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Abstract

A graph G is strongly spanning trailable if for any e; = ujvy,ex = upv; € E(G)
(possibly e; = e3), G(ey, e2), which is obtained from G by replacing e¢; by a path
u1ve, vy and by replacing e, by a path uv,,v2, has a spanning (v,, , v, )-trail. A graph
G is Hamilton-connected if there is a spanning path between any two vertices of
V(G). In this paper, we first show that every 2-connected 3-edge-connected graph
with circumference at most 8 is strongly spanning trailable with an exception of
order 8. As applications, we prove that every 3-connected {Kj 3, N1 2.4 }-free graph is
Hamilton-connected and every 3-connected {K3,Pjo}-free graph is Hamilton-
connected with a well-defined exception. The last two results extend the results in
Hu and Zhang (Graphs Comb 32: 685-705, 2016) and Bian et al. (Graphs Comb 30:
1099-1122, 2014) respectively.
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1 Introduction

For the notation or terminology not defined here, see [2]. A graph is called trivial if
it has only one vertex, non-trivial otherwise. An empty graph is one in which no two
vertices are adjacent. For a connected graph G, we use x(G), ¥'(G), ¢(G) and
g(G) to denote the connectivity, edge connectivity, circumference and girth of G,
respectively. Throughout this paper, we use P,, C, to denote a path or a cycle of
order n. The graph N;;; is a triangle with disjoint paths of length i, j, k each
attaching to distinct vertices of the triangle; H; denotes the graph formed from two
triangles, which are connected by a single path of length i. The graph N;; is defined
but we are defining B;; = N;jo and Z; = N, here.

A graph G is Hamilton-connected if there is a spanning path between any pair
vertices of V(G). For a collection H of graphs, graph G is said to be H-free if
G does not contain H as an induced subgraph for all H € H (see [11]). Any
Hamilton-connected graph is 3-connected. Then it is natural to consider which
forbidden pairs of graphs {R,S} imply that a 3-connected {R, S}-free graph G is
Hamilton-connected. Faudree and Gould in [10] showed that one of them must be
K 3. We now list the known graphs S which, together with the K 3, imply that a
3-connected {K| 3, S}-free graph is Hamilton-connected.

Theorem 1 Let G be a 3-connected {K,3,S}-free graph satisfying one of the
following:

(1) (Shepherd [24]) S = Ny,

(2) (Faudree and Gould [10]) S = Z,,

(3) (Chen and Gould [8]) S € {Bi.,Z3,Pc},
(4) (Faudree et al. [9]) S € {N1.13,N122,Ps},
(5) (Bian et al. [1]) S = Py,

(6) (Hu and Zhang [12]) S = Ny, 3,

(7) (Broersma et al. [3]) S = H,.

Then G is Hamilton-connected.

Theorem 1 shows that the progress in forbidden pair guaranteeing a 3-connected
graph to be Hamilton-connected is very slowly, although it is also popular.
Motivated by the above results, we intend to extend Theorem 1(1)—(6).

The line graph of a given graph G, denoted by L(G), is a graph with vertex set
E(G) such that two vertices in L(G) are adjacent if and only if the corresponding
edges in G are incident to a common vertex in G. Following [2], the Wagner graph,
denoted by Wy, is obtained from the cycle Cg by adding all four pairs of vertices of
maximum distance in Cg as four chords in Cg, and is depicted in Fig. 1. Now we
define a set of graphs G = {L(W) : W is obtained from Wjs by adding at least one
pendant edge at each vertex of Wg}.

Theorem 2 Let G be a 3-connected graph. Then each of the following holds.

(1) If G is {Ki3,Pio}-free, then G is Hamilton-connected or G is a spanning
subgraph of a member in G.
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Fig. 1 Eight special graphs

(2) If Gis {Ki3,N124}-free, then G is Hamilton-connected.

In fact, Faudree et al. [9] showed that if i, j, k are positive integers such that
every 3-connected {Kj3,Njji}-free graph is Hamilton-connected, then
i +j+ k<7. Hence Theorem 2(2) is sharp.

