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a b s t r a c t

The spanning tree packing number of a graph G is the maximum number of edge-
disjoint spanning trees in G, and the arboricity of G is the minimum number of
edge-disjoint forests needed to partition the edge set of G. In this paper, we give bounds
on the spanning tree packing number and the arboricity of graphs in terms of effective
resistances. As applications, we show that equiarboreal graphs are uniformly dense, and
determine the maximum number of edge-disjoint spanning c-forests of equiarboreal
graphs, including edge-transitive graphs, 1-walk-regular graphs, distance-regular graphs
and so on. The arboricity of a regular graph can be derived from our effective resistance
bounds directly.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

Let V (G) and E(G) denote the vertex set and edge set of a graph G, respectively. A spanning forest of G with exactly
c components is called a spanning c-forest of G. Let σc(G) denote the maximum number of edge-disjoint spanning
c-forests in G. Clearly, σ1(G) is the maximum number of edge-disjoint spanning trees in G, which is also called the spanning
tree packing number [19] of G. The spanning tree packing number of maximal planar graphs, complete graphs, complete
bipartite graphs, quasi-random graphs and some cartesian products can be found in [14,19].

Let ω(G) denote the number of components of a graph G. In [17] and [21], Nash-Williams and Tutte proved the following
result.

Theorem 1.1. For any connected graph G and positive integer k, σ1(G) ≥ k if and only if |X | ≥ k(ω(G − X) − 1) for each
X ⊆ E(G).

The c-order edge toughness [5,6] of a graph G is defined as

τc(G) = min
{

|X |

ω(G − X) − c
: X ⊆ E(G), ω(G − X) > c

}
.

By Theorem 1.1, we have σ1(G) = ⌊τ1(G)⌋. Theorem 1.1 can be extended as follows.

Theorem 1.2 ([5,6]). The maximum number of edge-disjoint spanning c-forests of a connected graph G is σc(G) = ⌊τc(G)⌋.
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The arboricity a(G) of a graph G is the minimum number of edge-disjoint forests needed to partition the edge set of G.
The fractional arboricity of G is defined as

γ (G) = max
{

|E(H)|
|V (H)| − 1

}
,

where the maximum is taken over all nontrivial subgraphs of G. In [18], Nash-Williams gave the following fundamental
heorem on a(G).

heorem 1.3. The arboricity of a connected graph G is a(G) = ⌈γ (G)⌉.

A graph G is uniformly dense [5] if γ (G) =
|E(G)|

|V (G)|−1 , which is also called strongly balanced [20]. It is known [5] that
is uniformly dense if and only if τ1(G) = γ (G). Uniformly dense graphs are useful in random graphs [20] and web
etworks [10].
For two vertices i, j in a connected graph G, the resistance between i and j, denoted by rij(G), is defined to be the

ffective resistance between them when unit resistors are placed on every edge of G. The resistance is a distance function
on graphs [12], which is a useful tool to study random walk parameters of graphs [2,3,13,15]. There are fruitful methods
for computing resistance in graphs, including algebraic formulas via generalized inverses of the Laplacian matrix [12,26],
sum rules via the local structure [24], recursion formula via deleting edges [23] and so on.

A connected graph is called equiarboreal [8,25] if the number of spanning trees containing a given edge is independent
of the choice of the edge. In [8], Godsil proved that any graph which is a colour class in an association scheme is
equiarboreal. Many important graph classes in algebraic graph theory are equiarboreal graphs, including edge-transitive
graphs, distance-regular graphs and 1-walk-regular graphs (see [8,25]).

The aim of this paper is to introduce an effective resistance method for studying the spanning tree packing number,
edge toughness and (fractional) arboricity of graphs. The paper is organized as follows. In Section 2, we give some auxiliary
lemmas. In Section 3, we use effective resistance to give bounds on the spanning tree packing number, edge toughness
and the (fractional) arboricity of graphs. We use these bounds to show that equiarboreal graphs are uniformly dense, and
determine the maximum number of edge-disjoint spanning c-forests of equiarboreal graphs. The arboricity of a regular
graph can be derived from our resistance bounds directly. In Section 4, we list the maximum number of edge-disjoint
spanning c-forests in several classes of equiarboreal graphs, including edge-transitive graphs, 1-walk-regular graphs,
k-subdivision graphs and some double graphs.

2. Preliminaries

The following is an inequality which will be used in this paper.

Lemma 2.1 ([16]). If q1, . . . , qm are positive numbers, then
p1 + · · · + pm
q1 + · · · + qm

≤ max
1≤i≤m

pi
qi

,

for any nonzero real numbers p1, . . . , pm.

