
Discrete Mathematics 344 (2021) 112584
Contents lists available at ScienceDirect

Discrete Mathematics

www.elsevier.com/locate/disc

Symmetric core and spanning trails in directed networks

Juan Liu a, Hong Yang b, Hong-Jian Lai c, Xindong Zhang d,∗
a College of Big Data Statistics, Guizhou University of Finance and Economics, Guiyang, Guizhou, 550025, China
b College of Mathematics and System Sciences, Xinjiang University, Urumqi, Xinjiang, 830046, China
c Department of Mathematics, West Virginia University, Morgantown, WV 26506, USA
d College of Mathematics Sciences, Xinjiang Normal University, Urumqi, Xinjiang, 830017, China

a r t i c l e i n f o a b s t r a c t

Article history:
Received 19 November 2020
Received in revised form 26 July 2021
Accepted 30 July 2021
Available online xxxx

Keywords:
Symmetric core
Supereulerian digraph
Strongly trail-connected
Contraction

A digraph D is supereulerian if D has a spanning closed trail, and is strongly trail-
connected if for any pair of vertices u, v ∈ V (D), D has a spanning (u, v)-trail and a 
spanning (v, u)-trail. The symmetric core J = J (D) of a digraph D is a spanning subdigraph 
of D with A( J ) consisting of all symmetric arcs in D . Let J1, J2, · · · , Jk(D) be the connected 
symmetric components of J and define λ0(D) = min{λ( J i) : 1 ≤ i ≤ k(D)}. We prove that 
the contraction D ′ = D/ J can be used to predict the existence of spanning trails in D . It 
is known that if k(D) ≤ 2, then D has a spanning closed trail. In particular, each of the 
following holds for a strong digraph D with k(D) ≥ 3.
(i) If λ0(D) ≥ k(D) − 2, then D has a spanning trail if and only if D ′ has a spanning trail.
(ii) If λ0(D) ≥ k(D) − 1, then D is supereulerian if and only if D ′ is supereulerian.
(iii) If λ0(D) ≥ k(D), then D is strongly trail-connected if and only if D ′ is strongly trail-
connected.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

The undirected networks are also called simple networks, which are simplified networks that ignore the difference 
of direction of the links between the individuals and only consider whether the links exist. In many real systems, the 
interactions between nodes are usually not merely binary entities (either present or not). As a pivotal type of network, the 
directed network distinguishes the direction of the links between individuals, and thus can more accurately describe the 
individuals and their relationships. The underlying topology of an interconnection network can be modeled by a digraph.

Throughout this paper, we use G to denote a graph and D a digraph. Graphs and digraphs considered are finite, and 
the undefined terms and notation will follow [10] for graphs and [5] for digraphs. As in [5], we use (u, v) to denote an arc 
oriented from a vertex u to a vertex v . A digraph D is one that does not have loops (arcs whose head and tail coincide) nor 
parallel arcs (pair of arcs with the same tail and same head), and λ(D) denotes the arc-strong connectivity of D . We often 
use G(D) for the underlying graph of D , the graph obtained from D by erasing all orientation on the arcs of D . A digraph 
D is strong if λ(D) > 0 and is weakly connected if G(D) is connected. If X is a vertex subset or an arc subset of D , we use 
D[X] to denote the subdigraph of D induced by X . As in [5], for subsets X, Y ⊆ V (D), define
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(X, Y )D = {(x, y) ∈ A(D) : x ∈ X, y ∈ Y }, and [X, Y ]D = (X, Y )D ∪ (Y , X)D .

If X = {x} or Y = {y}, we often use (x, Y )D for (X, Y )D or (X, y)D for (X, Y )D , respectively. Hence (x, y)D = ({x}, {y})D . For 
a vertex v ∈ V (D), let ∂+

D (v) = (v, V (D) − v)D and ∂−
D (v) = (V (D) − v, v)D . Thus d+

D (v) = |∂+
D (v)| and d−

D (v) = |∂−
D (v)|. Let 

�+(D) = max{d+
D (v) : v ∈ V (D)}, �−(D) = max{d−

D (v) : v ∈ V (D)} and �0(D) = max{�+(D), �−(D)}. For a vertex subset 
X ⊆ V (D), let ∂+

D (X) = (X, V (D) − X)D , ∂−
D (X) = (V (D) − X, X)D , d+

D (X) = |∂+
D (X)| and d−

D (X) = |∂−
D (X)|.

Throughout this paper, we use paths, cycles and trails as defined in [10] when the discussion is on an undirected graph 
G , and to denote directed paths, directed cycles and directed trails when the discussion is on a digraph D . A directed trail 
(or path, respectively) from a vertex u to a vertex v in a digraph D is often referred as to a (u, v)-trail (a (u, v)-path, 
respectively).

The supereulerian problem was introduced by Boesch, Suffel, and Tindell in [9], seeking to characterize graphs that have 
spanning eulerian subgraphs. Pulleyblank in [19] proved that determining whether a graph is supereulerian, even within 
planar graphs, is NP-complete. There have been lots of researches on this topic. For more literatures on supereulerian 
graphs, see Catlin’s informative survey [11], as well as the later updates in [12] and [17]. The supereulerian problem in 
digraphs was considered by Gutin ([13,14]). A strong digraph D is eulerian if for any v ∈ V (D), d+

D (v) = d−
D (v). A digraph D

is supereulerian if D contains a spanning eulerian subdigraph, or equivalently, a spanning closed trail. Thus supereulerian 
digraphs must be strong, and every hamiltonian digraph is also a supereulerian digraph.

A digraph D is strongly trail-connected if for any two vertices u and v of D , D possesses both a spanning (u, v)-trail 
and a spanning (v, u)-trail. As the case when u = v is possible, every strongly trail-connected digraph is also supereulerian. 
Thus strongly trail-connected digraphs can be viewed as an extension of supereulerian digraphs.

The supereulerian digraph problem is to characterize the strong digraphs that contains a spanning closed trail. Other 
than the researches on hamiltonian digraphs, a number of studies on supereulerian digraphs have been conducted recently. 
In particular, Hong et al. in [15,16] and Bang-Jensen and Maddaloni in [6] presented several best possible sufficient degree 
conditions for supereulerian digraphs. Additional researches on various conditions of supereulerian digraphs can be found 
in [1–4,6–8,18,21], among others.

Let D = (V (D), A(D)) be a digraph. An arc (u, v) ∈ A(D) is symmetric in D if (u, v), (v, u) ∈ A(D), and asymmetric 
otherwise. Notice that a symmetric arc (u, v) together with the arc (v, u) form a pair of symmetric arcs of D . A digraph 
D is symmetric if every arc of D is symmetric. Let G be a graph. Define G∗ to be the digraph with V (G∗) = V (G), where 
(u, v) ∈ A(G∗) if and only if uv ∈ E(G). Thus G∗ is always symmetric, and a digraph D is symmetric if and only if for 
some graph G , D = G∗ . Especially, if G = P is a path, then P∗ is called a symmetric path. For any two vertices u, v ∈ A(D)

of D , if D contains a symmetric path from u to v , then D is a symmetrically connected digraph. Let L be a maximal 
subdigraph of D such that L is connected and symmetric, then L is called a connected symmetric component of D . Let 
S(D) = {e ∈ A(D) : e is symmetric in D}. If A(D) = S(D), then D is symmetric. The symmetric core of D , denoted by J (D), 
has vertex set V (D) and arc set S(D). When D is understood from the context, we often use J for J (D).

