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For integers s ≥ 0 and t ≥ 0, a graph G is (s, t)-supereulerian if for any disjoint edge 
sets X, Y ⊆ E(G) with |X| ≤ s and |Y | ≤ t, G has a spanning closed trail that contains 
X and avoids Y . Pulleyblank in 1979 showed that determining whether a graph is (0, 0)-
supereulerian, even when restricted to planar graphs, is NP-complete. We investigate the 
value of the smallest integer j(s, t) such that every j(s, t)-edge-connected graph is (s, t)-
supereulerian, and show that

j(s, t) =
⎧⎨
⎩

max{4, t + 2} if 0 ≤ s ≤ 1, or (s, t) ∈ {(2,0), (2,1), (3,0)},
5 if (s, t) ∈ {(2,2), (3,1)},
s + t + 1−(−1)s

2 if s ≥ 2 and s + t ≥ 5.

As applications, we obtain a characterization of (s, t)-supereulerian graphs when t ≥ 3 in 
terms of edge-connectivities, and show that when t ≥ 3, there exists a polynomial time 
algorithm to determine if a graph is (s, t)-supereulerian.

© 2021 Elsevier B.V. All rights reserved.

1. The problem

We consider finite graphs without loops but permitting multiple edges, and follow [2] for undefined terms and notation. 
For a vertex subset or an edge subset X of a graph G , let G[X] denote the subgraph induced by X . When X is an edge 
subset of G , we denote G − X = G[E(G) − X]. As in [2], we use δ(G) and κ ′(G) to denote the minimum degree and the 
edge-connectivity of a graph G , respectively. Following [2], a set of vertices no two of which are adjacent is referred as 
a stable set. For integers s ≥ 0 and t ≥ 0, a graph G is (s, t)-supereulerian if for any disjoint edge sets X, Y ⊆ E(G) with 
|X | ≤ s and |Y | ≤ t , G has a spanning closed trail that contains every edge in X and avoids all the edges in Y . In particular, 
a (0, 0)-supereulerian graph G , commonly known as a supereulerian graph, is a graph that contains a spanning closed 
trail. The supereulerian graph problem was first introduced by Boesch, Suffel and Tindell [1], which seeks to characterize 
supereulerian graphs. Pulleyblank [17] proved that determining whether a graph is supereulerian, even when restricted to 
planar graphs, is NP-complete. There have been intensive studies on supereulerian graphs, as seen in Catlin’s survey [4]
and its updates in [7,12]. The (s, t)-supereulerian problem, determining whether a given graph is (s, t)-supereulerian for 
given values of s and t , is an attempt to generalize the supereulerian problem. A number of research results on the (s, t)-
supereulerian problem and similar topics have been obtained, as seen in [8,9,11,13–15,18,19], among others. As it is known 
that determining whether a graph is (0, 0)-supereulerian is NP-complete, the complexity of determining if a graph G is 
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(s, t)-supereulerian for other values of s and t becomes of interests. This motivates the current research. A main result of 
this paper is a polynomial time verifiable characterization of (s, t)-supereulerian graphs when t ≥ 3.

The notion of (s, t)-supereulerian was formally introduced in [13,14], as a generalization of supereulerian graphs. Lei 
et al. considered sufficient conditions for a graph to be (s, t)-supereulerian using local connectivity. For a vertex u ∈ V (G)

in a graph G , let NG(u) = {v ∈ V (G) : uv ∈ E(G)} denote the set of the neighbors of u in G . The vertex v is locally k-
edge-connected if κ ′(G[NG(v)]) ≥ k, and a connected graph G is locally k-edge-connected if every vertex v of G is locally 
k-edge-connected. In [14], Lei et al. showed that (Theorems 1.3 and 1.4 of [14]) if k, s and t are nonnegative integers such 
that k ≥ s + t + 1, then every locally k-edge-connected graph is (s, t)-supereulerian; and if k = s + t , then locally k-edge-
connected graphs are (s, t)-supereulerian with well characterized exceptional situations.

Studies involving generic (s, 0)-supereulerian graphs were considered much earlier. A best possible edge connectivity 
sufficient condition for (s, 0)-supereulerian graphs was considered in Theorem 3.3 of [11]. This was later extended by Chen, 
Chen and Luo in [9] for (s, t)-supereulerianicity of graphs when the parameters s and t are in certain ranges. They proved 
that (Theorem 4.1 of [9]) for an integer r ≥ 1, and for edge subsets X and Y of a graph G satisfying X ∩ Y = ∅, |Y | ≤

 r+1

2 �, and |X | + |Y | ≤ r, G − Y has an eulerian subgraph H containing X if and only if κ ′(G) ≥ r + 1. The problem whether 
all these conditions posed above are necessary is naturally coming up. Motivated by these prior results, in the current 
research we aim to find, for any given nonnegative integers s and t , the smallest positive integer N such that every graph 
G with edge-connectivity at least N must be (s, t)-supereulerian. We have the following necessary conditions.

Proposition 1.1. Let s, t be nonnegative integers. If a graph G is (s, t)-supereulerian, then

κ ′(G) ≥
{

s + t + 1−(−1)s

2 if s ≥ 1 and s + t ≥ 3,
t + 2 otherwise.