Lemma 2.2 ([6]). Let G be a connected graph with n vertices and m edges. For integer c satisfying 1 ≤ c ≤ n − 1, we have
c(G) =

m
n−c if and only if

γ (G) ≤
m

n − c
.

A connected graph is called 2-connected if it has no cut vertices. A block in graph G is a maximal 2-connected induced
ubgraph or a bridge of G. The edge set of G can always be partitioned into the blocks of G.

emma 2.3. Suppose that there are t blocks H1, . . . ,Ht in graph H. Then

|V (H)| − 1 =

t∑
i=1

(|V (Hi)| − 1).

roof. Let G be the bipartite graph with bipartition V1 ∪ V2, where V1 = {H1, . . . ,Ht}, V2 is the set of cut vertices of H ,
nd u ∈ V2 and Hi are adjacent in G if and only if u is contained in Hi in H . By computation, we have

t∑
|V (Hi)| = |V (H)| − |V2| +

∑
du(G) = |V (H)| − |V2| + |E(G)|,
i=1 u∈V2
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here du(G) is the degree of vertex u in G. It is known [3] that G is a tree. Then |E(G)| = |V2| + t − 1. Hence
t∑

i=1

|V (Hi)| = |V (H)| − 1 + t,

t∑
i=1

(|V (Hi)| − 1) = |V (H)| − 1. □

emma 2.4. Let G be a connected graph with at least one cycle. Then G has a 2-connected induced subgraph H such that

γ (G) =
|E(H)|

|V (H)| − 1
.

Proof. From the definition of γ (G), there exists an induced subgraph H such that γ (G) =
|E(H)|

|V (H)|−1 . If H is not 2-connected,
hen we can assume that there are t blocks H1, . . . ,Ht in H . By Lemma 2.3, we have

γ (G) =
|E(H)|

|V (H)| − 1
=

∑t
i=1 |E(Hi)|∑t

i=1(|V (Hi)| − 1)
.

By Lemma 2.1, there is a block Hi satisfying

γ (G) =
|E(H)|

|V (H)| − 1
≤

|E(Hi)|
|V (Hi)| − 1

.

t follows from the definition of γ (G) that |E(Hi)|
|V (Hi)|−1 = γ (G). Since G has at least one cycle, we have

|E(Hi)|
|V (Hi)| − 1

= γ (G) ≥
|E(G)|

|V (G)| − 1
> 1.

ence the block Hi is not a bridge, and it is a 2-connected induced subgraph of G such that γ (G) =
|E(Hi)|

|V (Hi)|−1 . □

For an edge e = uv of a connected graph G, the resistance ruv(G) between two end-vertices of e is called the edge
resistance of e in G, denoted by re(G). The second part of the following lemma is known as the Foster’s Theorem.

Lemma 2.5 ([25]). Let G be a connected graph with t spanning trees, and let te be the number of spanning trees containing
an edge e of G. Then

re(G) =
te
t
,

∑
e∈E(G)

re(G) = n − 1.

The following is a lower bound of edge resistances.

Lemma 2.6 ([22]). Let G be a connected graph, and let du denote the degree of a vertex u in G. For an edge e = uv of G, we
have

re(G) ≥
du + dv − 2
dudv − 1

.

Equiarboreal graphs can be characterized by resistances as follows.

emma 2.7 ([25]). Let G be a connected graph with n vertices and m edges. Then G is equiarboreal if and only if re(G) =
n−1
m

for each edge e of G.

A cycle cover of G is a set C of cycles of G such that each edge of G belongs to at least one cycle of C.

Lemma 2.8 ([1]). Every bridgeless graph has a cycle cover C such that every edge appears in exactly 4 cycles of C.

3. Main results

For a connected graph G with edge set {1, . . . ,m}, it has m edge resistances r1 ≥ · · · ≥ rm. We use these edge
esistances to give the following lower bounds for spanning tree packing number σ (G) and edge toughness τ (G).
1 1
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heorem 3.1. Let G be a connected graph with edge resistances r1 ≥ · · · ≥ rm (m > 1). Then

σ1(G) ≥ min

{
k :

k∑
i=1

ri > 1

}
− 1,

⌈τ1(G)⌉ ≥ min

{
k :

k∑
i=1

ri ≥ 1

}
,

τ1(G) ≥ r−1
1 .