Let e = (v1, v2) ∈ A(D) be an arc of D . Define D/e to be the digraph obtained from D by identifying v1 and v2 into 
a new vertex ve , and deleting the possible resulting loop(s). If W ⊆ A(D) is a symmetric arc subset, then define the
contraction D/W to be the digraph obtained from D by contracting each arc e ∈ W , and deleting any resulting loops. Thus 
even D does not have parallel arcs, a contraction D/W is loopless but may have parallel arcs, with A(D/W ) ⊆ A(D) − W . If 
H is a subdigraph of D , then we often use D/H for D/A(H). If L is a connected symmetric component of H and v L is the 
vertex in D/H onto which L is contracted, then L is the contraction preimage of v L . We adopt the convention to define 
D/∅ = D , and define a vertex v ∈ V (D/W ) to be a trivial vertex if the preimage of v is a single vertex (also denoted by v) 
in D . Hence we often view trivial vertices in a contraction D/W as vertices in D . We use Zk to denote the (additive) group 
of integers modulo k.

Throughout this paper, we will use the following notation. For a digraph D with symmetric core J = J (D), let D ′ =
D/ J , k(D) be the number of connected symmetric components of J , and J1, J2, . . . , Jk(D) denote the connected symmetric 
components of J . Define

λ0(D) = min{λ( J i) : 1 ≤ i ≤ k(D)}.
It follows by the definition of contraction that k(D) = |V (D ′)|. It will be shown in Section 3 below that every strong digraph 
D with k(D) ≤ 2 is supereulerian. Thus we focus our study on digraph D with k(D) ≥ 3. The following is our main result.

Theorem 1.1. Let D be a strong digraph with k(D) ≥ 3, D ′ is the contraction of D. Then each of the following holds.
(i) If λ0(D) ≥ k(D) − 2, then D has a spanning trail if and only if D ′ has a spanning trail.
(ii) If λ0(D) ≥ k(D) − 1, then D is supereulerian if and only if D ′ is supereulerian.
(iii) If λ0(D) ≥ k(D), then D is strongly trail-connected if and only if D ′ is strongly trail-connected.

In the next section, we present some examples that would play useful roles in our arguments. The properties of the 
symmetric core of a digraph will be investigated, which will then be applied to prove Theorem 1.1 in Section 3.
2
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2. Examples

Following [5], a trail in D is an alternating sequence T = v1a1 v2a2 v3...vk−1ak−1 vk of vertices vi and arcs ai from D
such that ai = (vi, vi+1) for each i with 1 ≤ i ≤ k − 1, and such that all the arcs are mutually distinct. We observe that in a 
connected symmetric digraph D , the following property holds.

For any u, v ∈ V (D), D has a spanning (u, v)-trail. (1)

This property (1) will be extended (and be justified) in Lemma 3.2 of the next section to assist the arguments in the proof 
of Theorem 1.1. We display property (1) here as we are to use it to construct examples in this section to show that each of 
the conclusions in Theorem 1.1 is best possible in some sense. More precisely, we are to present, for any integer k > 0, each 
of the following:
(a) an infinite digraph family D1(k) such that for any digraph D ∈ D1(k), D is strong, satisfies λ0(D) = k(D) − 3, and does 
not have a spanning trail,
(b) an infinite family D2(k) of nonsupereulerian strong digraphs such that for any D ∈ D2(k) satisfies λ0(D) = k(D) − 2, and
(c) an infinite family D3(k) of non strongly trail-connected digraphs such that for any D ∈ D3(k) satisfies λ0(D) = k(D) − 1.

Let D be a digraph and U ⊆ V (D). We call a collection of trails T1, T2, . . . , Tt of the induced subdigraph D[U ] a trail 
cover of D[U ] if ∪t

i=1 V (Ti) = U and A(Ti) ∩ A(T j) = ∅, whenever 1 ≤ i �= j ≤ t . The minimum value of such t , among all 
trail covers of D[U ], is denoted by tD (U ). Thus, tD(U ) = 1 if and only if D[U ] has a spanning trail.

For any subset A ⊆ V (D) − U , let B = V (D) − U − A, and define

h(U , A) = min{|∂+
D (A)|, |∂−

D (A)|} + min{|(U , B)D |, |(B, U )D |} − tD(U ), and

h(U ) = min{h(U , A) : A ∩ U = ∅}.
Then we have the following propositions.

Proposition 2.1. (Hong et al., Proposition 2.1 of [15]) If D has a spanning eulerian subdigraph, then for any U ⊆ V (D), we have 
h(U ) ≥ 0.

Let D be a digraph and X be an arc set such that for every (u, v) ∈ X , u, v ∈ V (D). Define D ∪ X to be the digraph with 
vertex set V (D) and arc set A(D) ∪ X . If X = {e}, we often use D + e to denote D ∪ {e}.

Proposition 2.2. If D has a spanning trail, then for any U ⊆ V (D), we have h(U ) + 1 ≥ 0.

Proof. Let H be a spanning (u, v)-trail of D . If u = v , then by Proposition 2.1, for any U ⊆ V (D), we have h(U ) ≥ 0, and so 
h(U ) + 1 ≥ 0. Hence we assume that u �= v .

Define D ′ = D + (v, u) and H ′ = H + (v, u). Then H ′ is a spanning eulerian subdigraph of D ′ . For any U ⊆ V (D ′) = V (D)

and any A ⊆ V (D ′) − U = V (D) − U , let B = V (D ′) − U − A. By Proposition 2.1,

min{|∂+
D ′(A)|, |∂−

D ′(A)|} + min{|(U , B)D ′ |, |(B, U )D ′ |} − tD ′(U ) ≥ 0.