Proof. Let G be a (s, t)-supereulerian graph and W ⊆ E(G) be a minimum edge-cut of G . Take a subset Y ⊆ W with 
|Y | = min{t, |W |}. Since G is (s, t)-supereulerian, G − Y contains a spanning eulerian subgraph, and so κ ′(G − Y ) ≥ 2. 
Since W is an edge-cut of G , W − Y is also an edge-cut of G − Y . Hence |W − Y | ≥ κ ′(G − Y ) ≥ 2, and so |Y | = t . Thus 
κ ′(G) = |W | = |Y | + |W − Y | ≥ t + 2.

Assume further that s ≥ 1 and s + t ≥ 3. Then s + 1−(−1)s

2 ≥ 2, and so s + t + 1−(−1)s

2 ≥ t + 2. Suppose that |W | <
s + t + 1−(−1)s

2 . As s ≥ 1, there exists a subset X ⊆ W satisfying

1 ≤ |X | ≤ s, |W − X | ≤ t, and |X | ≡ 1 (mod 2).

Set Y = W − X . Since G is (s, t)-supereulerian, G − Y has a spanning eulerian subgraph H with X ⊆ E(H). Since W is an 
edge-cut of G and X = W − Y , X is an edge-cut of G − Y . Since X ⊆ E(H) and H is spanning subgraph of G − Y , X is also 
an edge-cut of H . As H is eulerian, every edge-cut of H must have an even size, contrary to the fact that |X | is odd. This 
contradiction shows that we must have κ ′(G) = |W | ≥ s + t + 1−(−1)s

2 . �

For given nonnegative integers s, t , let j(s, t) denote the smallest integer such that every graph G with κ ′(G) ≥ j(s, t) is 
(s, t)-supereulerian. One of our goals is to determine the value of j(s, t).

Theorem 1.2. Let s, t be nonnegative integers. Then

j(s, t) =
⎧⎨
⎩

max{4, t + 2} if 0 ≤ s ≤ 1, or (s, t) ∈ {(2,0), (2,1), (3,0)},
5 if (s, t) ∈ {(2,2), (3,1)},

s + t + 1−(−1)s

2 if s ≥ 2 and s + t ≥ 5.
(1)

While Theorem 1.2 presents an extremal edge connectivity sufficient condition for (s, t)-supereulerian graphs, it is natural 
to investigate when this sufficient condition is also necessary. As an application of Theorem 1.2, we obtain a characterization 
of (s, t)-supereulerian graphs when t ≥ 3, and its corollary on the complexity of the (s, t)-supereulerian problem.

Theorem 1.3. Let s, t be integers with s ≥ 0 and t ≥ 3.
(i) Then a graph G is (s, t)-supereulerian if and only if κ ′(G) ≥ j(s, t).
(ii) If t ≥ 3, then whether a graph is (s, t)-supereulerian can be polynomially determined.

In the next section, we present the needed tools in our arguments. The main results will be justified in Section 3.

2. Mechanisms

We write H ⊆ G to mean that H is a subgraph of G . If X, Y are vertex subsets of V (G), then define EG [X, Y ] = {xy ∈
E(G) : x ∈ X, y ∈ Y } and ∂G(X) = EG [X, V (G) − X]. If X = {v}, then we often use ∂G (v) for ∂G(X). If X ⊆ E(G) is an edge 
2
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subset, then the contraction G/X is obtained by identifying the two ends of each edge in X and then deleting all the 
resulting loops. If H is a subgraph of G , we write G/H for G/E(H). If H is a connected subgraph of G and v H is the vertex 
in G/H onto which H is contracted, then H is the preimage of v H .

For an integer i ≥ 0, let Di(G) = {v ∈ V (G) : dG (v) = i} and O (G) = ∪ j≥0 D2 j+1(G) be the set of all odd degree vertices 
of G . A graph G is collapsible if for any subset R of V (G) with |R| ≡ 0 (mod 2), G has a spanning connected subgraph H
with O (H) = R . Collapsible graphs are introduced by Catlin in [3] in a wording that is equivalent to the definition above 
(see also Proposition 1 of [12]). Catlin ([4]) indicated that collapsible graphs and its associate reduction method are very 
useful in the study of eulerian subgraphs. As when R = ∅, a spanning connected subgraph H with O (H) = R is a spanning 
eulerian subgraph of G , and so collapsible graphs are supereulerian graphs. Let H1, H2, . . . , Hc denote the list of all maximal 
collapsible subgraphs. The graph G ′ = G/(∪c

i=1 Hi) is the reduction of G . A graph equaling its own reduction is a reduced
graph. Theorem 2.1 below presents useful properties related to collapsible graphs, which will be deployed in our arguments.

Theorem 2.1. Let G be a graph and let H be a collapsible subgraph of G. Let v H denote the vertex onto which H is contracted in G/H. 
Each of the following holds.
(i) (Catlin, Theorem 3 of [3]) G is collapsible (or supereulerian, respectively) if and only if G/H is collapsible (or supereulerian, respec-
tively). In particular, G is collapsible if and only if the reduction of G is K1 .
(ii) (Catlin, Theorem 5 of [3]) A graph is reduced if and only if it does not have a nontrivial collapsible subgraph.

For a graph G , let τ (G) be the maximum number of edge-disjoint spanning trees in G , and F (G) be the minimum 
number of additional edges that must be added to G to result in a graph with two edge-disjoint spanning trees. Thus 
τ (G) ≥ 2 if and only if F (G) = 0.

