J has a connected component J ′ with X ∪ {u1, u2, . . . , uk−1} ⊆ V (J ′). As k1(x) = 0 for any x ∈ X , we conclude
that (X, {v1, v2, . . . , vk})G(D) = ∅.

We argue by contradiction to show that {v1, v2, . . . , vk−1} is a stable set in D. Suppose that for some 1 ≤ i < j ≤ k−1,
[vi, vj] ∈ A(D). As n−2k ≥ 3, D[{[x1, ui], [ui, vi], [vi, vj], [vj, uj], [uj, x2]}] is anM-augmenting path, contrary to Theorem 2.1.
This proves (i).

In the proof of (ii) and (iii), we let J2, J3 and J4 be connected components of J such that uk ∈ V (J2), vk ∈ V (J3) and
vk−1 ∈ V (J4).

Assume that {v1, v2, . . . , vk} is a stable set in D. Fix an arbitrary vertex vj with 1 ≤ j ≤ k. By (i), we have
ND(vj) ⊆ {u1, u2, . . . , uk−1, uk}, and so by δ(D) ≥ 2k − 2, there must be at least k − 2 vertices u ∈ {u1, u2, . . . , uk}

with (vj, u), (u, vj) ∈ A(D). It follows by k ≥ 3 and by (i) that either vj ∈ V (J ′) (if u ̸= uk) or vj ∈ V (J2) (if u = uk). Hence
every vertex in D is either in J ′ or in J2, and so J has at most two connected components. This proves (ii).

To prove (iii), we assume by symmetry that [vk−1, vk] ∈ A(D). Fix a vertex vj with 1 ≤ j ≤ k − 2. If [uk, vj] ∈

A(D), then by (i) and by n ≥ 2k + 3, D[{[x1, uj], [uj, vj], [vj, uk], [uk, vk], [vk, vk−1], [vk−1, uk−1], [uk−1, x2]}] is an
M-augmenting path, contrary to Theorem 2.1. Hence (uk, vj)G(D) = ∅. This proves that (uk, {v1, . . . , vk−2})G(D) = ∅, and
so ND(vj) ⊆ {u1, . . . , uk−1, vk}. By dD(vj) ≥ 2k − 2, there exist at least k − 2 vertices u′

∈ {u1, . . . , uk−1, vk} such that
u′, vj), (vj, u′) ∈ A(D). If k ≥ 4 then u′

∈ {u1, . . . , uk−1} ⊆ V (J ′), and so vj ∈ V (J ′). Thus {v1, . . . , vk−2} ⊆ V (J ′).
In the following, we assume that λ(D) ≥ 2 to prove the following claim, which completes the proof of the lemma.

Claim 2.11. Under the assumption of Lemma 2.10 (iii), if λ(D) ≥ 2, then each of the following holds.
(a) If k ≥ 5, then J has at most two components, and so by Lemma 2.2(v), D is supereulerian.
(b) If [uk, vk−1] ∈ A(D), then ({vk}, {v1, . . . , vk−2})G(D) = ∅.
(c) If k = 4, then J has at most two components, and so by Lemma 2.2(v), D is supereulerian.
(d) If k = 3, then J has a symmetric subdigraph J0 such that G(D − V (J0)) is spanned by a 3-cycle, and so by Lemma 2.2

vii), D is supereulerian.

Assume that k ≥ 5. If J2 = J3 = J4, then J has at most two components. Hence we assume that either J2 ̸= J3, whence
({uk}, {vk})G(D)| ≤ 1; or J2 ̸= J4, whence |({uk}, {vk−1})G(D)| ≤ 1. Since (uk, {v1, . . . , vk−2})G(D) = ∅ and (X, {uk, vk})G(D) = ∅,
e have ND(uk) ⊆ {u1, . . . , uk−1, vk−1, vk}. This, together with dD(uk) ≥ 2k − 2, implies that |(uk, {u1, . . . , uk−1})G(D)| ≥

k−5, and so there exists at least k−4 vertices u′′
∈ {u1, . . . , uk−1} such that (uk, u′′), (u′′, uk) ∈ A(D). As k ≥ 5, uk ∈ V (J ′).

imilarly, by (i), ND(vk−1) ⊆ {u1, . . . , uk−1, uk, vk} and so |(vk−1, {u1, . . . , uk−1, uk})G(D)| ≥ 2k − 4. Again by k ≥ 5, there
xists at least k − 4 vertices u3

∈ {u1, . . . , uk−1, uk} such that (vk−1, u3), (u3, vk−1) ∈ A(D), and so vk−1 ∈ V (J ′). This
ndicates that V (D) − V (J ′) ⊆ {vk}, and so Claim 2.11 (a) follows.

By contradiction, we assume that [uk, vk−1], [vj, vk] ∈ A(D) for some j ∈ {1, 2, . . . , k−2}. Then {[x1, uj], [uj, vj], [vj, vk],
vk, uk], [uk, vk−1], [vk−1, uk−1], [uk−1, x2]} induces an M-augmenting path in D, contrary to Theorem 2.1. Hence (b) holds.

Assume that k = 4. Then v1, v2 ∈ V (J ′) and (uk, {v1, v2})G(D) = ∅. Hence ND(u4) ⊆ {u1, u2, u3, v3, v4}. Since dD(u4) ≥ 6,
or some w ∈ {u1, u2, u3, v3, v4}, both (w, u4), (u4, w) ∈ A(D). Hence either J2 = J ′ (if w ∈ {u1, u2, u3}), or J2 = J3
if w = v4), or J2 = J4 (if w = v3), and so J has at most three connected components J ′, J3 and J4. Similarly,
D(v3) ⊆ {u1, u2, u3, u4, v4}. As dD(v3) ≥ 6, for some w′

∈ {u1, u2, u3, u4, v4}, both (w′, v3), (v3, w
′) ∈ A(D). Hence either

2
= J4 = J ′, or J2 = J4 = J3, or J2 = J4 with V (J4)∩ (V (J ′)∪ V (J3)) = ∅. It follows that either J has at most two connected

omponents J ′ and J3, or J2 = J4 and J has at most three connected components J ′, J3 and J4. When J2 = J4, we have
u4, v3] ∈ A(D), and so by (b), ND(v4) ⊆ {u1, u2, u3, u4, v3}. By dD(v4) ≥ 6, we must have J3 = J ′ or J3 = J4 and so J has at
ost two connected components J ′ and J4. This proves (c).
We now assume that k = 3. Assume first that (u3, v2)G(D) = ∅. Then for each z ∈ {v1, v2, u3}, as ND(z) ⊆ {u1, u2, v3},
∈ V (J ′) or z ∈ V (J3). Hence J has at most two connected components J ′ and J3. and so by Lemma 2.2 (v), D is

