Strongly Spanning Trailable Graphs with Small Circumference and Hamilton-Connected Claw-Free Graphs

Xia Liu ${ }^{1} \cdot$ Liming Xiong ${ }^{2} \cdot$ Hong-Jian Lai ${ }^{3}$

Received: 4 November 2019/Revised: 14 August 2020/Accepted: 18 August 2020/
Published online: 12 October 2020
© Springer Japan KK, part of Springer Nature 2020

Abstract

A graph G is strongly spanning trailable if for any $e_{1}=u_{1} v_{1}, e_{2}=u_{2} v_{2} \in E(G)$ (possibly $e_{1}=e_{2}$), $G\left(e_{1}, e_{2}\right)$, which is obtained from G by replacing e_{1} by a path $u_{1} v_{e_{1}} v_{1}$ and by replacing e_{2} by a path $u_{2} v_{e_{2}} v_{2}$, has a spanning ($v_{e_{1}}, v_{e_{2}}$)-trail. A graph G is Hamilton-connected if there is a spanning path between any two vertices of $V(G)$. In this paper, we first show that every 2 -connected 3-edge-connected graph with circumference at most 8 is strongly spanning trailable with an exception of order 8 . As applications, we prove that every 3 -connected $\left\{K_{1,3}, N_{1,2,4}\right\}$-free graph is Hamilton-connected and every 3-connected $\left\{K_{1,3}, P_{10}\right\}$-free graph is Hamiltonconnected with a well-defined exception. The last two results extend the results in Hu and Zhang (Graphs Comb 32: 685-705, 2016) and Bian et al. (Graphs Comb 30: 1099-1122, 2014) respectively.

Keywords Strongly spanning trailable • Hamilton-connected • Supereulerian • Collapsible • Reduction

[^0]
1 Introduction

For the notation or terminology not defined here, see [2]. A graph is called trivial if it has only one vertex, non-trivial otherwise. An empty graph is one in which no two vertices are adjacent. For a connected graph G, we use $\kappa(G), \kappa^{\prime}(G), c(G)$ and $g(G)$ to denote the connectivity, edge connectivity, circumference and girth of G, respectively. Throughout this paper, we use P_{n}, C_{n} to denote a path or a cycle of order n. The graph $N_{i, j, k}$ is a triangle with disjoint paths of length i, j, k each attaching to distinct vertices of the triangle; H_{i} denotes the graph formed from two triangles, which are connected by a single path of length i. The graph $N_{i, j, k}$ is defined but we are defining $B_{i, j}=N_{i, j, 0}$ and $Z_{i}=N_{i, 0,0}$ here.

A graph G is Hamilton-connected if there is a spanning path between any pair vertices of $V(G)$. For a collection \mathcal{H} of graphs, graph G is said to be \mathcal{H}-free if G does not contain H as an induced subgraph for all $H \in \mathcal{H}$ (see [11]). Any Hamilton-connected graph is 3 -connected. Then it is natural to consider which forbidden pairs of graphs $\{R, S\}$ imply that a 3 -connected $\{R, S\}$-free graph G is Hamilton-connected. Faudree and Gould in [10] showed that one of them must be $K_{1,3}$. We now list the known graphs S which, together with the $K_{1,3}$, imply that a 3-connected $\left\{K_{1,3}, S\right\}$-free graph is Hamilton-connected.

Theorem 1 Let G be a 3-connected $\left\{K_{1,3}, S\right\}$-free graph satisfying one of the following:
(1) (Shepherd [24]) $S \cong N_{1,1,1}$,
(2) (Faudree and Gould [10]) $S \cong Z_{2}$,
(3) (Chen and Gould [8]) $S \in\left\{B_{1,2}, Z_{3}, P_{6}\right\}$,
(4) (Faudree et al. [9]) $S \in\left\{N_{1,1,3}, N_{1,2,2}, P_{8}\right\}$,
(5) (Bian et al. [1]) $S \cong P_{9}$,
(6) (Hu and Zhang [12]) $S \cong N_{1,2,3}$,
(7) (Broersma et al. [3]) $S \cong H_{1}$.

Then G is Hamilton-connected.

Theorem 1 shows that the progress in forbidden pair guaranteeing a 3-connected graph to be Hamilton-connected is very slowly, although it is also popular. Motivated by the above results, we intend to extend Theorem 1(1)-(6).

The line graph of a given graph G, denoted by $L(G)$, is a graph with vertex set $E(G)$ such that two vertices in $L(G)$ are adjacent if and only if the corresponding edges in G are incident to a common vertex in G. Following [2], the Wagner graph, denoted by W_{8}, is obtained from the cycle C_{8} by adding all four pairs of vertices of maximum distance in C_{8} as four chords in C_{8}, and is depicted in Fig. 1. Now we define a set of graphs $\mathcal{G}=\left\{L(W): W\right.$ is obtained from W_{8} by adding at least one pendant edge at each vertex of $\left.W_{8}\right\}$.

Theorem 2 Let G be a 3-connected graph. Then each of the following holds.
(1) If G is $\left\{K_{1,3}, P_{10}\right\}$-free, then G is Hamilton-connected or G is a spanning subgraph of a member in \mathcal{G}.

Fig. 1 Eight special graphs
(2) If G is $\left\{K_{1,3}, N_{1,2,4}\right\}$-free, then G is Hamilton-connected.

In fact, Faudree et al. [9] showed that if i, j, k are positive integers such that every 3-connected $\left\{K_{1,3}, N_{i, j, k}\right\}$-free graph is Hamilton-connected, then $i+j+k \leq 7$. Hence Theorem 2(2) is sharp.

We use (u, v)-trail, $P(u, v)$ to denote a trail and a path with u, v as end-vertices, respectively. A graph is called supereulerian if it contains a spanning Eulerian subgraph. Let $e_{1}=u_{1} v_{1}$ and $e_{2}=u_{2} v_{2}$ denote two edges of G. If $e_{1} \neq e_{2}$, then the graph $G\left(e_{1}, e_{2}\right)$ is obtained from G by replacing e_{1} by a path $u_{1} v_{e_{1}} v_{1}$ and by replacing e_{2} by a path $u_{2} v_{e_{2}} v_{2}$, where $v_{e_{1}}, v_{e_{2}}$ are two new vertices not in $V(G)$. If $e_{1}=e_{2}$, then the graph $G\left(e_{1}, e_{2}\right)$ is also denoted by $G(e)$ and is obtained from G by replacing $e=u_{1} v_{1}$ by a path $u_{1} v_{e_{1}} v_{1}$. A graph G is strongly spanning trailable if for any $e_{1}, e_{2} \in E(G), G\left(e_{1}, e_{2}\right)$ has a spanning $\left(v_{e_{1}}, v_{e_{2}}\right)$-trail. As $e_{1}=e_{2}$ is possible, strongly spanning trailable graphs are supereulerian.

It is known [14, 21] that the line graph of a strongly spanning trailable graph is Hamilton-connected. In order to prove Theorem 2, we need the following associate result, which is itself interesting and shall have potential useful applications.

Theorem 3 Every 2-connected 3-edge-connected graph G with $c(G) \leq 8$ other than W_{8} is strongly spanning trailable.

The proofs of Theorems 3 and 2 are placed in Sects. 3 and 4, respectively. In the rest of this section, we prepare some terminology and notation to be used in this article. For the notation or terminology not defined here, see [2]. The degree of a vertex u in a graph G, denoted by $d_{G}(u)$, is the number of edges of G incident with u, each loop counting as two edges. Call u a k-vertex if $d_{G}(u)=k$. Define $D_{i}(G)=$ $\left\{u \in V(G): d_{G}(u)=i\right\}$ and $D_{\geq i}(G)=\left\{u \in V(G): d_{G}(u) \geq i\right\}$. We denote by $\Delta(G)$ and $\delta(G)$ the maximum degree and minimum degree of the vertices of G. For subsets $S \subseteq V(G)$ and $E \subseteq E(G)$, we denote by $G-S$ and $G-E$ the subgraphs of G induced by $V(G) \backslash S$ and $E(G) \backslash E$, respectively, define $N_{G}(S)$ to be
the set of vertices in $V(G) \backslash S$ that are adjacent to a vertex in S and $N_{G}[S]=N_{G}(S) \cup S$. Define $E(u, S)=\{u s: s \in S\}$. When $S=\{s\}, E=\{e\}$, we use $G-s, N_{G}(s), N_{G}[s]$ and $G-e$ for $G-\{s\}, N_{G}(\{s\}), N_{G}[\{s\}]$ and $G-\{e\}$, respectively. We use $H \subseteq G, H \cong G$ to denote the fact that H is a subgraph of G, H and G are isomorphic. For any two sets S_{1}, S_{2}, define $S_{1} \Delta S_{2}=\left(S_{1} \cup S_{2}\right) \backslash\left(S_{1} \cap S_{2}\right)$.

2 Reductions and Reduced Graphs

In this section, we prepare some definitions and additional results and prove two theorems.

For a graph G and $X \subseteq E(G)$, the contraction G / X is the graph obtained from G by identifying the edges in X. If $X=\{e\}$, then we use G / e for $G /\{e\}$. When H is a subgraph of G, then we use G / H for $G / E(H)$. If H is connected, then the vertex in G / H onto which H is contracted is denoted by v_{H}, and H is the preimage of v_{H} in G.

For a graph G, let $O(G)$ denote the set of odd degree vertices in G. In [5], Catlin defined collapsible graphs. A graph G is collapsible if for any even subset R of $V(G), G$ has a spanning connected subgraph Γ_{R} with $O(\Gamma)=R$. The reduction of G is obtained from G by contracting all maximal collapsible subgraphs of G. A graph is reduced if it is the reduction of some graph.

Let $F(G)$ be the minimum number of additional edges that must be added to G so that the resulting graph has two edge-disjoint spanning trees. Catlin (Theorem 2 of [6]) shows that a connected graph G is collapsible if $F(G)=0$. Let $K_{m, n}$ be the complete bipartite graph with partition sets of size m and n. Fig. 1 depicts some of the related graphs in this paper, including the Petersen graph $P(10)$.

We summarize some results on Catlin's reduction method and other related facts below.

Theorem 4 Let G be a connected graph, $H \subseteq G$ be a collapsible subgraph and G^{\prime} be the reduction of G, respectively. Then each of the following holds.
(1) (Catlin [5]) G is collapsible if and only if G / H is collapsible. And G is collapsible if and only if G^{\prime} is K_{1}.
(2) (Catlin [5]) G is reduced if and only if G has no non-trivial collapsible subgraphs.
(3) (Catlin [5]) $g\left(G^{\prime}\right) \geq 4$ and $\delta\left(G^{\prime}\right) \leq 3$.
(4) (Catlin [6], see also Theorem 3.4 of [19]) $F\left(G^{\prime}\right)=2\left|V\left(G^{\prime}\right)\right|-2-\left|E\left(G^{\prime}\right)\right|$.
(5) (Catlin et al. [7]) If $F(G) \leq 2$, then $G^{\prime} \in\left\{K_{1}, K_{2}, K_{2, t}\right\}$ for some $t \geq 1$; if $F(G) \leq 2$ and $\kappa^{\prime}(G) \geq 3$, then G is collapsible. Consequently, $K_{3,3}^{-}$is collapsible.
(6) (Lai et al. [15]) If $\delta(G) \geq 3$ and $|V(G)| \leq 13$, then $G^{\prime} \in\left\{K_{1}, K_{2}\right.$, $\left.K_{1,2}, K_{1,3}, P(10), P^{1}(12), P^{2}(12), P^{3}(12)\right\}$.

For two disjoint subsets V_{1}, V_{2} and a 4-cycle $C=x_{1} x_{2} x_{3} x_{4} x_{1}$ of graph G, define $G / \pi\left(V_{1}, V_{2}\right)$ to be the graph obtained from $G-E\left(G\left[V_{1} \cup V_{2}\right]\right)$ by identifying V_{1} to
form a vertex v_{1}, by identifying V_{2} to form a vertex v_{2}, and by adding a new edge $e_{\pi}=v_{1} v_{2}$, and define $G / \pi(C)=G / \pi\left(\left\{x_{1}, x_{3}\right\},\left\{x_{2}, x_{4}\right\}\right)$.

Theorem 5 (Catlin [6]) For the graphs G and $G / \pi(C)$ defined above, if $G / \pi(C)$ is collapsible, then G is collapsible.

In [20], the authors gave a method to verify whether a subgraph of G is collapsible. They construct a C-subpartition $\left(X_{1}, X_{2}\right)$ of G starting with a 4-cycle $x_{1} x_{2} x_{3} x_{4} x_{1} \subseteq G$.

1. $X_{1}:=\left\{x_{1}, x_{3}\right\}, X_{2}:=\left\{x_{2}, x_{4}\right\},\{i, j\}=\{1,2\}$
2. While $u \in N_{G}\left(X_{1} \cup X_{2}\right) \neq \emptyset, N_{G}\left(X_{1}\right) \cap N_{G}\left(X_{2}\right)=\emptyset$ and $N_{G}(u) \cap N_{G}\left[X_{1} \cup X_{2}\right] /$ $=\emptyset$ do

$$
\begin{aligned}
& \left\{X_{i}:=X_{i} \cup\{u\}, X_{j}:=X_{j}, i f\left|E\left(u, X_{i}\right)\right| \geq 2 ; X_{i}:=X_{i} \cup\left(N_{G}\left(X_{i}\right) \cap N_{G}[u]\right),\right. \\
& X_{j}:=X_{j}, \text { elseif } N_{G}\left(X_{i}\right) \cap N_{G}[u] \neq \emptyset ; X_{i}:=X_{i} \cup\left(N_{G}\left(X_{j}\right) \cap N_{G}(u)\right), \\
& \left.X_{j}:=X_{j} \cup\{u\}, \text { else. }\right\}
\end{aligned}
$$

The following result would play an important role in the proofs in Sects. 2 and 3.
Lemma 1 (Liu et al. [20]) Let G be a graph with $g(G)=4$ and $\left(X_{1}, X_{2}\right)$ be a C subpartition of G. Then
(1) $G\left[X_{1} \cup X_{2} \cup X_{12}\right]$ is collapsible for any non-empty set $X_{12} \subseteq$ $N_{G}\left(X_{1}\right) \cap N_{G}\left(X_{2}\right)$,
(2) if $G / \pi\left(X_{1}, X_{2}\right)$ is collapsible, then G is collapsible.

An edge cut X is essential if $G-X$ has at least two non-trivial components. A graph G is essentially k-edge-connected if G does not have an essential edge cut X with $|X|<k$.