Theorem 2.2. Let G be a connected graph. Each of the following holds.
(i) (Catlin, Theorem 7 of [3]) If F (G) ≤ 1, then G is collapsible if and only if κ ′(G) ≥ 2. In particular, every graph G with τ (G) ≥ 2 is 
collapsible.
(ii) (Catlin et al., Theorem 1.3 of [6]) If F (G) ≤ 2, then either G is collapsible or its reduction is a member in {K2, K2,t : t ≥ 1}.

Utilizing the well-known spanning tree packing theorem of Nash-Williams [16] and Tutte [20], the following is obtained.

Theorem 2.3 (Theorems 1.1 and 1.3 of [5]). Let G be a graph, ε ∈ {0, 1} and � ≥ 1 be integers. The following are equivalent.
(i) G is (2� + ε)-edge-connected.
(ii) For any X ⊆ E(G) with |X | ≤ � + ε , τ (G − X) ≥ �.

Theorem 2.3 has a seemingly more general corollary, as stated below.

Corollary 2.4. Let G be a connected graph, and ε, k, � be integers with ε ∈ {0, 1}, � ≥ 2 and 2 ≤ k ≤ �. The following are equivalent.
(i) κ ′(G) � 2� + ε .
(ii) For any X ⊆ E(G) with |X | ≤ 2� − k + ε , τ (G − X) ≥ k.

Proof. To show (i) implies (ii), we pick a subset X ⊆ E(G) with |X | ≤ 2� −k + ε . Choose X1 ⊆ X with |X1| = min{� + ε, |X |}. 
By (i) and by Theorem 2.3, τ (G − X1) ≥ �. Let X2 = X − X1. Then |X2| ≤ |X | − |X1| ≤ � − k. Thus among the � edge-disjoint 
spanning trees of G − X1, at least k of them are edge-disjoint from X2, and so τ (G − X) ≥ k. Conversely, we observe that 
Corollary 2.4(ii) implies Theorem 2.3(ii). Hence by Theorem 2.3, κ ′(G) ≥ 2� + ε . �

One application of Corollary 2.4 is to extend Theorem 1.5 of [10] to the form expressed in Theorem 2.5 below.

Theorem 2.5 (Gu et al., [10]). Let m ≥ 4 be an integer, let G be an m-edge-connected graph and let X ⊂ E(G) be an edge subset with 
|X | ≤ m − 1. Then G − X is collapsible if and only if κ ′(G − X) ≥ 2.

Proof. Suppose that κ ′(G) ≥ m and X ⊆ E(G) is an edge subset with |X | ≤ m − 1. As collapsible graphs must be 2-edge-
connected, it suffices to assume that κ ′(G − X) ≥ 2 to show G − X is collapsible. Let X1 ⊆ X be such that |X1| ≤ m − 2 and 
|X − X1| ≤ 1. By Corollary 2.4 with k = 2, τ (G − X1) ≥ 2. As |X − X1| ≤ 1, we have F (G − X) ≤ 1. By Theorem 2.2(i) and as 
κ ′(G − X) ≥ 2, G − X is collapsible. �

Before stating our corollary of Theorem 2.5, we need an additional tool. A elementary subdivision of a graph G at an 
edge e = uv is an operation to obtain a new graph G(e) from G − e by adding a new vertex ve and two new edges uve and 
ve v . For a subset X ⊆ E(G), we define G(X) to be the graph obtained from G by elementarily subdividing every edge of X . 
By definitions, for a subset X ⊆ E(G),

G has a spanning closed trail containing X if and only if G(X) is supereulerian. (2)
3
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Corollary 2.6. Let G be a connected graph with κ ′(G) ≥ 4, and let X, Y ⊆ E(G) be disjoint edge subsets with |Y | ≤ 1.
(i) If |X | = 2, then G − Y has a spanning closed trail that contains X.
(ii) If |X | = 3, then G has a spanning closed trail that contains X.
(iii) If |X | = 3 and κ ′(G) ≥ 5, then G − Y has a spanning closed trail that contains X.

Proof. As κ ′(G) ≥ 4, we have κ ′(G − Y ) ≥ 3. By Theorem 2.3, τ (G − Y ) ≥ 2 and so F ((G − Y )(X)) ≤ 2. As κ ′(G − Y ) ≥ 3, 
the only edge-cuts of size 2 in (G − Y )(X) are those of the form ∂(G−Y )(X)(ve), for some e ∈ X . It follows by Theorem 2.2(ii) 
that either (G − Y )(X) is collapsible or the reduction of (G − Y )(X) is a K2,� , for some integer � ≥ 2. In the latter, as |X | = 2
and κ ′(G − Y ) ≥ 3, we must have � = 2, which implies that G − Y has an edge-cut of size 2, contrary to the fact that 
κ ′(G − Y ) ≥ 3. Hence (G − Y )(X) must be collapsible, and so (G − Y )(X) is supereulerian. This proves (i) by (2).

