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Abstract

Recently, Huang showed that every (2 + 1)n−1 ‐vertex
induced subgraph of the n‐dimensional hypercube has

maximum degree at least n . In this paper, we discuss

the induced subgraphs of Cartesian product graphs and

semistrong product graphs to generalize Huang's re-

sult. Let Γ1 be a connected signed bipartite graph of

order n and Γ2 be a connected signed graph of orderm.

By defining two kinds of signed product of Γ1 and Γ2,

denoted by □
∼

Γ Γ1 2 and ⋈
∼

Γ Γ1 2, we show that if Γ1 and Γ2
have exactly two distinct adjacency eigenvalues θ± 1

and θ± 2, respectively, then every mn( + 1)
1

2
‐vertex

induced subgraph of □
∼

Γ Γ1 2 (resp., ⋈
∼

Γ Γ1 2) has maximum

degree at least θ θ+1
2

2
2 (resp., ( )θ θ+ 11

2
2
2 ). More-

over, we discuss the eigenvalues of □
∼

Γ Γ1 2 and ⋈
∼

Γ Γ1 2

and obtain a sufficient and necessary condition such

that the spectrum of □
∼

Γ Γ1 2 and ⋈
∼

Γ Γ1 2 is symmetric with

respect to 0, from which we obtain more general results

on maximum degree of the induced subgraphs.
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1 | INTRODUCTION

Let Qn be the n‐dimensional hypercube, whose vertex set consists of vectors in {0, 1}n, and two
vectors are adjacent if they differ in exactly one coordinate. For a simple and undirected graph
G V E= ( , ), we use GΔ( ) to denote the maximum degree of G. The adjacency matrix of G is
defined to be a (0, 1)‐matrix A G a( ) = ( )ij , where a = 1ij if vi and vj are adjacent, and a = 0ij

otherwise.
Recently, Huang [13] constructed a signed adjacency matrix of Qn with exactly two distinct

eigenvalues n± . Using eigenvalue interlacing, Huang proceeded to prove that the spectral
radius (and so, the maximum degree) of any (2 + 1)n−1 ‐vertex induced subgraph of Qn, is at
least n . Combining this with the combinatorial equivalent formulation discovered by
Gotsman and Linial [10], Huang confirmed the Sensitivity Conjecture [17] from theoretical
computer science. The main contribution of Huang is the following theorem.

Theorem 1.1 (Huang [13]). For every integer ≥n 1, let H be an arbitrary (2 + 1)n−1 ‐
vertex induced subgraph of Qn, then ≥H nΔ( ) .

The bound n (or more precisely, ⌈ ⌉n ) is sharp, as shown by Chung, Füredi, Graham, and
Seymour [5] in 1988. Tao [23] also gave a great expository of Huang's work on his blog after
Huang announced the proof of the Sensitivity Conjecture.

Denote the Cartesian product of two graphs G and H by □G H . It is known that the
hypercube Qn can be constructed iteratively by Cartesian product, that is, Q K=1 2 and for
≥n 2, □Q Q Q=n n1 −1. Motivated by this fact, in this paper, we generalize Huang's theorem to

Cartesian product graphs and semistrong product graphs. We introduce some necessary
notations in the following.

A signed graph G σΓ = ( , ) is a graph G V E= ( , ), together with a sign function →σ E:

{+1, −1} assigning a positive or negative sign to each edge. An edge e is positive if σ e( ) = 1 and
negative if σ e( ) = −1. The unsigned graph G is said to be the underlying graph of Γ, while σ is
called the signature of G. If each edge of Γ is positive (resp., negative), then Γ is denoted by

GΓ = ( , +) (resp., GΓ = ( , −)). A signed graph is connected if its underlying graph is connected.
The adjacency matrix of G σΓ = ( , ) is denoted by A a(Γ) = ( )ij

σ , where a σ v v= ( )ij
σ

i j , if vi and
vj are adjacent, and a = 0ij

σ otherwise. As G is simple and undirected, the adjacency matrix
A (Γ) is a symmetric (−1, 0, +1)‐matrix, and A A G(Γ) = ( ) if GΓ = ( , +), A A G(Γ) = − ( ) if

GΓ = ( , −). Let ≥ ≥ ⋯ ≥λ λ λ(Γ) (Γ) (Γ)n1 2 denote the eigenvalues of A (Γ), which are all real
since A (Γ) is real and symmetric. If Γ contains at least one edge, then λ λ(Γ) > 0 > (Γ)n1 since
the trace of A (Γ) is 0. In general, the largest eigenvalue λ (Γ)1 may not be equal to the spectral
radius ∣ ∣ ≤ ≤ρ λ i n λ λ(Γ) = max{ (Γ) : 1 } = max{ (Γ), − (Γ)}i n1 because the Perron–Frobenius
Theorem is valid only for nonnegative matrices. The eigenvalues of the adjacency matrix of
signed graph Γ are called adjacency eigenvalues of Γ. The spectrum of A (Γ) is called the
(adjacency) spectrum of Γ and A (Γ) is also called a signed adjacency matrix ofG. The spectrum
of Γ is symmetric with respect to 0 if its adjacency eigenvalues are symmetric with respect to the
origin. In this paper, all eigenvalues considered are adjacency eigenvalues.

For basic results in the theory of signed graphs, the reader is referred to Zaslavsky [24].
Recently, the spectra of signed graphs have attracted much attention, as found in
[1,2,4,6,8,9,14,18,19,22,25], among others. In [2], the authors surveyed some general results on
the adjacency spectra of signed graphs and proposed some spectral problems which are in-
spired by the spectral theory of unsigned graphs. In particular, the signed graphs with exactly
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two distinct eigenvalues have been greatly investigated in recent years, see [8,14,16,18,19,22]. In
[14], Hou, Tang, and Wang characterized all simple connected signed graphs with maximum
degree at most 4 and with just two distinct adjacency eigenvalues. In this paper, we construct
signed graphs with exactly two distinct eigenvalues by two kinds of graph products, which
generalizes Huang's result on the induced subgraph of the hypercube.

The Kronecker product ⊗A B of matrices A a= ( )ij m n× and B b= ( )ij p q× is the mp nq×

matrix obtained from A by replacing each element aij with the block a Bij . Therefore the entries
of ⊗A B consist of all the mnpq possible products of an entry of A with an entry of B. For
matrices A B C, , , and D, we have ⊗ ⋅ ⊗ ⊗A B C D AC BD( ) ( ) = whenever the products AC
and BD exist. Note that, ⊗ ⊗A B A B( ) =T T T .

The Cartesian product of two graphsG1 andG2 is a graph, denoted by □G G1 2, whose vertex
set isV G V G( ) × ( )1 2 and two vertices u u( , )1 2 and v v( , )1 2 being adjacent in □G G1 2 if and only if
either u v=1 1 and ∈u v E G( )2 2 2 , or ∈u v E G( )1 1 1 and u v=2 2. The direct product (or Kronecker
product) of two graphs G1 and G2 is a graph, denoted by G G×1 2, whose vertex set is
V G V G( ) × ( )1 2 , and two vertices u u( , )1 2 and v v( , )1 2 being adjacent to each other in G G×1 2 if
and only if both ∈u v E G( )1 1 1 and ∈u v E G( )2 2 2 . The semistrong product (or strong tensor
product [11]) of two graphs G1 and G2 is a graph, denoted by ⋈G G1 2, whose vertex set is
V G V G( ) × ( )1 2 , and two vertices u u( , )1 2 and v v( , )1 2 being adjacent to each other in ⋈G G1 2 if
and only if either ∈u v E G( )1 1 1 and ∈u v E G( )2 2 2 , or u v=1 1 and ∈u v E G( )2 2 2 . Then, by the
definitions, the adjacency matrices of □G G1 2, G G×1 2, and ⋈G G1 2 are □A G G( ) =1 2

⊗ ⊗A G I I A G( ) + ( )m n1 2 , ⊗A G G A G A G( × ) = ( ) ( )1 2 1 2 , and ⋈ ⊗A G G A G A G( ) = ( ) ( )+1 2 1 2

⊗I A G( )n 2 , respectively, where ∣ ∣n V G= ( )1 , ∣ ∣m V G= ( )2 , and In is the identity matrix of order
n. Unlike the Kronecker product, the semistrong product operation is neither commutative nor
associative.

Let G σΓ = ( , )1 1 1 be a connected signed bipartite graph of order n with bipartition V V( , )1 2 ,
where ∣ ∣V s=1 and ∣ ∣V n s= −2 , and G σΓ = ( , )2 2 2 be a connected signed graph of orderm. With
suitable labeling of vertices, the adjacency matrix of Γ1 can be represented as

⎡
⎣⎢

⎤
⎦⎥A

O P

P O
(Γ ) = .

s

T
n s

1
−

The signed Cartesian product of signed bipartite graph Γ1 and signed graph Γ2, denoted by
□
∼

Γ Γ1 2, is the signed graph with adjacency matrix

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥□ ⊗ ⊗

⊗ ⊗

⊗ ⊗

∼
A A I

I O

O I
A

I A P I

P I I A
(Γ Γ ) = (Γ ) +

−
(Γ ) =

(Γ )

− (Γ )
.m

s

n s

s m

T
m n s

1 2 1
−

2
2

− 2

(1)

The signed semistrong product of signed bipartite graph Γ1 and signed graph Γ2, denoted by
⋈
∼

Γ Γ1 2, is the signed graph with adjacency matrix

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥⋈ ⊗ ⊗ ⊗

∼
A A A

I O

O I
A

I P

P I
A(Γ Γ ) = (Γ ) (Γ ) +

−
(Γ ) =

−
(Γ ).s

n s

s

T
n s

1 2 1 2
−

2
−

2 (2)

A (signed) bipartite graph with bipartition V V( , )1 2 is called balanced if ∣ ∣ ∣ ∣V V=1 2 . As a
generalization of Theorem 1.1, in this paper we obtain the following theorem.
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Theorem 1.2. Let G σΓ = ( , )1 1 1 be a signed bipartite graph of order n and G σΓ = ( , )2 2 2 be

a signed graph of order m, and let λ2 and μ2 be the minimum eigenvalues of A (Γ )1 2 and

A (Γ )2
2, respectively. Let H and H′ be any ⌊ ⌋( + 1)

mn

2
‐vertex induced subgraph of □

∼
Γ Γ1 2 and

⋈
∼

Γ Γ1 2, respectively. If Γ1 is a balanced bipartite graph or the spectrum of Γ2 is symmetric with
respect to 0, then

≥ ≥H λ μ H λ μΔ( ) + , Δ( ′) ( + 1) .2 2 2 2

In particular, if both Γ1 and Γ2 have exactly two distinct eigenvalues, we have the following
corollary.