Theorem 6 (Lai et al. [16]) Let G be a graph. If $\kappa^{\prime}(G) \geq 3$ and $c(G) \leq 8$, then G is supereulerian.

The following theorem extends Theorem 6.
Theorem 7 Let G be an essentially 3-edge-connected graph such that $\kappa^{\prime}(G) \geq 2$, $c(G) \leq 8$ and $\left|D_{2}(G)\right| \leq 1$. Then G is collapsible.

Proof By contradiction, assume that G is a counter-example with $|V(G)|$ minimized. Then G is reduced; for otherwise, the reduction G^{\prime} of G is a non-trivial counterexample with smaller order than G, a contradiction. By Theorem 4(2), G has no non-trivial collapsible subgraphs.

Besides, $\kappa(G) \geq 2$; for otherwise, each block of G is collapsible by the minimality of G if G has a cut-vertex, a contradiction.

We then claim that $g(G)=4$. If not, then by Theorem 4(3), $g(G) \geq 5$. Take a longest path $P_{0}=x_{1} x_{2} \cdots x_{l}$ of G with $d_{G}\left(x_{1}\right) \geq d_{G}\left(x_{l}\right)$. Since $\left|D_{2}(G)\right| \leq 1$, $d_{G}\left(x_{1}\right) \geq 3$, and so x_{1} has at least three neighbors in P_{0}. As $g(G) \geq 5$ and
$c(G) \leq 8, \quad\left\{x_{1} x_{5}, x_{1} x_{8}\right\} \subseteq E(G) . \quad$ Using the alternative longest path $x_{4} x_{3} x_{2} x_{1} x_{5} x_{6} \cdots x_{l}$, we get $x_{4} x_{8} \in E(G)$ by the same argument if $d_{G}\left(x_{4}\right) \geq 3$, yielding a $C_{4}=x_{1} x_{5} x_{4} x_{8} x_{1}$. This means that $D_{2}(G)=\left\{x_{4}\right\}$. Using the alternative longest path $x_{7} x_{6} x_{5} x_{4} x_{3} x_{2} x_{1} x_{8} \cdots x_{l}$, we get $x_{7} x_{3} \in E(G)$. Since $g(G) \geq 5$ and $c(G) \leq 8, E\left(x_{6}, V\left(P_{0}\right) \backslash\left\{x_{5}, x_{7}\right\}\right)=\emptyset$, and so x_{6} has a neighbor x_{6}^{\prime} outside P_{0} such that $E\left(x_{6}^{\prime}, V\left(P_{0}\right) \backslash\left\{x_{6}\right\}\right)=\emptyset$. Therefore, there is a longer path $x_{6}^{\prime \prime} x_{6}^{\prime} x_{6} x_{7} x_{3} x_{4} x_{5} x_{1} x_{8} \cdots x_{l}$ of order $l+1$ for any $x_{6}^{\prime \prime} \in N_{G}\left(x_{6}^{\prime}\right) \backslash V\left(P_{0}\right)$ than P_{0}, a contradiction.

So G has a 4-cycle $C_{4}=x_{1} x_{2} y_{1} y_{2} x_{1} \subseteq G$. As every cycle in $G / \pi\left(C_{4}\right)$ corresponds to a cycle in G, we have $c\left(G / \pi\left(C_{4}\right)\right) \leq c(G) \leq 8$. As $\left|D_{2}(G)\right| \leq 1$, $\left|D_{2}\left(G / \pi\left(C_{4}\right)\right)\right| \leq 1$. If $\kappa^{\prime}\left(G / \pi\left(C_{4}\right)\right) \geq 3$, then the minimality of G implies that $G / \pi\left(C_{4}\right)$ is collapsible. Thus by Theorem 5, G is collapsible, a contradiction. Therefore, we must have $\kappa^{\prime}\left(G / \pi\left(C_{4}\right)\right) \leq 2$. We consider the following two cases to finish our proof.
Case 1. $\kappa^{\prime}\left(G / \pi\left(C_{4}\right)\right)=1$.
Then e_{π} must be the cut-edge of $G / \pi\left(C_{4}\right)$, and so $G-E\left(C_{4}\right)$ has two components G_{1}, G_{2} such that $x_{1}, y_{1} \in V\left(G_{1}\right), x_{2}, y_{2} \in V\left(G_{2}\right)$ and $V\left(G_{1}\right) \subseteq D_{\geq 3}(G)$. As G is essentially 3-edge-connected, $V\left(C_{4}\right) \subseteq D_{\geq 3}(G)$. Therefore, we can choose longest paths $P\left(x_{i}, y_{i}\right)$ between x_{i} and y_{i} in G_{i} for $i \in\{1,2\}$. Since $g(G)=4$, $\left|E\left(P\left(x_{i}, y_{i}\right)\right)\right| \geq 2$.

We first claim that $\left|E\left(P\left(x_{1}, y_{1}\right)\right)\right| \geq 3$. Since otherwise, assume that $P\left(x_{1}, y_{1}\right)$ $=x_{1} w y_{1}$. Then w has a neighbor w^{\prime} outside $\left\{x_{1}, x_{2}\right\}$ such that $G_{1}-w$ has a path between w^{\prime} and $\left\{x_{1}, y_{1}\right\}$ since G is 2 -connected, which would produce a longer $\left(x_{1}, y_{1}\right)$-path, a contradiction.

If $\left|E\left(P\left(x_{1}, y_{1}\right)\right)\right|=3$, assume that $P\left(x_{1}, y_{1}\right)=x_{1} w_{1} w_{2} y_{1}$, then w_{1} has a neighbor w_{1}^{\prime} outside $\left\{x_{1}, w_{2}\right\}$ such that $G_{1}-w_{1}$ has no path between w_{1}^{\prime} and $\left\{w_{2}, x_{1}\right\}$ and no path of order at least 2 between w_{1}^{\prime} and y_{1} by the choice of $P\left(x_{1}, y_{1}\right)$. Hence $w_{1}^{\prime} y_{1} \in E(G)$ since G is 2-connected. By symmetry, w_{2} has a neighbor w_{2}^{\prime} such that $w_{2}^{\prime} x_{1} \in E(G)$, and so $x_{1} w_{2}^{\prime} w_{2} w_{1} w_{1}^{\prime} y_{1}$ is a longer path than $P\left(x_{1}, y_{1}\right)$, a contradiction.

This implies that $\left|E\left(P\left(x_{1}, y_{1}\right)\right)\right|=4$ and $\left|E\left(P\left(x_{2}, y_{2}\right)\right)\right|=2$ since $c(G) \leq 8$. Assume that $P\left(x_{1}, y_{1}\right)=x_{1} w_{1} w_{2} w_{3} y_{1}, P\left(x_{2}, y_{2}\right)=x_{2} w y_{2}$. Since $g(G)=4$ and by the choice of $P\left(x_{1}, y_{1}\right)$, w w has a neighbor w_{2}^{\prime} outside $V\left(P\left(x_{1}, y_{1}\right)\right)$ such that $G-w_{2}$ has no path between w_{2}^{\prime} and $\left\{w_{1}, w_{3}\right\}$ and no path of order at least 2 between w_{2}^{\prime} and $\left\{x_{1}, y_{1}\right\}$. Then $\quad\left\{w_{2}^{\prime} x_{1}, w_{2}^{\prime} y_{1}\right\} \nsubseteq E(G)$, since otherwise, $K_{3,3}^{-} \subseteq G\left[\left\{x_{1}, x_{2}\right.\right.$, $\left.\left.y_{1}, y_{2}, w, w_{2}^{\prime}\right\}\right]$, a contradiction. Then w_{2}^{\prime} has a neighbor $w_{2}^{\prime \prime}$ outside $V\left(P\left(x_{2}, y_{2}\right)\right) \cup$ $\left\{w_{2}^{\prime}\right\}$ such that $G-\left\{w_{1} w_{2}, w_{2} w_{3}\right\}$ has no path between $w_{2} w_{2}^{\prime} w_{2}^{\prime \prime}$ and C by the choice of $P\left(x_{2}, y_{2}\right)$, i.e., $\left\{w_{1} w_{2}, w_{2} w_{3}\right\}$ is an essential 2-edge-cut of G, a contradiction.
Case 2. $\quad \kappa^{\prime}\left(G / \pi\left(C_{4}\right)\right)=2$
If $G / \pi\left(C_{4}\right)$ is essentially 3-edge-connected, then $G / \pi\left(C_{4}\right)$ has a 2-vertex $u_{0} \in V\left(e_{\pi}\right)$, and so $V(C) \cap D_{2}(G) \neq \emptyset$. Then $D_{2}\left(G / \pi\left(C_{4}\right)\right)=1$, and so $G / \pi\left(C_{4}\right)$ is collapsible by the minimality of G, and hence G is collapsible by Theorem 5, a contradiction. This implies that $G / \pi\left(C_{4}\right)$ has an essential 2-edge-cut $\left\{e_{\pi}, z_{1} z_{2}\right\}$ such
that $G-V\left(C_{4}\right)$ has a cut-edge $z_{1} z_{2}$ such that $\left(G-V\left(C_{4}\right)\right)-z_{1} z_{2}$ has two components $\quad G_{1}, G_{2} \quad$ with $\quad z_{1} \in V\left(G_{1}\right), \quad z_{2} \in V\left(G_{2}\right) \quad$ and $\quad V\left(G_{1}\right) \cup\left\{x_{1}, y_{1}\right\}$ $\subseteq D_{\geq 3}(G)$. Choose longest paths $P\left(x_{i}, z_{i}\right)$ (say) between $\left\{x_{i}, y_{i}\right\}$ and z_{i} in $G\left[V\left(G_{i}\right) \cup\right.$ $\left.\left\{x_{i}, y_{i}\right\}\right]$ for $i \in\{1,2\}$.

Note that $\left\{z_{1} x_{1}, z_{1} y_{1}, z_{2} x_{2}, z_{2} y_{2}\right\} \nsubseteq E(G)$ since $K_{3,3}^{-} \nsubseteq G\left[\left\{x_{1}, y_{1}, z_{1}, x_{2}, y_{2}, z_{2}\right\}\right]$. Then $\max \left\{\left|E\left(P\left(x_{1}, z_{1}\right)\right)\right|,\left|E\left(P\left(x_{2}, z_{2}\right)\right)\right|\right\} \geq 2$. By symmetry, assume that $P\left(x_{2}, z_{2}\right)=$ $x_{2} w_{1} \cdots w_{t} z_{2}$ for some $t \geq 1$. Since $c(G) \leq 8, t \leq 2$. Suppose first that $t=1$. Then $N_{G}\left(w_{1}\right) \subseteq\left\{x_{2}, y_{2}, z_{2}\right\}$, since otherwise, w_{1} has a neighbor w_{1}^{\prime} outside $\left\{x_{2}, y_{2}, z_{2}\right\}$ such that $G-w_{1}$ has no path between w_{1}^{\prime} and $\left\{x_{2}, y_{2}, z_{2}\right\}$ by the choice of $P\left(x_{2}, z_{2}\right)$, i.e., w_{1} is a cut-vertex of G, a contradiction. Besides, $N_{G_{2}}\left(z_{2}\right) \subseteq\left\{x_{2}, y_{2}, w_{1}\right\}$. (Otherwise, since G is 2-connected and by the choice of $P\left(x_{2}, z_{2}\right), z_{2}$ has a neighbor z_{2}^{\prime} outside $\left\{x_{2}, y_{2}, w_{1}\right\}$ such that $z_{2}^{\prime} w_{1} \notin E(G)$ and $E\left(z_{2}^{\prime},\left\{x_{2}, y_{2}\right\}\right) \neq \emptyset$. By the symmetry of w_{1} and $z_{2}^{\prime}, N_{G}\left(z_{2}^{\prime}\right) \subseteq\left\{z_{2}, x_{2}, y_{2}\right\}$. Since $c(G) \leq 8,\left|E\left(P\left(x_{1}, z_{1}\right)\right)\right|=1$, i.e., $\left\{z_{1} x_{1}, z_{1} y_{1}\right\} \subseteq E(G)$. Hence $K_{3,3}^{-} \subseteq G\left[\left\{x_{1}, y_{1}, z_{1}, x_{2}, y_{2}, z_{2}, z_{2}^{\prime}\right\}\right]$, a contradiction.) Then $\left|E\left(P\left(x_{1}, z_{1}\right)\right)\right| \geq 2$ and $\left\{w_{1}, z_{2}\right\} \cap D_{2}(G) \neq \emptyset$ since $\left\{y_{2} w_{1}, y_{2} z_{2}\right\} \nsubseteq E(G)$. By the symmetry of $P\left(x_{1}, z_{1}\right)$ and $P\left(x_{2}, z_{2}\right),\left|E\left(P\left(x_{1}, z_{1}\right)\right)\right| \geq 3$ since $\left|D_{2}(G)\right| \leq 1$, and so $G\left[V\left(P\left(x_{1}, z_{1}\right) \cup P\left(x_{2}, z_{2}\right) \cup C_{4}\right)\right]$ has a cycle of order at least 9, a contradiction. Suppose now that $t=2$. Since $\quad c(G) \leq 8, \quad\left|E\left(P\left(x_{1}, z_{1}\right)\right)\right|=1 \quad$ and $\left\{z_{1} x_{1}, z_{1} y_{1}\right\} \subseteq E(G)$. Then $d_{G}\left(w_{1}\right)=2$. (Otherwise, assume that w_{1} has a neighbor w_{1}^{\prime}. By the choice of $P\left(x_{2}, z_{2}\right)$ and since G is 2-connected, $w_{1}^{\prime} z_{2} \in E(G)$. Note that $\left\{w_{2}, w_{1}^{\prime}\right\} \nsubseteq D_{2}(G)$. By symmetry, either w_{2} has a neighbor w_{2}^{\prime} outside $\left\{x_{2}, y_{2}, z_{2}, w_{1}^{\prime}\right\}$ such that $G-w_{2}$ has no path between w_{2}^{\prime} and $\left\{x_{2}, y_{2}, z_{2}, w_{1}, w_{1}^{\prime}\right\}$ by the choice of $P\left(x_{2}, z_{2}\right)$ or $E\left(w_{2}^{\prime},\left\{x_{2}, y_{2}, z_{2}, w_{1}^{\prime}\right\}\right) \neq \emptyset$ and $G\left[\left\{x_{1}, y_{1}, z_{1}\right.\right.$, $\left.\left.x_{2}, y_{2}, z_{2}, w_{1}, w_{2}, w_{1}^{\prime}, w_{2}^{\prime}\right\}\right]$ is collapsible, a contradiction.) Hence w_{2} has a neighbor w_{2}^{\prime} outside $\left\{x_{2}, y_{2}, z_{2}\right\}$ such that $G-w_{2}$ has no path between w_{2}^{\prime} and $\left\{x_{2}, y_{2} . z_{2}, w_{1}\right\}$ by the choice of $P\left(x_{2}, z_{2}\right)$ and $\left|D_{2}(G)\right| \leq 1$, a contradiction.