Now assume that |X | = 3. If κ ′(G − X) ≥ 2, then by Theorem 2.5, G − X is collapsible. Let R = O (G[X]). Then R ⊆
V (G − X) and |R| ≡ 0 (mod 2). As G − X is collapsible, G − X has a spanning connected subgraph H with O (H) = R . 
It follows that G[E(H) ∪ X] is a spanning eulerian subgraph containing X . Hence we may assume that κ ′(G − X) = 1, 
and so G has an edge-cut W with |W | = 4 and X ⊂ W . Let W = {e1, e2, e3, e4} with X = W − {e4}. By Theorem 2.3, 
τ (G − {e3, e4}) ≥ 2, and so F ((G − {e3, e4})(e1, e2)) ≤ 2. By definition and as F ((G − {e3, e4})({e1, e2})) ≤ 2, it follows that 
F (G(W )) ≤ 2. By Theorem 2.1(ii), either G(W ) is collapsible, or for some integer � ≥ 2 the reduction of G(W ) is a K2,� . As 
κ ′(G) ≥ 4, the only edge-cut of size 2 in G(W ) are those of the form ∂G(W )(vei ), with 1 ≤ i ≤ 4. Thus again by κ ′(G) ≥ 4, 
if the reduction of G(W ) is a K2,� , then � = 4. Hence in any case, the reduction of G(W ) is always supereulerian. By 
Theorem 2.1(i), G(W ) is supereulerian, and so by (2), G has a spanning eulerian subgraph containing X . This proves (ii).

To prove (iii), we assume that κ ′(G) ≥ 5 and t = 1. Then we have κ ′(G − Y ) ≥ 4, and by Corollary 2.6(ii), G − Y has a 
spanning closed trail that contains X . �

3. Proofs of the main results

We first show that Theorem 1.3 follows from Theorem 1.2. When t ≥ 3, Theorem 1.3(i) indicates that determining if a 
graph G is (s, t)-supereulerian amounts to determining the edge-connectivity of G . It is well-known (for example, Section 
7.3 of [2]) that the edge-connectivity can be determined by using an integral maximum flow algorithm, which is known to 
be a polynomial algorithm. Hence Theorem 1.3(ii) follows from Theorem 1.3(i).

We assume the validity of Theorems 1.2 to prove Theorems 1.3(i). Suppose that t ≥ 3. By the definition of j(s, t), any 
graph G with κ ′(G) ≥ j(s, t) is (s, t)-supereulerian. Conversely, we assume that G is (s, t)-supereulerian. If 0 ≤ s ≤ 1, then by 
Proposition 1.1, κ ′(G) ≥ t + 2 ≥ 4, and so by Theorem 1.2, κ ′(G) ≥ j(s, t). Assume that s ≥ 2. Since t ≥ 3, we have s + t ≥ 5, 
and so by Proposition 1.1 and Theorem 1.2, we have

κ ′(G) ≥ s + t + 1 − (−1)s

2
= j(s, t).

This proves Theorems 1.3(i). Thus to prove Theorems 1.2 and 1.3, it suffices to justify Theorem 1.2.
Throughout the rest of this paper, let s and t be nonnegative integers. We start with some examples.

Example 3.1. Let G1, G2 be disjoint graphs satisfying κ ′(G1) ≥ 3 and κ ′(G2) ≥ 3, and let v1 ∈ D3(G1) with NG1 (v1) =
{x1, x2, x3} and v2 ∈ D3(G2) with NG2 (v2) = {y1, y2, y3}. Define a new graph G1 ◦ G2 from the disjoint union of G1 − v1
and G2 − v2 by adding three new edges x1 y1, x2 y2, x3 y3.
(i) If G1 is not supereulerian, then G1 ◦ G2 is not supereulerian. Moreover, if both κ ′(G1) ≥ 3 and κ ′(G2) ≥ 3, then κ ′(G1 ◦
G2) ≥ 3.
(ii) Let G1 be a 3-edge-connected nonsupereulerian graph, (for example, we can choose G1 to be the Petersen graph), and 
let G2 be any 3-edge-connected graph with a vertex of degree 3. Then G1 ◦ G2 is also a 3-edge-connected nonsupereulerian 
graph.
(iii) For any integers s ≥ 0 and t ≥ 0, j(s, t) ≥ 4.

Catlin [3] observed that any contraction of a supereulerian graph is supereulerian (for example, Lemma 3 of [3] with 
S = O (G)). As (G1 ◦ G2)/G2 = G1 is not supereulerian, it follows that G1 ◦ G2 is not supereulerian. The conclusion on the 
edge-connectivity of G1 ◦ G2 follows from the fact that any minimum edge-cut of G1 ◦ G2 corresponds to an edge-cut of 
G1 or G2, and so κ ′(G1 ◦ G2) ≥ 3. Hence Example 3.1(i) can be observed. Example 3.1(ii), an immediate consequence of 
Example 3.1(i), suggests that there exist infinitely many 3-edge-connected nonsupereulerian graphs, and so for any values 
of s and t , we must have j(s, t) ≥ 4.