upereulerian. Therefore, we assume that [u3, v2] ∈ A(D). By (b), |({v1}, {v3})G(D)| = 0. By (i), |({v1}, {v2})G(D)| = 0.
ence ND(v1) ⊆ {u1, u2}. By dD(v1) ≥ 4, (v1, u1), (u1, v1) ∈ A(D), and so v1 ∈ V (J ′). Let J0 = J ′[V (D) − {v1, u1, u2}].
s [u3, v2], [v2, v3], [u3, v3] ∈ A(D), it follows from λ(D) ≥ 2 and Lemma 2.2 (vii) that D is supereulerian. This completes
he justification of Claim 2.11. ■
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emma 2.12. Let D be a digraph with k = α′(D) ≥ 3 and δ(D) ≥ 2k − 2, and M be a maximum matching of D. If for any
x ∈ X, k1(x) = 0 and for any arc e ∈ M, (X, V (e))G(D) ̸= ∅, then there exists a labeling of the vertices of V (M) such that
M = {[u1, v1], [u2, v2], . . . , [uk, vk]}, ND(X) = {u1, u2, . . . , uk}, and each of the following holds.

(i) (X, {v1, v2, . . . , vk})G(D) = ∅, and for any x ∈ X, there exist at least k − 2 vertices u ∈ {u1, u2, . . . , uk} with
(x, u), (u, x) ∈ A(D).

(ii) {v1, v2, . . . , vk} is a stable set in D, and for any vj with 1 ≤ j ≤ k, there exist at least k−2 vertices u ∈ {u1, u2, . . . , uk}

ith (u, vj), (vj, u) ∈ A(D).
(iii) If λ(D) ≥ 2, then D is supereulerian.

roof. For any vertex x ∈ X , by Observation 2.4 (i), ND(x) ⊆ V (M); by assumption, k1(x) = 0 and

for any arc e ∈ M , (X, V (e))G(D) ̸= ∅. (7)

his, together with Observation 2.4 (ii), implies that every arc in M has exactly one vertex in ND(X). Thus we can denote
(M) ∩ ND(X) = {u1, u2, . . . , uk} and M = {[u1, v1], [u2, v2], . . . , [uk, vk]}. This labeling of vertices in V (M) implies that

ND(X) = {u1, u2, . . . , uk}, and so (X, {v1, v2, . . . , vk})G(D) = ∅. Fix an x ∈ X . Since dD(x) ≥ 2k− 2, for at least k− 2 vertices
u ∈ {u1, u2, . . . , uk}, both (u, x) and (x, u) are in A(D). Thus (i) holds.

By contradiction, assume that {v1, v2, . . . , vk} is not a stable set in D. By symmetry, we may assume that [v1, v2] ∈ A(D).
For i with 1 ≤ i ≤ k, let Xi = X ∩ ND(ui). By (7), Xi ̸= ∅, and so there exists a vertex x1 ∈ X1. If there exists a vertex
x2 ∈ X2 − {x1}, then D[{[x1, u1], [u1, v1], [v1, v2], [v2, u2], [u2, x2]}] is an M-augmenting path, contrary to Theorem 2.1.
Hence X2 = {x1}. By the same argument, we conclude that X1 = X2 = {x1}. Since n ≥ 2k + 3, we have |X | ≥ 3, and
so X − {x1} ̸= ∅. For any vertex x ∈ X − {x1}, as ND(X) ⊆ {u1, u2, . . . , uk} and X1 = X2 = {x1}, we conclude that
ND(x) ⊆ {u3, u4, . . . , uk}, which implies that 2k − 2 = 2λ(D) ≤ dD(x) ≤ 2(k − 2), a contradiction. Thus {v1, v2, . . . , vk}

must be a stable set in D.
Fix a vertex vj with 1 ≤ j ≤ k. By (i), (X, {v1, v2, . . . , vk})G(D) = ∅. As {v1, v2, . . . , vk} is a stable set, we must

have ND(vj) ⊆ {u1, u2, . . . , uk}. Since δ(D) ≥ 2k − 2, there exist at least k − 2 vertices u ∈ {u1, u2, . . . , uk} with
(u, vj), (vj, u) ∈ A(D). This proves (ii).

We now assume that λ(D) ≥ 2. By contradiction, we assume that D is not supereulerian. Pick a vertex x1 ∈ X and
let J1 be the connected component of J with x1 ∈ V (J1). By (i), we may assume that u1, . . . , uk−2 ∈ V (J1). Let J2 and
J3 be connected components of J with uk−1 ∈ V (J2) and uk ∈ V (J3). By (i) and (ii), and by k ≥ 3, for every vertex
v ∈ X ∪{v1, v2, . . . , vk}, there exists an i ∈ {1, 2, 3} such that either v ∈ V (Ji). It follows that J has at most three connected
components J1, J2 and J3. By Lemma 2.2 (v), if J has at most two connected components, then D is supereulerian. Hence J
must have exactly three components J1, J2 and J3.

Case 1. k ≥ 4.

If there exists a vertex v ∈ X ∪ {v1, v2, . . . , vk} such that for distinct i, j ∈ {1, 2, 3}, v ∈ V (Ji)∪ V (Jj), then as k − 2 ≥ 2,
we have either J1 = J2, or J1 = J3, or J2 = J3, contrary to the assumption that J has exactly three components. Therefore,
for any k ≥ 4, we have

V (J1) = V (D) − {uk−1, uk}, V (J2) = {uk−1} and V (J3) = {uk}. (8)

Thus for any x ∈ X , and u ∈ {u1, . . . , uk−2} and any v ∈ {v1, v2, . . . , vk}, the arcs (x, u), (u, v) are symmetric in D. As
δ(D) ≥ 2k − 2, we conclude that for any v ∈ X ∪ {v1, v2, . . . , vk}, dD(v) = 2k − 2 and |(v, uk−1)G(D)| = |(v, uk)G(D)| = 1. If
[uk−1, uk] ∈ A(D), then by λ(D) > 0 and by Lemma 2.2 (iv), D is supereulerian. Thus (uk−1, uk)G(D) = ∅. If D − A(J1) has a
cycle C containing both uk−1 and uk, then D[A(J1)∪ D(C)] is a spanning closed trail of D, and so D is supereulerian. Hence
we assume D − A(J1) does not have a cycle or disjoint cycles containing both uk−1 and uk.

Since λ(D) ≥ 2, there exist vertices v−, v+, w−, w+
∈ V (J1) such that

(v−, uk−1), (w−, uk), (uk−1, v
+), (uk, w

+) ∈ A(D). (9)

Since J1, J2 and J3 are distinct components of J , thus, we assume that w−
̸= w+ and v−

̸= v+.
If v−, w+

∈ X ∪ {v1, . . . , vk}, then (w+, u1), (u1, w
+), (u1, v

−), (v−, u1) ∈ A(J1). Let J ′1 = J1 − {(w+, u1), (u1, w
+),

(u1, v
−), (v−, u1)}. As |X | ≥ 3 and k ≥ 4, J ′1 is a connected symmetric subdigraph of D, and by (9), D − A(J ′1) has a

trail w−ukw
+u1v

−uk−1v
+. By Lemma 2.2 (iv) with J ′ = J ′1, D is supereulerian.