Theorem 8 (Ma et al. [22]) Let G be a 3-edge-connected graph. Then each of the following holds.
(1) If $c(G) \leq 11$, then G is supereulerian or G is contractible to $P(10)$.
(2) If G is reduced, $g(G)=4$ and $c(G) \leq 11$, then there is a 4 -cycle C such that $\kappa^{\prime}(G / \pi(C)) \geq 3$.
(3) If G is reduced, $|V(G)| \geq 14$ and $g(G) \geq 5$, then $c(G) \geq 12$.

The following theorem extends Theorem 8(1) and will play an important role in the proof of Theorem 2.

Theorem 9 Let G be a 2-connected 3-edge-connected graph with $c(G) \leq 11$ and G^{\prime} be the reduction of G. Then either G is collapsible or $G^{\prime} \cong P(10)$.

Proof By contradiction, assume that G is a counter-example with $|V(G)|$ minimized. Then G is reduced. Otherwise, G has a collapsible subgraph H. Then G / H is 2-edgeconnected, 3- edge-connected with $c(G / H) \leq 11$ and v_{H} is the contraction image of H. If $\kappa(G / H) \geq 2$, then either G / H is collapsible, and then G is collapsible or the reduction G^{\prime} of G / H is isomorphic to $P(10)$, a contradiction. If $\kappa(G / H)=1$, then
the reduction G^{\prime} of G / H has at least two blocks $B_{1} \cong B_{2} \cong P(10)$ sharing one cutvertex v_{H}. Since $\kappa(G) \geq 2,\left|N_{G}\left(V\left(B_{1}\right) \backslash\left\{v_{H}\right\}\right) \cap V(H)\right| \geq 2$ and $\mid N_{G}\left(V\left(B_{2}\right) \backslash\left\{v_{H}\right\}\right)$ $\cap V(H) \mid \geq 2$. Hence G has a cycle of order at least 18, contradicting $c(G) \leq 12$.

Furthermore, $g(G) \geq 5$. If not, then G has a 4 -cycle $C_{0}=x_{1} y_{1} x_{2} y_{2} x_{1}$ such that $\kappa^{\prime}\left(G / \pi\left(C_{0}\right)\right) \geq 3$ by Theorem 8(2). Let G_{1}^{\prime} be the reduction of $G / \pi\left(C_{0}\right)$ and $e_{\pi}=x y$. Then $\left|V\left(G_{1}^{\prime}\right)\right| \leq\left|V\left(G / \pi\left(C_{0}\right)\right)\right|<|V(G)|, c\left(G_{1}^{\prime}\right) \leq c\left(G / \pi\left(C_{0}\right)\right) \leq 11$. The minimality of $|V(G)|$ implies that each block of G_{1}^{\prime} is isomorphic to $P(10)$. If $\kappa\left(G / \pi\left(C_{0}\right)\right) \geq 2$, then either $G / \pi\left(C_{0}\right) \cong G_{1}^{\prime} \cong P(10)$ and $G \cong P^{3}(12)$ (see Fig. 1), and hence $c(G)=12$, or G has a subgraph H such that $V\left(C_{4}\right) \cap V(H)=\left\{x_{1}, x_{2}\right\}$ (or $\left\{y_{1}, y_{2}\right\}$), $H /\left\{x_{1}, x_{2}\right\}$ (or $H /\left\{y_{1}, y_{2}\right\}$) is collapsible and $\left(G / \pi\left(C_{0}\right)\right) / H \cong P(10)$, and hence $c(G) \geq c\left(P^{3}(12)\right) \geq 12$, a contradiction. Then $G / \pi\left(C_{0}\right)$ has two blocks B_{1}, B_{2} such that $e_{\pi} \in E\left(B_{1}\right)$ and $V\left(B_{1}\right) \cap V\left(B_{2}\right)=\{x\}$ (or $\{y\}$). This implies that G has a subgraph H such that $C_{0} \subseteq H$ and the reduction of $H / \pi\left(C_{0}\right)\left(=B_{1}\right)$ is isomorphic to $P(10)$. Then $c(G) \geq c(H) \geq 12$.

As $c(G) \leq 11$ and $g(G) \geq 5$, by Theorem $8(3),|V(G)| \leq 13$. By Theorem 4(6), $G^{\prime} \in\left\{P^{1}(12), P^{2}(12)\right\}$. Therefore, G^{\prime} has a 12 -cycle (see Fig. 1), contradicting $c(G) \leq 11$.

3 Proof of Theorem 3

Before presenting the proof, we need to prepare some results. The graphs $K_{2,3}^{\prime}, P(10)(e)$ are depicted in Fig. 1.

Theorem 10 It holds the following.
(1) (Li et al. [18]) Every connected graph G with $|V(G)| \leq 12,\left|D_{1}(G)\right|=0$, $\left|D_{2}(G)\right| \leq 1$ either is supereulerian with 12 vertices or the reduction of G is in $\left\{K_{1}, K_{2}, P_{3}, K_{2,3}, K_{2,3}^{\prime}, P(10), P(10)(e)\right\}$.
(2) (Wang [25]) Every 3-edge-connected graph G with $|V(G)| \leq 8$ other than W_{8} is strongly spanning trailable.
(3) (Li et al. [18]) Let G be a 3-edge-connected graph with blocks B_{1}, \ldots, B_{k}. Then G is strongly spanning trailable if and only if B_{i} is strongly spanning trailable for every $i=1, \ldots, k$.

Let \mathcal{W}_{0} be the set of graphs obtained from W_{8} by subdividing one edge of W_{8} and then adding at least one edge between the new vertex and exactly one of its neighbor.

Corollary 1 Every 3-edge-connected graph G with $|V(G)| \leq 9$ other than a member of $\left\{W_{8}\right\} \cup \mathcal{W}_{0}$ is strongly spanning trailable.

Proof Let G be a counter-example. Then $|V(G)|=9$ by Theorem 10(2) and for some pair of edges $e_{1}, e_{2}, G\left(e_{1}, e_{2}\right)$ does not have a spanning $\left(v_{e_{1}}, v_{e_{2}}\right)$-trail. Let H be the graph obtained from $G\left(e_{1}, e_{2}\right)$ by adding a new vertex z and two edges $z v_{e_{1}}, z v_{e_{2}}$. Then H is 2-edge-connected, essentially 3 -edge-connected and nonsupereulerian with 12 vertices if $e_{1} \neq e_{2}$ or 11 vertices if $e_{1}=e_{2}$. Besides, the reduction H^{\prime} of H is

2-edge-connected, essentially 3-edge-connected and nonsupereulerian with $\left|D_{2}\left(H^{\prime}\right)\right| \leq 1$. By Theorem $10(1), H^{\prime} \in\{P(10), P(10)(e)\}$. If $H^{\prime} \cong P(10)$, then H has a collapsible subgraph H_{1} containing z. Since z is not in a triangle, $\left|V\left(H_{1}\right)\right| \geq 4$, and then $|V(H)| \geq 13$, a contradiction. Hence $H^{\prime} \cong P(10)(e)$. If $H^{\prime}=H$, then $H=W_{8}$, a contradiction. If $H^{\prime} \neq H$, then H has a collapsible subgraph H_{1} with $\left|V\left(H_{1}\right)\right|=2$ since $|V(H)|=12$, and then $H \in \mathcal{W}_{0}$, a contradiction.

Let G be a graph and $S \subseteq V(G)$ be a subset with $|S|$ even. A subgraph $L_{S} \subseteq G$ is an S-join if $O\left(L_{S}\right)=S$. Thus a graph G is collapsible if for every even vertex subset S, G has a spanning connected S-join.

Lemma 2 Let $G \cong K_{2, t}$ for integer $t \geq 2$ and $S \subseteq V(G)$ be an even subset such that $S \cap D_{2}(G) \neq \emptyset$. Then for any $\left\{u_{1}, u_{2}\right\} \subseteq V(G)$, exactly one of the following holds,
(1) $t=2, S=\left\{u_{1}, u_{2}\right\}$ and $u_{1} u_{2} \notin E(G)$,
(2) G has a spanning S-join L such that either L is connected (if $D_{2}(G) \nsubseteq S$) or L has exactly two components L_{1}, L_{2} such that $u_{1} \in V\left(L_{1}\right), u_{2} \in V\left(L_{2}\right)$ (if $\left.D_{2}(G) \subseteq S\right)$.

Proof Let w_{1}, w_{2} be two nonadjacent vertices of degree t in G and v_{1}, \ldots, v_{t} be the other vertices of G. Let $V_{1}=\left\{v_{1}, \ldots, v_{t}\right\} \cap S$ and $V_{2}=\left\{v_{1}, \ldots, v_{t}\right\} \backslash S$. Let $\{i, j\}=\{1,2\}$.

Suppose that $t=2$. Then, without loss of generality, either $u_{1}=v_{1}, u_{2}=v_{2}$ or $u_{1}=v_{1}, u_{2}=w_{1}$. If $S=\left\{w_{1}, w_{2}, w_{3}, w_{4}\right\}$, then set $L_{1}=v_{1} w_{2}, L_{2}=v_{2} w_{1}$. If $S=\left\{w_{1}, w_{2}\right\}$, then set $L_{1}=v_{1}, L_{2}=w_{1} v_{2} w_{2}$. If $S=\left\{v_{1}, v_{2}\right\}$, then either $u_{1}=$ $v_{1}, u_{2}=v_{2}$ and (i) holds, or $u_{1}=v_{1}, u_{2}=w_{1}$ and set $L_{1}=w_{1}, L_{2}=v_{1} w_{2} v_{2}$. We then assume $S=\left\{v_{1}, w_{1}\right\}$, then set $L=v_{i} w_{i} v_{j} w_{j}$. Therefore, we then assume that $t \geq 3$. Then $V_{1} \neq \emptyset$.

Case 1. $\quad V_{2}=\emptyset$.
It suffices to construct a spanning S-join L of G that has exactly two components L_{1}, L_{2} such that $\left\{u_{1}, u_{2}\right\} \cap V\left(L_{1}\right)=\left\{u_{1}\right\}$. If t is odd, then $\left\{w_{1}, w_{2}\right\} \cap S=\left\{w_{i}\right\}$ and V_{1} has a partition $\left(V_{1}^{1}, V_{1}^{2}\right)$ such that $\left|V_{1}^{1}\right|$ is odd, $\left|V_{1}^{2}\right|$ is even, $\left(V_{1}^{1} \cup\left\{w_{i}\right\}\right)$ $\cap\left\{u_{1}, u_{2}\right\}=\left\{u_{1}\right\}$, and hence set $L_{1}=G\left[E\left(w_{i}, V_{1}^{1}\right)\right], L_{2}=G\left[E\left(w_{j}, V_{1}^{2}\right)\right]$.

If t is even, then either $\left\{w_{1}, w_{2}\right\} \subseteq S$ or $\left\{w_{1}, w_{2}\right\} \cap S=\emptyset$. If $\left\{w_{1}, w_{2}\right\} \subseteq S$, then V_{1} has a partition $\left(V_{1}^{3}, V_{1}^{4}\right)$ such that $\left|V_{1}^{3}\right|,\left|V_{1}^{4}\right|$ are odd and $\left(V_{1}^{3} \cup\left\{w_{1}\right\}\right)$ $\cap\left\{u_{1}, u_{2}\right\}=\left\{u_{1}\right\}$, and hence set $L_{1}=G\left[E\left(w_{1}, V_{1}^{3}\right)\right], L_{2}=G\left[E\left(w_{2}, V_{1}^{4}\right)\right]$. If $\left\{w_{1}, w_{2}\right\} \cap S=\emptyset$, then V_{1} has a partition $\left(V_{1}^{5}, V_{1}^{6}\right)$ such that $\left|V_{1}^{5}\right|,\left|V_{1}^{6}\right|$ are even and $\left(V_{1}^{5} \cup\left\{w_{1}\right\}\right) \cap\left\{u_{1}, u_{2}\right\}=\left\{u_{1}\right\}$, and set $L_{1}=G\left[E\left(w_{1}, V_{1}^{5}\right)\right], L_{2}=G\left[E\left(w_{2}, V_{1}^{6}\right)\right]$.
Case 2. $\quad V_{2} \neq \emptyset$.
Then V_{1} has a partition $\left(V_{1}^{7}, V_{1}^{8}\right)$ such that $\left|V_{1}^{8}\right|$ is odd. It suffices to construct a spanning connected S-join L of G.

Suppose first that t is odd. If $\left\{w_{1}, w_{2}\right\} \subseteq S$, then $\left|V_{1}\right|$ is even, $\left|V_{2}\right|$ is odd, and set $L=G-E\left(w_{2}, V_{1}\right)$. If $\left\{w_{1}, w_{2}\right\} \cap S=\left\{w_{i}\right\}$, then $\left|V_{1}\right|$ is odd, $\left|V_{2}\right|$ is even, and set $L=G-E\left(w_{j}, V_{1}\right)$. If $\left\{w_{1}, w_{2}\right\} \cap S=\emptyset$, then $\left|V_{1}\right|$ is even, $\left|V_{1}^{7}\right|,\left|V_{2}\right|$ are odd, and set
$L=G-\left(E\left(w_{1}, V_{1}^{8}\right) \cup E\left(w_{2}, V_{1}^{7}\right)\right)$.
Suppose then t is even. If $\left\{w_{1}, w_{2}\right\} \subseteq S$, then $\left|V_{1}\right|,\left|V_{2}\right|$ are even, $\left|V_{1}^{7}\right|$ is odd, and set $L=G-\left(E\left(w_{1}, V_{1}^{8}\right) \cup E\left(w_{2}, V_{1}^{7}\right)\right)$. If $\left\{w_{1}, w_{2}\right\} \cap S=\left\{w_{i}\right\}$, then $\left|V_{1}\right|,\left|V_{2}\right|$ are odd, $\left|V_{1}^{7}\right|$ is even, and set $L=G-\left(E\left(w_{i}, V_{1}^{7}\right) \cup E\left(w_{j}, V_{1}^{8}\right)\right)$. If $\left\{w_{1}, w_{2}\right\} \cap S=\emptyset$, then $\left|V_{1}\right|,\left|V_{2}\right|$ are even, and set $L=G-E\left(w_{2}, V_{1}\right)$.