We have the following observations.
(i) If u, v ∈ A, or u, v ∈ B , or u, v ∈ U , then |∂+

D (A)| = |∂+
D ′(A)|, |∂−

D (A)| = |∂−
D ′ (A)|, |(U , B)D | = |(U , B)D ′ | and |(B, U )D | =

|(B, U )D ′ |, which imply that tD ′ (U ) + 1 ≥ tD(U ) ≥ tD ′ (U ).
(ii) If both u ∈ A and v ∈ B , or both u ∈ B and v ∈ A, or both u ∈ A and v ∈ U , or both v ∈ A and u ∈ U , then

min{|∂+
D (A)|, |∂−

D (A)|} ≥ min{|∂+
D ′(A)|, |∂−

D ′(A)|} − 1,

|(U , B)D | = |(U , B)D ′ | and |(B, U )D | = |(B, U )D ′ |, which imply that tD(U ) = tD ′ (U ).
(iii) If both u ∈ B and v ∈ U , or both v ∈ B and u ∈ U , then |∂+

D (A)| = |∂+
D ′ (A)|, |∂−

D (A)| = |∂−
D ′(A)|,

min{|(U , B)D |, |(B, U )D |} ≥ min{|(U , B)D ′ |, |(B, U )D ′ |} − 1,

which imply that tD (U ) = tD ′ (U ).
By Observations (i), (ii) and (iii) above, we conclude that

h(U , A) + 1 = min{|∂+
D (A)|, |∂−

D (A)|} + min{|(U , B)D |, |(B, U )D |} − tD(U ) + 1

≥ min{|∂+
D ′(A)|, |∂−

D ′(A)|} + min{|(U , B)D ′ |, |(B, U )D ′ |} − tD ′(U ) ≥ 0,

and so h(U ) + 1 ≥ 0. Thus, if D has a spanning trail, then for any U ⊆ V (D), we have h(U ) + 1 ≥ 0. �

3
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Fig. 1. For j ∈ {1,2,3}, the digraph in D j(k) with � j = k − 4 + j.

In each of the Examples 2.3, 2.5 and 2.7 below, we assume that a, b, k are integers and A, B , and A2, ..., Ak are mutually 
disjoint vertex sets satisfying the following:

k ≥ 3, |A| = a ≥ k and |B| = b ≥ k. (2)

Example 2.3. For 2 ≤ i ≤ k, assume that |Ai | ≥ k. We construct a digraph family D1(k) such that a digraph D ∈ D1(k) if and 
only if V (D) = A ∪ B ∪ ⋃k

i=2 Ai and A(D) consists of exactly the arcs as described in (D1-1), (D1-2) and (D1-3) below. (See 
Fig. 1 for an illustration.)
(D1-1) D[A], D[B] are connected symmetric digraphs with λ(D[A]) ≥ k − 3 and λ(D[B]) ≥ k − 3. There are exactly k − 3
pairs of symmetric arcs between A and B . Let J1 = D[A ∪ B].
(D1-2) For any 2 ≤ i ≤ k, J i = D[Ai] is a connected symmetric digraph with λ( J i) ≥ k − 3.
(D1-3) For any 2 ≤ i ≤ k, there are exactly k − 3 arcs in (B, Ai)D and exactly k − 3 arcs in (Ai, A)D .

Proposition 2.4. Let D ∈D1(k) for given parameter k be defined as in Example 2.3, and let J = ⋃k
i=1 J i . Each of the following holds.

(i) D ∈D1(k) is a strong digraph with k(D) = k.
(ii) λ0(D) = k − 3.
(iii) D/ J has a spanning trail, but D does not have a spanning trail.

Proof. As (i) and (ii) follow from the definition of D ∈ D1(k), it remains to justify (iii). By (D1-1), (D1-2) and (D1-3), 
D/ J is spanned by a K ∗

1,k−1, and so D/ J has a spanning trail. Let U = ⋃k
i=2 Ai . We apply Proposition 2.2 to show that 

D does not have a spanning trail. By (D1-1) and (D1-3), we have min{|∂+
D (A)|, |∂−

D (A)|} = |∂+
D (A)| = k − 3, as well as 

min{|(U , B)D |, |(B, U )D |} = |(U , B)D | = 0. By (1), each J i has a spanning trail and [Ai, A j]D = ∅ with 2 ≤ i �= j ≤ k, and so 
tD(U ) = k − 1. It follows that

h(U , A) + 1 = |∂+
D (A)| + |(U , B)D | − tD(U ) + 1 = (k − 3) − (k − 1) + 1 < 0.

Thus by Proposition 2.2, D does not have a spanning trail. This proves (iii). �
Example 2.5. For 2 ≤ i ≤ k, assume that |Ai | ≥ k. We construct a digraph family D2(k) such that a digraph D ∈ D2(k) if and 
only if V (D) = A ∪ B ∪ ⋃k

i=2 Ai and A(D) consists of exactly the arcs as described in (D2-1), (D2-2) and (D2-3) below. (See 
Fig. 1 for an illustration.)
(D2-1) D[A], D[B] are connected symmetric digraphs with λ(D[A]) ≥ k − 2 and λ(D[B]) ≥ k − 2. There are exactly k − 2
pairs of symmetric arcs between A and B . Let J1 = D[A ∪ B].
(D2-2) For any 2 ≤ i ≤ k, J i = D[Ai] is a connected symmetric digraph with λ( J i) ≥ k − 2.
(D2-3) For any 2 ≤ i ≤ k, there are exactly k − 2 arcs in (B, Ai)D and exactly k − 2 arcs in (Ai, A)D .

Proposition 2.6. Let k ≥ 3 be an integer, D ∈D2(k) be the digraph defined in Example 2.5 and let J = ⋃k
i=1 J i . Each of the following 

holds.
(i) D ∈D2(k) is a strong digraph with k(D) = k.
(ii) λ0(D) = k − 2.
(iii) D/ J is supereulerian, but D is not supereulerian.
4
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Proof. By definition of D ∈ D2(k), (i) and (ii) hold. By (D2-1), (D2-2) and (D2-3), D/ J is spanned by a K ∗
1,k−1, and so D/ J

is supereulerian. Let U = ⋃k
i=2 Ai . We apply Proposition 2.1 to show that D is not supereulerian. By (D2-1) and (D2-3) in 

Example 2.5, min{|∂+
D (A)|, |∂−

D (A)|} = |∂+
D (A)| = k − 2. By definition of D ∈ D2(k), min{|(U , B)D |, |(B, U )D |} = |(U , B)D | = 0. 

By (1), each J i has a spanning trail and [Ai, A j]D = ∅ with 2 ≤ i �= j ≤ k, and so tD(U ) = k − 1. It follows that

h(U , A) = |∂+
D (A)| + |(U , B)D | − tD(U ) = (k − 2) − (k − 1) < 0,

and so by Proposition 2.1, D is not supereulerian. This proves (iii). �
Example 2.7. Assume that |Ai | ≥ k for any i with 2 ≤ i ≤ k. We construct a digraph family D3(k) such that a digraph 
D ∈ D3(k) if and only if V (D) = A ∪ B ∪ ⋃k

i=2 Ai and A(D) consists of exactly the arcs as described in (D3-1), (D3-2) and 
(D3-3) below. (See Fig. 1 for an illustration.)
(D3-1) D[A], D[B] are connected symmetric digraphs with λ(D[A]) ≥ k − 1 and λ(D[B]) ≥ k − 1. There are exactly k − 1
pairs of symmetric arcs between A and B . Let J1 = D[A ∪ B].
(D3-2) For any 2 ≤ i ≤ k, J i = D[Ai] is a connected symmetric digraph with λ( J i) ≥ k − 1.
(D3-3) For any 2 ≤ i ≤ k, there are exactly k − 1 arcs in (B, Ai)D and exactly k − 1 arcs in (Ai, A)D .