Proof. If σ1(G) < k for some positive integer k, then by Theorem 1.1, there exists X ⊆ E(G) such that |X | < k(ω(G−X)−1).
Since each spanning tree of G contains at least ω(G − X) − 1 edges in X , we have∑

i∈X

ti ≥ (ω(G − X) − 1)t,

where ti denotes the number of spanning trees containing the edge i, t is the number of spanning trees in G. By Lemma 2.5,
we have

|X |∑
i=1

ri ≥

∑
i∈X

ri ≥ ω(G − X) − 1.

By |X | < k(ω(G − X) − 1), we get

(ω(G − X) − 1)
k∑

i=1

ri >

|X |∑
i=1

ri ≥ ω(G − X) − 1,

k∑
i=1

ri > 1.

Hence
∑k

i=1 ri > 1 if σ1(G) < k for some positive integer k, that is

σ1(G) ≥ min

{
k :

k∑
i=1

ri > 1

}
− 1.

Suppose that Y ⊆ E(G) satisfies τ1(G) =
|Y |

ω(G−Y )−1 . Since each spanning tree of G contains at least ω(G − Y ) − 1 edges
n Y , we have

(ω(G − Y ) − 1)t ≤

∑
i∈Y

ti.

y Lemma 2.5, we have

ω(G − Y ) − 1 ≤

∑
i∈Y

ri ≤

|Y |∑
i=1

ri.

By |Y | = (ω(G − Y ) − 1)τ1(G), we have

ω(G − Y ) − 1 ≤

|Y |∑
i=1

ri ≤ (ω(G − Y ) − 1)
⌈τ1(G)⌉∑
i=1

ri,

ω(G − Y ) − 1 ≤

|Y |∑
i=1

ri ≤ (ω(G − Y ) − 1)τ1(G)r1.

Hence

⌈τ1(G)⌉ ≥ min

{
k :

k∑
i=1

ri ≥ 1

}
,

τ1(G) ≥ r−1
1 . □

We next use edge resistances to give the following upper bounds for the fractional arboricity γ (G). These bounds can
be also regarded as resistance bounds for the arboricity a(G) because a(G) = ⌈γ (G)⌉.
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heorem 3.2. Let G be a connected graph, and let du denote the degree of vertex u in G. Then

γ (G) ≤
1

mine∈E(G) re(G)
≤ max

uv∈E(G)

dudv − 1
du + dv − 2

.

If G is not a tree, then

γ (G) ≤ max
C∈C(G)

|E(C)|∑
e∈E(C) re(G)

,

here C(G) is the set of cycles in G.

roof. Suppose that H0 is an induced subgraph of G such that
|E(H0)|

|V (H0)| − 1
= γ (G) > 0.

f H0 is disconnected, then by Lemma 2.1, H0 has a component F such that |E(F )|
|V (F )|−1 >

|E(H0)|
|V (H0)|−1 = γ (G), a contradiction. So

0 is connected. By Lemmas 2.5 and 2.1, we have

γ (G) =
|E(H0)|

|V (H0)| − 1
=

|E(H0)|∑
e∈E(H0)

re(H0)
≤

1
mine∈E(H0) re(H0)

.

y the Raleigh’s Principle of electrical networks (see Corollary 4.3 in [15]), we have re(H0) ≥ re(G) for each e ∈ E(H0). By
emma 2.6, we get

γ (G) ≤
1

mine∈E(H0) re(H0)
≤

1
mine∈E(G) re(G)

≤ max
uv∈E(G)

dudv − 1
du + dv − 2

.

If G is not a tree, then by Lemmas 2.4 and 2.5, G has a 2-connected induced subgraph H such that

γ (G) =
|E(H)|

|V (H)| − 1
=

|E(H)|∑
e∈E(H) re(H)

.

By Lemma 2.8, H has a cycle cover C = {C1, . . . , Ct} such that each edge of H is contained in exactly 4 cycles of C. Hence

γ (G) =
4|E(H)|

4
∑

e∈E(H) re(H)
=

∑t
i=1 |E(Ci)|∑t

i=1
∑

e∈E(Ci)
re(H)

.

Suppose that
|E(C1)|∑

e∈E(C1)
re(H)

≥
|E(Ci)|∑

e∈E(Ci)
re(H)

, i = 1, . . . , t.