Lemma 3 Let G be a graph and H be a subgraph of G such that H has 2 edgedisjoint spanning trees. If either H is essentially 3-edge-connected, or G is 3-edgeconnected, then
(1) if G is strongly spanning trailable, then G / H is strongly spanning trailable,
(2) if G / H is strongly spanning trailable, then either G is strongly spanning trailable, or G has only one pair edges e, e^{\prime} such that $H=G\left[\left\{e, e^{\prime}\right\}\right] \cong C_{2}$ and $G\left(e, e^{\prime}\right)$ has no spanning $\left(v_{e}, v_{e^{\prime}}\right)$-trail.

Proof

(1) Suppose that G is strongly spanning trailable and let e_{1}, e_{2} be two edges in $G /$ H. As $e_{1}, e_{2} \in E(G)-E(H), G\left(e_{1}, e_{2}\right)$ has a spanning $\left(v_{e_{1}}, v_{e_{2}}\right)$-trail T. Since $G / H\left(e_{1}, e_{2}\right)=G\left(e_{1}, e_{2}\right) / H, T / E(H) \cap E(T)$ is a spanning $\left(v_{e_{1}}, v_{e_{2}}\right)$-trail of G / H. Hence by definition, G / H is strongly spanning trailable.
(2) Assume that G / H is strongly spanning trailable, and let v_{H} denote the vertex in G / H onto which H is contracted. For any $e_{1}, e_{2} \in E(G)$, we shall show that $G\left(e_{1}, e_{2}\right)$ always has a spanning $\left(v_{e_{1}}, v_{e_{2}}\right)$-trail. If $\left\{e_{1}, e_{2}\right\} \cap E(H)=\emptyset$, then $e_{1}, e_{2} \in E(G / H)$. As G / H is strongly spanning trailable, G / H has a spanning $\left(v_{e_{1}}, v_{e_{2}}\right)$-trail T_{1} containing the vertex v_{H}. Let $X_{1}=V(H) \cap O\left(G\left[E\left(T_{1}\right)\right]\right.$. Then since v_{H} has even degree in $T_{1},\left|X_{1}\right|$ is even. Then H has a spanning connected X_{1}-join L_{1}. It follows by definition that $G\left[E\left(T_{1}\right) \cup E\left(L_{1}\right)\right]$ is a spanning $\left(v_{e_{1}}, v_{e_{2}}\right)$-trail in G.

Suppose next that $\left|\left\{e_{1}, e_{2}\right\} \cap E(H)\right|=1$, and by symmetry we may assume that $e_{1} \in E(H)$ and $e_{2} \notin E(H)$. Since H has 2-edge-disjoint spanning trees, $H\left(e_{1}\right)$ is collapsible. Let $e_{1}^{\prime} \neq e_{2}$ be an edge in G / H incident with v_{H}. Then $e_{1}^{\prime}, e_{2} \in E(G / H)$. Since G / H is strongly spanning trailable, $G / H\left(e_{1}^{\prime}, e_{2}\right)$ has a spanning $\left(v_{e_{1}^{\prime}}, v_{e_{2}}\right)$-trail T_{2}^{\prime}. Since e_{1}^{\prime} is incident with v_{H}, T_{2}^{\prime} can be adjusted to a spanning $\left(v_{H}, v_{e_{2}}\right)$-trail T_{2} in $G / H\left(e_{2}\right)$, where

$$
T_{2}=\left\{\begin{array}{cc}
T_{2}^{\prime}-v_{e_{1}^{\prime}} v_{H} & \text { if } v_{e_{1}^{\prime}} v_{H} \in E\left(T_{2}^{\prime}\right) \\
T_{2}^{\prime}-v_{e_{1}^{\prime}}+e_{1}^{\prime} & \text { if } v_{e_{1}^{\prime}} v_{H} \notin E\left(T_{2}^{\prime}\right) .
\end{array}\right.
$$

Let $X_{2}=V(H) \cap O\left(G\left[E\left(T_{2}\right)\right]\right.$. Then since v_{H} has odd degree in $T_{2},\left|X_{2}\right|$ is odd, and so $X_{2}^{\prime}=X_{2} \triangle\left\{v_{e_{1}}\right\}$ is an even subset of $V\left(H\left(e_{1}\right)\right)$. Since $H\left(e_{1}\right)$ is collapsible, $H\left(e_{1}\right)$ has a spanning connected X_{2}^{\prime}-join. It follows by definition that $G\left[E\left(T_{2}\right) \cup E\left(L_{2}\right)\right]$ is a spanning $\left(v_{e_{1}}, v_{e_{2}}\right)$-trail in G.

Therefore, we assume that $\left\{e_{1}, e_{2}\right\} \subseteq E(H)$. If $H\left(e_{1}, e_{2}\right)$ is collapsible, then since G / H is strongly spanning trailable, G / H has a spanning closed trail T_{3}. Let $X_{3}=V(H) \cap O\left(G\left[E\left(T_{3}\right)\right]\right)$. Since v_{H} has even degree in $T_{3},\left|X_{3}\right|$ is even, and so
$X_{3}^{\prime}=X_{3} \cup\left\{v_{e_{1}}, v_{e_{2}}\right\}$ is also an even subset. Since $H\left(e_{1}, e_{2}\right)$ is collapsible, $H\left(e_{1}, e_{2}\right)$ has a spanning connected X_{3}^{\prime}-join L_{3}. It follows by definition that $G\left[E\left(T_{3}\right) \cup E\left(L_{3}\right)\right]$ is a spanning $\left(v_{e_{1}}, v_{e_{2}}\right)$-trail in G.

Thus we may assume that $H\left(e_{1}, e_{2}\right)$ is not collapsible. If $F\left(H\left(e_{1}, e_{2}\right)\right) \leq 1$, then $H\left(e_{1}, e_{2}\right)$ is collapsible. Hence $F\left(H\left(e_{1}, e_{2}\right)\right)=2$. Let H^{\prime} be the reduction of $H\left(e_{1}, e_{2}\right)$. Thus there exists a subgraph J of $H\left(e_{1}, e_{2}\right)$ such that each component of J is collapsible and such that $H\left(e_{1}, e_{2}\right) / J=H^{\prime}$. By Theorem 4(5), $H^{\prime}=K_{2, t}$ for some $t \geq 2$. If $\left|\left\{v_{e_{1}}, v_{e_{2}}\right\} \cap V\left(H^{\prime}\right)\right| \leq 1$, then $F\left(H^{\prime}\right) \leq F(H)+1 \leq 1$, contrary to the fact $H^{\prime}=K_{2, t}$. Hence $v_{e_{1}}, v_{e_{2}}$ must be two distinct vertices in $D_{2}\left(H^{\prime}\right)$, and each of $\left\{v_{e_{1}}, v_{e_{2}}\right\}$ is not incident with any edges in $E(G)$. As G / H is strongly spanning trailable, G / H has a spanning closed trail T_{4}. Let $X_{4}=V(H) \cap O\left(G\left[E\left(T_{4}\right)\right]\right)$. Since v_{H} has even degree in $T_{4},\left|X_{4}\right|$ is even, and so $X_{4}^{\prime}=X_{4} \cup\left\{v_{e_{1}}, v_{e_{2}}\right\}$ is also an even subset. Define $X^{\prime \prime}=\left\{v \in V\left(H^{\prime}\right)\right.$: the preimage of v in $H\left(e_{1}, e_{2}\right)$ contains an odd number of vertices in $\left.X_{4}^{\prime}\right\}$. Then $\left|X^{\prime \prime}\right|$ is even with $v_{e_{1}}, v_{e_{2}} \in X^{\prime \prime}$. If $t \geq 3$, then by Lemma 2, H^{\prime} has a spanning $X^{\prime \prime}$-join L such that either L is connected (if $\left.D_{2}\left(H^{\prime}\right) \nsubseteq X^{\prime \prime}\right)$, or L has exactly two components L_{1} and L_{2} with the preimage of L_{i} in $H\left(e_{1}, e_{2}\right)$ containing u_{i} for $i \in\{1,2\}$ (if $D_{2}\left(H^{\prime}\right) \subseteq X^{\prime \prime}$). Note that if $D_{2}\left(H^{\prime}\right) \subseteq X^{\prime \prime}$, then there exist vertices $u_{1}, u_{2} \in V\left(H\left(e_{1}, e_{2}\right)\right)$ such that u_{1}, u_{2} are in the same component of $G\left[E\left(T_{4}\right)\right]$ and such that u_{1} and u_{2} are contained in different vertices of H^{\prime}. It happens that $G / J\left[E\left(T_{4}\right) \cup E(L)\right]$ is a spanning $\left(v_{e_{1}}, v_{e_{2}}\right)$-trail of G / J. Since each component of J is collapsible, $G / J\left[E\left(T_{4}\right) \cup E(L)\right]$ can be lifted to a spanning $\left(v_{e_{1}}, v_{e_{2}}\right)$-trail of G by replacing each vertex $v \in V\left(H^{\prime}\right)$ by a spanning connected subgraph of its preimage in $H\left(e_{1}, e_{2}\right)$. We then assume that $t=2$ and $H^{\prime}=u_{1} v_{e_{1}} u_{2} v_{e_{2}} u_{1}$. Then $\quad\left\{e, e^{\prime}\right\}=\left\{e_{1}, e_{2}\right\}=\left\{u_{1} u_{2}, u_{1} u_{2}\right\} \quad$ and $\quad H=$ $G\left[\left\{e, e^{\prime}\right\}\right] \cong C_{2}$.

Let $P(10)+e$ be a graph obtained from the Petersen graph $P(10)$ by adding an additional edge e between two adjacent vertices x, y. In fact, $e, x y$ are multiple edges. Then $c(P(10)+e)=9$. By Corollary $1,(P(10)+e) /\{e, x y\}$ is strongly spanning trailable. On the other hand, $(P(10)+e)(e, x y)$ has no spanning $\left(v_{e}, v_{x y}\right)$ trail. This implies that the condition $c(G) \leq 8$ in Lemma 4 is sharp.

Lemma 4 Let G be a 3 -edge-connected graph with $c(G) \leq 8$. If G has a subgraph H such that H has 2 edge-disjoint spanning trees, then G / H is strongly spanning trailable if and only if G is strongly spanning trailable.

Proof By Lemma 3(2), assume that G / H is strongly spanning trailable, it suffices to prove that for one pair edges e_{1}, e_{2} of G such that $H=G\left[\left\{e_{1}, e_{2}\right\}\right] \cong C_{2}, G\left(e_{1}, e_{2}\right)$ has a spanning $\left(v_{e_{1}}, v_{e_{2}}\right)$-trail. Let G be a counter-example with $|V(G)|$ minimized. By Theorem 10(3), G is 2 -connected. Furthermore, $G-\left\{e_{1}, e_{2}\right\}$ is reduced. If not, assume that $G-\left\{e_{1}, e_{2}\right\}$ has a nontrivial collapsible subgraph H_{1}. As $e_{1}, e_{2} \notin$ $E\left(H_{1}\right)$ and by the definition of contractions, $G / H_{1}\left(e_{1}, e_{2}\right)=G\left(e_{1}, e_{2}\right) / H_{1}$. By the choice of G and as $\left|V\left(G / H_{1}\right)\right|<|V(G)|, G / H_{1}$ is strongly spanning trailable, and so $G\left(e_{1}, e_{2}\right) / H_{1}=G / H_{1}\left(e_{1}, e_{2}\right)$ has a spanning $\left(v_{e_{1}}, v_{e_{2}}\right)$-trail. Since H_{1} is collapsible, it follows that $G\left(e_{1}, e_{2}\right)$ also has a spanning $\left(v_{e_{1}}, v_{e_{2}}\right)$-trail, a contradiction.

Assume that $\left\{e_{1}, e_{2}\right\}=\left\{x_{1} x_{2}, x_{2} x_{1}\right\}$. If $G-e_{1}$ has an essential 2-edge-cut $\left\{x_{1} x_{2}, u v\right\}$ for some $u v \in E(G)$, then $G-\left\{x_{1}, x_{2}\right\}-u v$ has two components F_{1}, F_{2}
such that $u \in V\left(F_{1}\right), v \in V\left(F_{2}\right)$ and $E\left(x_{1}, F_{2}\right)=E\left(x_{2}, F_{1}\right)=\emptyset$. Since G is 3-edgeconnected, $\left|N_{G}\left(x_{1}\right) \cap V\left(F_{1}\right)\right| \geq 2$ and $\left|N_{G}\left(x_{2}\right) \cap V\left(F_{2}\right)\right| \geq 2$. Choose longest paths $P_{1}\left(u_{1}, u\right)$ between $N_{G}\left(x_{1}\right) \cap V\left(F_{1}\right)$ and u in F_{1} and $P_{2}\left(v_{1}, v\right)$ between $N_{G}\left(x_{2}\right) \cap$ $V\left(F_{2}\right)$ and v in F_{2}. Then $\left|E\left(P_{1}\left(u_{1}, u\right)\right)\right| \geq 1$. Assume that $P_{1}\left(u_{1}, u\right)=u_{1} \cdots u_{s} u$. If $s \leq 2$, then u_{1} has a neighbor u_{1}^{\prime} outside $V\left(P_{1}\left(u_{1}, u\right)\right)$. By the choice of $P_{1}\left(u_{1}, u\right)$, either $G-u_{1}$ has no path between u_{1}^{\prime} and $\left\{x_{1}, u\right\}$ (if $s=1$) or $G-\left\{u_{1}, u\right\}$ has no path between u_{1}^{\prime} and $\left\{x_{1}, u\right\}$ and $G-u_{1}$ has no path of order at least 2 between u_{1}^{\prime} and u (if $s=2$). Then $s \geq 2$ and if $s=2$, then $u_{1}^{\prime} u \in E(G)$ and u_{1}^{\prime} has a neighbor $u_{1}^{\prime \prime}$ such that $G-u_{1}^{\prime}$ has no path between $u_{1}^{\prime \prime}$ and $\left\{x_{1}, u_{1}, u_{2}, u\right\}$, i.e., u_{1}^{\prime} is a cut-vertex, a contradiction. Therefore $s \geq 3$, i.e., $\quad\left|E\left(P_{1}\left(u_{1}, u\right)\right)\right| \geq 3$. By symmetry, $\left|E\left(P_{2}\left(v_{1}, v\right)\right)\right| \geq 3$. Then $x_{1} u_{1} P_{1}\left(u_{1}, u\right) u v P_{2}\left(v_{1}, v\right) v_{1} x_{2} x_{1}$ is a cycle of order at least 10, a contradiction.