We use (u, v)-trail, P(u, v) to denote a trail and a path with u, v as end-vertices,
respectively. A graph is called supereulerian if it contains a spanning Eulerian
subgraph. Let e; = u;v; and e, = uyv, denote two edges of G. If e; # e,, then the
graph G(ey,e;) is obtained from G by replacing e; by a path u;v, v, and by
replacing e, by a path u,v,,v> , where v,,, v, are two new vertices not in V(G). If
e1 = ey, then the graph G(e, ;) is also denoted by G(e) and is obtained from G by
replacing e = u;v; by a path u;v,, vi. A graph G is strongly spanning trailable if
for any ej,e; € E(G), G(er,ez) has a spanning (v,,,Ve,)-trail. As e; =e; is
possible, strongly spanning trailable graphs are supereulerian.

It is known [14, 21] that the line graph of a strongly spanning trailable graph is
Hamilton-connected. In order to prove Theorem 2, we need the following associate
result, which is itself interesting and shall have potential useful applications.

Theorem 3  Every 2-connected 3-edge-connected graph G with ¢(G) < 8 other than
Wy is strongly spanning trailable.

The proofs of Theorems 3 and 2 are placed in Sects. 3 and 4, respectively. In the
rest of this section, we prepare some terminology and notation to be used in this
article. For the notation or terminology not defined here, see [2]. The degree of a
vertex u in a graph G, denoted by dg(u), is the number of edges of G incident with
u, each loop counting as two edges. Call u a k-vertex if dg(u) = k. Define D;(G) =
{u e V(G) : dg(u) =i} and D>;(G) ={u € V(G) :ds(u)>i}. We denote by
A(G) and 6(G) the maximum degree and minimum degree of the vertices of
G. For subsets S C V(G) and E C E(G), we denote by G— S and G — E the
subgraphs of G induced by V(G)\S and E(G)\E, respectively, define Ng(S) to be
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the set of vertices in V(G)\S that are adjacent to a vertex in S and
Ng[S] = Ng(S) US. Define E(u,S) = {us:s € S}. When S={s}, E={e}, we
use G — s, Ng(s), Ng[s] and G — e for G — {s}, Ng({s}), Ng[{s}] and G — {e},
respectively. We use H C G, H =2 G to denote the fact that H is a subgraph of G,
H and G are isomorphic. For any two sets 1,5, define
S1AS; = (S] U Sz)\(Sl ﬂSz).

2 Reductions and Reduced Graphs

In this section, we prepare some definitions and additional results and prove two
theorems.

For a graph G and X C E(G), the contraction G/X is the graph obtained from
G by identifying the edges in X. If X = {e}, then we use G/e for G/{e}. When H is
a subgraph of G, then we use G/H for G/E(H). If H is connected, then the vertex in
G/H onto which H is contracted is denoted by vy, and H is the preimage of vy in G.

For a graph G, let O(G) denote the set of odd degree vertices in G. In [5], Catlin
defined collapsible graphs. A graph G is collapsible if for any even subset R of
V(G), G has a spanning connected subgraph I'y with O(I') = R. The reduction of
G is obtained from G by contracting all maximal collapsible subgraphs of G. A
graph is reduced if it is the reduction of some graph.

Let F(G) be the minimum number of additional edges that must be added to G so
that the resulting graph has two edge-disjoint spanning trees. Catlin (Theorem 2 of
[6]) shows that a connected graph G is collapsible if F(G) = 0. Let K,,, be the
complete bipartite graph with partition sets of size m and n. Fig. 1 depicts some of
the related graphs in this paper, including the Petersen graph P(10).

We summarize some results on Catlin’s reduction method and other related facts
below.

Theorem 4 Let G be a connected graph, H C G be a collapsible subgraph and G'
be the reduction of G, respectively. Then each of the following holds.

(1) (Catlin [S]) G is collapsible if and only if G/H is collapsible. And G is
collapsible if and only if G’ is K;.

(2) (Catlin [5]) G is reduced if and only if G has no non-trivial collapsible
subgraphs.

(3) (Catlin [5]) g(G') >4 and 6(G') <3.

(4) (Catlin [6], see also Theorem 3.4 of [19]) F(G') =2|V(G)| —2 — |[E(G')|.

(5) (Catlin et al. [7]) If F(G)<2, then G' € {K,K>,K;,} for some t>1; if
F(G)<2 and «'(G)>3, then G is collapsible. Consequently, K3y is
collapsible.

(6) (Lai et al. [15]) If O6(G)>3 and |V(G)| <13, then G' € {K;, K,
Ki2,K3,P(10), P (12), P?(12), P*(12)}.