Proposition 2.8. Let D ∈D3(k) for given parameter k be defined as in Example 2.7, and let J = ⋃k
i=1 J i . Each of the following holds.

(i) D ∈D3(k) is a strong digraph with k(D) = k.
(ii) λ0(D) = k − 1.
(iii) D/ J is a strongly trail-connected digraph, but D is not strongly trail-connected digraph.

Proof. By definition of D ∈ D3(k), (i) and (ii) hold. By (D3-1), (D3-2) and (D3-3), D/ J is spanned by a K ∗
1,k−1, and so by (1), 

D/ J is a strongly trail-connected digraph. Let x ∈ A and y ∈ B be two vertices, and T be an (x, y)-trail in D that contains 
all vertices in A2 ∪ A3 ∪ ... ∪ Ak . As x ∈ A and y ∈ B , T must traverse from A to B for the first time via an arc e0 ∈ (A, B)D . 
By the definition of D ∈ D3(k), each time T traverses vertices in an Ai , T must use at least one arc ei ∈ (A, B)D . As there 
are k − 1 subsets A2, ..., Ak , it forces that |(A, B)D | ≥ |{e0, e1, ..., ek}| = k. However, by (D3-1), we have |(A, B)D | = k − 1, a 
contradiction. This implies that D does not have a spanning (x, y)-trail, and so D is not strongly trail-connected. This proves 
(iii). �
3. Main results

In this section, we investigate some properties on the symmetric core of a digraph for future applications in our argu-
ments. These properties will then be applied to prove Theorem 1.1 at the end of this section.

Let H and H ′ denote two digraphs. Define H ∪ H ′ to be the digraph with V (H ∪ H ′) = V (H) ∪ V (H ′) and A(H ∪ H ′) =
A(H) ∪ A(H ′). If T is a (v, w)-trail of a digraph D and (u, v), (w, z) ∈ A(D) − A(T ), then we use (u, v)T (w, z) to denote 
the (u, z)-trail D[A(T ) ∪ {(u, v), (w, z)}]. The subdigraphs (u, v)T and T (w, z) are similarly defined.

Let x1, x2, . . . , xs and y1, y2, . . . , ys be two sequences of (not necessarily distinct) vertices of a digraph D . A weak s-
linking from (x1, x2, . . . , xs) to (y1, y2, . . . , ys) in D is a system of arc-disjoint paths P1, P2, . . . , P s such that Pi is an 
(xi, yi)-path in D with i ∈ {1, 2, . . . , s}. A digraph D = (V , A) is weakly s-linked if it contains a weak s-linking from 
(x1, x2, . . . , xs) to (y1, y2, . . . , ys) for every choice of (not necessarily distinct) vertices x1, x2, . . . , xs , y1, y2, . . . , ys . Shiloach 
[20] proved the following:

Theorem 3.1. (Shiloach [20]) A directed multigraph D is weakly s-linked if and only if λ(D) ≥ s.

This theorem of Shiloach can be utilized to prove the following. The conclusion when s = 1 of Lemma 3.2 implies (1).

Lemma 3.2. Let s ≥ 1 be an integer, D be a connected symmetric digraph with λ(D) ≥ s, and x1, x2, . . . , xs and y1, y2, . . . , ys be 
two vertex sequences of D. Then there exists a connected spanning subdigraph T ′

D of D such that T ′
D is an arc-disjoint union of trails 

T1, ..., Ts and for each i with 1 ≤ i ≤ s, Ti is an (xi, yi)-trail.

Proof. By Theorem 3.1, there is a system of arc-disjoint paths P1, P2, . . . , P s such that each Pi is an (xi, yi)-path in D with 
i ∈ {1, 2, . . . , s}. For each i, define Ai = {(u, v) ∈ A(D) : {(u, v), (v, u)} ∩ A(Pi) �= ∅}. Since D is a symmetric digraph, for any 
arc (u, v) ∈ A(Pi) ⊆ A(D), we also have (v, u) ∈ A(D), and so if (u, v) ∈ Ai , then (v, u) ∈ Ai also. Thus D[Ai] is a symmetric 
digraph. Let H = D − ⋃s

i=1 Ai . Since D is a symmetric digraph and since each D[Ai] is a symmetric digraph, it follows that 
H is also a symmetric digraph, and so every component of H is eulerian. Hence T ′

D = ⋃s
i=1 Pi ∪ H is a connected spanning 

subdigraph of D .
Let H1, H2, ..., Hc be the connected components of H . Since D is connected, for any j with 1 ≤ j ≤ c, there exists an 

i j with 1 ≤ i j ≤ s such that V (H j) ∩ V (Pi j ) �= ∅. Hence the collection of connected components F = {H1, H2, ..., Hc} has 
a partition into s mutually disjoint sub-collections F1, F2, ..., Fs such that for each i with 1 ≤ i ≤ s, either Fi is empty or 
5
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every component of H in Fi has at least one vertex in common with the path Pi . Let Ti = D[A(Pi) ∪ {A(Hit ) : Hit ∈ Fi}]. 
As H is symmetric, every component Hit in Fi is also symmetric, and so it is eulerian. It follows that Ti is an (xi, yi)-trail 
in D , and the collection {T1, T2, ..., Ts} satisfies Lemma 3.2. �
Lemma 3.3. Let D be a digraph and k be a integer with k ≥ 2. Then each of the following holds.
(i) If D has a closed trail T with k vertices, then D contains a closed trail T ′ with V (T ′) = V (T ) and �0(T ′) ≤ k − 1.
(ii) If D has an (x, y)-trail T with k vertices and x �= y, then D contains an (x, y)-trail T ′ with V (T ′) = V (T ) and for any vertex 
z ∈ V (T ′) − {x, y}, d+

T ′(z) = d−
T ′ (z) ≤ k − 2, d+

T ′ (x) = d−
T ′ (x) + 1 ≤ k − 1 and d−

T ′ (y) = d+
T ′ (y) + 1 ≤ k − 1.

Proof. Let T ′ be a closed trail of D with V (T ′) = V (T ) and |A(T ′)| be minimized. By contradiction, we assume that there is 
a vertex z ∈ V (T ′) such that d+

T ′ (z) = d−
T ′ (z) = k′ ≥ k. Then T ′ has a family C = {C1, C2, . . . , Ck′ } of k′ arc-disjoint cycles with 

z ∈ V (Ci) and |V (Ci)| ≥ 2 for any index i with 1 ≤ i ≤ k′ , and as |V (T ′)| = k, k′ ≥ k, thus, there is a cycle C� ∈ C such that

V (C�) ⊆
⋃

C∈C−{C�}
V (C). (3)

Otherwise, |V (T ′)| ≥ 1 + k′ > k, a contradiction. Let T ′′ = T ′ − A(C�). By (3) and z ∈ V (Ci) for any index i with 1 ≤ i ≤ k′ , 
then T ′′ is connected and V (T ′′) = V (T ′) = V (T ). Thus T ′′ is a closed trail with V (T ′′) = V (T ) and |A(T ′′)| < |A(T ′)|, a 
contradiction to the assumption that |A(T ′)| is minimum. Hence T ′ is a closed trail with V (T ′) = V (T ) and �0(T ′) ≤ k − 1. 
This proves (i).