Hence $G-e_{1}$ is essentially 3-edge-connected. Note that $c\left(G-e_{1}\right) \leq c(G) \leq 8$ and $\left|V_{\leq 2}\left(G-e_{1}\right)\right|=\left|V_{2}\left(G-e_{1}\right)\right| \leq 1$. Then $G-e_{1}$ is collapsible by Theorem 7 . Let G_{1} be the graph obtained from $G\left(e_{1}, e_{2}\right)$ by adding an additional vertex v and adding edges $v v_{e_{1}}, v v_{e_{2}}$. Note that there is a C-subpartition $\left(\left\{x_{1}, v\right\},\left\{x_{2}, v_{e_{1}}, v_{e_{2}}\right\}\right)$ such that $G_{1} / \pi\left(\left\{x_{1}, v\right\},\left\{x_{2}, v_{e_{1}}, v_{e_{2}}\right\}\right) \cong G-e_{1}$. Then G_{1} is collapsible and also is supereulerian by Lemma $1(2)$. Then G_{1} has a closed spanning trail T_{0} such that $T_{0}-v$ is a spanning $\left(v_{e_{1}}, v_{e_{2}}\right)$-trail of $G\left(e_{1}, e_{2}\right)$.

Proof of Theorem 3 Let G be a counterexample with $|V(G)|$ minimized. By Corollary $1,|V(G)| \geq 10$. If G has a 2 -cycle C_{0}, then the minimality implies that G / C_{0} is strongly spanning trailable. Since $F\left(C_{0}\right)=0$ and by Lemma 4, G is strongly spanning trailable. Then $g(G) \geq 3$. Note that G has edges e_{1}, e_{2} (or possibly $\left.e_{1}=e_{2}\right)$ such that $G\left(e_{1}, e_{2}\right)$ has no spanning $\left(v_{e_{1}}, v_{e_{2}}\right)$-trail.

Claim 1. $G-\left\{e_{1}, e_{2}\right\}$ is reduced.
Proof By contradiction, assume that $G-\left\{e_{1}, e_{2}\right\}$ has a nontrivial collapsible subgraph H_{1}. Then as $e_{1}, e_{2} \notin E\left(H_{1}\right)$ and by the definition of contractions, $G / H_{1}\left(e_{1}, e_{2}\right)=G\left(e_{1}, e_{2}\right) / H_{1}$. By the choice of G and as $\left|V\left(G / H_{1}\right)\right|<|V(G)|, G / H_{1}$ is strongly spanning trailable, and so $G\left(e_{1}, e_{2}\right) / H_{1}=G / H_{1}\left(e_{1}, e_{2}\right)$ has a spanning ($v_{e_{1}}, v_{e_{2}}$)-trail. Since H_{1} is collapsible, it follows that $G\left(e_{1}, e_{2}\right)$ also has a spanning $\left(v_{e_{1}}, v_{e_{2}}\right)$-trail, a contradiction.

Claim 2.For any connected subgraph H containing $e_{1}, e_{2},|E(H)| \leq 2|V(H)|-3$.
Proof By Claim 1, $H_{1}=H-\left\{e_{1}, e_{2}\right\}$ is reduced. By Theorem 4(4), $F\left(H_{1}\right)=2|V(H)|-(|E(H)|-2)-2$. By Lemma $3(2), \quad F(H) \geq 1$. Then $F\left(H_{1}\right) \geq F(H)+2 \geq 3$ and $|E(H)| \leq 2|V(H)|-3$.

Since G is 2 -connected, G has a cycle $C=x_{1} x_{2} \cdots x_{l} x_{1}$ containing e_{1}, e_{2} with l maximized. Then $3 \leq l \leq 8$. Since $\kappa(G) \geq 2$ and $V(G)-V(C) \neq \emptyset$, there exists a maximum path $P_{0}=u_{1} u_{2} \cdots u_{t}$ in $G-V(C)$ such that $N_{G}\left(u_{1}\right) \cap V(C) \neq$ $\emptyset, N_{G}\left(u_{t}\right) \cap V(C) \neq \emptyset$ and $\left|N_{G}\left(\left\{u_{1}, u_{2}\right\}\right) \cap V(C)\right| \geq 2$. Let $V_{0}=V(C) \cup V\left(P_{0}\right)$.

Claim 3.
(1) If $t \leq 2$, then $N_{G}\left(P\left(u_{1}, u_{t}\right)\right) \subseteq V(C)$,
(2) if $t=3$, then $N_{G}\left(\left\{u_{1}, u_{3}\right\}\right) \subseteq V(C) \cup\left\{u_{2}\right\}$ and either $N_{G}\left(u_{2}\right) \subseteq V(C) \cup$ $\left\{u_{1}, u_{3}\right\}$ or $N_{G}\left(u_{2}^{\prime}\right) \subseteq V(C)$ for any $u_{2}^{\prime} \in N_{G}\left(u_{2}\right) \backslash\left\{u_{1}, u_{3}\right\}$.

Proof

(1) It is true for $t=1$. We then assume that $t=2$. Without loss of generality, assume that u_{2} has a neighbor u_{2}^{\prime} outside V_{0}. By the choice of $P_{0}, N_{G}\left(u_{2}^{\prime}\right) \cap$ $V_{0} \subseteq\left\{u_{2}, x_{1}\right\} \quad$ if $\quad\left|N_{G}\left(u_{1}\right) \cap V(C)\right|=1 \quad$ or $\quad N_{G}\left(u_{2}^{\prime}\right) \cap V_{0}=\left\{u_{2}\right\} \quad$ if $\left|N_{G}\left(u_{1}\right) \cap V(C)\right| \geq 2$. Then $\left|N_{G}\left(u_{2}^{\prime}\right) \cap V_{0}\right| \leq 2$, and so u_{2}^{\prime} has a neighbor $u_{2}^{\prime \prime}$ outside V_{0}. By the choice of $P_{0}, G-\left\{u_{2}, u_{2}^{\prime}\right\}$ has no path between $u_{2}^{\prime \prime}$ and $V_{0} \backslash\left\{u_{2}\right\}$, and so $G-u_{2}^{\prime}$ has a path between u_{2} and $u_{2}^{\prime \prime}$, and hence $G-u_{2}$ has no path between $\left\{u_{2}^{\prime}, u_{2}^{\prime \prime}\right\}$ and $V_{0} \backslash\left\{u_{2}\right\}$, which means that u_{2} is a cut-vertex of G, a contradiction.
(2) Without loss of generality, assume that u_{3} has a neighbor u_{3}^{\prime} outside V_{0}. By the choice of P_{0}, either $N_{G}\left(u_{3}^{\prime}\right) \cap V_{0} \subseteq\left\{u_{3}, x_{1}\right\}$ or $N_{G}\left(u_{3}^{\prime}\right) \cap V_{0} \subseteq\left\{u_{1}, u_{3}\right\}$. Then u_{3}^{\prime} has a neighbor $u_{3}^{\prime \prime}$ outside V_{0} such that $N_{G}\left(u_{3}^{\prime \prime}\right) \cap V_{0} \subseteq\left\{x_{1}\right\}$. Then $u_{3}^{\prime \prime}$ has a neighbor $u_{3}^{\prime \prime \prime}$ outside $V_{0} \cup\left\{u_{3}, u_{3}^{\prime}, u_{3}^{\prime \prime}\right\}$ such that $G-\left\{u_{3}^{\prime}, u_{3}^{\prime \prime}\right\}$ has no path between $u_{3}^{\prime \prime \prime}$ and $V_{0} \backslash\left\{u_{3}\right\}$. Since G is 2-connected, $G-u_{3}^{\prime \prime}$ has a path between $u_{3}^{\prime \prime \prime}$ and $\left\{u_{3}, u_{3}^{\prime}\right\}$. By the choice of $P_{0}, G-u_{3}$ has no path between $\left\{u_{3}^{\prime}, u_{3}^{\prime \prime}, u_{3}^{\prime \prime \prime}\right\}$ and $V_{0} \backslash\left\{u_{3}\right\}$, i.e., u_{3} is a cut-vertex of G, a contradiction.

If u_{2}^{\prime} has a neighbor $u_{2}^{\prime \prime}$ outside V_{0}, then by the choice of $P_{0}, G-\left\{u_{2}, u_{2}^{\prime}\right\}$ has no path between $u_{2}^{\prime \prime}$ and $V_{0} \backslash\left\{u_{2}\right\}$. Note that $G-u_{2}^{\prime}$ has a path between $u_{2}^{\prime \prime}$ and u_{2} of order at least 3. Then $G-u_{2}$ has no path between $\left\{u_{2}^{\prime}, u_{2}^{\prime \prime}\right\}$ and $V_{0} \backslash\left\{u_{2}\right\}$, and so u_{2} is a cut-vertex of G, a contradiction.

If $l=3$, by symmetry, then $\left\{e_{1}, e_{2}\right\}=\left\{x_{1} x_{2}, x_{2} x_{3}\right\}$. By the choice of $C,(G-$ $\left.x_{2}\right)-x_{1} x_{3}$ has no path between x_{1} and x_{3}. Then since G is 3-edge-connected, G has paths P_{1}, P_{2} with end-vertices x_{1}, x_{2}, and x_{2}, x_{3}, respectively, such that $V\left(P_{1}\right) \cap$ $V\left(P_{2}\right)=\left\{x_{2}\right\}$ and $E\left(x_{3}, P_{1}\right)=E\left(x_{1}, P_{2}\right)=\emptyset$. By Claims 2 and $3(1),\left|V\left(P_{1}\right)\right| \geq 3$, $\left|V\left(P_{2}\right)\right| \geq 3$, and so $x_{1} P_{1} x_{2} P_{2} x_{3} x_{1}$ is a cycle of order at least 9 , a contradiction. Then $4 \leq l \leq 8$. Without loss of generality, assume that $u_{1} x_{1} \in E(G)$. Since $c(G) \leq 8$, $t \leq 5$. We shall distinguish the following three cases.

Case 1. $t \in\{4,5\}$.
Since $c(G) \leq 8, l \leq 6$. We then claim that $\left|N_{G}\left(P_{0}\right) \cap V(C)\right|=2$. Otherwise, assume that $\quad\left\{u_{0} x_{i}, u_{t} x_{j}\right\} \subseteq E(G) \quad$ for \quad some $\quad u_{0} \in V\left(P_{0}\right) \quad$ and $\quad 1<i<j \leq l$. If $E\left(x_{j} x_{j+1} \cdots x_{l} x_{1}\right) \cap\left\{e_{1}, e_{2}\right\}=\emptyset$, then $\left|V\left(x_{j} x_{j+1} \cdots x_{l} x_{1}\right)\right| \geq 6$, since otherwise, $\left|V\left(V\left(x_{1} u_{1} P_{0} u_{t} x_{j}\right)\right)\right| \geq 6>\left|V\left(x_{j} x_{j+1} \cdots x_{l} x_{1}\right)\right|$, and then $x_{1} u_{1} P_{0} u_{t} x_{j} x_{j-1} \cdots x_{1}$ is a cycle containing e_{1}, e_{2} of order bigger than C, contradicting the choice of C. Thus $x_{j} x_{j+1} \cdots x_{1} u_{1} u_{2} \cdots u_{t} x_{j}$ is a cycle of order at least 10 , a contradiction. Hence $E\left(x_{j} x_{j+1} \cdots x_{l} x_{1}\right) \cap\left\{e_{1}, e_{2}\right\} \neq \emptyset$. Then either $E\left(x_{1} x_{2} \cdots x_{i}\right) \cap\left\{e_{1}, e_{2}\right\}=\emptyset \quad$ or $E\left(x_{i} x_{i+1} \cdots x_{j}\right) \cap\left\{e_{1}, e_{2}\right\}=\emptyset$. By the choice of C, either $\left|V\left(P\left(x_{1} x_{2} \cdots x_{i}\right)\right)\right|>\left|V\left(u_{1} P_{0} u_{0}\right)\right|+2$ or $\left|V\left(P\left(x_{i} x_{i+1} \cdots x_{j}\right)\right)\right|>\left|V\left(u_{0} P_{0} u_{t}\right)\right|+2$. Hence $j \geq 5$ for $u_{0} \notin\left\{u_{1}, u_{t}\right\}$ or $j \geq 4$ for $u_{0} \in\left\{u_{1}, u_{t}\right\}$. Hence $u_{0} \in\left\{u_{1}, u_{4}\right\}$ and $t=4$, since otherwise, $x_{1} x_{2} \cdots x_{j} u_{t} u_{t_{1}} \cdots u_{1} x_{1}$ is a cycle of order at least 9 , a
contradiction. Without loss of generality, assume that $\left\{u_{1} x_{3}, u_{4} x_{4}\right\} \subseteq E(G)$. Then $\left\{e_{1}, e_{2}\right\}=\left\{x_{1} x_{4}, x_{3} x_{4}\right\}$. By Claim $1, u_{1} u_{3} \notin E(G)$, and so u_{3} has a neighbor u_{3}^{\prime} outside $\left\{u_{2}, u_{4}\right\}$. By the choices of C and $P_{0}, G-\left\{u_{1}, u_{3}, x_{4}\right\}$ has no path between u_{3}^{\prime} and $\left\{x_{1}, x_{2}, x_{3}, u_{2}, u_{4}\right\}$ and $G-u_{3}$ has no path of order at least two between u_{3}^{\prime} and $\left\{u_{1}, x_{4}\right\}$. Then $\left\{u_{3}^{\prime} u_{1}, u_{3}^{\prime} x_{4}\right\} \subseteq E(G)$. By the choice of P_{0} and since $K_{3,3}^{-} \nsubseteq G\left[\left\{x_{4}, u_{1}, u_{2}, u_{3}, u_{4}, u_{3}^{\prime}\right\}\right], N_{G}\left(u_{2}\right) \cap V_{0}=\left\{u_{1}, u_{3}\right\}$, and so u_{2} has a neighbor u_{2}^{\prime} outside $V_{0} \cup\left\{u_{3}^{\prime}\right\}$ such that $G-u_{2}$ has no path between u_{2}^{\prime} and $V_{0} \cup\left\{u_{3}^{\prime}\right\}$, and hence u_{2} is a cut-vertex of G, a contradiction.