For two disjoint subsets Vi, V, and a 4-cycle C = xjxyx3x4x; of graph G, define
G/n(Vy,V,) to be the graph obtained from G — E(G[V; U V,]) by identifying V; to
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form a vertex vy, by identifying V, to form a vertex v,, and by adding a new edge
ex = viv2, and define G/n(C) = G/n({x1,x3}, {x2,x4}).

Theorem 5 (Carlin [6]) For the graphs G and G/n(C) defined above, if G/n(C) is
collapsible, then G is collapsible.

In [20], the authors gave a method to verify whether a subgraph of G is
collapsible. They construct a C-subpartition (X;,X;) of G starting with a 4-cycle
X1X2X3X4X1 g G.

L Xy = {x,x3}, Xo := {0, }, {i,j} ={1,2}
While u € NG(X1 UXZ) #* 0, NG(Xl) ﬂNG(Xg) =( and NG<M) ﬂN(;[Xl UXz] /
=0 do

{Xi =X; U{u},X; = X;,if[E(u,X;)| > 2; X; :== X; U (Ng(X;) N Ngu]),
X; := X;, elseifNg(X;) N Nglu] # 0; X; := X; U (N6(X;) N Ng(u)),
X :=X; U {u},else.}

The following result would play an important role in the proofs in Sects. 2 and 3.

Lemma 1 (Liu et al. [20]) Let G be a graph with g(G) = 4 and (X;,X;) be a C-
subpartition of G. Then

() GX,UXaUXyp] is  collapsible for any non-empty set X C
Ng(X1) N Ng(Xa),
(2) if G/n(X1,X,) is collapsible, then G is collapsible.

An edge cut X is essential if G — X has at least two non-trivial components. A
graph G is essentially k-edge-connected if G does not have an essential edge cut
X with |X|<k.

Theorem 6 (Lai et al. [16]) Let G be a graph. If k' (G) >3 and ¢(G) <8, then G is
supereulerian.

The following theorem extends Theorem 6.

Theorem 7 Let G be an essentially 3-edge-connected graph such that k'(G) > 2,
¢(G) <8 and |D,(G)| < 1. Then G is collapsible.

Proof By contradiction, assume that G is a counter-example with |V(G)l minimized.
Then G is reduced; for otherwise, the reduction G’ of G is a non-trivial counter-
example with smaller order than G, a contradiction. By Theorem 4(2), G has no
non-trivial collapsible subgraphs.

Besides, x(G)>2; for otherwise, each block of G is collapsible by the
minimality of G if G has a cut-vertex, a contradiction.

We then claim that g(G) = 4. If not, then by Theorem 4(3), g(G) >5. Take a
longest path Py =xxp---x; of G with dg(x;) >dg(x;). Since |Dy(G)|<1,
dg(x1) >3, and so x; has at least three neighbors in Py. As g(G)>35 and

@ Springer



70 Graphs and Combinatorics (2021) 37:65-85

c(G)<8, {xixs,xixg} CE(G). Using the alternative longest path
X4X3X0X1X5X6 + - X1, we get xgxg € E(G) by the same argument if dg(x4) >3,
yielding a Cy = xjxsx4xgx;. This means that D;(G) = {x4}. Using the alternative
longest path x7xeXsxsxzxoxixg---x;, we get x7x3 € E(G). Since g(G)>5 and
¢(G) <8, E(xg, V(Po)\{xs,x7}) = 0, and so xe has a neighbor x{ outside P, such
that  E(xf,V(Po)\{x6}) =0. Therefore, there is a longer path
XgXX6X7X3X4X5X1Xg - - - x; of order [+ 1 for any x{ € Ng(xg)\V(Py) than Py, a
contradiction.

So G has a 4-cycle Cs=xix2y1y2x1 CG. As every cycle in G/n(Cy4)
corresponds to a cycle in G, we have ¢(G/n(Cs)) <c(G)<8. As |D,(G)|<1,
|D2(G/m(Cy))| < 1. If ¥'(G/m(C4)) >3, then the minimality of G implies that
G/m(Cy) is collapsible. Thus by Theorem 5, G is collapsible, a contradiction.
Therefore, we must have «'(G/n(C4)) <2. We consider the following two cases to
finish our proof.

Case 1. «'(G/n(Cy)) =1.