Suppose that |{u1, . . . , uk−2} ∩ {v−, w+
}| = 1 and |(X ∪ {v1, . . . , vk}) ∩ {v−, w+

}| = 1 By symmetry, we assume that
v−

= u1 and w+
∈ X ∪ {v1, . . . , vk}. As (w+, u1) ∈ A(J1) is symmetric arcs of D. Let J ′2 = J1 − {(w+, u1), (u1, w

+)}. As
|X | ≥ 3 and k ≥ 4, J ′2 is a connected symmetric subdigraph of D, and by (9), D − A(J ′2) has a trail w−ukw

+u1uk−1v
+. It

follows from Lemma 2.2 (iv) with J ′ = J ′2 that D is supereulerian. Hence we may assume that v−, w+
∈ {u1, . . . , uk−2}. By

(8), (w+, x1), (x1, v−) ∈ A(J1) are symmetric arcs of D. As |X | ≥ 3 and k ≥ 4, J1 − x1 is a connected symmetric subdigraph
of D, and by (9), D − A(J − x ) has a trail w−u w+x v−u v+. By Lemma 2.2 (iv) with J ′ = J − x , D is supereulerian.
1 1 k 1 k−1 1 1
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ase 2. k = 3.

By definition, for each i ∈ {1, 2, 3}, ui ∈ V (Ji). By relabeling the vertices u1, u2 and u3, we assume that ui ∈ V (Ji). By (ii)
nd by δ(D) ≥ 4, every vi is adjacent to a uj by a pair of symmetric arcs. Therefore, we may relabel v1, v2, v3 and assume
hat (ui, vi) ∈ A(Ji) is a symmetric arc of D.

Let D′
= D/J , and denote V (D′) = {z1, z2, z3}, where zi ∈ V (D′) be the vertex onto which Ji is contracted. If D′ has a

amiltonian cycle, then by Lemma 2.2 (v), D is supereulerian. Hence we may assume that D is not Hamiltonian. By (i),
ii), λ(D) ≥ 2, and the fact that for i ∈ {1, 2, 3}, dD(vi) = 4, we observe that

if {i′, i′′, i′′′} = {1, 2, 3}, then |(vi′ , {ui′′ , ui′′′})D| = 1 and |({ui′′ , ui′′′}, vi′ )D| = 1. (10)

y (10) and by symmetry, we assume that (v1, u2), (u3, v1) ∈ A(D). Thus (z1, z2), (z3, z1) ∈ A(D′). As D′ is not hamiltonian,
we assume that (z2, z3) /∈ A(D′). By (10) and since (z2, z3) /∈ A(D′), we conclude that (u3, v2), (v3, u2) ∈ A(D). These
force, by (10), that (v2, u1), (u1, v3) ∈ A(D). As (u1, v3), (v3, u2), (v2, u1) ∈ A(D), it follows that D′ must be hamiltonian, a
contradiction. This proves that in Case 2, D is also supereulerian. This completes the proof of the lemma. ■

Lemma 2.13. Let k ≥ 3 be an integer, D be a digraph with k = α′(D) ≥ 3, δ(D) ≥ 2k − 2, and M be a maximum matching
of D. Suppose that for some x1 ∈ X, k1(x1) > 0. Then each of the following holds.

(i) Either D ∼= D0, or J has a connected component J ′ such that the subdigraph D1 = D − V (J ′) satisfies |V (D1)| ≤ 3 and
that G(D1) is spanned by a 3-cycle or a K2.

(ii) If, in addition, λ(D) ≥ 2, then D is supereulerian.

Proof. As k1(x1) > 0, there exists an arc e = [u1, v1] ∈ M with u1, v1 ∈ ND(x1). By Lemma 2.6 (ii), D ∼= D0, or k1(x1) = 1
and k1(x) = 0 for any x ∈ X−{x1}. Thus to prove (i), it suffices to assume that k1(x1) = 1 and k1(x) = 0 for any x ∈ X−{x1}
to show that the desired J ′ and D1 exist.

Fix a vertex x ∈ X − {x1}. By Observation 2.4 (ii), ND(x) ⊆ V (M) − {u1, v1}; and by k1(x) = 0, for any e ∈ M ,
|ND(x) ∩ V (e)| ≤ 1. Hence we can label M = {[u1, v1], [u2, v2], . . . , [uk, vk]} such that ND(x) ⊆ {u2, . . . , uk}. By δ(D) ≥

2k − 2, we conclude that for any ui with 2 ≤ i ≤ k, (x, ui), (ui, x) ∈ A(D). It follows that J has a connected component J ′
such that (X − {x1}) ∪ {u2, . . . , uk} ⊆ V (J ′).

We claim that {v1, v2, . . . , vk} is a stale set. Assume by contradiction that for some 1 ≤ i < j ≤ k, [vi, vj] ∈ A(D).
If i = 1, then D[{[x1, u1], [u1, v1], [v1, vj], [vj, uj], [uj, x2]}] is an M-augmenting path; If i > 1, then D[{[x2, ui], [ui, vi],

[vi, vj], [vj, uj], [uj, x3]}] is an M-augmenting path. In either case, a contradiction to Theorem 2.1 is obtained. Hence
{v1, v2, . . . , vk} is a stable set.

Fix a vertex vj with 2 ≤ j ≤ k. If [u1, vj] ∈ A(D), then {[x1, v1], [v1, u1], [u1, vj], [vj, uj], [uj, x2]} induces an
M-augmenting path in D, contrary to Theorem 2.1. Hence (u1, {v2, . . . , vk})G(D) = ∅ and so ND(vj) ⊆ {u2, .., uk}. As dD(vj) ≥

2k−2, we conclude that for any u ∈ {u2, . . . , uk} with (u, vj), (vj, u) ∈ A(D), and so (X−{x1})∪{u2, . . . , uk}∪{v2, . . . , vk} ⊆

V (J ′). As [x1, u1], [x1, v1], [u1, v1] ∈ A(D), Lemma 2.13 (i) is justified.
By Lemma 2.13 (i) and since λ(D) ≥ 2, we observe that D ̸∼= D0 and so J(D) has a connected component J ′ such that

he subdigraph D1 = D−V (J ′) satisfies |V (D1)| ≤ 3 and that G(D1) is spanned by a 3-cycle or a K2. If G(D1) is spanned by a
-cycle, then by Lemma 2.2 (vii), D is supereulerian. If G(D1) is spanned by a K2, then by Lemma 2.2 (iv), D is supereulerian.
ence Lemma 2.13 (ii) holds. ■

. Spanning trails in digraphs

Let D be a digraph and let X denote a set of arcs not in A(D) satisfying ∪e∈XV (e) ⊆ V (D). Define D+X to be the digraph
ith vertex set V (D) and arc set A(D) ∪ X . If X ⊆ A(D) (or X ⊆ V (D), respectively), then define D − X = D[A(D) − X] (or
− X = D[V (D) − X], respectively). We often use D + e for D + {e}, D − e for D − {e} and D − v for D − {v}.