Suppose that $l=4$. If $u_{t} x_{2} \in E(G)$, then $t=4$ since $c(G) \leq 8$. Then at least one of $\left\{x_{3}, x_{4}\right\}$ has neighbor outside V_{0}, since otherwise, $|E(G[V(C)])| \geq 6$, contradicting Claim 2. By symmetry, assume that $x_{3} x_{3}^{\prime} \in E(G)$ for some $x_{3}^{\prime} \notin V_{0}$. Since $c(G) \leq 8$ and by the choice of $P_{0}, N_{G}\left(x_{3}^{\prime}\right) \cap V_{0} \subseteq\left\{x_{1}, x_{3}\right\}$, and so x_{3}^{\prime} has a neighbor $x_{3}^{\prime \prime}$ outside $V_{0} \cup\left\{x_{3}^{\prime}\right\}$ such that $G-\left\{x_{3}, x_{3}^{\prime}\right\}$ has no path between $x_{3}^{\prime \prime}$ and V_{0}, and hence $G-x_{3}$ has no path between $\left\{x_{3}^{\prime}, x_{3}^{\prime \prime}\right\}$ and V_{0}, i.e., x_{3} would be a cut-vertex of G, a contradiction. Hence $u_{t} x_{2}, u_{t} x_{4} \notin E(G)$ and $u_{t} x_{3} \in E(G)$. Then x_{2}, x_{4} have no neighbor outside V_{0}. (Otherwise, assume that $x_{2}^{\prime} x_{2} \in E(G)$ for some $x_{2}^{\prime} \notin V_{0}$. Since $c(G) \leq 8$ and by the choice of C, either $N_{G}\left(x_{2}^{\prime}\right) \cap V_{0} \subseteq\left\{x_{1}, x_{2}\right\}$ or $N_{G}\left(x_{2}^{\prime}\right) \cap$ $V_{0} \subseteq\left\{x_{2}, x_{3}\right\}$, and so x_{2}^{\prime} has a neighbor $x_{2}^{\prime \prime}$ outside V_{0} such that $G-\left\{x_{2}, x_{2}^{\prime}\right\}$ has no path between $x_{2}^{\prime \prime}$ and V_{0}, and hence $G-x_{2}$ has no path between $\left\{x_{2}^{\prime}, x_{2}^{\prime \prime}\right\}$ and $V_{0} \backslash\left\{x_{2}\right\}$, i.e., x_{2} is a cut-vertex of G, a contradiction.) Then $x_{2} x_{4} \in E(G)$ by Claim 2. By symmetry, $\left\{e_{1}, e_{2}\right\}=\left\{x_{1} x_{2}, x_{2} x_{3}\right\}$, and so $x_{1} x_{2} x_{3} u_{t} u_{t-1} \cdots u_{1} x_{1}$ is a longer cycle containing e_{1}, e_{2}, or $\left\{e_{1}, e_{2}\right\}=\left\{x_{1} x_{2}, x_{3} x_{4}\right\}$, and so $x_{1} x_{2} x_{4} x_{3} u_{t} u_{t-1} \cdots u_{1} x_{1}$ is a longer cycle containing e_{1}, e_{2}, or $\left\{e_{1}, e_{2}\right\}=\left\{x_{1} x_{2}, x_{1} x_{4}\right\}$, and so $G-\left\{e_{1}, e_{2}\right\}$ has a collapsible subgraph $x_{2} x_{3} x_{4} x_{2}$, contradicting Claim 1. Suppose that $l=5$. Then since $c(G) \leq 8, \quad t=4$ and $E\left(u_{4},\left\{x_{2}, x_{5}\right\}\right)=\emptyset$. By symmetry, assume that $u_{4} x_{3} \in E(G)$. By the same argument above, x_{2}, x_{4}, x_{5} have no neighbor outside V_{0}, i.e., $N_{G}\left(x_{i}\right) \subseteq V(C)$ for $i \in\{2,4,5\}$. Since $c(G) \leq 8, E\left(x_{2},\left\{x_{4}, x_{5}\right\}\right)=\emptyset$. Then $|E(G[V(C)])| \geq 8$, contradicting Claim 2. Suppose that $l=6$. Then $t=4$ and $u_{4} x_{4} \in E(G)$. By the same argument above, $x_{2}, x_{3}, x_{5}, x_{6}$ have no neighbor outside V_{0}, i.e., $\quad N_{G}\left(x_{i}\right) \subseteq V(C)$ for $i \in\{2,3,5,6\}$. Since $c(G) \leq 8, \quad E\left(G\left[\left\{x_{2}, x_{3}\right.\right.\right.$, $\left.\left.\left.x_{5}, x_{6}\right\}\right]\right)=\left\{x_{2} x_{3}, x_{5} x_{6}\right\}$. Then $|E(G[V(C)])| \geq 10$, contradicting Claim 2.

Case 2. $t \in\{2,3\}$.
Suppose that $t=2$. By Claims 1 and 3(1), there are four distinct vertices $x_{1}, x_{p} \in$ $N_{G}\left(u_{1}\right) \cap V(C)$ and $x_{m}, x_{n} \in N_{G}\left(u_{1}\right) \cap V(C)(m<n)$. Note that those four vertices divide C into four paths whose set is defined by \mathcal{P}_{0} and at least two of them do not contain e_{1}, e_{2}. Then $p \notin[m, n]$, since otherwise, at least two paths in \mathcal{P}_{0} has order at least 4 by the choice of C, and so there is a cycle containing $u_{1} u_{2}$ with order at least 10 , a contradiction. By symmetry, assume that $p \in[1, m]$. Since $c(G) \leq 8$ and by the choice of $C,\{p, m, n\}=\{3,4,6\}, C=x_{1} x_{2} x_{3} x_{4} x_{5} x_{6} x_{1}$ and $\left\{e_{1}, e_{2}\right\}=\left\{x_{3} x_{4}, x_{1} x_{6}\right\}$, and so $G-\left\{x_{1}, x_{3}\right\}$ has no path between x_{2} and $\left\{u_{1}, u_{2}, x_{4}, x_{5}, x_{6}\right\}$, which means that $d_{G}\left(x_{2}\right)=2$, a contradiction.

Suppose that $t=3$. Assume that $u_{3} x_{j} \in E(G)$ for some $x_{j} \in V(C) \backslash\left\{x_{1}\right\}$. We claim that $G-\left\{u_{1}, u_{3}\right\}$ has no path between u_{2} and $V(C) \backslash\left\{x_{1}, x_{j}\right\}$. Suppose otherwise. Then $G-\left\{u_{1}, u_{3}\right\}$ has a path $P\left(u_{2}, x_{i}\right)$ by Claim 3(2) for some $i<j$. Since
$c(G) \leq 8$ and by the choice of $C, P\left(u_{2}, x_{i}\right)=u_{2} x_{i}$ and either $i=4, j=5, C=$ $x_{1} x_{2} \cdots x_{5} x_{1}$ and $\left\{e_{1}, e_{2}\right\}=\left\{x_{1} x_{5}, x_{4} x_{5}\right\}$ or $i=2, j=3, C=x_{1} x_{2} \cdots x_{6} x_{1}$ and $\left\{e_{1}, e_{2}\right\}=\left\{x_{1} x_{2}, x_{2} x_{3}\right\}$, and so $\left|E\left(G\left[V_{0}\right]\right)\right|>2\left|V_{0}\right|-3$, contradicting Claim 2. We then claim that $\left|N_{G}\left(P_{0}\right) \cap V(C)\right| \geq 3$, since otherwise, $\left\{u_{1} x_{1}, u_{1} x_{j}\right.$, $\left.u_{3} x_{1}, u_{3} x_{j}, u_{2}^{\prime} x_{1}, u_{2}^{\prime} x_{j}\right\} \subseteq E(G)$ for some $u_{2}^{\prime} \in N_{G}\left(u_{2}\right) \backslash V_{0}$ by Claims 1 and 3(2), and then $G\left[\left\{x_{1}, x_{j}, u_{1}, u_{2}, u_{3}, u_{2}^{\prime}\right\}\right]-\left\{e_{1}, e_{2}\right\} \cong K_{3,3}^{-}$is collapsible, contradicting Claim 1. Furthermore, $\left|N_{G}\left(P_{0}\right) \cap V(C)\right|=3$ since $c(G) \leq 8$. By symmetry, assume that $u_{1} x_{i} \in E(G)$ for some $i<j$. Then u_{2} has a neighbor u_{2}^{\prime} such that either $\left\{u_{2}^{\prime} x_{1}, u_{2}^{\prime} x_{i}\right\} \subseteq E(G)$ or $\left\{u_{2}^{\prime} x_{1}, u_{2}^{\prime} x_{j}\right\} \subseteq E(G)$. Note that x_{1}, x_{i}, x_{j} divide C into three paths such that at least one of them does not contain e_{1}, e_{2}, and so it has order at least 5 . By symmetry, assume that $i \geq 5$. Then $x_{1} x_{2} \cdots x_{i} u_{1} u_{2} u_{3} x_{j} \cdots x_{1}$ is a cycle of order at least 9 , a contradiction.

Case 3. $t=1$.
Then $G[V(G) \backslash V(C)]$ is an empty graph. Recall $|V(G)| \geq 10$. There is a subset $V_{1} \subseteq V(G) \backslash V(C) \quad$ such that $\quad u_{1} \in V_{1}, \quad\left|V_{1}\right|=10-l \quad$ and $\quad \mid E\left(G\left[V_{1} \cup\right.\right.$ $V(C)]) \mid \geq 3 \times(10-l)+l$. By Claim 2, $\left|E\left(G\left[V_{1} \cup V(C)\right]\right)\right| \leq 17$. Then $l \geq 7$.
Subcase 3.1 $l=7$.
Since $\quad\left|E\left(G\left[V_{1} \cup V(C)\right]\right)\right|=|E(G[V(C)])|+\left|E\left(V_{1}, V(C)\right)\right| \leq 17 \quad$ and $\quad \mid E\left(V_{1}\right.$, $V(C))|\geq 3 \times(10-7)=9,|E(G[V(C)])| \leq 8$. Without loss of generality, at least one of the following holds: $\left\{u_{1} x_{1}, u_{1} x_{2}, u_{1} x_{3}\right\} \subseteq E(G),\left\{u_{1} x_{1}, u_{1} x_{2}, u_{1} x_{4}\right\} \subseteq E(G)$, $\left\{u_{1} x_{1}, u_{1} x_{2}, u_{1} x_{5}\right\} \subseteq E(G)$ or $\left\{u_{1} x_{1}, u_{1} x_{3}, u_{1} x_{5}\right\} \subseteq E(G)$.

If $\left\{u_{1} x_{1}, u_{1} x_{2}, u_{1} x_{3}\right\} \subseteq E(G)$, then $\left\{e_{1}, e_{2}\right\}=\left\{x_{1} x_{2}, x_{2} x_{3}\right\}$. We claim that x_{4}, x_{7} have no neighbor outside $V(C)$. Suppose otherwise. By symmetry, choose $x_{4}^{\prime} \in N_{G}\left(x_{4}\right) \backslash V(C)$. Since $c(G) \leq 8, E\left(x_{4}^{\prime},\left\{x_{2}, x_{3}, x_{5}\right\}\right)=\emptyset$. Besides, $x_{4}^{\prime} x_{7} \notin E(G)$; for otherwise, $E\left(x_{4}^{\prime},\left\{x_{1}, x_{6}\right\}\right)=\emptyset$, and so $d_{G}\left(x_{4}^{\prime}\right)=2$, a contradiction. So $\left\{x_{4}^{\prime} x_{1}, x_{4}^{\prime} x_{6}\right\} \subseteq E(G)$. Note that $x_{5} x_{7} \notin E(G)$. Then either x_{7} has a neighbor x_{7}^{\prime} outside $V(C)$ or x_{5} has a neighbor x_{5}^{\prime} outside $V(C)$ such that $N_{G}\left(x_{7}^{\prime}\right) \subseteq\left\{x_{7}\right\}$ or $N_{G}\left(x_{5}^{\prime}\right) \subseteq\left\{x_{5}\right\}$ since $c(G) \leq 8$, a contradiction. Since $|E(G[V(C)])| \leq 8, x_{4} x_{7} \in$ $E(G)$ and x_{5} has a neighbor x_{5}^{\prime} outside $V(C)$ such that $N_{G}\left(x_{5}^{\prime}\right) \subseteq\left\{x_{3}, x_{5}\right\}$, a contradiction.

Suppose next that $\left\{u_{1} x_{1}, u_{1} x_{2}, u_{1} x_{4}\right\} \subseteq E(G)$. Since $c(G) \leq 8, x_{1} x_{2} \in\left\{e_{1}, e_{2}\right\}$. Note that $N_{G}\left(x_{3}^{\prime}\right) \subseteq\left\{x_{3}, x_{6}\right\}, N_{G}\left(x_{5}^{\prime}\right) \subseteq\left\{x_{1}, x_{5}, x_{7}\right\}$ and $\left\{x_{5}^{\prime} x_{1}, x_{5}^{\prime} x_{7}\right\} \nsubseteq E(G)$ for any $x_{3}^{\prime} \in N_{G}\left(x_{3}\right) \backslash V(C)$ and any $x_{5}^{\prime} \in N_{G}\left(x_{5}\right) \backslash V(C)$. Since $|E(G[V(C)])| \leq 8, x_{3}, x_{5}$ have no neighbor outside $V(C)$ and $x_{3} x_{5} \in E(G)$. Then x_{7} has a neighbor x_{7}^{\prime} outside $V(C)$ such that $N_{G}\left(x_{7}^{\prime}\right) \subseteq\left\{x_{5}, x_{7}\right\}$, a contradiction.

Suppose then that $\left\{u_{1} x_{1}, u_{1} x_{2}, u_{1} x_{5}\right\} \subseteq E(G)$. Then $x_{1} x_{2} \in\left\{e_{1}, e_{2}\right\}$. Besides, x_{4}, x_{6} have no neighbor outside $V(C)$. (Otherwise, by symmetry, assume that there is a vertex $x_{6}^{\prime} \in N_{G}\left(x_{6}\right) \backslash V(C)$. Since $c(G) \leq 8, E\left(x_{6}^{\prime},\left\{x_{2}, x_{3}, x_{5}, x_{7}\right\}\right)=\emptyset$ and $\left\{x_{6}^{\prime} x_{1}, x_{6}^{\prime} x_{4}\right\} \nsubseteq E(G)$, i.e., $d_{G}\left(x_{6}^{\prime}\right)=2$, a contradiction.) Then $x_{4} x_{6} \in E(G)$ and x_{7} has a neighbor x_{7}^{\prime} outside $V(C)$ such that $N_{G}\left(x_{7}^{\prime}\right) \subseteq\left\{x_{7}\right\}$, a contradiction.