Then by Lemma 2.1, we get

γ (G) =

∑t
i=1 |E(Ci)|∑t

i=1
∑

e∈E(Ci)
re(H)

≤
|E(C1)|∑

e∈E(C1)
re(H)

≤
|E(C1)|∑

e∈E(C1)
re(G)

≤ max
C∈C(G)

|E(C)|∑
e∈E(C) re(G)

. □

It is known that the arboricity of a d-regular graph is ⌊
d
2⌋+1 (see Corollary 1.4 in [11]). We can derive this result from

heorem 3.2.

orollary 3.3. For any d-regular graph G, we have

a(G) =

⌊
d
2

⌋
+ 1.

Proof. If G is disconnected, then a(G) is equal to the maximum arboricity of all components of G. So we only need to
show a(G) = ⌊

d
2⌋ + 1 when G is connected. By Theorem 3.2, we have

nd
2(n − 1)

=
|E(G)|

|V (G)| − 1
≤ γ (G) ≤

d2 − 1
2d − 2

=
d + 1
2

,

where n is the number of vertices of G. Hence a(G) = ⌈γ (G)⌉ = ⌊
d
2⌋ + 1. □

By using Theorem 3.2, we show that equiarboreal graphs are uniformly dense, and determine the maximum number
of edge-disjoint spanning c-forests of equiarboreal graphs as follows.
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heorem 3.4. Let G be a equiarboreal graph with n vertices and m edges. Then G is uniformly dense and⌊
m

n − c

⌋
= σc(G) ≤ τc(G) =

m
n − c

, c = 1, . . . , n − 1.

If m
n−c is an integer, then the edge set of G can be partitioned into m

n−c edge-disjoint spanning c-forests.

Proof. By Lemma 2.7, every edge of G has edge resistance re(G) =
n−1
m . By Theorem 3.2, we have

γ (G) ≤
1

mine∈E(G) re(G)
=

m
n − 1

.

ince γ (G) ≥
m

n−1 , we get

γ (G) =
m

n − 1
.

Hence G is uniformly dense.
Since γ (G) =

m
n−1 ≤

m
n−c for any integer c satisfying 1 ≤ c ≤ n − 1, by Lemma 2.2 and Theorem 1.2, we have

τc(G) =
m

n − c
, c = 1, . . . , n − 1,

σc(G) = ⌊τc(G)⌋ =

⌊
m

n − c

⌋
, c = 1, . . . , n − 1.

otice that each spanning c-forest in G contains n − c edges of G. If m
n−c is an integer, then σc(G) =

m
n−c , that is, the edge

set of G can be partitioned into m
n−c edge-disjoint spanning c-forests. □

emark 3.5. By Lemma 2.7 and Theorem 3.4, we know that the bounds in Theorems 3.1 and 3.2 are both attained for
quiarboreal graphs.

. Examples

In this section, we list the maximum number of spanning c-forests for several classes of equiarboreal graphs.

.1. Edge-transitive graphs

A graph is edge-transitive if its automorphism group acts transitively on its edge set. We can obtain the following result
rom Theorem 3.4.

roposition 4.1. Let G be an edge-transitive connected graph with n vertices and m edges. Then G is uniformly dense and⌊
m

n − c

⌋
= σc(G) ≤ τc(G) =

m
n − c

, c = 1, . . . , n − 1.

If m
n−c is an integer, then the edge set of G can be partitioned into m

n−c edge-disjoint spanning c-forests.

The complete graph Kn is edge-transitive. By Proposition 4.1, we can obtain the following result.

Example 4.2. Let Kn be the complete graph with n vertices. Then Kn is uniformly dense and⌊
n(n − 1)
2(n − c)

⌋
= σc(Kn) ≤ τc(Kn) =

n(n − 1)
2(n − c)

, c = 1, . . . , n − 1.

f n(n−1)
2(n−c) is an integer, then the edge set of Kn can be partitioned into n(n−1)

2(n−c) edge-disjoint spanning c-forests.

The complete bipartite graph Kn1,n2 is another classical example of edge-transitive graphs. By Proposition 4.1, we can
obtain the following result.

Example 4.3. Let Kn1,n2 be the complete bipartite graph with n1 + n2 vertices and n1n2 edges. Then Kn1,n2 is uniformly
ense and⌊

n1n2

n1 + n2 − c

⌋
= σc(Kn1,n2 ) ≤ τc(Kn1,n2 ) =

n1n2

n1 + n2 − c
, c = 1, . . . , n1 + n2 − 1.

If n1n2
n1+n2−c is an integer, then the edge set of Kn1,n2 can be partitioned into n1n2

n1+n2−c edge-disjoint spanning c-forests.