.1. Spanning trails in digraphs with small matching numbers

In this subsection, we will identify a family D(n) of digraphs, and use it to prove Theorem 1.3 (i). We start with some
xamples.

xample 3.1. Let n, t1, t ′1, t
′′

1 , t2, t ′2, t
′′

2 , t3 be nonnegative integers with n = 2 + t1 + t ′1 + t ′′1 + t2 + t ′2 + t ′′2 + t3. Define
utually disjoint vertex sets X, Y and Z as follows,

X = {x1, x2, . . . , xt1 , x
′

1, x
′

2, . . . , x
′

t ′1
, x′′

1, x
′′

2, . . . , x
′′

t ′′1
},

Y = {y1, y2, . . . , yt2 , y
′

1, y
′

2, . . . , y
′

t ′2
, y′′

1, y
′′

2, . . . , y
′′

t ′′2
},

Z = {z , z , . . . , z },
1 2 t3
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Fig. 1. Digraph D(t1, t ′1, t
′′

1 , t2, t ′2, t
′′

2 , t3).

and w1, w2 be two vertices not in X ∪ Y ∪ Z; and define mutually disjoint arc sets AX , AY and AZ as follows,

AX =

( t1⋃
i=1

{(w1, xi), (xi, w2)}

)
∪

⎛⎝ t ′1⋃
i=1

{(w1, x′

i), (x
′

i, w1), (x′

i, w2)}

⎞⎠ (11)

∪

⎛⎝ t ′′1⋃
i=1

{(w1, x′′

i ), (w2, x′′

i ), (x
′′

i , w2)}

⎞⎠ ,

AY =

( t2⋃
i=1

{(w2, yi), (yi, w1)}

)
∪

⎛⎝ t ′2⋃
i=1

{(w2, y′

i), (y
′

i, w2), (y′

i, w1)}

⎞⎠
∪

⎛⎝ t ′′2⋃
i=1

{(w2, y′′

i ), (w1, y′′

i ), (y
′′

i , w1)}

⎞⎠ ,

AZ =

t3⋃
i=1

{(w1, zi), (zi, w1), (w2, zi), (zi, w2)}.

Define a digraph D = D(t1, t ′1, t
′′

1 , t2, t ′2, t
′′

2 , t3) with V (D) = {w1, w2} ∪ X ∪ Y ∪ Z and arc set A(D) = AX ∪ AY ∪ AZ . (See
Fig. 1.)

Observation 3.2. Let D = D(t1, t ′1, t
′′

1 , t2, t ′2, t
′′

2 , t3) with that n ≥ 4 and λ(D) > 0. Then each of the following holds.
(i) D is supereulerian if and only if both t1 ≤ t2 + t ′2 + t ′′2 + t3 and t2 ≤ t1 + t ′1 + t ′′1 + t3.
(ii) D has a spanning trail if and only if one of the following holds.

both t1 ≤ t2 + t ′2 + t ′′2 + t3 + 1 and t2 ≤ t1 + t ′1 + t ′′1 + t3; (12)

both t1 ≤ t2 + t ′2 + t ′′2 + t3 and t2 ≤ t1 + t ′1 + t ′′1 + t3 + 1. (13)

Proof. We are to justify the conclusions of Observation 3.2. By inspection, the conclusions (i) and (ii) holds if n = 4. Thus
we assume that n ≥ 5. Let J = J(D) be the symmetric core of D.

We assume that both t1 ≤ t2 + t ′2 + t ′′2 + t3 and t2 ≤ t1 + t ′1 + t ′′1 + t3 to show by induction on t1 + t2 that D is
supereulerian. If t1 + t2 = 0, then J has at most two connected components, and so by Lemma 2.2 (v), D is supereulerian.
Assume that t1 + t2 > 0 and that for smaller values of t1 + t2, D is supereulerian. By symmetry, we may assume that
t1 ≥ t2, and so t1 > 0. If t2 > 0, then let D1 = D − {x1, y1}. Then as D1 = D(t1 − 1, t ′1, t

′′

1 , t2 − 1, t ′2, t
′′

2 , t3), by induction,
D has a spanning eulerian subdigraph H , and so D[A(H ) ∪ {(w , x ), (x , w ), (w , y ), (y , w )}] is a spanning eulerian
1 1 1 1 1 1 2 2 1 1 1
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ubdigraph of D. Hence we assume that t2 = 0. Since t1 ≤ t2 + t ′2 + t ′′2 + t3 = t ′2 + t ′′2 + t3, there exists a v ∈ {y′

1, y
′

2, . . . , y
′

t ′2
,

′′

1, y
′′

2, . . . , y
′′

t ′′2
, z1, z2, . . . , zt3} such that (w2, v), (v, w1) ∈ A(D). Let D2 = D − {x1, v}. By induction, D2 has a spanning

eulerian subdigraph H2, and so D[A(H2) ∪ {(w1, x1), (x1, w2), (w2, v), (v, w1)}] is a spanning eulerian subdigraph of D.
Conversely, we assume that D has a spanning eulerian subdigraph H . We again argue by induction on t1 + t2 to show

that both t1 ≤ t2+t ′2+t ′′2 +t3 and t2 ≤ t1+t ′1+t ′′1 +t3. As these inequalities hold when t1 = t2 = 0, we assume by symmetry,
that t1 ≥ t2 and t1 > 0. If t2 > 0, then (w1, x1), (x1, w2), (w2, y1), (y1, w1) ∈ A(H), and so H−{x1, y1} is a spanning eulerian
subdigraph of D−{x1, y1}, and so by induction. t1−1 ≤ (t2−1)+t ′2+t ′′2+t3 and t2−1 ≤ (t1−1)+t ′1+t ′′1+t3. Hence we assume
that t2 = 0. As H is a spanning eulerian subdigraph, there must be a v ∈ {y′

1, y
′

2, . . . , y
′

t ′2
, y′′

1, y
′′

2, . . . , y
′′

t ′′2
, z1, z2, . . . , zt3}

uch that (w2, v), (v, w1) ∈ A(H). Let H ′ denote the nontrivial component of H − {(w1, x1), (x1, w2), (w2, v), (v, w1)} and
D′ the nontrivial component of D − {(w1, x1), (x1, w2), (w2, v), (v, w1)}. Then H ′ is a spanning eulerian subdigraph of D′,
and so by induction, we have t2 = 0 and t1 − 1 ≤ t ′2 + t ′′2 + t3 − 1. Hence (i) holds by induction.