Therefore, we assume that $\left\{u_{1} x_{1}, u_{1} x_{3}, u_{1} x_{5}\right\} \subseteq E(G)$. Then x_{2}, x_{4} have no neighbor outside $V(C)$. (Otherwise, by symmetry, assume that x_{4} has a neighbor x_{4}^{\prime} outside $\quad V(C)$. By symmetry, $E\left(x_{4}^{\prime},\left\{x_{3}, x_{5}\right\}\right)=\emptyset$. Since $\quad c(G) \leq 8$,
$E\left(x_{4}^{\prime},\left\{x_{2}, x_{6}, x_{7}\right\}\right)=\emptyset$. Then $d_{G}\left(x_{4}^{\prime}\right) \leq 2$, a contradiction.) Then $x_{4} x_{6} \in E(G)$ and x_{6} has a neighbor x_{6}^{\prime} outside $V(C)$ such that $N_{G}\left(x_{6}^{\prime}\right) \subseteq\left\{x_{1}, x_{6}\right\}$, a contradiction.

Subcase 3.2 $l=8$.
Since $\quad\left|E\left(G\left[V_{1} \cup V(C)\right]\right)\right|=|E(G[V(C)])|+\left|E\left(V_{1}, V(C)\right)\right| \leq 17 \quad$ and $\quad \mid E\left(V_{1}\right.$, $V(C))|\geq 3 \times(10-8)=6,|E(G[V(C)])| \leq 11$. Without loss of generality, at least one of the following holds: $\left\{u_{1} x_{1}, u_{1} x_{3}, u_{1} x_{5}\right\} \subseteq E(G)$ or $\left\{u_{1} x_{1}, u_{1} x_{3}, u_{1} x_{6}\right\} \subseteq E(G)$.

If $\left\{u_{1} x_{1}, u_{1} x_{3}, u_{1} x_{5}\right\} \subseteq E(G)$, then x_{2}, x_{4} have no neighbor outside $V(C)$, since otherwise, $N_{G}\left(x_{i}^{\prime}\right) \subseteq\left\{x_{i}\right\}$ for any $x_{i}^{\prime} \in N_{G}\left(x_{i}\right)$ and $i \in\{2,4\}$, a contradiction. Besides, x_{6}, x_{8} have no neighbor outside $V(C)$. (Otherwise, by symmetry, choose $x_{6}^{\prime} \in N_{G}\left(x_{6}\right)$. Since $c(G) \leq 8, E\left(x_{6}^{\prime},\left\{x_{1}, x_{4}, x_{6}, x_{7}, x_{8}\right\}\right)=\emptyset$ and $\left\{x_{6}^{\prime} x_{2}, x_{6}^{\prime} x_{3}\right\} \nsubseteq E(G)$. Then $d_{G}\left(x_{6}^{\prime}\right) \leq 2$, a contradiction.) Since $c(G) \leq 8, E\left(G\left[\left\{x_{2}, x_{4}, x_{6}, x_{8}\right\}\right]\right) \subseteq\left\{x_{6} x_{8}\right\}$. Then $x_{6} x_{8} \in E(G)$ since $|E(G[V(C)])| \leq 11$, and hence $E\left(x_{7},\left\{x_{2}, x_{4}\right\}\right)=\emptyset$ and x_{7} has a neighbor x_{7}^{\prime} outside $V(C)$ such that $N_{G}\left(x_{7}^{\prime}\right) \subseteq\left\{x_{7}\right\}$, a contradiction.

Suppose then that $\left\{u_{1} x_{1}, u_{1} x_{3}, u_{1} x_{6}\right\} \subseteq E(G)$. Then x_{2} has no neighbor outside $V(C)$; for otherwise, $N_{G}\left(x_{2}^{\prime}\right) \subseteq\left\{x_{2}, x_{6}\right\}$ for any $x_{2}^{\prime} \in N_{G}\left(x_{2}\right)$ since $c(G) \leq 8$, a contradiction. Besides, x_{5}, x_{7} have no neighbor outside $V(C)$; for otherwise, without loss of generality, $N_{G}\left(x_{5}^{\prime}\right) \subseteq\left\{x_{3}, x_{5}\right\}$ for any $x_{5}^{\prime} \in N_{G}\left(x_{5}\right)$ since $c(G) \leq 8$, a contradiction. What's more, x_{4}, x_{8} have no neighbor outside $V(C)$. Suppose otherwise. By symmetry, assume that there is a vertex $x_{4}^{\prime} \in N_{G}\left(x_{4}\right)$, then $E\left(x_{4}^{\prime},\left\{x_{2}, x_{5}, x_{7}\right\}\right)=\emptyset \quad$ and $\quad x_{4}^{\prime} x_{8} \notin E(G)$ since $c(G) \leq 8$. Then $\left\{x_{4}^{\prime} x_{1}, x_{4}^{\prime} x_{6}\right\}$ $\subseteq E(G)$. Note that any pair $\left\{x_{2}, x_{5}, x_{7}, x_{8}\right\}$ are nonadjacent in $G-x_{7} x_{8}$ since $c(G) \leq 8$. Then $\left|E\left(G\left[V(C) \cup\left\{u_{1}, x_{4}^{\prime}\right\}\right]\right)\right| \geq 18$, contradicting Claim 2. Since $c(G) \leq 8$ and $|E(G[V(C)])| \leq 11,\left\{x_{4} x_{8}, x_{5} x_{7}\right\} \subseteq E(G)$. However, $x_{5} x_{7} x_{8} x_{4} x_{3} x_{2} x_{1} u_{1} x_{6} x_{5}$ is a 9 -cycle, a contradiction. This completes the proof of Theorem 3.

4 Applications of Theorem 3

We now turn our attention to Theorem 3. Its proof will need some additional concepts and notations. A vertex $x \in V(G)$ is said to be eligible if $G\left[N_{G}(x)\right]$ is a connected noncomplete graph. We will use $V_{E L}(G)$ to denote the set of all eligible vertices of G. The local completion of G at a vertex x is the graph G_{x}^{*} obtained from G by adding all edges with both vertices in $N_{G}(x)$. One concept of a strong multigraph closure of a claw-free graph G was introduced in [13] as follows.

For a given claw-free graph G, we construct a strong multigraph closure (or briefly an SM-closure) G^{M} of graph G by the following construction.
(1) If G is Hamilton-connected, we set $G^{M}=\operatorname{cl}(G)$.
(2) If G is not Hamilton-connected, we recursively perform the local completion operation at such eligible vertices for which the resulting graph is still not Hamilton-connected, as long as this is possible. We obtain a sequence of graphs G_{1}, \ldots, G_{k} such that
(a) $G_{1}=G$,
(b) $\quad G_{i+1}=\left(G_{i}\right)_{x_{i}}^{*}$ for some $x_{i} \in V_{E L\left(G_{i}\right)}, i=1, \ldots, k$,
(c) $\quad G_{k}$ has no Hamiltonian (a, b)-path for some $a, b \in V\left(G_{k}\right)$,
(d) for any $x \in V_{E L}\left(G_{k}\right),\left(G_{k}\right)_{x}^{*}$ is Hamilton-connected, and set $G^{M}=G_{k}$.

The following results show the properties of G^{M}.
Theorem 11 Let G be a claw-free graph and let G^{M} be the SM-closure. Then

1. (Kužel et al. [13]) G^{M} is Hamilton-connected if and only if G is Hamiltonconnected.
2. (Brousek et al. [4]) If G is H-free, then G^{M} is H-free for any integers $i, j, k \geq 1$ and $H \in\left\{N_{i, j, k}, P_{i}\right\}$.

Given a trail T and an edge e in a multigraph H, we say that e is dominated (internally dominated) by T if e is incident to a vertex (to an internal vertex) of T, respectively. A trail T in H is called an internally dominating trail, shortly IDT, if T internally dominates all the edges in H.
Theorem 12 (Li et al. [17]) Let H be a multigraph with $|E(H)| \geq 3$. Then $G=L(H)$ is Hamilton-connected if and only if for any pair of edges $e_{1}, e_{2} \in E(H), H$ has an internally dominating $\left(e_{1}, e_{2}\right)$-trail.

Define the core of H, denoted by H_{0}, to be the graph obtained from H by deleting all the vertices of degree 1 , and contracting the edge $x y$ for each path $x y z$ with $y \in D_{2}(H)$.

Theorem 13 (Shao [23]) Let H be a connected, essentially 3-edge-connected graph. Then the core H_{0} of H satisfies the following.
(1) H_{0} is uniquely defined and $\kappa^{\prime}\left(H_{0}\right) \geq 3$,
(2) if H_{0} is strongly spanning trailable, then $L(H)$ is Hamilton-connected.

We say H has a H_{1}-minor if H_{1} is isomorphic to the contraction image of a subgraph of H. The graph $T_{i, j, k}$ is obtained by identifying one vertex v with an endvertex of three paths P_{i+1}, P_{j+1} and P_{k+1}, respectively.

Proof of Theorem 2 Assume that G is not Hamilton-connected. By Theorem 11, we may assume that G is $S M$-closed and H is a multigraph such that $L(H)=G$. Let H_{0} be the core of H. By Theorem 13(1), $\kappa^{\prime}\left(H_{0}\right) \geq 3$. Then we shall obtain a $T_{2,3,5}$-minor and either obtain a P_{11}-minor or $L(H) \in \mathcal{G}$. By Theorem 12, there are at least two edges $e_{1}=u_{1} v_{1}, e_{2}=u_{2} v_{2}$ of H such that H has no internally dominating $\left(e_{1}, e_{2}\right)$ trail. Without loss of generality, assume that $u_{1}, u_{2} \in V\left(H_{0}\right)$. Note that the graph H can be regarded as the graph obtained from H_{0} by adding an additional vertex set V_{1} such that $V_{1}=D_{1}(H)$, and by subdividing each edge of an edge subset $E_{1} \subseteq E\left(H_{0}\right)$.

Let H_{0}^{\prime} be the graph obtained from H_{0} by contracting all collapsible subgraphs of $H_{0}\left[V\left(H_{0}\right)-V\left(\left\{e_{1}, e_{2}\right\}\right)\right]$. Let H^{\prime} be the graph obtained from H_{0}^{\prime} by adding an
additional vertex set V_{1} such that $v_{1} u_{1} \in E\left(H^{\prime}\right)$ if and only if $v_{1} \in V_{1}, v_{1} u_{1}^{\prime} \in E(H)$ and u_{1} is a contraction image of non-trivial collapsible subgraph of $H_{0}\left[V\left(H_{0}\right)-\right.$ $\left.V\left(\left\{e_{1}, e_{2}\right\}\right)\right]$ containing u_{1}^{\prime}, and then subdividing each edge of an edge subset $E_{1}^{\prime} \subseteq$ $E\left(H_{0}^{\prime}\right)$ such that $u v \in E_{1}^{\prime}$ if and only if u, v are contraction images of two collapsible subgraphs of $H_{0}\left[V\left(H_{0}\right)-V\left(\left\{e_{1}, e_{2}\right\}\right)\right]$ containing u^{\prime}, v^{\prime} and $u^{\prime} v^{\prime} \in E_{1}$.

Claim 1. Each internally dominating $\left(e_{1}, e_{2}\right)$-trail T_{0} of H^{\prime} can be extended an internally dominating $\left(e_{1}, e_{2}\right)$-trail of H.

Proof By the construction of $H^{\prime}, V\left(\left\{e_{1}, e_{2}\right\}\right) \subseteq V\left(H^{\prime}\right)$ and $\left\{e_{1}, e_{2}\right\} \subseteq T_{0}$. By the definition of collapsible, we can replace each contraction image of collapsible graph by a spanning subgraph of its preimage such that the resulting graph T_{1} is a $\left(e_{1}, e_{2}\right)$ trail, and then subdividing each edge of $E_{1} \cap E\left(T_{1}\right)$. Then the resulting graph is an internally dominating $\left(e_{1}, e_{2}\right)$-trail of H.

Note that H^{\prime} and H_{0}^{\prime} are two minors of H. Then $H^{\prime}, H_{0}^{\prime}$ have no $T_{2,3,5}$-minor and P_{11}-minor if H has no $T_{2,3,5}$-minor and P_{11}-minor. By Claim 1, $H_{0}^{\prime}\left(e_{1}, e_{2}\right)$ has no $\left(v_{e_{1}}, v_{e_{2}}\right)$-trail and it suffices to replace H, H_{0}, E_{1} by $H^{\prime}, H_{0}^{\prime}, E_{1}^{\prime}$, respectively. Besides, H_{0} has at most two edge-disjoint cycles with order at most 3, which contains at least one of $\left\{e_{1}, e_{2}\right\}$, respectively.

A vertex of H_{0} is called non-trivial if it is adjacent to at least one 1-vertex in H; trivial otherwise. Call an edge of H_{0} non-trivial if its two end vertices are nontrivial. For $i \in\{1,2\}, e_{i} \in E_{0}$ if and only if either $e_{i} \subseteq H_{0}$ is non-trivial or $e_{i} \subseteq$ $u_{i} v_{i} x_{i} \subseteq H$ for $v_{i} \in D_{2}(H)$ and let $u_{i} x_{i}=e_{i}$. Then $E_{0} \subseteq H_{0}$.

Claim 2. If H_{0} is collapsible, then $E_{0} \neq \emptyset$ and $H_{0}-E_{0}$ is not collapsible.