Corollary 1.3. Let G σΓ = ( , )1 1 1 be a signed bipartite graph of order n with exactly two
distinct eigenvalues θ± 1 and G σΓ = ( , )2 2 2 be a signed graph of order m with exactly two
distinct eigenvalues θ± 2. If H and H′ are arbitrary ( + 1)

mn

2
‐vertex induced subgraphs of

□
∼

Γ Γ1 2 and ⋈
∼

Γ Γ1 2, respectively, then

≥ ≥ ( )H θ θ H θ θΔ( ) + , Δ( ′) + 1 .1
2

2
2

1
2

2
2

A direct proof of Corollary 1.3 is presented in Section 2. From the proof we will see that Γ1
and Γ2 in Corollary 1.3 are regular. In Section 3, we display some preliminaries and examples.
In Section 4, we give a characterization of the eigenvalues of □

∼
Γ Γ1 2 and ⋈

∼
Γ Γ1 2 and obtain a

sufficient and necessary condition such that the spectrum of □
∼

Γ Γ1 2 and ⋈
∼

Γ Γ1 2 are symmetric
with respect to 0. In Section 5, we present the proof of Theorem 1.2 and generalize the signed
Cartesian product and signed semistrong product of two signed graphs to the products of n
signed graphs. In Section 6, we give some concluding remarks.

2 | A DIRECT PROOF OF COROLLARY 1.3

Using the idea that Shalev Ben‐David contributed on July 3, 2019 to Scott Aaronson's blog,
Knuth [15] gave a direct and nice proof of Huang's theorem in one page. Here, arising from
their ideas, we give a direct proof of Corollary 1.3.

Proof of Corollary 1.3. For simplicity, let ≔A A (Γ )1 1 and ≔A A (Γ )2 2 . Since Γi has
exactly two distinct eigenvalues ≠θ± ( 0)i for i = 1, 2, we have each eigenvalue of
Ai
2 equals to θi

2 and so there exist orthogonal matrices Q1 and Q2 such that
A Q θ I Q θ I= ( ) =n

T
n1

2
1 1

2
1 1

2 and A Q θ I Q θ I= ( ) =m
T

m2
2

2 2
2

2 2
2 . The diagonal entries of Ai

2

are the degrees of vertices in Γi, so Γi is a θi
2‐regular graph for i = 1, 2. Moreover,

∣ ∣V s= =
n

1 2
and ∕PP P P θ I= =T T

n1
2

2.
(a) Let  ≔ □

∼
A (Γ Γ )1 2 and define



⎡

⎣
⎢⎢

⎤

⎦
⎥⎥

⊗

⊗∕

( )P A θ θ I

θ I I
=

+ + m

n m

2 1
2

2
2

1
2

2

to be an mn × mn

2
matrix. Since ≠θ 01 , the rank of  is mn

2
, and we have
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⎡
⎣⎢⎢

⎤
⎦⎥⎥

⎡

⎣
⎢⎢

⎤

⎦
⎥⎥

⎡

⎣

⎢⎢⎢

⎤

⎦

⎥⎥⎥
⎡

⎣

⎢⎢⎢

⎤

⎦

⎥⎥⎥
⎡

⎣
⎢⎢

⎤

⎦
⎥⎥

⋅
⊗ ⊗

⊗ ⊗
⋅

⊗

⊗

⊗

⊗ ⊗

⊗

⊗ ⊗

⊗

⊗

∕

∕
∕

∕

∕ ∕

∕

( )

( )
( )

( )
( )

( )

I A P I

P I I A

P A θ θ I

θ I I

P A θ θ A θ I

P P A θ θ I θ I A

P θ I θ θ A θ I

θ I A θ θ I θ I A

θ θ
P A θ θ I

θ I I
θ θ

=
−

+ +

=
+ + +

+ + −

=
+ + +

+ + −

= +
+ +

= + .

n m

T
m n

m

n m

m

T
m n

m m

n m n

m

n m

2 2

2 2

2 1
2

2
2

1
2

2

2
2

1
2

2
2

2 1
2

2 1
2

2
2

1
2

2 2

2
2

1
2

2
2

2 1
2

1
2

2 2 1
2

2
2

1
2

2 2

1
2

2
2 2 1

2
2
2

1
2

2

1
2

2
2

Let H be an arbitrary ( + 1)
mn

2
‐vertex induced subgraph of □

∼
Γ Γ1 2. Suppose 0 is the

( − 1) ×
mn mn

2 2
submatrix of  whose rows corresponding to vertices not in H . Then there

exists a unit × 1
mn

2
vector x such that  x = 00 , since  x = 00 is a homogeneous system

of − 1
mn

2
linear equations with mn

2
variables. As rank( ) =

mn

2
, y x= is an mn × 1

nonzero vector such that y = 0v for any vertex ∉v H , and y θ θ y= +1
2

2
2 .

Let u be a vertex such that ∣ ∣ ∣ ∣ ∣ ∣y y y= max{ , …, }u mn1 . Then ∣ ∣y > 0u , ∈u V H( ) and

   ∑ ∑ ∑∣ ∣ ∣ ∣ ≤ ∣ ∣∣ ∣ ≤ ∣ ∣
∈ ∈

θ θ y y y y y H y+ = ( ) = = Δ( ) .u u

v

mn

uv v

v H

uv v

v H

uv u u1
2

2
2

=1

Therefore, ≥H θ θΔ( ) +1
2

2
2 .

(b) Let  ≔ ⋈
∼

A (Γ Γ )1 2 and define



⎡

⎣
⎢⎢

⎤

⎦
⎥⎥

⊗

⊗∕

( )P θ A θ I

θ θ I I
=

+ 1 + m

n m

1
2

2 2

1
2

2 2

to be an mn × mn

2
matrix. Since ≠θ 01 and ≠θ 02 , the rank of  is mn

2
, and we have

 



⎡
⎣⎢⎢

⎤
⎦⎥⎥

⎡

⎣
⎢⎢

⎤

⎦
⎥⎥

⎡

⎣

⎢⎢⎢

⎤

⎦

⎥⎥⎥
⎡

⎣

⎢⎢⎢

⎤

⎦

⎥⎥⎥
⎡

⎣
⎢⎢

⎤

⎦
⎥⎥

⋅
⊗ ⊗

⊗ ⊗
⋅

⊗

⊗

⊗

⊗ ⊗

⊗

⊗ ⊗

⊗

⊗

∕

∕
∕

∕

∕ ∕

∕

( )

( )

( )
( )

( )

( )

( )

( ) ( )

I A P A

P A I A

P θ A θ I

θ θ I I

P θ A θ A θ θ A

P P θ A θ A θ θ I A

P θ θ I θ θ A

θ I θ θ I θ A θ θ I A

θ θ
P θ A θ I

θ θ I I
θ θ

=
−

+ 1 +

=
+ 1 + +

+ 1 + −

=
+ 1 + + 1

+ 1 + −

= + 1
+ 1 +

= + 1 .

n

T
n

m

n m

T
n

m

n m n

m

n m

2 2 2

2 2 2

1
2

2 2

1
2

2 2

1
2

2
2

2 2 1
2

2 2

1
2

2
2

2 2 1
2

2 2 2

1
2

2
2

2 1
2

2

1
2

2 1
2

2
2

2 2 1
2

2 2 2

1
2

2
2 1

2
2 2

1
2

2 2

1
2

2
2
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Let H′ be an arbitrary ( + 1)
mn

2
‐vertex induced subgraph of ⋈

∼
Γ Γ1 2. Suppose 0 is the

( − 1) ×
mn mn

2 2
submatrix of  whose rows corresponding to vertices not in H′. Then

there exists a unit × 1
mn

2
vector x such that  x = 00 , since  x = 00 is a homogeneous

system of − 1
mn

2
linear equations with mn

2
variables. As rank( ) =

mn

2
, y x= is an

mn × 1 nonzero vector such that y = 0v for any vertex ∉v H′, and  ( )y θ θ y= + 11
2

2
2 .

Let u be a vertex such that ∣ ∣ ∣ ∣ ∣ ∣y y y= max{ , …, }u mn1 . Then ∣ ∣y > 0u , ∈u V H( ′) and

   ∑ ∑ ∑∣ ∣ ∣ ∣ ≤ ∣ ∣∣ ∣ ≤ ∣ ∣
∈ ∈

( )θ θ y y y y y H y+ 1 = ( ) = = Δ( ′) .u u

v

mn

uv v

v H

uv v

v H

uv u u1
2

2
2

=1 ′ ′

Therefore, ≥ ( )H θ θΔ( ′) + 11
2

2
2 . □

3 | PRELIMINARIES

In this section, we present some useful lemmas and examples.

Lemma 3.1 (Hammack, Imrich, and Klavžar [12]). Let G1 and G2 be nontrivial
graphs. Then

(i) □G G1 2 is connected if and only if G1 and G2 are connected, and □G G1 2 is bipartite if
and only if G1 and G2 are bipartite.

(ii) G G×1 2 is connected if and only if G1 andG2 are connected and at most one of them is
bipartite, and G G×1 2 is bipartite if and only if at least one of G1 and G2 is bipartite.

Lemma 3.2 (Garman, Ringeisen, and White [11]). Let G1 and G2 be nontrivial
graphs. Then

(i) ⋈G G1 2 is connected if and only if G1 and G2 are connected.
(ii) ⋈G G1 2 is bipartite if and only if G2 is bipartite.
(iii) The semistrong product operation is neither associative nor commutative.
(iv) If G1 is bipartite, then ⋈ ≅ □G K G K1 2 1 2.