If k = 2, then the arc (x, y) is desired. Assume that k ≥ 3. Let T ′ be an (x, y)-trail (x �= y) with V (T ′) = V (T ) and |A(T ′)|
be minimized. By contradiction, we assume that there is a vertex z ∈ V (T ′) − {x, y} such that d+

T ′ (z) = d−
T ′ (z) = k′ ≥ k − 1, or 

d+
T ′ (x) = d−

T ′ (x) + 1 = k′ ≥ k, or d−
T ′ (y) = d+

T ′ (y) + 1 = k′ ≥ k.
If there is a vertex z ∈ V (T ′) − {x, y} such that d+

T ′ (z) = d−
T ′ (z) = k′ ≥ k − 1, then we have

(a). T ′ has a family C = {C1, C2, . . . , Ck′ } of k′ arc-disjoint cycles with z ∈ V (Ci) and |V (Ci)| ≥ 2 for any index i with 
1 ≤ i ≤ k′ , or

(b). T ′ has an (x, y)-path P0 with z ∈ V (P0) and a family C = {C1, C2, . . . , Ck′−1} of k′ − 1 arc-disjoint cycles with 
z ∈ V (Ci) and |V (Ci)| ≥ 2 for any index i with 1 ≤ i ≤ k′ − 1.

Since T ′ is an (x, y)-trail with x �= y, we can claim that if (a) holds, then there is a cycle C� ∈ C with |V (C�)| ≥ 3. 
Otherwise, if (a) holds and for any Ci ∈ C with |V (Ci)| = 2, then T ′ is a close trail, a contradiction. As |V (T ′)| = k and 
k′ ≥ k − 1, thus, there is a cycle C�′ ∈ C such that

V (C�′) ⊆
⋃

C∈C−{C�′ }
V (C). (4)

Otherwise, |V (T ′)| ≥ 3 + (k′ − 1) > k, a contradiction. Let T ′′ = T ′ − A(C�′). By (4) and z ∈ V (Ci) for any index i with 1 ≤ i ≤
k′ −1, then T ′′ is connected and V (T ′′) = V (T ′) = V (T ). Thus T ′′ is an (x, y)-trail with V (T ′′) = V (T ) and |A(T ′′)| < |A(T ′)|, 
a contradiction to the assumption that |A(T ′)| is minimum.

If (b) holds, as |V (T ′)| = k and k′ ≥ k − 1, then there is a cycle C�′′ ∈ C such that

V (C�′′) ⊆ V (P0) ∪
⋃

C∈C−{C�′′ }
V (C) (5)

Otherwise, |V (T ′)| ≥ 3 + (k′ − 1) > k, a contradiction. Let T ′′ = T ′ − A(C�′′). By (5) and z ∈ V (Ci) for any index i with 1 ≤ i ≤
k′ −1, then T ′′ is connected and V (T ′′) = V (T ′) = V (T ). Thus T ′′ is an (x, y)-trail with V (T ′′) = V (T ) and |A(T ′′)| < |A(T ′)|, 
a contradiction to the assumption that |A(T ′)| is minimum.

If d+
T ′ (x) = d−

T ′ (x) + 1 = k′ ≥ k, then T ′ has an (x, y)-path P0 and a family C = {C1, C2, . . . , Ck′−1} of k′ − 1 arc-disjoint 
cycles with x ∈ V (Ci) and |V (Ci)| ≥ 2 for any index i with 1 ≤ i ≤ k′ − 1, and as |V (T ′)| = k and k′ ≥ k, there is a cycle 
C�′′′ ∈ C such that

V (C�′′′) ⊆ V (P0) ∪
⋃

C∈ C−{C�′′′ }
V (C). (6)

Otherwise, |V (T ′)| ≥ 2 + (k′ −1) > k, a contradiction. Let T ′′ = T ′ − A(C�′′′). By (6) and x ∈ V (Ci) for any index i with 1 ≤ i ≤
k′ −1, then T ′′ is connected and V (T ′′) = V (T ′) = V (T ). Thus T ′′ is an (x, y)-trail with V (T ′′) = V (T ) and |A(T ′′)| < |A(T ′)|, 
a contradiction to the assumption that |A(T ′)| is minimum. Likewise, if d−

T ′ (y) = d+
T ′ (y) + 1 = k′ ≥ k, then a contradiction 

will be obtained similarly.
Hence, T ′ is an (x, y)-trail (x �= y) with V (T ′) = V (T ) and for any vertex z ∈ V (T ′) − {x, y}, d+

T ′ (z) = d−
T ′ (z) ≤ k − 2, 

d+
′ (x) = d−

′ (x) + 1 ≤ k − 1 and d−
′ (y) = d+

′ (y) + 1 ≤ k − 1. This proves (ii). �
T T T T

6
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Throughout the rest of this section, we assume that D is a digraph, J = J (D) is the symmetric core of D with k = k(D)

and J1, J2, . . . , Jk are the connected symmetric components of J . Let D ′ = D/ J and denote V (D ′) = {v Ji : 1 ≤ i ≤ k} such 
that for each i ∈ {1, 2, . . . , k}, J i is the contraction preimage of the vertex v Ji ∈ V (D ′).

Lemma 3.4. Let D be a digraph. Each of the following holds.
(i) Let ti ≤ λ( J i) be an integer for 1 ≤ i ≤ k. If {v Jiθ

a(iθ ,i)v Ji a(i,i′θ )v Ji′
θ

: 1 ≤ θ ≤ ti} is a collection of ti arc-disjoint paths in D ′ , then 

D has a collection {T Jiθ
: 1 ≤ θ ≤ ti} of ti arc-disjoint trails with V ( J i) ⊆ ⋃ti

θ=1 V (T Jiθ
).

(ii) If λ0(D) ≥ k − 1 and T 0 is a (v J j1
, v J jm

)-trail of D ′ on vertices set {v J j1
, . . . , v J jm

} with v J j1
�= v J jm

, then for any vertices 
x ∈ V ( J j1 ) and y ∈ V ( J jm ), D has an (x, y)-trail T with 

⋃m
�=1 V ( J j� ) ⊆ V (T ).

(iii) If λ0(D) ≥ k − 1 and D ′ has a spanning closed trail, then D has a spanning closed trail.
(iv) Suppose that D ′ has a spanning closed trail. For a fixed index i and for any index i′ with 1 ≤ i′ �= i ≤ k, if λ( J i) ≥ k and λ( J i′) ≥
k − 1, then for any two distinct vertices x, y ∈ V ( J i), D has a spanning (x, y)-trail.