To prove (ii), it suffices to investigate spanning trails in a nonsupereulerian D. By (i), any strong digraph D(0, t ′1, t
′′

1 , 0, t ′2,
t ′′2 , t3) is supereulerian, and so we assume that max{t1, t2} > 0. We make the following claim.

Claim 3.3. Let D = D(t1, t ′1, t
′′

1 , t2, t ′2, t
′′

2 , t3) with λ(D) > 0 be a nonsupereulerian digraph. If D has a spanning trail, then D
has a spanning (u, v)-trail T satisfying

both u ∈ {x1, x2, . . . , xt1} and v = w2, or both u ∈ {y1, y2, . . . , yt2} and v = w1. (14)

Proof. Since D is not supereulerian, by Observation 3.2 (i), max{t1, t2} > 0, we may assume that t1 > 0. Let T ′ be a
spanning (u′, v′)-trail of D. We will construct a spanning trail satisfying (14) from the following cases.

We note that as T ′ is a (u′, v′)-trail, we have

d+

T ′ (u′) − d−

T ′ (u′) = 1 and d−

T ′ (v′) − d+

T ′ (v′) = 1. (15)

Case 1 {u′, v′
} = {w1, w2}.

If u′
= v′, then D is supereulerian, contrary to the assumption of Claim 3.3. If T ′ is a (w1, w2)-trail and d+

T ′ (w1) ≥ 2,
then T ′

− (w1, x1) is a spanning (x1, w2)-trail of D satisfying (14). If T ′ is a (w1, w2)-trail and d+

T ′ (w1) = 1, then there exists
a vertex y ∈ X∪Y ∪Z such that (y, w2) ∈ A(T ′) and (y, w1) ∈ A(D)−A(T ′), so T ′

−(y, w2)+(y, w1) is an eulerian subdigraph
f D, contrary to the assumption of Claim 3.3. The proof for the case when both T ′ is a (w2, w1)-trail and t2 > 0 is similar
nd so it is omitted. Hence we assume that T ′ is a (w2, w1)-trail and t2 = 0. As t1 > 0, (w1, x1), (x1, w2) ∈ A(T ′). Since
≥ 4 and T ′ is spanning in D, there must be a vertex y ∈ V (D) such that (w2, y), (y, w1) ∈ A(T ′). It follows that y ∈ Y ∪ Z
nd T ′

− y is an eulerian subdigraph of D. Since t2 = 0, we have y ∈ {y′

1, y
′

2, . . . , y
′

t ′2
, y′′

1, y
′′

2, . . . , y
′′

t ′′2
} ∪ Z , and so y is

ncident with a pair of symmetric arcs (y, w), (w, y) for some w ∈ {w1, w2}. It follows that (T ′
− y) + {(y, w), (w, y)} is a

panning closed trail of D, contrary to the assumption of Claim 3.3.
ase 2 Both u′

∈ {w1, w2} and v′
∈ X ∪ Y ∪ Z , or both u′

∈ X ∪ Y ∪ Z and v′
∈ {w1, w2}.

Suppose first that u′
∈ {w1, w2} and v′

∈ X∪Y∪Z . If d−

T ′ (v′) = 1, then by (15), for some i ∈ {1, 2}, (v′, wi) ∈ A(D)−A(T ′).
t follows that T ′

+ (v′, wi) is a spanning (u′, wi)-trail. By Case 1, we are done. Hence we assume that d−

T ′ (v′) = 2. Then
y (15) and by (11), for some i′ ∈ {1, 2}, (w1, v

′), (w2, v
′), (v′, wi′ ) ∈ A(T ′). It follows that T ′

− (w3−i′ , v
′) is a spanning

u′, w3−i′ )-trail. By Case 1, we are done. The proof for the case when both u′
∈ X ∪ Y ∪ Z and v′

∈ {w1, w2} is similar and
o it is omitted.
ase 3 u′, v′

∈ X ∪ Y ∪ Z .
By (15), either d+

T ′ (u′) = 1 and for some j1 ∈ {1, 2}, (wj1 , u
′) ∈ A(D) − A(T ′), or d+

T ′ (u′) = 2 and for some j2 ∈ {1, 2},
u′, w1), (u′, w2), (wj2 , u

′) ∈ A(T ′). Likewise, either d−

T ′ (v′) = 1 and for some j3 ∈ {1, 2}, (v′, wj3 ) ∈ A(D) − A(T ′), or
−

T ′ (v′) = 2 and for some j4 ∈ {1, 2}, (w1, v
′), (w2, v

′), (v′, wj4 ) ∈ A(T ′). It follows that

T ′′
=

⎧⎪⎨⎪⎩
T ′

+ {(wj1 , u
′), (v′, wj3 )} if d+

T ′ (u′) = 1 and d−

T ′ (v′) = 1,
(T ′

− {(u′, w3−j2 )}) + {(v′, wj3 )} if d+

T ′ (u′) = 2 and d−

T ′ (v′) = 1,
(T ′

− {(w3−j4 , v
′)}) + {(wj1 , u

′)} if d+

T ′ (u′) = 1 and d−

T ′ (v′) = 2,
T ′

− {(u′, w3−j2 ), (w3−j4 , v
′)} if d+

T ′ (u′) = 2 and d−

T ′ (v′) = 2,

s a spanning (w′, w′′)-trail of D, for some w′, w′′
∈ {w1, w2}. By Case 1, we are done. ■

Assume that (12) holds. Then t1 ≥ 1 and so D − {x1} satisfies the inequalities in Observation 3.2 (i). By the definition
f D in Example 3.1, λ(D − {x1}) > 0 if and only if either t3 > 0, or both (t1 − 1) + t ′1 + t ′′1 > 0 and t2 + t ′2 + t ′′2 > 0.
s λ(D) > 0, if t3 = 0, then t2 + t ′2 + t ′′2 > 0. Therefore, if λ(D − {x1}) = 0, then t3 = 0 and t2 + t ′2 + t ′′2 > 0, and so
y (12), we must have t1 = 1 and t ′1 + t ′′1 = 0. These, together with (12), imply that D itself satisfies the inequalities in
bservation 3.2 (i), and so D is supereulerian, a contradiction. Hence we must have λ(D − {x1}) > 0. By Observation 3.2
i), D − {x1} has a spanning closed trail Q . It follows that Q + {(x1, w2)} is a spanning (x1, w2)-trail of D. With a similar
rgument, if (13) holds, then D also has a spanning trail.
Conversely, assume that D has a spanning trail. If D has a spanning closed trail, then by Observation 3.2 (i), each of

12) and (13) is satisfied. Hence we assume that D is not supereulerian. By Claim 3.3, we assume by symmetry that D has
spanning (x , w )-trail. Then D − x has a spanning closed trail, and so (12) follows from Observation 3.2 (i). ■
1 2 1
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efinition 3.4. Using the notation used in Example 3.1, we introduce a digraph family D(n) for each n ≥ 4. Define a
igraph D ∈ D(n) if and only if each of the following holds.
(F1) D has a subdigraph D′, (called the corresponding digraph of D), such that there exist nonnegative integers

1, t ′1, t
′′

1 , t2, t ′2, t
′′

2 , t3 satisfying |V (D′)| = 2 + t1 + t ′1 + t ′′1 + t2 + t ′2 + t ′′2 + t3 ≥ 4 and D′
= D(t1, t ′1, t

′′

1 , t2, t ′2, t
′′

2 , t3)
as defined in Example 3.1) such that both (12) and (13) are violated.