Then e, must be the cut-edge of G/n(C4), and so G — E(Cs) has two
components Gy, G, such that x1,y; € V(Gy), x2,y2 € V(Gz) and V(G;) C D>3(G).
As G is essentially 3-edge-connected, V(Cy) C D>3(G). Therefore, we can choose
longest paths P(x;,y;) between x; and y; in G; for i € {1,2}. Since g(G) =4,
|E(P(xi, )| = 2.

We first claim that |[E(P(x;,y1))|>3. Since otherwise, assume that P(x,y;)
= x;wy;. Then w has a neighbor w' outside {x;,x,} such that G; — w has a path
between w' and {x;,y} since G is 2-connected, which would produce a longer
(x1,y1)-path, a contradiction.

If |[E(P(x1,y1))| = 3, assume that P(x;,y;) = x;w;way1, then w; has a neighbor
w) outside {x;,w,} such that G; — w, has no path between w/| and {w», x;} and no
path of order at least 2 between w) and y; by the choice of P(x;,y;). Hence
wiy1 € E(G) since G is 2-connected. By symmetry, w, has a neighbor w) such that
whxy € E(G), and so x;whw,w w)y; is a longer path than P(x;,y), a contradiction.

This implies that |E(P(x1,y1))| =4 and |E(P(x2,y2))] =2 since ¢(G)<8.
Assume that P(xy,y1) = xywiwawsyr, P(x2,y2) = xpwy,. Since g(G) = 4 and by the
choice of P(x1,y1), wp has a neighbor w) outside V(P(x,y1)) such that G — w, has
no path between w, and {w;,ws} and no path of order at least 2 between w) and
{x1,y1}. Then {wyxi,wiy1} € E(G), since otherwise, Kj3 C G[{xi,xa,
¥1,¥2,w,w5}], a contradiction. Then w) has a neighbor w) outside V(P(x;,y,)) U
{w}} such that G — {w;ws, wows3} has no path between wow)w} and C by the choice
of P(xa,y2), i.e., {wiwo,wows} is an essential 2-edge-cut of G, a contradiction.

Case 2. «'(G/m(Cy)) =2
If G/n(C4) is essentially 3-edge-connected, then G/m(C4) has a 2-vertex
up € V(er), and so V(C) N Dy(G) # 0. Then D,(G/n(Cy4)) = 1, and so G/n(Cy) is

collapsible by the minimality of G, and hence G is collapsible by Theorem 5, a
contradiction. This implies that G/7n(C4) has an essential 2-edge-cut {e,,z1z2} such
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that G — V(C4) has a cut-edge zjzo such that (G — V(C4)) —z122 has two
components Gi,G, with z1 € V(Gy), 2z € V(Gy) and V(Gy)U{xi,y1}
C D>3(G). Choose longest paths P(x;, z;) (say) between {x;,y;} and z; in G[V(G;) U
{x:,y:}] for i € {1,2}.

Note that {zjx1,z1y1,22%2,22y2} € E(G) since K553 € G[{x1,y1,21,%2, Y2, 22}]-
Then max{|E(P(x1,z1))|, |E(P(x2,22))|} > 2. By symmetry, assume that P(x,z2) =
xXpwyp - - - wyzp for some t> 1. Since ¢(G) <8, t<2. Suppose first that # = 1. Then
Ng(wi1) C {x2,¥2,22}, since otherwise, w; has a neighbor w} outside {x2,y2,22}
such that G — wy has no path between w/ and {x2,y2,z2} by the choice of P(x,z2),
ie., wy is a cut-vertex of G, a contradiction. Besides, Ng,(z2) C {x2,y2, w1}
(Otherwise, since G is 2-connected and by the choice of P(x,,z;), 2> has a neighbor
7z, outside {x2,y,w;} such that zhw, ¢ E(G) and E(z),{x2,y.}) # 0. By the
symmetry of wy and 75, Ng(z5) C {z2,x2,y2}. Since ¢(G) <8, |[E(P(x1,z1))] = 1,
ie., {zix1,ziy1} C E(G). Hence K;; C G[{x1,y1,21,%2,¥2, 22,25 }], a contradiction.)
Then |E(P(x1,z1))| >2 and {wy,z2} N D2(G) # O since {y.w1,y222} € E(G). By
the symmetry of P(xy,z1) and P(x2,22), |E(P(x1,21))| > 3 since |D»(G)| < 1, and so
G[V(P(x1,21) UP(x2,22) U Cy4)] has a cycle of order at least 9, a contradiction.
Suppose now that t=2. Since ¢(G)<8, |E(P(x1,z1))]=1 and
{z1ix1,z131} € E(G). Then dg(w;) = 2. (Otherwise, assume that wy has a neighbor
w). By the choice of P(x,,z,) and since G is 2-connected, w|z, € E(G). Note that
{wo,w|} € D,(G). By symmetry, either w, has a neighbor w) outside
{x2,¥2,22,w|} such that G — w, has no path between w) and {x2,y2,22, w1, w|}
by the choice of P(x;,z2) or E(Wh, {x2,y2,22,w(}) #0 and G[{xi,y1,zi,
X2,¥2,22, Wi, w2, Wi, wy }] is collapsible, a contradiction.) Hence w, has a neighbor
w) outside {x,¥>,2z>} such that G — w, has no path between w} and {x>,y,.22, w1 }
by the choice of P(x;,z2) and |D2(G)| <1, a contradiction. O