Proof. Let {v Jiθ
a(iθ ,i)v Ji a(i,i′θ )v Ji′

θ

: 1 ≤ θ ≤ ti} be a collection of ti arc-disjoint paths in D ′ . For each θ with 1 ≤ θ ≤ ti , by 
the definition of contraction, the arcs a(iθ ,i), a(i,i′θ ) ∈ A(D ′) ⊆ A(D). Thus there exist vertices xiθ , yiθ ∈ V ( J i), and ziθ , zi′θ ∈
V (D) − V ( J i) such that as arcs in D , a(iθ ,i) = (ziθ , xiθ ) and a(i,i′θ ) = (yiθ , zi′θ ). Hence xi1 , xi2 , . . . , xiti

and yi1 , yi2 , . . . , yiti

are two vertex sequences of J i . As λ( J i) ≥ ti , by Lemma 3.2, J i has ti arc-disjoint (xiθ , yiθ )-trails T(xiθ ,yiθ ) and V ( J i) ⊆⋃ti
θ=1 V (T(xiθ ,yiθ )). Thus,

{T Jiθ
= (ziθ , xiθ )T(xiθ ,yiθ )(yiθ , zi′θ ) : 1 ≤ θ ≤ ti}

is a collection of ti arc-disjoint trails with V ( J i) ⊆ ⋃ti
θ=1 V (T Jiθ

), and

T Ji =
ti⋃

θ=1

T Jiθ
(7)

is the connected arc-disjoint union of ti trails in D as described in Lemma 3.4 (i).
To prove (ii), let T 0 be a (v J j1

, v J jm
)-trail in D ′ on vertex set {v J j1

, . . . , v J jm
} with v J j1

�= v J jm
. By Lemma 3.3 (ii), D ′

has a (v J j1
, v J jm

)-trail T ′ with V (T ′) = V (T 0) and

for any vertex z ∈ V (T ′) − {v J j1
, v J jm

},d+
T ′(z) = d−

T ′(z) ≤ |V (T 0)| − 2,

d+
T ′(v J j1

) = d−
T ′(v J j1

) + 1 ≤ |V (T 0)| − 1 and d−
T ′(v J jm

) = d+
T ′(v J jm

) + 1 ≤ |V (T 0)| − 1. (8)

Let T ′ = v J j1
a( j1, j2)v J j2

· · · v J jm−1
a( jm−1, jm)v J jm

. Since T ′ is a trail, for notational convenience, we assume that v J j1
= v J1

and v J jm
= v Jk . Define Int(T ′) = {v J j�

: 2 ≤ � ≤ m − 1}. For 1 ≤ i ≤ k, let

ti = ti(v Ji ) = |{v J j�
: v J j�

= v Ji }| for each � with 2 ≤ � ≤ m − 1. (9)

By k = |V (D ′)| and (8), we observe that 0 ≤ ti ≤ k − 2. Hence, for any 2 ≤ i ≤ k − 1, we may assume that there are 
xi1 , xi2 , . . . , xiti

, yi1 , yi2 , . . . , yiti
∈ V ( J i), ziθ ∈ V ( J iθ ) and zi′θ ∈ V ( J i′θ ) with 1 ≤ θ ≤ ti and iθ , i′θ ∈ { j1, j2, . . . , jm} such that, 

as arcs in A(D), (ziθ , xiθ ) = a(iθ ,i) ∈ ∂−
T ′ (v Ji ) and (yiθ , zi′θ ) = a(i,i′θ ) ∈ ∂+

T ′ (v Ji ). Since λ0(D) ≥ k − 1 and ti ≤ k − 2, we have 
ti < λ( J i). By Lemma 3.4 (i), for any v Ji ∈ Int(T ′) − {v J1 , v Jk }, T Ji (as defined in (7)) is a connected arc-disjoint union of ti
trails in D with V ( J i) ⊆ V (T Ji ).

By (9), d−
T ′ (v J1 ) = t1 ≤ k −2 and d+

T ′ (v J1 ) = t1 +1. Denote a( j1, j2) = (y1, z1) with y1 ∈ V ( J1) and z1 ∈ V ( J j2 ), as an arc in 
A(D). We may assume that there exist vertices x11 , x12 , . . . , x1t1

and y11 , y12 , . . . , y1t1
in J1, z1θ ∈ V ( J1θ ) and z1′

θ
∈ V ( J1′

θ
)

with 1 ≤ θ ≤ t1 and 1θ , 1′
θ ∈ { j1, j2, . . . , jm} such that, as arcs in A(D), (z1θ , x1θ ) = a(1θ ,1) ∈ ∂−

T ′ (v J1 ) and (y1θ , z1′
θ
) = a(1,1′

θ ) ∈
∂+

T ′ (v J1 ). Since x, y1 ∈ V ( J1), it follows by λ( J1) ≥ λ0(D) ≥ k − 1 ≥ t1 + 1 and by Lemma 3.2 that J1 has an (x, y1)-trail 
T(x,y1) , and for each θ , there exists an (x1θ , y1θ )-trail T(x1θ

,y1θ
) such that

T J1 = T(x,y1)(y1, z1) ∪
t1⋃

θ=1

(z1θ , x1θ )T(x1θ
,y1θ

)(y1θ , z1′
θ
)

is a connected arc-disjoint union of t1 + 1 trails in D with V ( J1) ⊆ V (T J1 ).
Likewise, by (9), d+

T ′ (v Jk ) = tk ≤ k − 2 and d−
T ′ (v Jk ) = tk + 1. As arcs in A(D), we denote a( jm−1, jm) = (zk, xk) with zk ∈

V ( J jm−1 ) and xk ∈ V ( Jk); and assume that there exist vertices xk1 , xk2 , . . . , xktk
, yk1 , yk2 , . . . , yktk

∈ V ( Jk), zkθ
∈ V ( Jkθ

) and 
zk′

θ
∈ V ( Jk′

θ
) with 1 ≤ θ ≤ tk such that (zkθ

, xkθ
) = a(kθ ,k) ∈ ∂−

T ′ (v Jk ) and (ykθ
, zk′

θ
) = a(k,k′

θ ) ∈ ∂+
T ′ (v Jk ). As xk, y ∈ V ( Jk), it 

follows by λ( Jk) ≥ λ0(D) ≥ k − 1 ≥ tk + 1 and by Lemma 3.2 that Jk has an (xk, y)-trail T(xk,y) , and for each θ , there exists 
an (xkθ

, ykθ
)-trail T(x ,y ) such that
kθ kθ

7
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T Jk =
tk⋃

θ=1

(zkθ
, xkθ

)T(xkθ
,ykθ

)(ykθ
, zk′

θ
) ∪ (zk, xk)T(xk,y)

is a connected arc-disjoint union of tk + 1 trails in D with V ( Jk) ⊆ V (T Jk ).
Let J be the set with J = { J j : t j(v J j ) ≥ 1 for 2 ≤ j ≤ k − 1}. Then,