By Lemma 3.2 (iv), the following corollary can be obtained easily.

Corollary 3.3 (Garman, Ringeisen, and White [11]).

(i) Let G K=1 2, and for ≥n 2, ⋈G G K=n n−1 2, then ≅G Qn n.
(ii) Let G K′ =1 2, and for ≥n 2, ⋈G K G′ = ′n n2 −1, then ≅G K′n 2 ,2n n−1 −1.

Proof. By Lemma 3.2(iv), ⋈ ≅ □Q K Q K Q=n n n−1 2 −1 2 . By induction, ≅G Qn n. Let
V K u v( ) = { , }2 and V V( , )1 2 be the bipartition of K2 ,2n n−2 −2. Then there is an edge
connecting any two vertices between u v V{ , } × 1 and u v V{ , } × 2 in ⋈K K2 2 ,2n n−2 −2. Hence,
⋈K K K=2 2 ,2 2 ,2n n n n−2 −2 −1 −1. By induction, ≅G K′n 2 ,2n n−1 −1. □
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By the definitions of Cartesian product, direct product, and semistrong product of graphs,
we can define the product of signed graphs Γ1 and Γ2 by their adjacency matrices. That is,

□ ⊗ ⊗A A I I A(Γ Γ ) = (Γ ) + (Γ )m n1 2 1 2 , where ∣ ∣n V= (Γ )1 and ∣ ∣m V= (Γ )2 , A (Γ × Γ ) =1 2

⊗A A(Γ ) (Γ )1 2 , and ⋈ ⊗A A I A(Γ Γ ) = ( (Γ ) + ) (Γ )n1 2 1 2 . If X and Y are eigenvectors of
A A= (Γ )1 1 and A A= (Γ )2 2 corresponding to eigenvalues λ and μ, respectively, then direct
computation yields the following.

□ ⊗ ⊗ ⊗ ⊗ ⊗

⊗ ⊗ ⊗ ⊗ ⊗

⋈ ⊗ ⊗ ⊗ ⊗

⊗

A X Y A I I A X Y λ μ X Y

A X Y A A X Y A X A Y λμX Y

A X Y A I A X Y A I X A Y

λ μX Y

(Γ Γ )( ) = ( + )( ) = ( + ) ,

(Γ × Γ )( ) = ( )( ) = = ,

(Γ Γ )( ) = [( + ) ]( ) = ( + )

= ( + 1) .

m n

n n

1 2 1 2

1 2 1 2 1 2

1 2 1 2 1 2

Thus, we can obtain the following theorem.

Theorem 3.4. If ≥ ≥ ⋯ ≥λ λ λn1 2 and ≥ ≥ ⋯ ≥μ μ μm1 2 are the adjacency eigenv-
alues of the signed graphs Γ1 and Γ2, respectively, then, for i n= 1, 2, …, and j m= 1, 2, …, ,

(i) (Germina, Hameed K, and Zaslavsky [9]) λ μ+i j are the adjacency eigenvalues
of □Γ Γ1 2;

(ii) (Germina, Hameed K, and Zaslavsky [9]) λ μi j are the adjacency eigenvalues of Γ × Γ1 2;
(iii) λ μ( + 1)i j are the adjacency eigenvalues of ⋈Γ Γ1 2.

By Lemma 3.1 (ii) and Theorem 3.4 (ii), we have the following result immediately.

Corollary 3.5. For i = 1, 2, let G σΓ = ( , )i i i be a connected signed graph with exactly two
distinct eigenvalues θ± i, respectively. If at least one of G1 and G2 is non‐bipartite, then
Γ × Γ1 2 is a connected signed graph with exactly two distinct eigenvalues θ θ± 1 2.

In the following, we introduce some known results and examples which can be used to
construct signed graphs with exactly two distinct eigenvalues. First we give some definitions. A
weighing matrix of order n and weight k is an n n× matrixW W n k= ( , ) with entries 0,+1, and
−1 such that WW W W kI= =T T

n. A weighing matrix W n n( , ) is a Hadamard matrix Hn of
order n. A conference matrix C of order n is an n n× matrix with 0's on the diagonal,+1 or−1
in all other positions and with the property CC n I= ( − 1)T

n. Thus, a conference matrix of
order n is a weighing matrix of order n and weight n − 1, and a permutation matrix of order n is
a weighing matrix of order n and weight 1.

Lemma 3.6. For ≥n 1, let

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥⊗ ⊗H H H H A H= 1 1

1 −1
, = , =

0 1
1 0

.n2 2 2 2 2n n n+1

Then An is a signed adjacency matrix of K2 ,2n n and its eigenvalues are ± 2n , each with
multiplicity 2n.

Proof. Since H2n is a symmetric matrix with entries ±1, An is a signed adjacency matrix
of K2 ,2n n. Note that H2n is a Hadamard matrix of order 2n with eigenvalues ± 2n . By the
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property of Kronecker product, the eigenvalues of An are ± 2n , each with
multiplicity 2n. □

Lemma 3.7 (McKee and Smyth [16]). Let P be a permutation matrix of order n such that
P P+ T is the adjacency matrix of the cycle Cn and

⎡
⎣⎢

⎤
⎦⎥A

P P P P

P P P P
=

+ −

− −( + )
.n

T T

T T

Then An is the adjacency matrix of the n2 ‐vertex toroidal tessellation T n2 (see Figure 1),
whose eigenvalues are ±2, each with multiplicity n.

Lemma 3.8 (McKee and Smyth [16]). LetW w(7, 4) = ( )ij be the weighing matrix of order
7 and weight 4, where ℓw w=ij 1, for ℓ ≡ j i− + 1(mod 7) and w w w w( , , , ,11 12 13 14

w w w, , ) = (−1, 1, 1, 0, 1, 0, 0)15 16 17 . Let

⎡
⎣⎢

⎤
⎦⎥ ⊗W W(14, 4) =

0 1
1 0

(7, 4).

ThenW (14, 4) is the adjacency matrix of the 14‐vertex signed graph S14 (see Figure 1)
and its eigenvalues are ±2 with the same multiplicity 7.

Example 3.9 (Stinson [21]). For each ∈n {2, 6, 10, 14, 18, 26, 30}, there exists a
symmetric conference matrices W n n( , − 1). Then, W n n( , − 1) is a signed adjacency
matrix of Kn and its eigenvalues are n± − 1 , each with multiplicity ∕n 2.

By the property of Kronecker product of matrices, we have the following examples.

Example 3.10. LetW k k( , − 1) be a symmetric conference matrix of order k and Hn be
a symmetric Hadamard matrix of order n. Then ⊗W k k H( , − 1) n is a signed adjacency
matrix of the complete k‐partite graph Kn n n, , …, and its eigenvalues are k n± ( − 1) with
the same multiplicity. In particular, ⊗W H(6, 5) 2 is a signed adjacency matrix of the
complete 6‐partite graph K2,2,2,2,2,2.

FIGURE 1 The graphs T n2 in Lemma 3.7 and S14 in Lemma 3.8, where red edges represent negative edges
[Color figure can be viewed at wileyonlinelibrary.com]
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Example 3.11. Let Γ be a signed graph of order m and Hn be a symmetric Hadamard
matrix of order n. Then ⊗H A (Γ)n is an adjacency matrix of the signed graph Γ n( ) of
order mn obtained from Γ. If Γ has exactly two distinct eigenvalues θ± , then Γ n( ) has
exactly two distinct eigenvalues θ n± .

4 | EIGENVALUES OF SIGNED CARTESIAN PRODUCT
AND SIGNED SEMISTRONG PRODUCT GRAPHS

In this section, we discuss the adjacency eigenvalues of □
∼

Γ Γ1 2 and ⋈
∼

Γ Γ1 2 and obtain a sufficient
and necessary condition such that the spectrums of □

∼
Γ Γ1 2 and ⋈

∼
Γ Γ1 2 are symmetric with respect

to 0.

Theorem 4.1. Let G σΓ = ( , )1 1 1 be a signed bipartite graph of order n with bipartition
V V( , )1 2 and G σΓ = ( , )2 2 2 be a signed graph of orderm. If λ2 is an eigenvalue of A (Γ )1 2 with
multiplicity p and μ2 is an eigenvalue of A (Γ )2 2 with multiplicity q, then each of the
following holds.

(i) λ μ+2 2 (resp., λ μ( + 1)2 2) is an eigenvalue of □
∼

A (Γ Γ )1 2
2 (resp., ⋈

∼
A (Γ Γ )1 2

2) with
multiplicity pq.

(ii) If λ = 0 and ≠μ 0, then μ± are eigenvalues of □
∼

Γ Γ1 2 (also ⋈
∼

Γ Γ1 2) with multiplicities
∣ ∣pq n V q t± ( − 2 )( − 2 )

1

2

1

2 1 , respectively, where t is the multiplicity of eigenvalue μ
of A (Γ )2 .

(iii) If ≠λ 0, then λ μ± +2 2 are eigenvalues of □
∼

Γ Γ1 2, each with multiplicity ∕pq 2.
(iv) If ≠λμ 0, then λ μ± ( + 1)2 2 are eigenvalues of ⋈

∼
Γ Γ1 2, each with multiplicity ∕pq 2.

Corollary 4.2. For i = 1, 2, let Γi be a signed graph with exactly two distinct eigenvalues

θ± i, where Γ1 is bipartite. Then □
∼

Γ Γ1 2 and ⋈
∼

Γ Γ1 2 have exactly two distinct eigenvalues

θ θ± +1
2

2
2 and ( )θ θ± + 11

2
2
2 , respectively.

The following theorem gives a sufficient and necessary condition such that the spectrums of

□
∼

Γ Γ1 2 and ⋈
∼

Γ Γ1 2 are symmetric with respect to 0.

Theorem 4.3. Let Γ1 be a signed bipartite graph and Γ2 be a signed graph. The spectrum
of □
∼

Γ Γ1 2 (resp., ⋈
∼

Γ Γ1 2) is symmetric with respect to 0 if and only if Γ1 is balanced or the
spectrum of Γ2 is symmetric with respect to 0.