(F2) For each i ∈ {1, 2}, let si be a nonnegative integer and Di be digraph with V (Di) = {wi, w
i
1, . . . , w

i
si} and

(Di) = {(wi, w
i
j), (w

i
j, wi) : 1 ≤ j ≤ si}, such that V (D1) ∩ V (D2) = ∅ and V (Di) ∩ V (D′) = {wi}. When si = 0, then

i consists of a single vertex wi.
(F3) Define D to be the digraph with V (D) = V (D′)∪V (D1)∪V (D2) and A(D) = A(D′)∪A(D1)∪A(D2), and let n = |V (D)|.

By Lemma 2.2 (vi) and using the notation in Definition 3.4, a digraph D ∈ D(n) has a spanning trail if and only if the
orresponding D′ of D has a spanning trail. The following follows from Example 3.1.

For any digraph D ∈ D(n), D does not have a spanning trail. (16)

orollary 3.5. Let D be a digraph obtained from a digraph D′
= D(t1, t ′1, t

′′

1 , t2, t ′2, t
′′

2 , t3) (as defined in Example 3.1) with
= |V (D′)| = 2 + t1 + t ′1 + t ′′1 + t2 + t ′2 + t ′′2 + t3 by attaching a number of 2-cycles to each vertex of V (D′). Then D is

upereulerian if and only if D is strong.

roof. By Lemma 2.2 (vii), it suffices to examine these properties for D′. Since D is strong, by the way we form D from
′, D′ is also strong. By Example 3.1, D′ is strong if and only if both t1 + t ′1 + t ′′1 + t3 > 0 and t2 + t ′2 + t ′′2 + t3 > 0. As
= t1 + t ′1 + t ′′1 + t2 + t ′2 + t ′′2 + t3, we have both t1 ≤ t2 + t ′2 + t ′′2 + t3 and t2 ≤ t1 + t ′1 + t ′′1 + t3. Thus Corollary 3.5 follows

rom Observation 3.2 (i). ■

emma 3.6. Let D be a digraph with |V (D)| = 5 such that G(D) has a hamiltonian cycle. If D is strongly connected, then D
as a spanning trail.

roof. If D is supereulerian, then D has a spanning trail. Hence we assume that D is not supereulerian to show that D has
spanning trail. Let C be the longest cycle in D with arcs A(C) = {(z1, z2), (z2, z3), . . . , (zc−1, zc)}. As D is not supereulerian,
e have 3 ≤ c ≤ 4. Suppose first that c = 4, let x ∈ V (D) − V (C). Since D is strongly connected, hence there exists a
ertex zi ∈ V (C) such that (x, zi) ∈ A(D). Without loss of generality, assume that (x, z1) ∈ A(D). Thus D has a spanning
rail induced by the arcs {(x, z1), (z1, z2), (z2, z3), (z3, z4)}. Suppose now that c = 3. Fix a vertex x ∈ V (D) − V (C). Since
is strong, there exist vertices z ′

x, z
′′
x ∈ {z1, z2, z3} such that D contains an (x, z ′

x)-path P ′
x satisfying P ′

x is a shortest path
f D from vertex x to C and a (z ′′

x , x)-path P ′′
x satisfying P ′′

x is a shortest path of D from C to vertex x. If |V (P ′
x)|≥ 3, since

V (D)|= 5, hence |V (P ′
x)|= 3 and V (D) − V (C) ⊂ V (P ′

x). Assume that z ′
x = z1, thus D has a spanning trail induced by

the arcs A(P ′
x) ∪ {(z1, z2), (z2, z3)}. Likewise, if |V (P ′′

x )|≥ 3, then we can obtain a spanning trail of D. Hence assume that
P ′
x = (x, z ′

x) and P ′′
x = (z ′′

x , x). If for any x ∈ V (D) − V (C), we always have z ′
x = z ′′

x , then D would be supereulerian, a
contradiction. Hence there exists a vertex x1 such that z ′

x1 ̸= z ′′
x1 . By symmetry, we assume that z2 = z ′

x1 and z3 = z ′′
x1 .

Since c = 3, D does not have a 4-cycle and so we must have (x1, z2), (z3, x1) ∈ A(D). Let x2 denote the only vertex in
V (D) − {z1, z2, z3, x1}. If z ′

x2 = z ′′
x2 , then we must have (x2, z ′

x2 ), (z
′
x2 , x2) ∈ A(D), and so D has a spanning trail induced by

the arcs {(z1, z2), (z2, z3), (z3, x1), (x2, z ′
x2 ), (z

′
x2 , x2)}. Therefore, we assume that z ′

x2 ̸= z ′′
x2 . If z1 ∈ {z ′

x2 , z
′′
x2}, then we may

assume by symmetry that {z1, z3} = {z ′
x2 , z

′′
x2}. It follows by c = 3 that (z1, x2), (x2, z3) ∈ A(D), and so D has a spanning

closed trail induced by the arcs {(x1, z2), (z2, z3), (z3, x1), (z1, x2), (x2, z3), (z3, z1)}. If z1 ̸∈ {z ′
x2 , z

′′
x2}, then by c = 3 and as

D is not supereulerian, we must have that (x2, z2), (z3, x2) ∈ A(D). Since G(D) has a 5-cycle, there must be an arc e ∈ A(D)
incident with two vertices in {z1, x1, x2}. By symmetry, assume that (x1, x2) ∈ A(D), then D has a spanning trail induced
by the arcs {(x1, x2), (x2, z2), (z2, z3), (z3, z1)}. This completes the proof of the lemma. ■

A block of a graph G is a maximal subgraph H of G such that H contains no cut vertices of itself. By definition, if B is
a block of a graph G with at least 3 vertices, then B must be 2-connected. Also by definition, if D is strong, then either D
is a 2-cycle, or every block of G(D) must be 2-connected. The main purpose of this subsection is to prove Theorem 3.7,
which implies Theorem 1.3 (i).