Theorem 8 (Ma et al. [22]) Let G be a 3-edge-connected graph. Then each of the
following holds.

(1) Ifc(G) <11, then G is supereulerian or G is contractible to P(10).

(2) If G is reduced, g(G) = 4 and ¢(G) < 11, then there is a 4-cycle C such that
K'(G/n(C)) >3.

(3) If G is reduced, |V(G)| > 14 and g(G) > 5, then ¢(G) > 12.

The following theorem extends Theorem 8(1) and will play an important role in
the proof of Theorem 2.

Theorem 9 Let G be a 2-connected 3-edge-connected graph with ¢(G) < 11 and G’
be the reduction of G. Then either G is collapsible or G' = P(10).

Proof By contradiction, assume that G is a counter-example with |V(G)l minimized.
Then G is reduced. Otherwise, G has a collapsible subgraph H. Then G/H is 2-edge-
connected, 3- edge-connected with ¢(G/H) < 11 and vy is the contraction image of
H. If k(G/H) > 2, then either G/H is collapsible, and then G is collapsible or the
reduction G’ of G/H is isomorphic to P(10), a contradiction. If x(G/H) = 1, then
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the reduction G’ of G/H has at least two blocks B; = B, = P(10) sharing one cut-
vertex vg. Since k(G) >2, |Ng(V(B1)\{va}) NV(H)|>2 and |Ng(V(B2)\{vu})
NV(H)| > 2. Hence G has a cycle of order at least 18, contradicting ¢(G) < 12.

Furthermore, g(G) > 5. If not, then G has a 4-cycle Cy = x1y;x2y,x; such that
K'(G/n(Cy)) > 3 by Theorem 8(2). Let G| be the reduction of G/n(Cp) and e, = xy.
Then |V(G))| <|V(G/n(Co))| <|V(G)|, c¢(G]) < c(G/n(Cp)) < 11. The minimality
of IV(G)l implies that each block of G| is isomorphic to P(10). If x(G/n(Cy)) > 2,
then either G/n(Cy) = G} = P(10) and G = P*>(12) (see Fig. 1), and hence
¢(G) =12, or G has a subgraph H such that V(C4)NV(H) = {x1,x2} (or
1,21, H/{x1,x2} (or H/{y1,y2}) is collapsible and (G/n(Co))/H = P(10),
and hence ¢(G) >c(P*(12)) > 12, a contradiction. Then G/n(Cy) has two blocks
By, B, such that e; € E(B;) and V(B,) N V(By) = {x} (or {y}). This implies that
G has a subgraph H such that Co C H and the reduction of H/n(Co)(= B;) is
isomorphic to P(10). Then ¢(G) > c¢(H) > 12.

As ¢(G) <11 and g(G) >3, by Theorem 8(3), |V(G)| < 13. By Theorem 4(6),
G' € {P'(12),P?(12)}. Therefore, G’ has a 12-cycle (see Fig. 1), contradicting
¢(G) < 11. O

3 Proof of Theorem 3

Before presenting the proof, we need to prepare some results. The graphs
K 5, P(10)(e) are depicted in Fig. 1.

Theorem 10 It holds the following.

(1) (Li et al. [18]) Every connected graph G with |V(G)|<12, |D;(G)| =0,
|D2(G)| < 1 either is supereulerian with 12 vertices or the reduction of G is in
{K1, K2, P3, K23, K; 5, P(10), P(10)(e) }.