In the following proofs of Theorems 4.1 and 4.3, we always assume that
⎡
⎣⎢

⎤
⎦⎥≔A A

O P

P O
(Γ ) =

s

T
n s

1 1
−

and ≔A A (Γ )2 2 , where ∣ ∣V s=1 and P is an s n s× ( − ) matrix.

Proof of Theorem 4.1 (i). By (1), we have
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⎛
⎝⎜

⎡
⎣⎢

⎤
⎦⎥

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

⎛
⎝⎜

⎡
⎣⎢

⎤
⎦⎥

⎞
⎠⎟

⎛
⎝⎜

⎡
⎣⎢

⎤
⎦⎥

⎞
⎠⎟

⎛
⎝⎜

⎡
⎣⎢

⎤
⎦⎥

⎞
⎠⎟

⎛
⎝⎜

⎡
⎣⎢

⎤
⎦⎥

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

□ ⊗ ⊗

⊗ ⊗

⊗ ⊗

⊗ ⊗

⊗ ⊗ ⊗ ⊗

⊗ ⊗

∼
A A I

I O

O I
A

A I
I O

O I
A

O P

P O
I

I O

O I
A

I O

O I
A

O P

P O
I

A I I A
O P

P O
A

O P

P O
A

A I I A

(Γ Γ ) = +
−

= +

+
−

+
−

= + +
−

+
−

= + .

m
s

n s

m
s

n s

T m
s

n s

s

n s
T m

m n T T

m n

1 2
2

1
−

2

2

1
2

−
2
2

−
2

−
2

1
2

2
2

2 2

1
2

2
2

(3)

For each i p= 1, …, and j q= 1, …, , let Xi and Yj be eigenvectors of A1
2 and A2

2 with
respect to eigenvalues λ2 and μ2, respectively. Thus, by (3), we have

□ ⊗ ⊗ ⊗ ⊗ ⊗
∼ ( )A X Y A I I A X Y λ μ X Y(Γ Γ ) ( ) = + ( ) = ( + )( ).i j m n i j i j1 2

2
1
2

2
2 2 2

Therefore, λ μ+2 2 is an eigenvalue of □
∼

A (Γ Γ )1 2
2 with multiplicity pq.

By (2), we have

⎛
⎝⎜

⎡
⎣⎢

⎤
⎦⎥

⎞
⎠⎟

⎛
⎝⎜

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥
⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

⋈ ⊗

⊗

⊗ ⊗

⊗

∼

( )

( )

A
I P

P I
A

O P

P O

I O

O I
A

A I A
O P P

P P O
A

A I A

(Γ Γ ) =
−

= +
−

= + +
− +

−

= + .

s

T
n s

s

T
n s

s

n s

n
s

T T
n s

n

1 2
2

−
2

2

− −

2

2
2

1
2

2
2

−
2
2

1
2

2
2

(4)

For each i p= 1, …, and j q= 1, …, , let Xi and Yj be eigenvectors of A1
2 and A2

2 with
respect to eigenvalues λ2 and μ2, respectively. Thus, by (4), we have

⎡⎣ ⎤⎦⋈ ⊗ ⊗ ⊗ ⊗
∼ ( )A X Y A I A X Y λ μ X Y(Γ Γ ) ( ) = + ( ) = ( + 1) ( ).i j n i j i j1 2

2
1
2

2
2 2 2

Therefore, λ μ( + 1)2 2 is an eigenvalue of ⋈
∼

A (Γ Γ )1 2
2 with multiplicity pq. □

Lemma 4.4. Let Γ be a signed bipartite graph of order n with bipartition V V( , )1 2 , where

∣ ∣V s=1 , and
⎡
⎣⎢

⎤
⎦⎥A

O P

P O
=

s

T
n s−

be the adjacency matrix of Γ. Let w w{ , …, }a1 be a basis of null

space of PT and z z{ , …, }b1 be a basis of null space of P. The following a b+ vectors of
length n
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⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥{ }w

0

w

0
0
z

0
z, …, , , …, ,

a

b

1

1

is a basis of null space of A.

Proof. Since A P Prank( ) = rank( ) + rank( )T , by Rank–Nullity Theorem

n A n s P s P a b− rank( ) = ( − − rank( )) + ( − rank( )) = + .T

The result follows. □

Proof of Theorem 4.1 (ii). Since the multiplicity of eigenvalue μ of A2 is t , the
multiplicity of eigenvalue μ− of A2 is q t− . Assume that A Y μY=j j2 for each ≤ ≤j t1

and A Y μY= −k k2
′ ′ for each ≤ ≤k q t1 − . In particular, if t = 0, then ≤ ≤k q1 and

there exists no such Yj; if t q= , then ≤ ≤j q1 and there exists no such Yk
′ .

By the assumption, λ = 0 is an eigenvalue of A1
2 (and so A1) with multiplicity p.

Hence, the rank of A1 is A n prank( ) = −1 and ∕P P n prank( ) = rank( ) = ( − ) 2T . Thus,
the nullity of PT is

≔ ∕ ∕r s P p n s− rank( ) = 2 − ( − 2 ) 2T

and the nullity of P is ∕ ∕p r p n s− = 2 + ( − 2 ) 2. Suppose that X X{ , …, }r11 1 is a basis of
null space of PT and X X{ , …, }p r12 ( − )2 is a basis of null space of P. Let

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥≔ ≔ℓ

ℓ
Z

X
Z

X0

0
,i

i1 ′

2

be column vectors of length n for each ≤ ≤i r1 and ≤ ℓ ≤ p r1 − . In particular, if
r = 0, then ≤ ℓ ≤ p n s1 = − 2 and there is no such Zi; if r p= , then ≤ ≤i p s n1 = 2 −

and there is no such ℓZ
′ . By Lemma 4.4, ∪Z Z Z Z{ , …, } { , …, }r p r1 1

′
−
′ is a basis of null space

of A1. Therefore, ℓA Z A Z 0= =i1 1
′ and for every ≤ ≤i r1 , ≤ ≤j t1 , and ≤ ≤k q t1 − ,

□ ⊗ ⊗ ⋈ ⊗

□ ⊗ ⊗ ⋈ ⊗

∼

∼

∼

∼
A Z Y μ Z Y A Z Y

A Z Y μ Z Y A Z Y

(Γ Γ )( ) = ( ) = (Γ Γ )( ),

(Γ Γ )( ) =− ( ) = (Γ Γ )( ).

i j i j i j

i k i k i k

1 2 1 2

1 2
′ ′

1 2
′

For every ≤ ℓ ≤ p r1 − , ≤ ≤j t1 , and ≤ ≤k q t1 − ,

□ ⊗ ⊗ ⋈ ⊗

□ ⊗ ⊗ ⋈ ⊗

∼

∼

∼

∼
ℓ ℓ ℓ

ℓ ℓ ℓ

A Z Y μ Z Y A Z Y

A Z Y μ Z Y A Z Y

(Γ Γ )( ) = ( ) = (Γ Γ )( ′ ),

(Γ Γ )( ) =− ( ) = (Γ Γ )( ).

k k k

j j j

1 2
′ ′ ′ ′

1 2
′

1 2
′ ′

1 2
′

Note that all of Zi, ℓZ
′ , Yj, and Yk

′ are nonzero vectors for each ≤ ≤i r1 , ≤ ℓ ≤ p r1 − ,
≤ ≤j t1 , and ≤ ≤k q t1 − . Hence, the Kronecker products of them are also nonzero

vectors. By ⊗ ⊗ℓZ Y Z Y( ) ( ) = 0i j
T

k
′ ′ , we have ⊗Z Yi j and ⊗ℓZ Yk

′ ′ are

∕ ∕rt p r q t pq n s q t+ ( − )( − ) = 2 + ( − 2 )( − 2 ) 2
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eigenvectors of □
∼

A (Γ Γ )1 2 (resp., ⋈
∼

A (Γ Γ )1 2 ) with respect to eigenvalue μ. By
⊗ ⊗ℓZ Y Z Y( ) ( ) = 0i k

T
j

′ ′ , we know that ⊗Z Yi k
′ and ⊗ℓZ Yj′ are

∕ ∕r q t p r t pq n s q t( − ) + ( − ) = 2 − ( − 2 )( − 2 ) 2

eigenvectors of □
∼

A (Γ Γ )1 2 (resp., ⋈
∼

A (Γ Γ )1 2 ) with respect to eigenvalue μ− . Thus, μ±

are eigenvalues of □
∼

Γ Γ1 2 (resp., ⋈
∼

Γ Γ1 2) with multiplicities pq n s q t± ( − 2 )( − 2 )
1

2

1

2
,

respectively. □

Proof of Theorem 4.1(iii). Suppose that ≠λ 0. Since Γ1 is bipartite, λ and λ− are
eigenvalues of Γ1, each with multiplicity ∕p 2. Without loss of generality, assume that

≥μ 0, A Y μY=j j2 for each j t= 1, …, and A Y μY= −k k2
′ ′ for each k q t= 1, …, − . In

particular, if t = 0, then ≤ ≤k q1 and there exists no such Yj; if t q= , then ≤ ≤j q1 and

there exists no such Y ′k. Note that if μ = 0, then t q= . Now, for ∕i p= 1, …, 2, suppose

that
⎡
⎣⎢

⎤
⎦⎥X

X

X
=i

i

i

1

2
is the unit vector such that A X λX=i i1 , where Xi1 and Xi2 are column

vectors of length s and n s− , respectively. Then PX λX=i i2 1 and P X λX=T
i i1 2. For each

∕i p= 1, …, 2, let
⎡
⎣⎢

⎤
⎦⎥X

X

X
=

−i
i

i

′ 1

2
, then A X λX′ = − ′i i1 . Since ≠λ 0, we have X X = 0i

T
i
′ and

so X X X X= =i
T

i i
T

i1 1 2 2
1

2
, which implies that Xi1 and Xi2 are nonzero vectors. On the basis

of eigenvalues λ μ± , ± and the corresponding eigenvectors, we construct ∕pq 2 vectors as
follows:

⎡

⎣
⎢⎢

⎤

⎦
⎥⎥

⎡

⎣
⎢⎢

⎤

⎦
⎥⎥⊗ ⊗ ⊗ ⊗Z Y

λ μ μ X

λX
Y W Y

λX

λ μ μ X
Y=

( + + )
, =

( + + )
,i j

i

i
j i k

i

i
k

2 2
1

2

′
1

2 2
2

′

for each ∕i p= 1, …, 2, j t= 1, …, , and k q t= 1, …, − , and construct ∕pq 2 vectors as
follows:

⎡

⎣
⎢⎢

⎤

⎦
⎥⎥

⎡

⎣
⎢⎢

⎤

⎦
⎥⎥⊗ ⊗ ⊗ ⊗Z Y

λX

λ μ μ X
Y W Y

λ μ μ X

λX
Y=

−

( + + )
, =

( + + )

−
,i j

i

i
j i k

i

i
k

′
1

2 2
2

′ ′
2 2

1

2

′

for ∕i p= 1, …, 2, j t= 1, …, , and k q t= 1, …, − . Then, we have

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎡

⎣
⎢⎢⎢

⎤

⎦
⎥⎥⎥

⎡

⎣
⎢⎢

⎤

⎦
⎥⎥

□ ⋅ ⊗
⊗ ⊗

⊗ ⊗
⋅

⊗

⊗

⊗ ⊗

⊗ ⊗

⋅
⊗

⊗

⋅ ⊗

∼
A Z Y

I A P I

P I I A

λ μ μ X Y

λX Y

λ μ μ X μY λ X Y

λ μ μ λX Y λX μY

λ μ
λ μ μ X Y

λX Y

λ μ Z Y

(Γ Γ ) ( ) =
−

( + + )

=
( + + ) +

( + + ) −

= +
( + + )

= + ( ),

i j
s m

T
m n s

i j

i j

i j i j

i j i j

i j

i j

i j

1 2
2

− 2

2 2
1

2

2 2
1

2
1

2 2
2 2

2 2

2 2
1

2

2 2

(5)
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⎡
⎣⎢

⎤
⎦⎥

⎡

⎣
⎢⎢

⎤

⎦
⎥⎥

⎡

⎣
⎢⎢

⎤

⎦
⎥⎥

⎡

⎣
⎢⎢

⎤

⎦
⎥⎥

□ ⋅ ⊗
⊗ ⊗

⊗ ⊗
⋅

⊗

⊗

⊗ ⊗

⊗ ⊗

⋅
⊗

⊗

⋅ ⊗

∼
A W Y

I A P I

P I I A

λX Y

λ μ μ X Y

λX μY λ μ μ λX Y

λ X Y λ μ μ X μY

λ μ
λX Y

λ μ μ X Y

λ μ W Y

(Γ Γ ) ( ) =
− ( + + )

=
− + ( + + )

+ ( + + )

= +
( + + )

= + ( ),

i k
s m

T
m n s

i k

i k

i k i k

i k i k

i k

i k

i k

1 2
′ 2

− 2

1
′

2 2
2

′

1
′ 2 2

1
′

2
2

′ 2 2
2

′

2 2
1

′

2 2
2

′

2 2 ′

(6)

⎡
⎣⎢

⎤
⎦⎥

⎡

⎣
⎢⎢

⎤

⎦
⎥⎥

⎡

⎣
⎢⎢

⎤

⎦
⎥⎥

⎡

⎣
⎢⎢

⎤

⎦
⎥⎥

□ ⋅ ⊗
⊗ ⊗

⊗ ⊗
⋅

⊗

⊗

⊗ ⊗

⊗ ⊗

⋅
⊗

⊗

⋅ ⊗

∼
A Z Y

I A P I

P I I A

λX Y

λ μ μ X Y

λX μY λ μ μ λX Y

λ X Y λ μ μ X μY

λ μ
λX Y

λ μ μ X Y

λ μ Z Y

(Γ Γ ) ( ) =
−

−

( + + )

=
− + ( + + )

− − ( + + )

=− +
−

( + + )

=− + ( ′ ),

i j
s m

T
m n s

i j

i j

i j i j

i j i j

i j

i j

i j

1 2
′ 2

− 2

1

2 2
2

1
2 2

1

2
2

2 2
2

2 2
1

2 2
2

2 2

(7)

⎡
⎣⎢

⎤
⎦⎥

⎡

⎣
⎢⎢

⎤

⎦
⎥⎥

⎡

⎣
⎢⎢

⎤

⎦
⎥⎥

⎡

⎣
⎢⎢

⎤

⎦
⎥⎥

□ ⋅ ⊗
⊗ ⊗

⊗ ⊗
⋅

⊗

⊗

⊗ ⊗

⊗ ⊗

⋅
⊗

⊗

⋅ ⊗

∼
A W Y

I A P I

P I I A

λ μ μ X Y

λX Y

λ μ μ X μY λ X Y

λ μ μ λX Y λX μY

λ μ
λ μ μ X Y

λX Y

λ μ W Y

(Γ Γ ) ( ) =
−

( + + )

−

=
−( + + ) −

( + + ) −

=− +
( + + )

−

=− + ( ′ ).

i k
s m

T
m n s

i k

i k

i k i k

i k i k

i k

i k

i k

1 2
′ ′ 2

− 2

2 2
1

′

2
′

2 2
1

′ 2
1

′

2 2
2

′
2

′

2 2

2 2
1

′

2
′

2 2 ′

(8)

Since ≠λ 0, and Xi1 and Xi2 are nonzero, we know that all of Z W Z W Y Y, , , , ,i i i i j k
′ ′ ′ are

nonzero vectors for each ∈ ∕i p{1, …, 2}, ∈j t{1, …, }, and ∈k q t{1, …, − }, and the

Kronecker products of them are also nonzero vectors. As ⊗ ⊗Z Y W Y( ) ( ′ ) = 0i j
T

i k , by

(5) and (6), we have ⊗Z Yi j and ⊗W Y ′i k are ∕pq 2 eigenvectors of □
∼

A (Γ Γ )1 2 with

respect to eigenvalue λ μ+2 2 . As ⊗ ⊗Z Y W Y( ′ ) ( ′ ′ ) = 0i j
T

i k , by (7) and (8), we have

⊗Z Y′i j and ⊗W Y′ ′i k are ∕pq 2 eigenvectors of □
∼

A (Γ Γ )1 2 with respect to eigenvalue

λ μ− +2 2 . Therefore, λ μ± +2 2 are adjacency eigenvalues of □
∼

Γ Γ1 2, each with mul-

tiplicity ∕pq 2. □
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Proof of Theorem 4.1 (iv). Suppose that ≠λμ 0. Since Γ1 is bipartite, λ and λ− are
eigenvalues of Γ1, each with multiplicity ∕p 2. Without loss of generality, assume that

A Y μY=j j2 for each j t= 1, …, and A Y μY= −k k2
′ ′ for each k q t= 1, …, − . In particular,

if t = 0, then ≤ ≤k q1 and there exists no such Yj; if t q= , then ≤ ≤j q1 and there

exists no such Yk
′ . Now, for each ∕i p= 1, …, 2, suppose that

⎡
⎣⎢

⎤
⎦⎥X

X

X
=i

i

i

1

2
is the unit vector

such that A X λX=i i1 , where Xi1 and Xi2 are column vectors of length s and n s− ,

respectively. Then PX λX=i i2 1 and P X λX=T
i i1 2. Let

⎡
⎣⎢

⎤
⎦⎥X

X

X
=

−t
i

i

′ 1

2
, then A X λX′ = − ′i i1

and so X X = 0i
T

t
′ . Thus X X X X( ) = ( ) =i

T
i i

T
i1 1 2 2

1

2
, and so Xi1 and Xi2 are nonzero vectors.

On the basis of eigenvalues λ μ± , ± and the corresponding eigenvectors, we construct
∕pq 2 vectors as follows:

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥⊗ ⊗ ⊗ ⊗Z Y

λ X

λX
Y Z Y

λX

λ X
Y=

( + 1 + 1)
, ′ ′ =

−

( + 1 + 1)
′ ,i j

i

i
j i k

i

i
k

2
1

2

1

2
2

for each ∕i p= 1, …, 2, j t= 1, …, , and k q t= 1, …, − , and construct ∕pq 2 vectors as
follows:

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥⊗ ⊗ ⊗ ⊗Z Y

λX

λ X
Y Z Y

λ X

λX
Y′ =

−

( + 1 + 1)
, ′ =

( + 1 + 1)
′ ,i j

i

i
j i k

i

i
k

1

2
2

2
1

2

for each ∕i p= 1, …, 2, j t= 1, …, , and k q t= 1, …, − . Since

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎡

⎣
⎢⎢

⎤

⎦
⎥⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎡

⎣
⎢⎢

⎤

⎦
⎥⎥

I P

P I
Z

I P

P I

λ X

λX

λ X λ X

λ λX λX

λ Z

I P

P I
Z

I P

P I

λX

λ X

λX λ λX

λ X λ X

λ Z

−
=

−

( + 1 + 1)

=
( + 1 + 1) +

( + 1 + 1) −

= + 1 ,

−
=

−

−

( + 1 + 1)

=
− + ( + 1 + 1)

− − ( + 1 + 1)

=− + 1 ,

s

T
n s

i
s

T
n s

i

i

i i

i i

i

s

T
n s

t
s

T
n s

i

i

i i

i i

t

− −

2
1

2

2
1

2
1

2
2 2

2

−

′

−

1

2
2

1
2

1

2
2

2
2

2 ′

we can obtain the following equations:

⋈ ⋅ ⊗ ⊗ ⋅ ⊗
∼

A Z Y λ Z A Y μ λ Z Y(Γ Γ ) ( ) = + 1 = + 1 ( ),i j i j i j1 2
2

2
2 (9)
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⋈ ⋅ ⊗ ⊗ ⋅ ⊗
∼

A Z Y λ Z A Y μ λ Z Y(Γ Γ ) ( ′ ′ ) = − + 1 ′ ′ = + 1 ( ′ ′ ),i k i k i k1 2
2

2
2 (10)

⋈ ⋅ ⊗ ⊗ ⋅ ⊗
∼

A Z Y λ Z A Y μ λ Z Y(Γ Γ ) ( ′ ) = − + 1 ′ = − + 1 ( ′ ),i j i j i j1 2
2

2
2 (11)