Theorem 3.7. Let n > 1 be an integer, D be a strong digraph with |V (D)| = n. Then one of the following holds.
(i) α′(D) = 1 and D is strongly trail-connected.
(ii) α′(D) = 2 and the following are equivalent.
(ii-1) D has a spanning trail.
(ii-2) D /∈ D(n).

Proof. Suppose first that α′(D) = 1. Then G(D) is spanned by a K1,n−1. As (i) holds trivially if n = 2, we assume that
n ≥ 3. Let v0 be the vertex of degree n − 1 in this K1,n−1. If G(D) does not have a cycle of length longer than 2, then v0
is incident with every arc in A(D). As D is strong, every arc of D is symmetric, and so D is the symmetric core of itself.
It follows from Lemma 2.2 (iii) that D is strongly trail-connected. Hence we assume that G(D) contains a cycle of length
428
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t least 3. Then D has an arc that is not incident with v0. By α′(D) = 1, we must have n = 3 and so D is spanned by a
irected 3-cycle. Once again we have that D is strongly trail-connected. This proves (i).
To prove (ii), we assume that α′(D) = 2. By (16), every member D ∈ D(n) does not have a spanning trail, and so (ii−1)

mplies (ii − 2). Hence we assume that D /∈ D(n) to show that D has a spanning trail. As it is routine to verify that every
trong digraph with at most 3 vertices is supereulerian, we assume that n ≥ 4.
Let c = c(G(D)) denote the length of a longest cycle of G(D). Since D is strong and α′(G(D)) = α′(D) = 2, 2 ≤ c ≤ 5. If

= 2, then G̃, the simplification of G(D), must be a tree and so every pair of adjacent vertices u, v ∈ V (D) are vertices of
2-cycle in D. It follows by Lemma 2.2 (i) that D = J(D) is supereulerian. Thus we may assume that 3 ≤ c ≤ 5. Let B be
block of G(D) that contains a longest cycle of G(D).

laim 3.8. Each of the following holds.
(i) If c = 5, then G(D) = B with |V (G(D))| = 5.
(ii) If c = 4, then either G(D) = B, or B is spanned by a K ∼= K2,t for some t ≥ 2 with w1, w2 being two nonadjacent vertices

f degree t in K , such that every block B′ of G(D) other than B is a 2-cycle in D and contains exactly one vertex vB′ ∈ V (K ).
urthermore, if t ≥ 3, then vB′ ∈ {w1, w2}.

Suppose that c = 5 and let C be a cycle of length 5. If |V (B)| > 5, then as B is connected, an edge e ∈ E(B) − E(C)
ogether with a matching of size 2 not adjacent with e forms a matching of sizes 3 in B, leading to a contradiction that
= α′(G(D)) ≥ α′(B) ≥ 3. Hence we must have |V (B)| = 5. Assume that G(D) has a block B1 other than B. Then there
ust be an edge e′

∈ E(B1). By definition of block, |V (B) ∩ V (B1)| ≤ 1. Since C contains a matching M ′ of size 2. It follows
hat 2 = α′(G(D)) ≥ |M ′

∪ {e′
}| = 3, a contradiction. Hence we must have G(D) = B.

Now we assume that c = 4, and so B contains a K2,2 as a subgraph. Choose a maximum value t such that B contains a
ubgraph K isomorphic to a K2,t . Let w1, w2 denote two nonadjacent vertices of degree t in K and let V (K ) − {w1, w2} =

v1, v2, . . . , vt}. If there exists a vertex z ∈ V (B)−V (K ), then since κ(B) ≥ 2, there will be two internally disjoint shortest
aths from z to two distinct vertices z ′, z ′′ in V (K ), implying that either B has a cycle of length at least 5, or G(D) has a
ubgraph isomorphic to a K2,t+1. As either case leads to a contradiction, we conclude that B is spanned by K .
Assume that G(D) ̸= B. Let B′ be an arbitrary block of G(D) other than B. If V (B′)∩V (B) = ∅, then an edge in B′ together

ith a 2-matching in B would lead to the contradiction 2 = α′(D) ≥ 3. Hence every block B′ other than B in G(D) must
ontain a vertex vB′ such that V (B′) ∩ V (K ) = V (B′) ∩ V (B) = {vB′}, and every edge in B′ is incident with the vertex
B′ ∈ V (K ). Again by α′(D) = 2, if t ≥ 3, then we must have vB′ ∈ {w1, w2} for any block B′ other than B in G(D). As D is
trong, G(D) is 2-edge-connected and so κ ′(B′) ≥ 2. This implies that B′ is a 2-cycle containing vB′ . Since D is strong, this
-cycle in B′ is a 2-cycle in D. This justifies Claim 3.8.
By Claim 3.8 and Lemma 3.6, if c = 5, then D has a spanning trail. Hence it suffices to assume that 3 ≤ c ≤ 4 to prove

heorem 3.7 (ii).

laim 3.9. Suppose that c = 3. Each of the following holds.
(i) Every block of G(D) has 2 or 3 vertices.
(ii) There are at most two blocks of order 3, and if G(D) has two blocks B′, B′′ of order 3, then |V (B′) ∩ V (B′′)| = 1.
(iii) D has a spanning closed trail.

Assume that c = 3. Let B1, B2, . . . , Bb be all the blocks of G(D) such that for some b′ with 1 ≤ b′
≤ b, |V (B1)| ≥ · · · ≥

V (Bb′ )| ≥ 3 and |V (Bb′+1)| = · · · = |V (Bb)| = 2. For each B ∈ {B1, . . . , Bb′}, as c = 3, B contains a 3-cycle C . If there exists
vertex v ∈ V (B) − V (C), then as κ(B) ≥ 2, there will be two internally disjoint shortest paths from v to two distinct
ertices in V (C), implying the B has a cycle of length at least 4. Hence we must have V (B) = V (C), and so Claim 3.9 (i)
ollows.

Since two distinct blocks B′, B′′ of G(D) must satisfy |V (B′) ∩ V (B′′)| ≤ 1, it follows that b′
≤ α′(D) = 2. Furthermore,

ssume that |V (B′) ∩ V (B′′)| = 0, then as G(D) is connected, there must be an additional block B′′′ of G(D). It follows by
V (B′)| = |V (B′′)| = 3 and |V (B′′′)| = 2 that G(D) has a matching of size 3, contrary to α′(D) = 2. This justifies Claim 3.9
ii).