T := T J1 ∪ (
⋃

J j∈J
T J j ) ∪ T Jk

is a spanning (x, y)-trail of D with 
⋃m

�=1 V ( J j� ) ⊆ V (T ). This proves (ii).
Since D ′ has a spanning closed trail, by Lemma 3.3 (i), we assume that D ′ has a spanning closed trail T ′ =

v J j1
a( j1, j2)v J j2

· · · v J jm−1
a( jm−1, jm)v J jm

a( jm, j1)v J j1
such that for any vertex v Ji ∈ V (T ′), d+

T ′ (v Ji ) = d−
T ′ (v Ji ) ≤ k − 1. As 

λ( J i) ≥ k − 1 and by (i) and (7), 
⋃k

i=1 T Ji is a spanning closed trail of D . This proves (iii).
To prove (iv), by Lemma 3.3 (i), we assume that D ′ has a spanning closed trail T ′ = v J j1

a( j1, j2)v J j2
· · ·

v J jm−1
a( jm−1, jm)v J jm

a( jm, j1)v J j1
with d+

T ′ (v Ji ) = d−
T ′ (v Ji ) ≤ k − 1 for any v Ji ∈ V (T ′). For any 1 ≤ i ≤ k, let x, y ∈ V ( J i)

be two distinct vertices. By symmetry, we may assume that x, y ∈ V ( J1) with J i = J1. As d+
T ′ (v J1 ) = d−

T ′ (v J1 ) ≤ k − 1, 
let d+

T ′ (v J1 ) = d−
T ′ (v J1 ) = t1, we assume that there are vertices x11 , x12 , . . . , x1t1

, y11 , y12 , . . . , y1t1
∈ V ( J1), and for each 

θ with 1 ≤ θ ≤ t1, vertices z1θ ∈ V ( J1θ ) and z1′
θ

∈ V ( J1′
θ
) such that, as arcs in A(D), (z1θ , x1θ ) = a(1θ ,1) ∈ ∂−

T ′ (v J1 )

and (y1θ , z1′
θ
) = a(1,1′

θ ) ∈ ∂+
T ′ (v J1 ) for 2 ≤ θ ≤ t1, (z11 , x11 ) = a( jm, j1) ∈ ∂−

T ′ (v J1 ) and (y11 , z1′
1
) = a( j1, j2) ∈ ∂+

T ′ (v J1 ). Since 
x, y ∈ V ( J1), it follows by Lemma 3.2 and λ( J1) ≥ k that J1 contains an (x, y11 )-trail T(x,y11 ) , an (x11 , y)-trail T(x11 ,y) and 
for each θ with 2 ≤ θ ≤ t1, there exists an (x1θ , y1θ )-trail T(x1θ

,y1θ
) such that

T J1 = T(x,y11 )(y11 , z1′
1
) ∪

t1⋃

θ=2

(z1θ , x1θ )T(x1θ
,y1θ

)(y1θ , z1′
θ
) ∪ (z11 , x11)T(x11 ,y)

is a connected arc-disjoint union of t1 + 1 trails in D with V ( J1) ⊆ V (T J1 ). By λ( J1) ≥ k, λ( J j) ≥ k − 1 for j �= 1 and (ii), 
T = ⋃k

i=1 T Ji is a spanning (x, y)-trail of D . This proves (iv). �
Theorem 3.5. Let D be a strong digraph. Each of the following holds.
(i) If k(D) = 1, then D is strongly trail-connected, and so D is supereulerian.
(ii) If D ′ has a hamiltonian cycle, then D is supereulerian. Consequently, if k(D) = 2, then D is supereulerian.
(iii) If k(D) = 3, D ′ is spanned by a symmetric path P2 = v J1 v J2 v J3 and λ( J2) ≥ 2, then D is supereulerian.

Proof. If k(D) = 1, then D is symmetrically connected digraph, and D has a spanning connected symmetric subdigraph J , 
by Lemma 3.2 with k = 1, J is strongly trail-connected, so D is strongly trail-connected and (i) follows. To show (ii), let C
be a hamiltonian cycle of D ′ with V (C) = {v J1 , v J2 , . . . , v Jk } and A(C) = {ai = (v Ji , v Ji+1 ) : i ∈Zk}. Let J1, J2, . . . , Jk be the 
preimage of v J1 , v J2 , . . . , v Jk , respectively. By definition, each J i is a connected symmetric component of D , and for each 
i ∈Zk , the arc ai ∈ A(D ′) ⊆ A(D). Therefore, there exist vertices v ′

i ∈ V ( J i) and v ′′
i+1 ∈ V ( J i+1) with ai = (v ′

i, v
′′
i+1) ∈ A(D). 

Since each J i is a connected symmetric subdigraph of D , it follows by (i) that J i has a spanning (v ′′
i , v ′

i)-trail Ti . Let 
A1 = {(v ′

i, v
′′
i+1) : i ∈Zk}. Then H = D[A1 ∪ (

⋃
i∈Zk

A(Ti))] is a spanning closed trail of D , and so D is supereulerian. When 
|V (D ′)| = 2, as D is strong, D ′ is also strong, and so D ′ is hamiltonian, implying that D is supereulerian. Thus (ii) follows.

If k(D) = 3 and D ′ is spanned by a symmetric path P2 = v J1 v J2 v J3 , then there are vertices z1, z2 ∈ V ( J1), x1, x2, y1, y2 ∈
V ( J2) and w1, w2 ∈ V ( J3) such that (z1, x1), (x2, z2), (y1, w1), (w2, y2) ∈ A(D), and since J1 and J3 are connected sym-
metric digraphs, by (i), we have a spanning (z2, z1)-trail T(z2,z1) of J1 and a spanning (w1, w2)-trail T(w1,w2) of J3. Since 
λ( J2) ≥ 2, by Lemma 3.2, J2 has two arc-disjoint (x1, y1)-trial T1 and (y2, x2)-trial T2 such that V ( J2) = V (T1) ∪ V (T2). 
Let T ′ = T1 ∪ T2. Thus,

T ′ ∪ (y1, w1)T(w1,w2)(w2, y2) ∪ (x2, z2)T(z2,z1)(z1, x1)

is a spanning closed trail of D . Thus, D is supereulerian. This proves (iii). �
Lemma 3.6. Let D be a digraph. If D has a spanning trail, then for any e ∈ A(D), D/e also has a spanning trail.