⋈ ⋅ ⊗ ⊗ ⋅ ⊗
∼

A Z Y λ Z A Y μ λ Z Y(Γ Γ ) ( ′ ) = + 1 ′ = − + 1 ( ′ ).i k i k i k1 2
2

2
2 (12)

Since ≠λμ 0, Xi1 and Xi2 are nonzero, we know that all of Z Z Y Y, ′ , , ′i i j k are nonzero
vectors for each ∈ ∕i p{1, …, 2}, ∈j t{1, …, }, and ∈k q t{1, …, − }, and the Kronecker

products of them are also nonzero. As ⊗ ⊗Z Y Z Y( ) ( ′ ′ ) = 0i j
T

i k , by (9) and (10), we

have ⊗Z Yi j and ⊗Z Y′ ′i k are ∕pq 2 eigenvectors of ⋈
∼

A (Γ Γ )1 2 with respect to eigenvalue

μ λ + 12 . As ⊗ ⊗Z Y Z Y( ′ ) ( ′ ) = 0i j
T

i k , by (11) and (12), we have ⊗Z Y′i j and ⊗Z Y ′i k

are ∕pq 2 eigenvectors of ⋈
∼

A (Γ Γ )1 2 with respect to eigenvalue μ λ− + 12 . Therefore,

μ λ± + 12 are adjacency eigenvalues of ⋈
∼

Γ Γ1 2, each with multiplicity ∕pq 2. □

Proof of Theorem 4.3. Let λ2 be any eigenvalue of A (Γ )1 2 with multiplicity p and μ2 be
any eigenvalue of A (Γ )2

2 with multiplicity q, where μ is the eigenvalue of Γ2 with
multiplicity t .

(a) Consider □
∼

Γ Γ1 2. By Theorem 4.1 (i), λ μ+2 2 is an eigenvalue of □
∼

A (Γ Γ )1 2
2 with

multiplicity pq.
Assume that Γ1 is balanced or the spectrum of Γ2 is symmetric with respect to 0. Then

the bipartition V V( , )1 2 of Γ1 satisfies ∣ ∣V =
n

1 2
or the multiplicity of eigenvalue ≠μ ( 0) of Γ2

is equal to t = q

2
, and so ∣ ∣n V q t( − 2 )( − 2 ) = 01 . It suffices to prove that the multiplicities

of eigenvalues λ μ± +2 2 of □
∼

Γ Γ1 2 are equal to pq
1

2
when ≠λ μ+ 02 2 . If ≠λ 0, then by

Theorem 4.1 (iii), the multiplicities of eigenvalues λ μ± +2 2 of □
∼

Γ Γ1 2 are equal to pq
1

2
.

If λ = 0 and ≠μ 0, then by Theorem 4.1 (ii), the multiplicities of eigenvalues μ± of □
∼

Γ Γ1 2

are equal to pq
1

2
. Thus, the spectrum of □

∼
Γ Γ1 2 is symmetric with respect to 0.

Conversely, assume that the spectrum of □
∼

Γ Γ1 2 is symmetric with respect to 0. If all
the eigenvalues of Γ1 are nonzero, then the rank of A (Γ )1 is n and so

P Prank( ) = rank( ) =T n

2
. This implies ∣ ∣ ∣ ∣V V=1 2 and so Γ1 is balanced. If λ = 0 and

≠μ 0, then the multiplicities of eigenvalues μ± of □
∼

Γ Γ1 2 must be equal. By Theorem 4.1
(ii), we have

∣ ∣ ∣ ∣pq n V q t pq n V q t+ ( − 2 )( − 2 ) = − ( − 2 )( − 2 ),1 1

that is, ∣ ∣n V q t( − 2 )( − 2 ) = 01 and so Γ1 is balanced or the spectrum of Γ2 is symmetric
with respect to 0.

(b) Consider ⋈
∼

Γ Γ1 2. By Theorem 4.1 (i), λ μ( + 1)2 2 is an eigenvalue of ⋈
∼

A (Γ Γ )1 2
2 with

multiplicity pq.
Assume that Γ1 is balanced or the spectrum of Γ2 is symmetric with respect to 0. Then

the bipartition V V( , )1 2 of Γ1 satisfies ∣ ∣V =
n

1 2
or the multiplicity of eigenvalue ≠μ ( 0) of Γ2

is equal to t = q

2
, and so ∣ ∣n V q t( − 2 )( − 2 ) = 01 . It suffices to prove that the multiplicities
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of eigenvalues λ μ± ( + 1)2 2 of ⋈
∼

Γ Γ1 2 are equal to pq
1

2
when ≠μ 02 . If ≠λ 0 and ≠μ 0,

then by Theorem 4.1(iv), the multiplicities of eigenvalues λ μ± ( + 1)2 2 of ⋈
∼

Γ Γ1 2 are

equal to pq
1

2
. If λ = 0 and ≠μ 0, then by Theorem 4.1(ii), the multiplicities of

eigenvalues μ± of ⋈
∼

Γ Γ1 2 are equal to pq
1

2
. Thus, the spectrum of ⋈

∼
Γ Γ1 2 is symmetric with

respect to 0.
Conversely, assume that the spectrum of ⋈

∼
Γ Γ1 2 is symmetric with respect to 0. If all

the eigenvalues of Γ1 are nonzero, then the rank of A (Γ )1 is n and so
P Prank( ) = rank( ) =T n

2
. This implies ∣ ∣ ∣ ∣V V=1 2 and so Γ1 is balanced. If λ = 0 and

≠μ 0, then the multiplicities of eigenvalues μ± of ⋈
∼

Γ Γ1 2 must be equal. By
Theorem 4.1(ii), we have

∣ ∣ ∣ ∣pq n V q t pq n V q t+ ( − 2 )( − 2 ) = − ( − 2 )( − 2 ),1 1

that is, ∣ ∣n V q t( − 2 )( − 2 ) = 01 and so Γ1 is balanced or the spectrum of Γ2 is symmetric
with respect to 0. □

5 | INDUCED SUBGRAPHS OF THE SIGNED PRODUCT
GRAPHS

In this section, we mainly give the proof of Theorem 1.2 and generalize it to signed product of n
≥n( 3) graphs. To establish Theorem 1.2, we need the following lemmas.

Lemma 5.1 (Cauchy's Interlacing Theorem [3]). Let A be an n n× symmetric matrix,
and B be an m m× principle submatrix of A, where m n< . If the eigenvalues of A are
≥ ≥ ⋯ ≥λ λ λn1 2 , and the eigenvalues of B are ≥ ≥ ⋯ ≥μ μ μm1 2 , then for

all ≤ ≤i m1 ,

≥ ≥λ μ λ .i i n m i− +

Lemma 5.2. Suppose G σΓ = ( , ) is a signed graph of order n, and ( )A a= ij
σ is the

adjacency matrix of Γ. Let
∼
A a= (˜ )ij be an n n× symmetric matrix with ∣ ∣ ≤ ∣ ∣a a˜ij ij

σ for any

≤ ≤i j n1 , . Then

≥
∼

λ AΔ(Γ) ( ).1

In particular, ≥ λΔ(Γ) (Γ)1 when
∼
A A= .

Proof. It suffices to consider that
∼
A is not an all zero matrix. Thus,

∼
λ A( ) > 01 . Suppose

X x x x= ( , , …, )n
T

1 2 is an eigenvector corresponding to
∼

λ A( )1 . Then
∼ ∼

λ A X AX( ) =1 .
Assume that ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣x x x x= max{ , , …, }u n1 2 . Then ∣ ∣x > 0u and

∑ ∑ ∑ ∑∣ ∣ ≤ ∣ ∣ ≤ ∣ ∣

≤ ∣ ∣

∼
λ A x a x a x a x a x

x

( ) = ˜ =
~

˜
~

˜
~

Δ(Γ) .

u j

n

uj j j u uj j j u uj u j u uj
σ

u

u

1 =1

Hence, ≥
∼

λ AΔ(Γ) ( )1 . □
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Lemma 5.3. Let Γ be a connected signed graph of order n with k nonnegative adjacency
eigenvalues ≥ ⋯ ≥ ≥λ λ(Γ) (Γ) 0k1 . If H is an n k( − + 1)‐vertex induced subgraph of
Γ, then

≥ ⌈ ⌉H λΔ( ) (Γ) .k

Proof. Note that A H( ) is an n k n k( − + 1) × ( − + 1) submatrix of A (Γ). By Lemma 5.1,
≥λ H λ( ) (Γ)k1 . By Lemma 5.2, ≥ ≥H λ H λΔ( ) ( ) (Γ)k1 . Hence, ≥ ⌈ ⌉H λΔ( ) (Γ)k . □

Example 5.4. The Petersen graph PG( , +) has spectrum 3 , 1 , −2(1) (5) (4). If H is a
5‐vertex induced subgraph of PG( , +), then by Lemma 5.3, ≥HΔ( ) 1 and there exists an
induced subgraph H1 in Figure 2 such that the bound is tight.

The signed Petersen graph PG( , −) has spectrum 2 , −1 , −3(4) (5) (1). If H is a 7‐vertex
induced subgraph of PG( , −), then by Lemma 5.3, ≥HΔ( ) 2 and there exists an induced
subgraph H2 in Figure 2 such that the bound is tight.

Proof of Theorem 1.2. Denote N mn= . Let □
∼

Γ = Γ Γ1 2 and ⋈
∼

Γ′ = Γ Γ1 2. Then H (resp.,
H′) is a ⌊ ⌋( + 1)

N

2
‐vertex induced subgraph of Γ (resp., Γ′). By Lemma 5.3,

≥ ≥⌈ ⌉ ⌈ ⌉H λ H λΔ( ) (Γ) and Δ( ′) (Γ′).N N
2 2

By Theorem 4.1 (i), λ μ+2 2 is the minimum eigenvalue of A (Γ)2 and λ μ( + 1)2 2 is the
minimum eigenvalue of A (Γ′)2. Thus, by Theorem 4.3, the adjacency spectrums of Γ and
Γ′ are symmetric with respect to 0 and so

⌈ ⌉ ⌈ ⌉λ λ μ λ λ μ(Γ) = + and (Γ′) = ( + 1) .N N
2

2 2

2

2 2

Combining these (in)equalities, the results follow. □

Remark 1. Since the spectrum of Γ2 in Corollary 1.3 is symmetric with respect to 0,
Corollary 1.3 follows immediately from Theorem 1.2. Moreover, Corollary 1.3 also could
be deserved from Corollary 4.2 and Lemma 5.3.