(2) (Wang [25]) Every 3-edge-connected graph G with |V(G)| < 8 other than Wy
is strongly spanning trailable.

(3) (Li et al. [18]) Let G be a 3-edge-connected graph with blocks By, ..., By.
Then G is strongly spanning trailable if and only if B; is strongly spanning
trailable for every i =1,... k.

Let W be the set of graphs obtained from Wg by subdividing one edge of Wy and
then adding at least one edge between the new vertex and exactly one of its
neighbor.

Corollary 1 Every 3-edge-connected graph G with |V(G)| <9 other than a member
of {Ws} UW), is strongly spanning trailable.

Proof Let G be a counter-example. Then |V(G)| =9 by Theorem 10(2) and for
some pair of edges ey, ¢2, G(ey, e2) does not have a spanning (v, , v, )-trail. Let H be
the graph obtained from G(ey, e;) by adding a new vertex z and two edges zve, , Zve, -
Then H is 2-edge-connected, essentially 3-edge-connected and nonsupereulerian
with 12 vertices if e; # e, or 11 vertices if e; = e,. Besides, the reduction H' of H is
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2-edge-connected, essentially 3-edge-connected and nonsupereulerian with
|D2(H')| < 1. By Theorem 10(1), H' € {P(10),P(10)(e)}. If H = P(10), then
H has a collapsible subgraph H; containing z. Since z is not in a triangle,
|V(Hy)| >4, and then |V(H)|>13, a contradiction. Hence H’ = P(10)(e). If
H' = H, then H = Wy, a contradiction. If H' # H, then H has a collapsible subgraph
H; with |V(H;)| = 2 since |V(H)| = 12, and then H € W), a contradiction. (J

Let G be a graph and S C V(G) be a subset with ISl even. A subgraph Ly C G is
an S-join if O(Lg) = S. Thus a graph G is collapsible if for every even vertex subset
S, G has a spanning connected S-join.

Lemma 2 Let G = K, for integer t >2 and S C V(G) be an even subset such that
SN Dy(G) # 0. Then for any {uy,u} C V(G), exactly one of the following holds,

() t=2,8={u,up} and myu; ¢ E(G),
(2) G has a spanning S-join L such that either L is connected (if D>(G) € S) or
L has exactly two components Ly,L, such that u; € V(Ly),u; € V(L) (if

Dy(G) C $).
Proof Let wy,w, be two nonadjacent vertices of degree ¢ in G and vy, . . ., v, be the
other vertices of G. Let Vi, ={v,...,v,}NS and V, ={v,...,»}\S. Let
{i.j} ={1,2}.

Suppose that t = 2. Then, without loss of generality, either u; = vi,uy = v, or
up =vi,up =wi. If S={w,wy,ws,wa}, then set L; =viwy,Ly = vowy. If
S ={wi,w}, then set Ly = vi,Ly = wivowy. If S = {vy,n,}, then either u; =
vi,up = v, and (i) holds, or u; = vi,up = w; and set L = wy, Ly = viwpvy. We
then assume S = {v;,w}, then set L = viw;v;jw;. Therefore, we then assume that
t>3. Then V| # 0.

Case 1. V, = 0.

It suffices to construct a spanning S-join L of G that has exactly two components

Ly, L, such that {u;,us} N V(L) = {u }. If t is odd, then {w;,w,} NS = {w;} and
Vi has a partition (V},V?) such that |V}| is odd, |V?| is even, (V| U {w;})
N{u1,us} = {ur}, and hence set L; = G[E(w;, V})], L, = GIE(w;, V})].

If 7 is even, then either {wy,w,} C S or {wy,wp} NS = 0. If {w;,w,} C S, then
Vi has a partition (Vj,V}) such that |V}|, |V{| are odd and (V; U {w;})
N{ur,up} = {u;}, and hence set L, = G[E(wi,V})], Ly = G[E(wy, V})]. If
{wi,w} NS =0, then V; has a partition (V7,V?®) such that |V3|, |V§| are even
and (VIS @] {Wl}) N {M17u2} = {Ml}, and set L; = G[E(Wl7 V]S)]’ L, = G[E(W27 V16)]

Case 2. V, # 0.