Since D is strong, every block B of G(D) induces a strong subdigraph D[V (B)] of D. It follows by |V (B)| ≤ 3 that every
[V (B)] is supereulerian. Thus D has a spanning closed trail. This completes the proof of Claim 3.9.
By Claims 3.8 and 3.9 and by Lemma 3.6, we may assume that c = 4. By Claim 3.8 (ii), for some integer t ≥ 2, G(D)

as a unique block B spanned by a K2,t . If t = 2, then B is a 4-cycle. By Claim 3.8 (ii) and Corollary 3.5, D is supereulerian,
nd so D has a spanning trail.
Hence we assume that t ≥ 3. Let w1, w2 denote the two vertices of degree t in this K2,t such that every block

f G(D) other than B is a 2-cycle of D containing w1 or w2. By Example 3.1 (and using the notation in Example 3.1),
= D(t1, t ′1, t

′′

1 , t2, t ′2, t
′′

2 , t3) for some non negative integers t1, t ′1, t
′′

1 , t2, t ′2, t
′′

2 , t3 satisfying |V (B)| = 2+ t1 + t ′1 + t ′′1 + t2 +
′

2 + t ′′2 + t3. As D /∈ D(n), we conclude that either (12) or (13) must hold. By Observation 3.2 (ii), D has a spanning trail.
his completes the proof for Theorem 3.7 (ii). ■
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.2. Supereulerian digraphs and strongly trail-connected digraphs

The main result of this subsection is to prove Theorem 1.3 (iii) and (iv), restated in Theorem 3.10. Recall that D0 denotes
the vertex disjoint union of three complete digraphs of order 3.

Theorem 3.10. Let D be a strong digraph on n vertices with α′(D) ≥ 3, and n ≥ 2α′(D)+ 3, and let J = J(D) be a symmetric
ore of D. Each of the following holds.
(i) If λ(D) ≥ α′(D) − 1, then D is supereulerian.
(ii) If λ(D) ≥ α′(D) ≥ 4, then J is a connected spanning subdigraph of D.

Proof. Let k = α′(D) ≥ 3 and n = |V (D)| ≥ 2k + 3. By Corollary 2.8, Theorem 3.10 (ii) holds. It suffices to prove
heorem 3.10(i). As λ(D) ≥ k − 1 ≥ 2, D ≇ D0 and for any vertex v ∈ V (D), dD(v) ≥ 2k − 2.
Suppose first that there exists a vertex x1 ∈ X such that dD(x1) ≥ 2k − 1. If k1(x1) > 0, then by Lemma 2.5 (iv), D is

upereulerian; if k1(x1) = 0, then by Lemma 2.9 (iv) and as λ(D) ≥ 2, D is supereulerian. Therefore, we assume that for any
ertex x ∈ X , dD(x) = 2k − 2. If there exists a vertex x1 ∈ X with k1(x1) > 0, then by Lemma 2.13 (ii), D is supereulerian.
ow assume that for any vertex x ∈ X , k1(x) = 0. By Lemmas 2.10 (iii) and 2.12 (iii), D must also be supereulerian. This
ompletes the proof of Theorem 3.10. ■

.3. Spanning trails in digraphs

The purpose of this subsection is to prove Theorem 1.3 (ii). Throughout this subsection, D denotes a strong digraph
ith |V (D)| = n ≥ 6 and α′(D) = k ≥ 3, and let δ+(D), δ−(D) denote the minimum out-degree and the minimum in-degree
f D, respectively. The following example was first presented in [15].

xample 3.11. Let k1, k2, ℓ ≥ 2 be integers, and D1 and D2 be two disjoint complete digraphs of order k1 + 1 and k2 + 1,
espectively, and let U be an independent set disjoint from V (D1)∪ V (D2) with |U | = ℓ. Let F(k1, k2, ℓ) denote the family
f digraphs such that D ∈ F(k1, k2, ℓ) if and only if D is the digraph obtained from D1 ∪D2 ∪U by adding all arcs directed
rom every vertex in U and D2 to every vertex in D1, and all arcs directed from every vertex in D2 to every vertex in U ,
nd then by adding an set of ℓ − 1 arcs directed from some vertices in D1 to some vertices in D2, in such a way that U is
stable set in D.
Assume k1, k2 ≥ ℓ−1. For any D ∈ F(k1, k2, ℓ), D has n = k1+k2+ℓ+2 vertices, and is a strong digraph with minimum

egree δ+(D) = k1 and δ−(D) = k2. Direct computation shows that for each D ∈ F(k1, k2, 2), δ+(D)+δ−(D) = |V (D)|−4. Let
0(k1, k2, 2) be the set of spanning subdigraphs D′ of the digraphs in F(k1, k2, 2) which satisfy δ+(D′)+δ−(D′) = |V (D′)|−4.

In [15], Hong et al. showed that every digraph in F0(k1, k2, 2) is a not supereulerian, and proved the following.

Theorem 3.12 (Hong et al. Theorem 3.4 of [15]). Let D be a strong digraph of order n and minimum out-degree δ+(D) ≥ 4
and minimum in-degree δ−(D) ≥ 4. If δ+(D) + δ−(D) ≥ n − 4, then the following are equivalent.

(i) D has a spanning eulerian subdigraph.
(ii) Either δ+(D) + δ−(D) > n − 4, or for some integer k1, k2, δ+(D) = k1, δ−(D) = k2 but D /∈ F0(k1, k2, 2).

Let k ≥ 3 be an integer. It is routine to verify the following.

Observation 3.13. Every digraph D ∈ F0(k − 1, k − 1, 2) with λ(D) ≥ k − 1 has a spanning trail.

In fact, using the notation in Example 3.11 for the structure of D, we let D1 ∼= D2 ∼= K ∗

k and U = {u1, u2} with an arc
v′, v′′) ∈ (V (D1), V (D2))D, one can start with a vertex w′′

∈ V (D2) − {v′′
}, traverses every vertices in D2 and then passes

2; then from u2 to a vertex w′
∈ V (D1) − {v′

} and traverses every vertex in V (D1) with the last vertex in v′; and finally
ompletes the trail with the arcs (v′, v′′), (v′′, u1). Thus D has a spanning trail.

roof of Theorem 1.3 (ii). Assume that n = |V (D)| ≥ 12, α′(D) = k ≥ 3 and λ(D) ≥ k − 1 ≥ 2. By Theorem 1.3 (iii), if
= |V (D)| ≥ 2k + 3, then D is supereulerian and so has a spanning trail. Hence we assume that 2k ≤ n ≤ 2k + 2. If
∈ {2k, 2k + 1}, then by Theorem 3.12, D is supereulerian. Therefore we assume that n = 2k + 2, and so by n ≥ 12,
in{δ+(D), δ−(D)} ≥ λ(D) ≥ k − 1 ≥

n−4
2 ≥ 4 and δ+(D) + δ−(D) ≥ n − 4. By Theorem 3.12, either D is supereulerian or

D ∈ F0(k − 1, k − 1, 2). By Observation 3.13, D has a spanning trail. This completes the proof of Theorem 1.3 (ii).
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