The lower bounds on HΔ( ) and HΔ( ′) in Theorem 1.2 are tight for some graphs.

FIGURE 2 The 5‐vertex induced subgraph H1 and 7‐vertex induced subgraph H2 of the Petersen graph that
have maximum degrees 1 and 2, respectively, in Example 5.4
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(a) Let Γi be a signed graph of Qni whose eigenvalues are n± i for i = 1, 2, and let H be

an arbitrary n n( + 1)
1

2 1 2 ‐vertex induced subgraph of □
∼

Γ Γ1 2. By Theorem 1.2,

≥ ⌈ ⌉H n nΔ( ) +1 2 . Since □Q Q Q=n n n n+1 2 1 2
, the lower bound on HΔ( ) is tight, as

shown by Chung, Füredi, Graham, and Seymour [5] in 1988.

(b) Let PGΓ = ( , +)1 be the Petersen graph in Figure 2 and KΓ = ( , +)2 2 , and let H be an

arbitrary 11‐vertex induced subgraph of □
∼

Γ Γ1 2. By Theorem 1.2,

≥ ⌈ ⌉HΔ( ) 1 + 1 = 22 2 . Let ⊂V V= {2, 4, 5, 6, 7, 8} (Γ )1 1 and H1 be a subgraph of

□
∼

Γ Γ1 2 induced by V V K× ( )1 2 . Then for any 11‐vertex induced subgraph H0 of H1,
HΔ( ) = 20 and so the lower bound on HΔ( ) is tight for H0.

(c) Let TΓ =1 16 be the signed graph in Figure 1 and KΓ = ( , +)2 2 , and let H be an

arbitrary 17‐vertex induced subgraph of □
∼

Γ Γ1 2. By Theorem 1.2,

≥ ⌈ ⌉HΔ( ) 2 + 1 = 32 2 . Let ∪ ∪V u v u v u v u v u v= { , , , } { , , , } { , }1 1 1 2 2 4 4 5 5 7 7 and H1 be a

subgraph of □
∼

T K16 2 induced byV V K× ( )1 2 . Then for any 17‐vertex induced subgraph
H0 of H1, HΔ( ) = 30 and so the lower bound on HΔ( ) is tight for H0. Since T16 is

bipartite, □ ≅ ⋈
∼∼

T K T K16 2 16 2 by Lemma 3.2. Thus, the lower bound on HΔ( ′) in
Theorem 1.2 is also tight for H0.

(d) Let SΓ =1 14 be the signed graph in Figure 1 and KΓ = ( , +)2 2 , and let H be an

arbitrary 15‐vertex induced subgraph of □
∼

Γ Γ1 2. By Theorem 1.2,

≥ ⌈ ⌉HΔ( ) 2 + 1 = 32 2 . Let ⊂V V S= {1, 3, 5, 6, 8, 9, 11, 13} ( )1 14 and H1 be a sub-

graph of □
∼

S K14 2 induced byV V K× ( )1 2 . Then for any 15‐vertex induced subgraph H0

of H1, HΔ( ) = 30 and so the lower bound on HΔ( ) is tight for H0. Since S14 is

bipartite, □ ≅ ⋈
∼∼

S K S K14 2 14 2 by Lemma 3.2.

Now, we generalize the signed Cartesian product and signed semistrong product of two
signed graphs to the product of n signed graphs.

Thus, the lower bound on HΔ( ′) in Theorem 1.2 is also tight for H0.

Definition 5.5. For i n= 1, 2, …, − 1, let Γi be a signed bipartite graph and Γn be a
signed graph. Let

□ ⋈
∼∼Γ = Γ = Γ

R R,
1

,
1

1 and □ ⋈
∼∼Γ = Γ = Γ

L L n,
1

,
1 . For ≤ ≤k n2 , we define

(i) □
∼

□ □
∼ ∼Γ = Γ Γ

R
k

R
k

k, ,
−1 and ⋈

∼
⋈ ⋈
∼ ∼Γ = Γ Γ
R

k
R

k
k, ,

−1 ;

(ii) □
∼

□ □
∼ ∼Γ = Γ Γ

L
k

n k L
k

, − +1 ,
−1 and ⋈

∼
⋈ ⋈
∼ ∼Γ = Γ Γ
L

k
n k L

k
, − +1 ,

−1.

To illustrate Definition 5.5, one can consider n = 3, that is,

□ □ ⋈ ⋈ □ □

⋈ ⋈

∼ ∼

∼ ∼

∼ ∼ ∼ ∼
□ ⋈ □ ⋈

∼ ∼∼ ∼Γ = ((Γ Γ ) Γ ) and Γ = ((Γ Γ ) Γ ), Γ = (Γ (Γ Γ )) and Γ

= (Γ (Γ Γ )).

R R L L,
3

1 2 3 ,
3

1 2 3 ,
3

1 2 3 ,
3

1 2 3

By Lemmas 3.1 and 3.2, the Cartesian product and semistrong product of two bipartite
graphs are still bipartite. Therefore, Definition 5.5 (i) is well‐defined. Since the Kronecker
product of matrices is an associative operation, the underling graphs of

□
∼Γ

R
n
,

and
□
∼Γ

L
n
,

are
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isomorphic. However, by Lemma 3.2 (iii) and Corollary 3.3, the underling graphs of
⋈
∼Γ
R

n
,

and

⋈
∼Γ
L

n
,
are not always isomorphic.

By Definition 5.5, Theorem 4.1 (i) can be easily generalized to the following theorem.

Theorem 5.6. For i n= 1, 2, …, , let G σΓ = ( , )i i i be a signed graph and θi
2 be an

eigenvalue of A (Γ)i 2 with multiplicity pi, where Γ , …, Γn1 −1 are bipartite. Then ∑ θ
i

n
i=1
2,

∑ θ
i

n
i=1
2, ∏θ θ( + 1)n i

n
i

2
=1

−1 2 , and ∑ ∏ θ
k

n

i k

n
i=1 =
2 are eigenvalues of

□
∼A (Γ )

L
n
,

2,
□
∼A (Γ )

R
n
,

2,

⋈
∼( )A Γ
L

n
,

2
, and

⋈
∼( )A Γ
R

n
,

2
with multiplicity ⋯p p pn1 2 , respectively.

By Theorem 5.6, we have the following corollary immediately.

Corollary 5.7. For i n= 1, 2, …, , let Γi be a signed graph with exactly two distinct
eigenvalues θ± i, where Γ , …, Γn1 −1 are bipartite. Then □

∼Γ
L

n
,
,

□
∼Γ

R
n
,
,

⋈
∼Γ
L

n
,
, and

⋈
∼Γ
R

n
,
have exactly

two distinct eigenvalues ∑ θ±
i

n
i=1
2 , ∑ θ±

i

n
i=1
2 , ∏ ( )θ θ± + 1n i

n
i

2
=1

−1 2 , and

∑ ∏ θ±
k

n

i k

n
i=1 =
2 , respectively.

Example 5.8. Let KΓ = ( , +)i 2 for each i n= 1, 2, …, . Then

(i) each of
□
∼Γ

R
n
,
,

□
∼Γ

L
n
,

(see Figure 3 for n = 4) and
⋈
∼Γ
R

n
,

is a signed graph of Qn whose
eigenvalues are n± ;

(ii)
⋈
∼Γ
L

n
,
is a signed graph of K2 ,2n n−1 −1 and its eigenvalues are ± 2n−1 .

Example 5.9. For each i n= 1, 2, …, , let K σΓ = ( , )i 2,2 be the signed graph of K2,2 with
exactly one negative edge. Then

(i)
□
∼Γ

R
n
,

and
□
∼Γ

L
n
,
are signed graphs of Q n2 whose eigenvalues are n± 2 ;

(ii) the eigenvalues of
⋈
∼Γ
L

n
,
are ⋅± 2 3n−1 ;

(iii) the eigenvalues of
⋈
∼Γ
R

n
,

are ∑± 2 = ± 2 − 2
k

n k n
=1

+1 .

By Definition 5.5, Theorem 4.3 can be generalized to Theorem 5.10.

FIGURE 3 The signed graph
□
∼Γ

L,
4 of Q4 in Example 5.8, where red edges represent negative edges. [Color

figure can be viewed at wileyonlinelibrary.com]
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Theorem 5.10. For ≥n 2 and i n= 1, 2, …, − 1, let Γi be a signed bipartite graph and Γn
be a signed graph.

(i) The spectrum of
⋈
∼Γ
R

n
,
is symmetric with respect to 0 if and only if Γn−1 is balanced or the

spectrum of Γn is symmetric with respect to 0.
(ii) The spectrum of every graph in

□ □ ⋈
∼∼ ∼{Γ , Γ , Γ }

R
n

L
n

L
n

, , ,
is symmetric with respect to 0 if and

only if there exists an integer ∈i n{1, …, − 1} such that Γi is balanced or the spectrum
of Γn is symmetric with respect to 0.

Proof. We only need to consider ≥n 3.

(i) By Theorem 4.3, the spectrum of ⋈
∼

⋈ ⋈
∼ ∼Γ = Γ Γ
R

n
R

n
n, ,

−1 is symmetric with respect to 0 if
and only if

⋈
∼Γ
R

n
,
−1 is balanced or the spectrum of Γn is symmetric with respect to 0.

Since the semistrong product of a graphG and a bipartite graph H is balanced if and
only if H is balanced, we have ⋈

∼
⋈ ⋈
∼ ∼Γ = Γ Γ
R

n
R

n
n,

−1
,
−2

−1 is balanced if and only if Γn−1 is
balanced. Thus, (i) is proved.