Example 3.2. Let n ≥ 3 be an integer, Zn be the cyclic group of order n, and { J i : i ∈Zn} be a collection of mutually disjoint 
4-edge-connected graphs. Obtain a graph C( J1, . . . , Jn) from the disjoint union of J1, J2, . . . , Jn by adding these new edges 
E ′ = {xi xi+1, yi yi+1 : xi, yi ∈ V ( J i), xi+1, yi+1 ∈ V ( J i+1) and i ∈Zn}. Each of the following holds.
(i) κ ′(C( J1, . . . , Jn)) = 4.
(ii) C( J1, . . . , Jn) is not (2, 2)-supereulerian.
(iii) j(2, 2) ≥ 5.
4
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We have one observation of Example 3.2. Example 3.2(i) follows from the fact that each J i is 4-edge-connected, and the 
construction of C( J1, . . . , Jn). Let G = C( J1, . . . , Jn) and choose X = {x1x2, y1 y2} and Y = {x2x3, y3 y4}, where the subscripts 
are taken in Zn . Then in G −Y , each of {x1x2, y1 y2, y2 y3} and {x1x2, y1 y2, x3x4} is an edge-cut of G −Y . If G has a spanning 
closed trail H that contains {x1x2, y1 y2}, then as E(H) intersecting any edge-cut of G − Y must be an even size set, we 
conclude that y2 y3, x3x4 /∈ E(H), and so H cannot be spanning and connected, a contradiction. This justifies Example 3.2(ii), 
which, by the definition of j(s, t), implies Example 3.2(iii).

We shall determine the value of j(s, t) according to the different ranges from which of s and t take their values. By 
Example 3.1(iii), we always have j(s, t) ≥ 4 in the rest of the discussions.

Case 1. Either 0 ≤ s ≤ 1 or (s, t) ∈ {(2, 0), (2, 1), (3, 0)}.

Let G be a graph with κ ′(G) = j(s, t). By Proposition 1.1, j(s, t) = κ ′(G) ≥ t + 2. By Example 3.1(iii), j(s, t) ≥ 4. Hence, 
j(s, t) ≥ max{4, t + 2}.

Suppose that (s, t) ∈ {(2, 0), (2, 1), (3, 0)}. By Corollary 2.6, we always have j(s, t) ≤ 4. Hence in this case, j(s, t) = 4 =
max{4, t + 2}. Now assume that 0 ≤ s ≤ 1. To establish j(s, t) ≤ max{4, t + 2}, we shall assume that m = max{4, t + 2} and 
G is a graph with κ ′(G) ≥ m to show that G is (s, t)-supereulerian.

Let Y ⊆ E(G) be an arbitrarily edge subset with |Y | ≤ t and let X ⊆ E(G − Y ) with |X | = s. If t ≤ 1, then m = 4, and so by 
Corollary 2.6(i), G is (s, t)-supereulerian. Hence we assume that m = t + 2 ≥ 4. As |Y | ≤ t = m − 2, it follows by Corollary 2.4
with k = 2 that τ (G − Y ) ≥ 2, and so as |X | ≤ 1, we conclude that both F ((G − Y )(X)) ≤ 1 and κ ′(G − Y )(X)) ≥ 2. By 
Theorem 2.2(i) that (G − Y )(X) is collapsible, and so supereulerian. Hence G − Y has a spanning closed trail containing all 
edges in X . Therefore in this case, we always have j(s, t) = max{4, t + 2}.

Case 2. (s, t) ∈ {(2, 2), (3, 1)}.

By Example 3.2(iii), j(2, 2) ≥ 5; by Proposition 1.1, j(3, 1) ≥ 5. It remains to show that j(2, 2) ≤ 5 and j(3, 1) ≤ 5. Let G
be a graph with κ ′(G) ≥ 5, and let X, Y be disjoint edge subsets of G with |X | ≤ s and |Y | ≤ t . If s = 3 and t = 1, then by 
Corollary 2.6(iii), (G − Y )(X) is supereulerian, and so j(3, 1) ≤ 5.

Hence we may assume that s = t = 2. Denote X = {e1, e2}. We shall show that (G − Y )(X) has a spanning eulerian 
subgraph. By Corollary 2.4, τ (G − Y ) ≥ 2 and κ ′(G − Y ) ≥ 3. As |X | = 2, we have F ((G − Y )(X)) ≤ 2, and any 2-edge-
cut of (G − Y )(X) must be either ∂(G−Y )(X)(ve1) or ∂(G−Y )(X)(ve1). It follows by Theorem 2.1(ii) that either (G − Y )(X) is 
collapsible, or the reduction of (G − Y )(X) is a K2,2. In either case, by Theorem 2.1(i), (G − Y )(X) is supereulerian. Hence 
we have j(2, 2) ≤ 5. This completes the proof for this case.

Case 3. s ≥ 2 and s + t ≥ 5.

Let m = s + t + 1−(−1)s

2 . Then m ≥ 5. In this case, we are to show j(s, t) = m. By Proposition 1.1, j(s, t) ≥ κ ′(G) ≥ m. To 
compete the proof, we need to show j(s, t) ≤ m.

We argue by contradiction and assume that there exists a graph G with κ ′(G) ≥ m, but G is not (s, t)-supereulerian. 
Hence there exist edge subsets X, Y ⊆ E(G) with X ∩ Y = ∅, |X | ≤ s and |Y | ≤ t , such that

G − Y does not have an eulerian subgraph containing all edges in X . (3)

By adding edges to X , we may assume that |X | = s. Let X = {e1, e2, . . . , es}. Then |(X − {e1, e2}) ∪ Y | ≤ s + t − 2 ≤ m − 2. 
By Corollary 2.4 with k = 2, τ (G − ((X − {e1, e2}) ∪ Y )) ≥ 2. Let H = (G − ((X − {e1, e2}) ∪ Y ))(e1, e2). Then both F (H) ≤ 2
and κ ′(H) ≥ 2. Let H ′ denote the reduction of H . By Theorem 2.2(ii), either H is collapsible, or H ′ is a K2,� for some integer 
� ≥ 2.