More examples for edge-transitive graphs can be found in [9]. The maximum number of edge-disjoint spanning
c-forests in these edge-transitive graphs can be obtained from Proposition 4.1.
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.2. 1-walk-regular graphs

Let G be a connected graph with adjacency matrix A and diameter D. It is known that (Ak)uv is equal to the number
f walks of length k from vertex u to vertex v. For a given integer m ⩽ D, G is called m-walk-regular if the number (Ak)uv
nly depends on the distance h between u and v, provided that h ⩽ m (see [7]). Actually, G is D-walk-regular if and only
f it is distance-regular. An m-walk-regular graph is also called an m-homogeneous graph in [8].

Clearly, an m-walk-regular graph is also (m − 1)-walk-regular, and 0-walk-regular graphs are exactly walk reg-
lar graphs. Godsil [8] proved that 1-walk-regular graphs are equiarboreal. Hence the following result follows from
heorem 3.4.

roposition 4.4. Let G be a 1-walk-regular graph with n vertices and degree d < n − 1. Then G is uniformly dense and⌊
nd

2(n − c)

⌋
= σc(G) ≤ τc(G) =

nd
2(n − c)

, c = 1, . . . , n − 1.

f nd
2(n−c) is an integer, then the edge set of G can be partitioned into nd

2(n−c) edge-disjoint spanning c-forests.

Let Q be a set of size q. The Hamming graph [4] H(d, q) is the graph with vertex set Q d, where two vertices are adjacent
when they agree in d − 1 coordinates. In particular, H(d, 2) is the d-cube. Since H(d, q) is distance-regular (see [4]), it is
also 1-walk-regular. The following result follows from Proposition 4.4.

Example 4.5. The Hamming graph H(d, q) is a distance-regular graph with qd vertices and degree (q − 1)d. Then H(d, q)
is uniformly dense and⌊

qd(q − 1)d
2(qd − c)

⌋
= σc(H(d, q)) ≤ τc(H(d, q)) =

qd(q − 1)d
2(qd − c)

, c = 1, . . . , qd − 1.

f qd(q−1)d
2(qd−c)

is an integer, then the edge set of H(d, q) can be partitioned into qd(q−1)d
2(qd−c)

edge-disjoint spanning c-forests.

More examples for distance-regular graphs can be found in [4]. Examples for 1-walk-regular graphs which are not
distance regular can be found in [7]. The maximum number of edge-disjoint spanning c-forests in these graphs can be
obtained from Proposition 4.4.

4.3. Subdivision graphs

For a graph G, let Sk(G) denote the k-subdivision graph obtained from G by replacing each edge ij ∈ E(G) by a path
ij = ie1 · · · ekj of length k+1 connecting i and j. It is known [25] that Sk(G) is equiarboreal if and only if G is equiarboreal.

So we can get the following result from Theorem 3.4.

Proposition 4.6. Let G be a equiarboreal graph with n vertices and m > n − 1 edges. Then Sk(G) is uniformly dense and⌊
(k + 1)m

km + n − c

⌋
= σc(Sk(G)) ≤ τc(Sk(G)) =

(k + 1)m
km + n − c

, c = 1, . . . , km + n − 1.

If (k+1)m
km+n−c is an integer, then the edge set of Sk(G) can be partitioned into (k+1)m

km+n−c edge-disjoint spanning c-forests.

4.4. Double graphs

Let G be a graph with vertex set V (G) = {v1, . . . , vn}. Take another copy H of G with vertex set V (H) = {u1, . . . , un}

uch that uiuj ∈ E(H) if and only if vivj ∈ E(G). The double graph of G, denoted by D(G), is the graph with vertex set
(D(G)) = V (G) ∪ V (H) and edge set E(D(G)) = E(G) ∪ E(H) ∪ {viuj : vivj ∈ E(G)}. Naturally, iterated double graphs are
efined as D0(G) = G, Dk(G) = D(Dk−1(G)) (k = 1, 2, . . .).
If G is a regular equiarboreal graph or edge-transitive, then Dk(G) is equiarboreal for any positive integer k (see [25]).

o we can get the following result from Theorem 3.4.

roposition 4.7. Let G be a connected graph with n vertices and m edges. If G is a regular equiarboreal graph or edge-transitive,
hen Dk(G) is uniformly dense and⌊

4km
2kn − c

⌋
= σc(Dk(G)) ≤ τc(Dk(G)) =

4km
2kn − c

, c = 1, . . . , 2kn − 1.

If 4km
2kn−c

is an integer, then the edge set of Dk(G) can be partitioned into 4km
2kn−c

edge-disjoint spanning c-forests.
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