(ii) By Theorem 4.3, the spectrum of □
∼

□ □
∼ ∼Γ = Γ Γ

R
n

R
n

n, ,
−1 is symmetric with respect to 0 if

and only if
□
∼Γ

R
n
,
−1 is balanced or the spectrum of Γn is symmetric with respect to 0.

Since
□
∼Γ

R
n
,
−1 is balanced if and only if there exists an integer ∈i n{1, …, − 1} such that

Γi is balanced. So the conclusion for
□
∼Γ

R
n
,

is proved.

By Theorem 4.3, the conclusion holds for □
∼

□
∼Γ = Γ Γ

L n n,
2

−1 (resp., ⋈
∼

⋈
∼Γ = Γ Γ
L n n,

2
−1 ). By

induction on n, assume that the spectrum of
□
∼Γ

L
n
,
−1 (resp.,

⋈
∼Γ
L

n
,
−1) is symmetric with

respect to 0 if and only if there exists an integer ∈i n{2, …, − 1} such that Γi is
balanced or the spectrum of Γn is symmetric with respect to 0. By Theorem 4.3, the

spectrum of □
∼

□ □
∼ ∼Γ = Γ Γ

L
n

L
n

, 1 ,
−1 (resp., ⋈

∼
⋈ ⋈
∼ ∼Γ = Γ Γ
L

n
L

n
, 1 ,

−1) is symmetric with respect to 0 if

and only if Γ1 is balanced or the spectrum of
□
∼Γ

L
n
,
−1 (resp.,

⋈
∼Γ
L

n
,
−1) is symmetric with

respect to 0. By induction, the conclusion for
□
∼Γ

L
n
,
(resp.,

⋈
∼Γ
L

n
,
) is proved. □

Now, Theorem 1.2 is generalized to the following theorem.

Theorem 5.11. For i n= 1, 2, …, , let G σΓ = ( , )i i i be a signed graph of order Ni and θi
2 be

the minimum eigenvalue of A (Γ)i 2, whereG G, …, n1 −1 are bipartite. Let □H , ⋈H L, , and ⋈H R,

be any ⌊ ∏ ⌋( )N + 1
i

n
i

1

2 =1
‐vertex induced subgraph of

□
∼Γ

L
n
,
,

⋈
∼Γ
L

n
,
, and

⋈
∼Γ
R

n
,
, respectively.

(i) If there exists an integer ∈i n{1, 2, …, − 1} such that Γi is balanced or the spectrum of

Γn is symmetric with respect to 0, then ≥ ∑□H θΔ( )
i

n
i=1
2 and ≥⋈HΔ( )L,

∏ ( )θ θ + 1n i

n
i

2
=1

−1 2 .

(ii) If Γn−1 is balanced or the spectrum of Γn is symmetric with respect to 0,

then ≥ ∑ ∏⋈H θΔ( )R k

n

i k

n
i, =1 =
2 .
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Proof. For simplicity, let ∏N N=
i

n
i=1
. Since □H , ⋈H L, , and ⋈H R, are ⌊ ⌋( + 1)

N

2
‐vertex

induced subgraphs of
□
∼Γ

L
n
,
,

⋈
∼Γ
L

n
,
, and

⋈
∼Γ
R

n
,
, respectively. By Lemma 5.3,

≥ ≥ ≥□ ⌈ ⌉ □ ⋈ ⌈ ⌉ ⋈ ⋈ ⌈ ⌉ ⋈
∼ ∼∼( ) ( ) ( )H λ H λ H λΔ( ) Γ , Δ( ) Γ , and Δ( ) Γ .N L

n
L N L

n
R N R

n1
2 , , 1

2 , , 1
2 ,

By Theorem 5.6, the minimum eigenvalues of
□
∼A (Γ )

L
n
,

2,
⋈
∼A (Γ )
L

n
,

2, and
⋈
∼A (Γ )
R

n
,

2 are
obtained. Thus, by Theorem 5.10, the spectrums of

□
∼Γ

L
n
,
,

⋈
∼Γ
L

n
,
, and

⋈
∼Γ
R

n
,

are symmetric

with respect to 0 and so ⌈ ⌉ □
∼λ (Γ )N L
n
,

1
2

∑ θ=
i

n
i=1
2 , ∏⌈ ⌉ ⋈

∼ ( )λ θ θ(Γ ) = + 1N L
n

n i

n
i,

2
=1

−1 2
1
2

, and

∑ ∏⌈ ⌉ ⋈
∼( )λ θΓ =N R
n

k

n

i k

n
i, =1 =
2

1
2

. Combining these (in)equalities, the results follow. □

Corollary 5.12. For i n= 1, 2, …, , let G σΓ = ( , )i i i be a signed graph of order Ni with
exactly two distinct eigenvalues θ± i, where G G, …, n1 −1 are bipartite. Let □H , ⋈H L, , and

⋈H R, be any ⌊ ∏ ⌋( )N + 1
i

n
i

1

2 =1
‐vertex induced subgraph of

□
∼Γ

L
n
,
,

⋈
∼Γ
L

n
,
, and

⋈
∼Γ
R

n
,
, respectively.

Then ≥ ∑□H θΔ( )
i

n
i=1
2 , ≥ ∏⋈ ( )H θ θΔ( ) + 1L n i

n
i,

2
=1

−1 2 , and ≥ ∑ ∏⋈H θΔ( )R k

n

i k

n
i, =1 =
2 .

When KΓ = ( , +)i 2 for each i n= 1, 2, …, in Corollary 5.12,
□
∼Γ

L
n
,

is the signed graph of
hypercube Qn. Therefore, Corollary 5.12 implies Huang's theorem.

Example 5.13. For i n= 1, 2, …, , let ( )K σΓ = ,i 2 ,2t t be the signed graph K2 ,2t t with

exactly two distinct eigenvalues ± 2t . For any integer ≥n 1 and ≥t 0, let □H , ⋈H L, , and

⋈H R, be any (2 + 1)n t( +1)−1 ‐vertex induced subgraph of
□
∼Γ

L
n
,
,

⋈
∼Γ
L

n
,
, and

⋈
∼Γ
R

n
,
, respectively.

Then ≥ ⋅□H nΔ( ) 2t , ≥⋈HΔ( ) 2 (2 + 1)L
t t n

,
−1 , and ≥ ∑⋈HΔ( ) 2R k

n kt
, =1

.

6 | CONCLUDING REMARKS

I. Corollaries 3.5, 4.2, and 5.7 provide product methods to construct signed graphs with exactly
two distinct eigenvalues of opposite signatures from factor graphs Γ1 and Γ2. There are many
options for the factor graph, such as the signed graphs of Qn and K2 ,2n n in Example 5.8, T n2 in
Lemma 3.7, S14 in Lemma 3.8, the signed graph of Kn in Example 3.9, signed graphs in
Examples 3.10, 3.11, 5.9, and so on.

II. If the following conjecture is true, it would provide a way to construct an infinite family
of d‐regular Ramanujan graphs by 2‐lift of graphs.

Conjecture 6.1 (Bilu–Linial [4]). Every connected d‐regular graph G has a signature σ
such that ≤ρ G σ d( , ) 2 − 1 .

Gregory considered the following Conjecture 6.2 without the regularity assumption on G.

Conjecture 6.2 (Gregory [7]). If G is a nontrivial graph with maximum degree Δ > 1,
then there exists a signed graph G σΓ = ( , ) such that ≤ρ (Γ) 2 Δ − 1 .
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Since the trace of the square of the signed adjacency matrix is equal to the sum of the
square of the degree of every vertex, Gregory [7] proved that for any signature σ of G,

≥ρ G σ d( , ) , with equality if and only if G is d‐regular and the adjacency matrix A G σ( , )

is a symmetric weighing matrix of weight d. Thus, the minimum spectral radius for a
signed adjacency matrix of Qn, K2 ,2n n, T n2 , and S14 is exactly n , 2n , 2, and 2, respectively.
Therefore, Corollary 4.2 illustrates that the signed Cartesian product and the signed
semistrong product of the signed graphs above also have minimum spectral radius and
Conjecture 6.1 holds for these graphs. For more general graphs, by Theorem 4.1 (i), we
have the following theorem.

Theorem 6.3. For i = 1, 2, letGi be a graph with maximum degree Δi and G σΓ = ( , )i i i be
a signed graph such that ≤ρ (Γ) 2 Δ − 1i i . If G1 is bipartite, then

□ ≤
∼

ρ (Γ Γ ) 2 Δ + Δ − 2 .1 2 1 2

Since □
∼

ρ ρ ρ(Γ Γ ) = (Γ ) + (Γ )1 2 1
2

2
2 and □Δ(Γ Γ ) = Δ(Γ ) + Δ(Γ )1 2 1 2 , Theorem 6.3 shows that

if Conjecture 6.2 holds for Γ1 and Γ2, then Conjecture 6.2 also holds for the signed Cartesian
product of them.

III. The method which is utilized to construct a larger weighing matrix can
construct a larger signed graph with exactly two distinct eigenvalues θ± from small
graphs. Conversely, the ideas of signed Cartesian product and semistrong product in
our paper can also be applied to construct a weighing matrix. If for i = 1, 2, Wi is a
weighing matrix of order ni and weight ki, then we can construct weighing matrices as
follows:

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⊗ ⊗

⊗

⊗

W n n k k
O W

W O
I

I O

O I

O W

W O

W n n k k
I W

W I

O W

W O

W n n k k
I W

W I
W

(4 , + ) = +
−

,

(4 , ( + 1) ) =
−

,

(2 , ( + 1) ) =
−

.

n

T
n

n
n n

n n

n

T
n

n

T
n

n

T
n

n

T
n

1 2 1 2
1

1
2

2

2

1 2 1 2
1

1

2

2

1 2 1 2
1

1
2

1

1

2

1 1

1 1

2

2

1

1

2

2

1

1

Furthermore, ifW2 is symmetric, then we can construct weighing matrix

⎡
⎣⎢

⎤
⎦⎥

⊗ ⊗

⊗ ⊗
W n n k k

I W W I

W I I W
(2 , + ) =

−
.

n n

T
n n

1 2 1 2
2 1

1 2

1 2

2 1

More methods for constructing weighing matrices, one can refer to the book of Jennifer
Seberry on orthogonal designs [20].
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