Assume first that H is collapsible. By their definitions, H is a subgraph of (G − Y )(X) and (G − Y )(X)/H is a graph 
containing the vertices v H (the contraction image of H), and ve3 , ve4 , . . . , ves , satisfying |E(G−Y )(X)/H [{v H }, {vei }]| = 2, for 
any i with 3 ≤ i ≤ s. It follows that τ ((G − Y )(X)/H) ≥ 2, and so (G − Y )(X)/H is collapsible. As H is collapsible, by 
Theorem 2.1(i), (G − Y )(X) is also collapsible, and so supereulerian. Thus G − Y has a spanning closed trail that contains 
every edge in X , contrary to (3). Hence we assume that

H ′ is isomorphic to a K2,� for some integer � ≥ 2. (4)

We have the following claim.

Claim 1. Let � = G − ((X − {e1, e2}) ∪ Y ), H = �(e1, e2) and H ′ be the reduction of H satisfying (4). Each of the following holds.
(i) τ (�) ≥ 2.
(ii) Each of ve1 and ve2 is not lying in a nontrivial collapsible subgraph of H. Consequently, ve1 and ve2 are nonadjacent vertices in 
D2(H ′).
(iii) If W ′ ⊆ E(H ′) is an edge-cut of H ′ with |W ′| = 2 such that W ′ �= ∂H ′(vei ) for i ∈ {1, 2}, then there exists a minimum edge-cut 
5



W. Xiong, S. Song and H.-J. Lai Discrete Mathematics 344 (2021) 112601
W of G such that (X − {e1, e2}) ∪ Y ∪ W ′ = W .
(iv) There exist two vertices u1 , u2 in D�(H ′), each of which is adjacent to both ve1 and ve2 in H ′ , and let Hu1 and Hu2 be maximal 
collapsible subgraphs of H that are contracted to u1 and u2 , respectively.
(v) � = 2.
(vi) X ∪ Y is an edge-cut of G with |X | = s and |Y | = t, such that G − (X ∪ Y ) has two components Hu1 and Hu2 , and s ≡ 0 (mod 2).

To justify this claim, we first observe that (i) follows from Corollary 2.4 with k = 2 and the assumption that m ≥ 5. To 
prove (ii), we argue by contradiction and assume that H has a maximal nontrivial collapsible subgraph N that contains ve1

or ve2 or both. For i ∈ {1, 2}, since κ ′(N) ≥ 2 and vei ∈ D2(H), if vei ∈ V (N), then ∂H (vei ) ⊆ E(N).
Assume that N contains ve1 but not ve2 . Pick an edge e′

1 ∈ ∂H (ve1). Then N ′ = N/{e′
1} can be viewed as a subgraph of 

�. By Claim 1(i), we also have τ (�/N ′) ≥ 2. It follows that F ((�/N ′)(e2)) ≤ 1 and κ ′((�/N ′)(e2)) ≥ 2. By Theorem 2.2(i), 
H/N = �(e1, e2)/N = (�/N ′)(e2) is collapsible. By Theorem 2.1(i), H is collapsible, and so supereulerian. This implies that 
G − Y has a spanning closed trail that contains X , contrary to (3). The proof for the cases when H has a maximal nontrivial 
collapsible subgraph that contains ve2 or both ve1 and ve2 are similar and omitted. This proves Claim 1(ii).

To show (iii), let W ′ ⊆ E(H ′) be an edge-cut of H ′ with |W ′| = 2 such that W ′ �= ∂H ′(vei ) for i ∈ {1, 2}. Then as W ′ is 
an edge-cut of H ′ , there must be a proper nonempty subset Z ′ ⊂ V (H ′) such that W ′ = ∂H ′(Z ′). Let Z ⊂ V (G) be a vertex 
subset consisting of all vertices of the preimages of the vertices in Z ′ . Then Z is a proper nonempty subset of V (G). Let 
W = ∂G(Z). Since W ′ is an edge-cut of H ′ different from ∂H ′ (vei ) for i ∈ {1, 2}, we have |W ′ ∩ ∂H ′(vei )| ≤ 1. To simplify our 
notation, we take the following convention: if for some i ∈ {1, 2}, W ′ ∩ ∂H ′ (vei ) = e′

i , then we view this e′
i in W ′ as ei in W . 

With this notation, W ′ ⊂ W . Since H ′ is the reduction of H = (G − ((X − {e1, e2}) ∪ Y )(e1, e2), and since W ′ is an edge-cut 
of H ′ different from ∂H ′ (vei ) for i ∈ {1, 2}, it follows that W = W ′ ∪ (W ∩ ({e1, e2} ∪ Y )). Hence

|W | ≥ κ ′(G) ≥ m = s + t + 1 − (−1)s

2
= |(X − {e1, e2})| + 2 + |Y | + 1 − (−1)s

2
≥ |(X − {e1, e2})| + |Y | + |W ′| ≥ |W ′ ∪ (W ∩ ({e1, e2} ∪ Y ))| = |W |.