Then V; has a partition (V/, V) such that |V¥| is odd. It suffices to construct a
spanning connected S-join L of G.
Suppose first that 7 is odd. If {wy,w,} C S, then |V}] is even, |V,| is odd, and set
L=G—E(wy, V). If {wi,wa} NS = {w;}, then |V| is odd, |V2| is even, and set
L=G—E(w;,V1).If {w;,w2} NS = 0, then |V, | is even, |V]|, |V>| are odd, and set

@ Springer



74 Graphs and Combinatorics (2021) 37:65-85

L=G- (E(Wl, V18) @] E(Wz, V17))

Suppose then ¢ is even. If {wy,w,} C S, then |V;|, |V2| are even, | V]| is odd, and
set L=G — (E(wy, V}) UE(wa, V])). If {wi,wa} NS = {w;}, then |Vy|, |V2| are
odd, |V]| is even, and set L =G — (E(w;, V]) UE(w;, V¥)). If {wi,w2} NS =0,
then |Vy|, |[V,| are even, and set L = G — E(wa, V). O

Lemma 3 Let G be a graph and H be a subgraph of G such that H has 2 edge-
disjoint spanning trees. If either H is essentially 3-edge-connected, or G is 3-edge-
connected, then

(1) if G is strongly spanning trailable, then G/H is strongly spanning trailable,

(2) if G/H is strongly spanning trailable, then either G is strongly spanning
trailable, or G has only one pair edges e, e such that H = G[{e,e'}] = C;
and G(e,€') has no spanning (v,, v, )-trail.

Proof

(1) Suppose that G is strongly spanning trailable and let e}, e, be two edges in G/
H. As e1,e; € E(G) — E(H), G(e1, e2) has a spanning (v,,, v,,)-trail 7. Since
G/H(e1,e2) = Gley,e)/H, T/E(H)NE(T) is a spanning (v, , v, )-trail of
G/H. Hence by definition, G/H is strongly spanning trailable.

(2) Assume that G/H is strongly spanning trailable, and let vy denote the vertex in
G/H onto which H is contracted. For any e;, e, € E(G), we shall show that
G(ey,ez) always has a spanning (v,,, v, )-trail. If {e;,e2} NE(H) = 0, then
e1,e; € E(G/H). As G/H is strongly spanning trailable, G/H has a spanning
(Ve,s Ve, )-trail Ty containing the vertex vy. Let X; = V(H) N O(GIE(Ty)].
Then since vy has even degree in Ty, |X;| is even. Then H has a spanning
connected X;-join L;. It follows by definition that G[E(T})UE(L;)] is a
spanning (v, , v, )-trail in G.

Suppose next that [{e;,e2} NE(H)| = 1, and by symmetry we may assume that
ey € E(H) and e, ¢ E(H). Since H has 2-edge-disjoint spanning trees, H(e;) is
collapsible. Let €] # e, be an edge in G/H incident with vy. Then ¢}, e, € E(G/H).
Since G/H is strongly spanning trailable, G/H (e, e>) has a spanning (v, , ve, )-trail
T}. Since ¢ is incident with vy, T} can be adjusted to a spanning (vg, v, )-trail 75 in
G/H(ey), where

Ty —veve  if vgvu € E(T3)
I, = o / : /
T, —vy +¢y ifvgvy & E(T3).

Let X, = V(H) N O(GIE(T,)]. Then since vy has odd degree in T, |X| is odd, and
so X} = X, A{v,, } is an even subset of V(H(e;)). Since H(e;) is collapsible, H(e;)
has a spanning connected X}-join. It follows by definition that G[E(T,) U E(L;)] is a
spanning (v, , v, )-trail in G.

Therefore, we assume that {e;, e} C E(H). If H(ej, ez) is collapsible, then since
G/H is strongly spanning trailable, G/H has a spanning closed trail 73. Let
X3 = V(H) N O(GIE(T3)]). Since vy has even degree in T3, |X3| is even, and so
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X}, = X3 U {v,,, v, } is also an even subset. Since H(e, e;) is collapsible, H(e;, e)
has a spanning connected X}-join Ls. It follows by definition that G[E(T3) U E(Ls)]
is a spanning (v,,, v, )-trail in G.