Proof. Let T = v0e1 v1e2...vm−1em vm be a spanning trail of D , and let e ∈ A(D) be an arc. Then it is routine to verify that 
(T ∪ {e})/e is a spanning trail of G/e. �
Proof of Theorem 1.1. By Lemma 3.6, it suffices to prove the sufficiencies of each of the conclusions of Theorem 1.1. 
Throughout the proof arguments, let k = k(D) and � = λ0(D). Assume first that � ≥ k − 2 and D ′ has a spanning trail. 
8
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By Lemma 3.3 (ii), we assume that D ′ has a spanning (v J j1
, v J jm

)-trail T ′ = v J j1
a( j1, j2)v J j2

· · · v J jm−1
a( jm−1, jm)v J jm

with 
v J j1

�= v J jm
and

d+
T ′(v Ji ) = d−

T ′(v Ji ) ≤ k − 2 for any v Ji ∈ V (T ′) − {v J j1
, v J jm

},

d+
T ′(v J j1

) = d−
T ′(v J j1

) + 1 ≤ k − 1 and d−
T ′(v J jm

) = d+
T ′(v J jm

) + 1 ≤ k − 1. (10)

By symmetry, we assume that v J j1
= v J1 and v J jm

= v Jk . Define ti as in (9). Then for each vertex v Ji ∈ V (D ′) with J i ∈
{ J2, J3, . . . , Jk−1}, we have d+

T ′(v Ji ) = d−
T ′ (v Ji ) = ti ≤ k − 2, and there exist vertices xi1 , xi2 , . . . , xiti

, yi1 , yi2 , . . . , yiti
∈ V ( J i), 

for each θ with 1 ≤ θ ≤ ti , ziθ ∈ V ( J iθ ), zi′θ ∈ V ( J i′θ ) and iθ , i′θ ∈ { j1, j2, . . . , jm} such that, as arcs in A(D), (ziθ , xiθ ) = a(iθ ,i) ∈
∂−

T ′ (v Ji ) and (yiθ , zi′θ ) = a(i,i′θ ) ∈ ∂+
T ′ (v Ji ). By Lemma 3.4 (i), for any J i ∈ { J2, J3, . . . , Jk−1}, the subdigraph T Ji as defined in 

(7) is a connected arc-disjoint union of ti trails in D with V ( J i) ⊆ V (T Ji ).
Let y1 ∈ V ( J1) and z1 ∈ V ( J j2 ) be vertices such that, as an arc in A(D), (y1, z1) = a( j1, j2) ∈ ∂+

T ′ (v J1 ) ∩ ∂−
T ′ (v J j2

). By (10), 
d−

T ′ (v J1 ) = t1 ≤ k −2 and d+
T ′ (v J1 ) = t1 +1 ≤ k −1. By Lemma 3.4 (i), there exist vertices x11 , x12 , . . . , x1t1

, y11 , y12 , . . . , y1t1
∈

V ( J1), and for each θ with 1 ≤ θ ≤ t1, z1θ ∈ V ( J1θ ) and z1′
θ
∈ V ( J1′

θ
) for some 1θ , 1′

θ ∈ { j1, j2, . . . , jm}, such that, as arcs in 
A(D), (z1θ , x1θ ) = a(1θ ,1) ∈ ∂−

T ′ (v J1 ) and (y1θ , z1′
θ
) = a(1,1′

θ ) ∈ ∂+
T ′ (v J1 ), where a(1θ ,1), a(1,1′

θ ) ∈ {a( j1, j2), a( j2, j3), . . . , a( jm−1, jm)}. 
Then T J1 as defined in (7) is a connected arc-disjoint union of t1 trails in D with V ( J1) ⊆ V (T J1 ).

Similarly, let zk ∈ V ( J jm−1 ) and xk ∈ V ( Jk) be vertices such that, as an arc in A(D), (zk, xk) = a( jm−1, jm) ∈ ∂+
T ′ (v J jm−1

) ∩
∂−

T ′ (v Jk ). By (10), d+
T ′ (v Jk ) = tk ≤ k − 2 and d−

T ′ (v Jk ) = tk + 1 ≤ k − 1. By Lemma 3.4 (i), there exist vertices xk1 , xk2 , . . . , xktk
, 

yk1 , yk2 , . . . , yktk
∈ V ( Jk), and for each θ with 1 ≤ θ ≤ tk , vertices zkθ

∈ V ( Jkθ
) and zk′

θ
∈ V ( Jk′

θ
) for some kθ , k′

θ ∈
{ j1, j2, . . . , jm}, such that, as arcs in A(D), (zkθ

, xkθ
) = a(kθ ,k) ∈ ∂−

T ′ (v J jk
) and (ykθ

, zk′
θ
) = a(k,k′

θ ) ∈ ∂+
T ′ (v J jk

), where 
a(kθ ,k), a(k,k′

θ ) ∈ {a( j1, j2), a( j2, j3), . . . , a( jm−1, jm)}. Hence T Jk as defined in (7) is a connected arc-disjoint union of tk trails 
in D with V ( Jk) ⊆ V (T Jk ). It follows that T = (y1, z1) 

⋃k
i=1 T Ji (zk, xk) is a spanning (y1, xk)-trail of D . This proves (i).

Next assume that � ≥ k −1 and D ′ has a spanning closed trail, then by Lemma 3.3 (i), we assume that D ′ has a spanning 
closed trail T ′ = v J j1

a( j1, j2)v J j2
· · · v J jm−1

a( jm−1, jm)v J jm
a( jm, j1)v J j1

, with d+
T ′ (v Ji ) = d−

T ′ (v Ji ) ≤ k − 1 for any v Ji ∈ V (T ′). By 
λ( J i) ≥ � ≥ k − 1 and by Lemma 3.4 (iii), D is supereulerian. This proves (ii).

To prove (iii), we assume that � ≥ k and D ′ is strongly trail-connected to show that D is strongly trail-connected. Let 
x, y ∈ V (D) be given. We want to show that D has a spanning (x, y)-trail. Since D ′ is strongly trail-connected, D ′ has a 
spanning closed trail. By (ii) and � ≥ k, D has a spanning closed trail. Thus we can assume that x �= y. Furthermore, by 
Lemma 3.4 (iv), if for some i ∈ {1, 2, ..., k}, x, y ∈ V ( J i), then D has a spanning (x, y)-trail. Hence we may assume that x ∈
V ( J1) and y ∈ V ( Jk). Since D ′ is strongly trail-connected, D ′ has a spanning (v J1 , v Jk )-trail, by Lemma 3.3 (ii), we assume 
that D ′ has a spanning (v J1 , v Jk )-trail T ′ with v J1 �= v Jk and d+

T ′ (v Ji ) = d−
T ′ (v Ji ) ≤ k − 2 for any v Ji ∈ V (T ′) − {v J1 , v Jk }, 

d+
T ′ (v J1 ) = d−

T ′ (v J1 ) + 1 ≤ k − 1 and d−
T ′ (v Jk ) = d+

T ′ (v Jk ) + 1 ≤ k − 1. By Lemma 3.4 (ii), D has a spanning (x, y)-trail. 
Hence by the definition of strongly trail-connected digraphs, D is strongly trail-connected. This completes the proof of 
Theorem 1.1. �
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