Proof

(1) If $\min \left\{d_{H}\left(v_{1}\right), d_{H}\left(v_{2}\right)\right\}=2$, then $E_{0} \neq \emptyset$. If not, then $e_{1}, e_{2} \in E\left(H_{0}\right)$. Since H_{0} is collapsible, H_{0} has a spanning $\left(u_{1}, u_{2}\right)$-trail T_{1}. If $\left\{e_{1}, e_{2}\right\} \cap E\left(T_{1}\right)=\emptyset$, then subdivide some edges of $T_{1} \cup\left\{e_{1}, e_{2}\right\}$ and the resulting trail is an internally dominating $\left(e_{1}, e_{2}\right)$-trail of H, a contradiction. Then by symmetry, assume that $e_{1} \subseteq T_{1} \subseteq H_{0}$ and u_{1} is non-trivial in H_{0}. If v_{1} is non-trivial, then $e_{1} \in E_{0}$. Hence we assume that v_{1} is trivial. Note that H_{0} has a spanning (v_{1}, u_{2})-trail T_{2}. By symmetry, $e_{2} \subseteq T_{2} \subseteq H_{0}$ and u_{2} is non-trivial in H_{0}. Then v_{2} is non-trivial and $e_{2} \in E_{0}$; for otherwise, H_{0} has a spanning $\left(v_{1}, v_{2}\right)$-trail T_{3}, and then the trail by subdividing some edges in T_{3} is an internally dominating (e_{1}, e_{2})-trail of H, a contradiction.
(2) Assume that $H_{0}-E_{0}$ is collapsible. Then $H_{0}-E_{0}$ has a spanning $\left(u_{1}, u_{2}\right)$ trail T_{4}. Let $T_{4}=T_{4} \cup e_{i}$ if $e_{i} \nsubseteq T_{4}$ for any $i \in\{1,2\}$. Then at least one of $\left\{e_{1}, e_{2}\right\}$, by symmetry, assume $e_{1} \subseteq T_{4}$ and u_{1} is non-trivial, v_{1} is trivial. Note that $H_{0}-E_{0}$ has a spanning $\left(v_{1}, u_{2}\right)$-trail T_{5}. By symmetry, v_{2} is trivial and $H_{0}-E_{0}$ has a spanning $\left(v_{1}, v_{2}\right)$-trail, which can be extended to an internally dominating $\left(e_{1}, e_{2}\right)$-trail of H, a contradiction.

Choose a longest cycle $C_{0}=x_{1} x_{2} \cdots x_{l} x_{1} \subseteq H_{0}$. We then consider the following two cases to finish our proof.

Case 1. $l \geq 9$.
Claim 3. H has P_{11}-minor and $T_{2,3,5}$-minor.
Proof We argue by contradiction. Then if H_{0} has a cycle C_{0} of order at least 10, then $V\left(C_{0}\right)=V\left(H_{0}\right)$. Since otherwise, there is a vertex $y_{1} \in N_{H_{0}}\left(x_{1}\right)$ outside $V\left(C_{0}\right)$ such that H_{0} has a P_{11}. Besides, either $N_{H_{0}}\left(y_{1}\right)=\left\{x_{1}\right\}$ and $d_{H_{0}}\left(y_{1}\right)=1$ or H_{0} has a $T_{2,3,5}$ as its subgraph, a contradiction.

We then claim that $l \leq 11$; for otherwise, $P_{11} \subseteq H_{0}$ and either $H_{0}\left[V\left(C_{0}\right)\right]$ contains a $T_{2,3,5}$ or x_{1}, x_{5}, x_{9} are in three edge-disjoint cycles of order at most 3 , a contradiction.

Besides, $P(10)$ is not an induced subgraph of H_{0}; for otherwise, either $H_{0} \cong$ $P(10)$ with at least one non-trivial vertex or cut-vertex of H_{0}, and hence there are $T_{2,3,5}, P_{11}$ in any cases of them, a contradiction.

Then H_{0} is collapsible by Theorem 9 and $E_{0} \neq \emptyset$ by Claim 2. Suppose that $10 \leq l \leq 11$. Then $10 \leq\left|V\left(H_{0}\right)\right| \leq 11$ and H has a P_{11}-minor. If there is an edge $x_{1} x_{1}^{\prime} \notin E\left(C_{0}\right)$, then either H has a $T_{2,3,5}$-minor or $x_{2} x_{l} \notin E\left(H_{0}\right), x_{j} x_{i} \notin E\left(H_{0}\right)$ for $i, j \neq 1 \in\{1, \ldots, l\}$ and $|j-i| \geq 3$, and so x_{2}, x_{5}, x_{l} are in three vertex-disjoint cycles of order at most 3 , a contradiction. We then assume that $x_{1} x_{2} \in E_{1}$. Replace $x_{1} x_{2}$ by $x_{1} v_{1} x_{2}$ in H_{0}. Then either x_{1}, x_{4}, x_{8} are in three vertex-disjoint cycles of order at most 3 or there is a $T_{2,3,5}$, a contradiction.

Hence $l=9$. If $\left|V\left(H_{0}\right)\right| \leq 9$, then $H_{0} \in \mathcal{W}_{0}$ by Corollary 1 and one of $\left\{e_{1}, e_{2}\right\}$ is in a 2 -cycle, and so $H_{0}\left(e_{1}, e_{2}\right)$ has a $\left(v_{e_{1}}, v_{e_{2}}\right)$-trail, a contradiction. Then $\left|V\left(H_{0}\right)\right| \geq 10$ and there is at least one vertex $u \in V\left(H_{0}\right) \backslash V\left(C_{0}\right)$. If u has a neighbor outside $V\left(C_{0}\right)$, then there are subgraphs $T_{2,3,5}$ and P_{11}, a contradiction. Then $N_{H_{0}}(u) \subseteq V\left(C_{0}\right)$. Without loss of generality, assume that $\left\{u x_{1}, u x_{3}, u x_{5}\right\} \subseteq E\left(H_{0}\right)$, $\left\{u x_{1}, u x_{3}, u x_{6}\right\} \subseteq E\left(H_{0}\right)$ or $\left\{u x_{2}, u x_{4}, u x_{6}\right\} \subseteq E\left(H_{0}\right)$. By (4.1), $E\left(C_{0}\right) \cap E_{0}=\emptyset$. Besides, $E\left(u, C_{0}\right) \cap E_{0}=\emptyset$, since otherwise, there are P_{11}-minor and $T_{2,3,5}$-minor. Hence, there is an edge $e_{0} \notin E\left(C_{0}\right) \cup E\left(u, C_{0}\right)$ and $e_{0} \in E_{0}$. If $\left\{u x_{1}, u x_{3}, u x_{5}\right\} \subseteq E\left(H_{0}\right)$, then $E_{0} \nsubseteq\left\{x_{1} x_{3}, x_{1} x_{5}, x_{3} x_{5}\right\}$ since $H_{0}-\left\{x_{1} x_{3}, x_{1} x_{5}, x_{3} x_{5}\right\}$ is collapsible. Then at least one of $\left\{x_{2}, x_{4}, x_{6}, x_{7}, x_{8}, x_{9}, u\right\}$ has a neighbor outside $V\left(C_{0}\right) \cup\{u\}$ and there is a $T_{2,3,5}$-minor. In addition, there is a P_{11}-minor if one of $\left\{x_{2}, x_{4}, x_{6}, x_{8}, u\right\}$ or all of $\left\{x_{7}, x_{8}\right\}$ have neighbors outside $V\left(C_{0}\right) \cup\{u\}$. Then $E_{0}=\left\{e_{0}\right\} \subseteq E\left(\left\{x_{7}, x_{8}\right\},\left\{x_{1}, x_{3}, x_{5}\right\}\right)$, and then $H_{1}=H_{0}\left[V\left(C_{0}\right) \cup\{u\}\right]-e_{0}$ is a 2-edge-connected graph with order 11 and exactly one 2-vertex. By Theorem 10(1), either H_{1} is collapsible, and then $H_{0}-e_{0}$ is collapsible or $H_{1} \cong P(10)(e)$ and has a P_{11}, a contradiction. By the same but easier argument, we will obtain a contradiction if either $\left\{u x_{1}, u x_{3}, u x_{6}\right\} \subseteq E\left(H_{0}\right)$ or $\left\{u x_{2}, u x_{4}, u x_{6}\right\} \subseteq E\left(H_{0}\right)$.
Case 2. $l \leq 8$.
By Theorem 13(2), H_{0} is not strongly spanning trailable. Then at least one of block B_{0} of H_{0} is not strongly spanning trailable by Theorem 3 and $\left|V\left(B_{0}\right)\right| \geq 10$ by Corollary 1. By Theorem $3, B_{0} \cong W_{8}$. If B_{0} has a cut-vertex of H_{0}, then at least one
vertex x_{0} of $V\left(B_{0}\right)$ belongs to a P_{4} of $H_{0}-V\left(B_{0}\right)$, and hence H_{0} has P_{11} and $T_{2,3,5}$ as its subgraphs, a contradiction. Then $H_{0} \cong W_{8}$ and $E\left(H_{0}\right)=E\left(C_{0}\right)$ $\cup\left\{x_{1} x_{5}, x_{2} x_{6}, x_{3} x_{7}, x_{4} x_{8}\right\}$. By symmetry, assume that H_{0} has no spanning $\left(v_{f_{1}}, v_{f_{2}}\right)^{-}$ trail for $f_{1}=x_{1} x_{5}, f_{2}=x_{3} x_{7}$. Since H_{0} and $H_{0}-e_{0}$ are collapsible for any $e_{0} \in\left\{f_{1}, f_{2}\right\}$. Then $E_{0}=\left\{f_{1}, f_{2}\right\}$ by Claim 2. Besides, either $E\left(C_{0}\right) \subseteq E_{1}$ or $v_{2}, v_{4}, v_{6}, v_{8}$ are non-trivial. Then there is a $T_{2,3,5}$. In addition, either there is a P_{11} or each vertex of H_{0} is non-trivial and $L(H) \in \mathcal{G}$.

5 Concluding Remark

In this paper, we extend the results in [1, 12] in Theorem 2 whose proofs are quite shorter than the original ones with the help of Theorem 3. We believe Theorem 3 may be used to show that every 3-connected $\left\{K_{1,3}, S\right\}$-free graph G is Hamiltonconnected for $S \in\left\{N_{1,1,5}, N_{1,3,3}, N_{2,2,3}\right\}$.

Acknowledgements The authors thank the referees very much for their carefully reading. The work is supported by the Natural Science Funds of China (nos: 11871099 and 11671037).

References

1. Bian, Q., Gould, R.J., Horn, P., Janiszewski, S., Fleur, S., Wrayno, P.: 3-connected $\left\{\mathrm{K}_{1,3}, \mathrm{P}_{9}\right\}$-free graphs are Hamiltonian-connected. Graphs Comb. 30, 1099-1122 (2014)
2. Bondy, J.A., Murty, U.S.R.: Graph Theory. Springer, Berlin (2008)
3. Broersma, H., Faudree, R.J., Huck, A., Trommel, H., Veldman, H.J.: Forbidden subgraphs that imply Hamiltonian-connectedness. J. Graph Theory 40, 104-119 (2002)
4. Brousek, J., Ryjáček, Z., Favaron, O.: Forbidden subgraphs, Hamiltonicity and closure in claw-free graphs. Discrete Math. 196, 29-50 (1999)
5. Catlin, P.A.: A reduction method to find spanning Eulerian subgraphs. J. Graph Theory 12, 29-44 (1988)
6. Catlin, P.A.: Supereulerian graphs, collapsible graphs and four-cycles. Congressus Numerantium 58, 233-246 (1988)
7. Catlin, P.A., Han, Z.Y., Lai, H.-J.: Graphs without spanning closed trals. Discrete Math. 160, 81-91 (1996)
8. Chen, G., Gould, R.J.: Hamiltonian connected graphs involving forbidden subgraphs. Bull. Inst. Combin. Appl. 29, 25-32 (2000)
9. Faudree, J.R., Faudree, R.J., Ryjáček, Z., Vrána, P.: On forbidden pairs implying Hamiltionconnectedness. J. Graph Theory 72, 327-345 (2013)
10. Faudree, R.J., Gould, R.J.: Characterizing forbidden pairs for Hamiltonian properties. Discrete Math. 173, 45-60 (1997)
11. Fujita, S., Kawarabayashi, K., Lucchesi, C.L., Ota, K., Plummer, M., Saito, A.: A pair of forbidden subgraphs and perfect matchings. J. Combin. Theory Ser. B 96, 315-324 (2006)
12. Hu, Z., Zhang, S.: Every 3-connected $\$ \backslash\left\{K_{-}\{1,3\}, N_{-}\{1,2,3\} \backslash\right\} \$$-free graph is Hamilton-connected. Graphs Comb. 32, 685-705 (2016)
13. Kužel, R., Ryjáček, Z., Teska, J., Vrána, P.: Closure, clique covering and degree conditions for Hamilton-connectedness in claw-free graphs. Discrete Math. 312, 2177-2189 (2012)
14. Lai, H.-J., Shao, Y., Yu, G., Zhan, M.: Hamiltonian connectedness in 3-connected line graphs. Discrete Math. 157, 152-173 (2009)
15. Lai H.-J., Wang K., Xie X., Zhan M.: Catlins reduced graphs with small orders (Submitted)
16. Lai, H.-J., Xiong, L., Yan, H., Yan, J.: Every 3-connected claw-free $\$ \mathrm{Z} _8 \$$-free graph is Hamiltonian. J. Graph Theory 64, 1-11 (2010)
17. Li, D., Lai, H.-J., Zhan, M.: Eulerian subgraphs and Hamilton-connected line graphs. Discrete Appl. Math. 145, 422-428 (2005)
18. Li, P., Wang, K., Zhan, M., Lai, H.-J.: Strongly spanning trailable graphs with short longest paths. ARS Comb. 137, 3-39 (2018)
19. Liu, D., Lai, H.-J., Chen, Z.H.: Reinforcing the number of disjoint spanning trees. ARS Comb. 93, 113-127 (2009)
20. Liu, X., Lin, H., Xiong, L.: Forbidden subgraphs and weak locally connected graphs. Graphs Comb. 34, 1671-1690 (2018)
21. Liu, J., Yu, A., Wang, K., Lai, H.-J.: Degree sum and Hamiltonian-connected line graphs. Discrete Math. 341, 1363-3179 (2018)
22. Ma, X., Lai, H.-J., Xiong, W., Wu, B., An, X.: Supereulerian graphs with small circumference and 3-connected Hamiltonian claw-free graphs. Discrete Math. 202, 111-130 (2016)
23. Shao, Y.: Claw-free graphs and line graphs. Ph.D Thesis, West Virginia University (2005)
24. Shepherd, F.B.: Hamiltonicity in claw-free graphs. J. Combin. Theory Ser. B 53, 173-194 (1991)
25. Wang, K.: Supereulerian properties in graphs and Hamiltonian properties in line graphs. Ph.D Thesis, West Virginia University (2015)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

[^0]: Liming Xiong
 lmxiong@bit.edu.cn
 Xia Liu
 liuxia_90@163.com
 Hong-Jian Lai
 hjlai@math.wvu.edu
 1 School of Mathematics and Statistics, Beijing Institute of Technology, Beijing 100081, People's Republic of China

 2 School of Mathematics and Statistics, Beijing Key Laboratory on MCAACI, Beijing Institute of Technology, Beijing 100081, People's Republic of China
 3 Department of Mathematics, West Virginia University, Morgantown, WV 26506, USA