Hence Claim 1(iii) must hold.
Claim 1(iv) is a direct consequence of Claim 1(ii), as ve1 , ve2 ∈ D2(H ′) and H ′ ∼= K2,� .
We argue by contradiction to justify (v) and assume that � ≥ 3. Fix an arbitrary vertex v ∈ D2(H ′) −{ve1 , ve2}. Let H v be 

the contraction preimage of v in G . Then |∂H ′ (v)| = 2. By Claim 1(iii), with W = (X − {ve1 , ve2}) ∪ Y ∪ ∂H ′(v). If there exists 
a vertex v ′ ∈ D2(H ′) − {v, ve1 , ve2} then by the same token, W = (X − {ve1 , ve2}) ∪ Y ∪ ∂H ′(v ′), which forces that ∂H ′ (v) =
∂H ′(v ′). On the other hand, as D2(H ′) is a stable set in H ′ and v �= v ′ , we have ∂H ′ (v) = ∂H ′(v ′) = ∂H ′(v) ∩ ∂H ′(v ′) = ∅, 
contrary to the fact that |∂H ′ (v)| = |∂H ′(v ′)| = 2. Therefore we must have � = 3.

Using the notation in Claim 1(iv), let W i = EG [V (H v), V (Hui )], 1 ≤ i ≤ 2. As v ∈ D2(H ′) − {ve1 , ve2}, we have W =
∂G(V (H v)) = W1 ∪ W2. By Claim 1(iii), W is a minimum edge cut of G , and so |W1| + |W2| = |W | = m. By symmetry, we 
may assume that |W1| ≤ m

2 . It follows that ∂G (V (Hu1)) = W1 ∪ {e1, e2} and so m ≤ κ ′(G) ≤ |∂G(V (Hu1 ))| ≤ m
2 + 2, leading 

to the contradiction of 5 ≤ m ≤ 4. This contradiction indicates that we must have � = 2, verifying Claim 1(v).
As � = 2, the edge subset X1 = {e1, e2} is an edge-cut of G − ((X − X1) ∪ Y ), and so G − (X ∪ Y ) has two components 

Hu1 and Hu2 with EG [V (Hu1), V (Hu2 )] = X ∪ Y . This implies that s + t + 1−(−1)s

2 = m ≤ κ ′(G) ≤ |X | + |Y | ≤ s + t , and so 
|X | = s, |Y | = t and s ≡ 0 (mod 2). This completes the proof of Claim 1(vi), as well as the claim.

By Claim 1(vi), we have X ⊆ EG [V (Hu1 ), V (Hu2 )], and |X | = s ≡ 0 (mod 2). It follows that ((G − Y )(X))/(Hu1 ∪ Hu2) ∼=
K2,s is an eulerian graph. By Claim 1(iv), each of Hu1 and Hu2 is collapsible, and so by applying Theorem 2.1(i), we conclude 
that (G − Y )(X) is supereulerian. This implies that G − Y has a spanning closed trail that contains X , contrary to (3). This 
proves that in Case 3, we must have j(s, t) ≤ m. This completes the proof of the theorem. �

We conclude this paper by the following remark. Pulleyblank proved that determining (0, 0)-supereulerianicity is NP 
complete. In this paper, we have shown that, for any integers s and t with s ≥ 0 and t ≥ 3, it is polynomial to decide 
if a graph G is (s, t)-supereulerian. Therefore, it is of interests to understand the computational complexity for (s, t)-
supereulerianicity for other values of s and t . These are to be investigated.

Data availability statement

The research has no associate data.

Declaration of competing interest

The authors certify that they have NO affiliations with or involvement in any organization or entity with any financial 
interest (such as honoraria; educational grants; participation in speakers’ bureaus; membership, employment, consultancies, 
stock ownership, or other equity interest; and expert testimony or patent-licensing arrangements), or non-financial interest 
(such as personal or professional relationships, affiliations, knowledge or beliefs) in the subject matter or materials discussed 
in this manuscript.
6



W. Xiong, S. Song and H.-J. Lai Discrete Mathematics 344 (2021) 112601
Acknowledgement

This research is partially supported by National Science Foundation of China grants (Nos. 11861066, 11961067, 12001465, 
61963033, 11771039, 11771443).

References

[1] F.T. Boesch, C. Suffel, R. Tindell, The spanning subgraphs of Eulerian graphs, J. Graph Theory 1 (1977) 79–84.
[2] J.A. Bondy, U.S.R. Murty, Graph Theory, Springer, New York, 2008.
[3] P.A. Catlin, A reduction method to find spanning Eulerian subgraphs, J. Graph Theory 12 (1988) 29–45.
[4] P.A. Catlin, Supereulerian graphs: a survey, J. Graph Theory 16 (1992) 177–196.
[5] P.A. Catlin, H.-J. Lai, Y. Shao, Edge-connectivity and edge-disjoint spanning trees, Discrete Math. 309 (2009) 1033–1040.
[6] P.A. Catlin, Z. Han, H.-J. Lai, Graphs without spanning closed trails, Discrete Math. 160 (1996) 81–91.
[7] Z.-H. Chen, H.-J. Lai, Reduction techniques for super-Eulerian graphs and related topics-a survey, in: Combinatorics and Graph Theory ’95, vol. 1, Hefei, 

World Sci. Publishing, River Edge, NJ, 1995, pp. 53–69.
[8] Z.H. Chen, W.-Q. Luo, W.-G. Chen, Spanning trails containing given edges, Discrete Math. 306 (2006) 87–98.
[9] W.-G. Chen, Z.H. Chen, W.-Q. Luo, Edge connectivities for spanning trails with prescribed edges, Ars Comb. 115 (2014) 175–186.

[10] R. Gu, H.-J. Lai, Y. Liang, Z. Miao, M. Zhang, Collapsible subgraphs of a 4-edge-connected graph, Discrete Appl. Math. 260 (2019) 272–277.
[11] H.-J. Lai, Eulerian subgraph containing given edges, Discrete Math. 230 (2001) 61–69.
[12] H.-J. Lai, Y. Shao, H. Yan, An update on supereulerian graphs, WSEAS Trans. Math. 12 (2013) 926–940.
[13] L. Lei, X.M. Li, B. Wang, On (s, t)-supereulerian locally connected graphs, in: ICCS 2007, Proceedings, in: Lecture Notes in Computer Sciences, vol. 4489, 

2007, pp. 384–388.
[14] L. Lei, X. Li, B. Wang, H.-J. Lai, On (s, t)-supereulerian graphs in locally highly connected graphs, Discrete Math. 310 (2010) 929–934.
[15] L. Lei, X. Li, S. Song, Y. Xie, On (s, t)-supereulerian generalized prisms, submitted for publication.
[16] C.St.J.A. Nash-williams, Edge-disjoint spanning trees of finite graphs, J. Lond. Math. Soc. 36 (1961) 445–450.
[17] W.R. Pulleyblank, A note on graphs spanned by Eulerian graphs, J. Graph Theory 3 (1979) 309–310.
[18] S. Song, L. Lei, Y. Shao, H.-J. Lai, Asymptotically sharpening the s-Hamiltonian index bound, submitted for publication.
[19] J. Xu, Z.-H. Chen, H.-J. Lai, M. Zhang, Spanning trails in essentially 4-edge-connected graphs, Discrete Appl. Math. 162 (2014) 306–313.
[20] W.T. Tutte, On the problem of decomposing a graph into n factors, J. Lond. Math. Soc. 36 (1961) 221–230.
7

http://refhub.elsevier.com/S0012-365X(21)00314-9/bib51346E9E06D0CF8208C3F41E2C9D7F55s1
http://refhub.elsevier.com/S0012-365X(21)00314-9/bibE6D3DDD1EF0061F0328F57FA5BA85BF9s1
http://refhub.elsevier.com/S0012-365X(21)00314-9/bib928A8EF271597C14A2466807176B3119s1
http://refhub.elsevier.com/S0012-365X(21)00314-9/bibD6CDF67919F0FCBF1811E7D8EB32FBBEs1
http://refhub.elsevier.com/S0012-365X(21)00314-9/bibFA7510E9B5D4AB88C14A54E5ECCBB010s1
http://refhub.elsevier.com/S0012-365X(21)00314-9/bib5D1EC8BC532833665F9A6B46651AED60s1
http://refhub.elsevier.com/S0012-365X(21)00314-9/bibA5668E1C7D8CA991615A3468DDA12DE4s1
http://refhub.elsevier.com/S0012-365X(21)00314-9/bibA5668E1C7D8CA991615A3468DDA12DE4s1
http://refhub.elsevier.com/S0012-365X(21)00314-9/bibAE3326D4628374B94ACB710C63005C9Cs1
http://refhub.elsevier.com/S0012-365X(21)00314-9/bib159A15313F2D066B327CE5BAD04BC7ACs1
http://refhub.elsevier.com/S0012-365X(21)00314-9/bib3F9C08F7947BDA3F22839EB0233137A6s1
http://refhub.elsevier.com/S0012-365X(21)00314-9/bib18E83349759B2A249A064C0DA35BCF10s1
http://refhub.elsevier.com/S0012-365X(21)00314-9/bibF66526450B9B61E3858958C7FF781253s1
http://refhub.elsevier.com/S0012-365X(21)00314-9/bibD21F0F4B59562B9C54FC514E44E9414Cs1
http://refhub.elsevier.com/S0012-365X(21)00314-9/bibD21F0F4B59562B9C54FC514E44E9414Cs1
http://refhub.elsevier.com/S0012-365X(21)00314-9/bib1C94ED7F9CCCB91E3392F9A4E4172B7Es1
http://refhub.elsevier.com/S0012-365X(21)00314-9/bib30A21563382A14F25DFABBE97342A42Ds1
http://refhub.elsevier.com/S0012-365X(21)00314-9/bib3BB309E02443EF56A99DADBD9A8DC84Es1
http://refhub.elsevier.com/S0012-365X(21)00314-9/bibEF057192680848E89E75177961900D59s1
http://refhub.elsevier.com/S0012-365X(21)00314-9/bibF3A3AF94D2B45BB8145DD45569DAB2B2s1

	Polynomially determine if a graph is (s,3)-supereulerian
	1 The problem
	2 Mechanisms
	3 Proofs of the main results
	Data availability statement
	Declaration of competing interest
	Acknowledgement
	References