Thus we may assume that H(ej, e;) is not collapsible. If F(H(ej,e2)) <1, then
H(ey,ep) is collapsible. Hence F(H(ej,e;)) =2. Let H' be the reduction of
H(ey,ez). Thus there exists a subgraph J of H(ey, e;) such that each component of
J is collapsible and such that H(e;,e;)/J = H'. By Theorem 4(5), H' = K;, for
some t>2. If |{v,,,ve,} NV(H')| <1, then F(H') <F(H)+ 1<1, contrary to the
fact H' = K;,. Hence v,,,v,, must be two distinct vertices in D,(H’), and each of
{Ve,» Ve, } is mot incident with any edges in E(G). As G/H is strongly spanning
trailable, G/H has a spanning closed trail 7. Let X4 = V(H) N O(G[E(T4)]). Since
vy has even degree in Ty, |X4| is even, and so X, = X4 U {v,,, V., } is also an even
subset. Define X" = {v € V(H’) : the preimage of v in H(e;,e,) contains an odd
number of vertices in X} }. Then |X”| is even with v,,,v,, € X". If #>3, then by
Lemma 2, H' has a spanning X”-join L such that either L is connected (if
Dy(H') € X", or L has exactly two components L; and L, with the preimage of L;
in H(ey, e2) containing u; for i € {1,2} (if D,(H") C X”). Note that if D,(H") C X",
then there exist vertices uj,u, € V(H(ey,e)) such that uj,u, are in the same
component of G[E(T4)] and such that u; and u, are contained in different vertices of
H'. 1t happens that G/J[E(Ts) U E(L)] is a spanning (v,,,v,,)-trail of G/J. Since
each component of J is collapsible, G/J[E(T4) U E(L)] can be lifted to a spanning
(Ve,, Ve, )-trail of G by replacing each vertex v € V(H') by a spanning connected
subgraph of its preimage in H(ej,e;). We then assume that r=2 and
H' = u1ve,upve,uy. Then {e,e'} ={e1, e} = {uup, myuy} and H=
Gl[{e,e'}] = C,. O

Let P(10) + e be a graph obtained from the Petersen graph P(10) by adding an
additional edge e between two adjacent vertices x, y. In fact, e, xy are multiple
edges. Then ¢(P(10) +¢) =9. By Corollary 1, (P(10) +¢)/{e,xy} is strongly
spanning trailable. On the other hand, (P(10) + e)(e, xy) has no spanning (v,, vy,)-
trail. This implies that the condition ¢(G) <8 in Lemma 4 is sharp.

Lemma 4 Let G be a 3-edge-connected graph with ¢(G) <8. If G has a subgraph
H such that H has 2 edge-disjoint spanning trees, then G/H is strongly spanning
trailable if and only if G is strongly spanning trailable.

Proof By Lemma 3(2), assume that G/H is strongly spanning trailable, it suffices to
prove that for one pair edges e, e, of G such that H = G[{e1,e2}] = Ca, G(e, €2)
has a spanning (v,,, v, )-trail. Let G be a counter-example with IV(G)| minimized.
By Theorem 10(3), G is 2-connected. Furthermore, G — {e;,e,} is reduced. If not,
assume that G — {ej,e;} has a nontrivial collapsible subgraph Hi. As ey, e; &
E(H,) and by the definition of contractions, G/H,(e;,e2) = G(ey, e;)/H;. By the
choice of G and as |V(G/H,)|<|V(G)|, G/H| is strongly spanning trailable, and so
G(ey,e2)/H; = G/H\(ey, e2) has a spanning (v,, , v,, )-trail. Since H, is collapsible,
it follows that G(ey,e;) also has a spanning (v,,, e, )-trail, a contradiction.
Assume that {e;,ex} = {x1x2,x0x1}. If G—e; has an essential 2-edge-cut
{x1x2, uv} for some uv € E(G), then G — {x;,x,} — uv has two components Fy, F,
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such that u € V(Fy), v € V(F2) and E(x1, F2) = E(x2, F1) = (. Since G is 3-edge-
connected, |[Ng(x;) NV(F;)| >2 and |[Ng(x;) N V(F)| >2. Choose longest paths
Py (up,u) between Ng(x;) NV(F;) and u in F; and P(vi,v) between Ng(xz)N
V(F,) and v in F,. Then |E(P;(u1,u))| > 1. Assume that Py(uy,u) = uy - - - usu. If
5<2, then u; has a neighbor | outside V(P (u;,u)). By the choice of P;(uy,u),
either G — u; has no path between | and {x;,u} (if s =1) or G — {u;,u} has no
path between u}| and {x;,u} and G — u; has no path of order at least 2 between u}
and u (if s = 2). Then s >2 and if s = 2, then #ju € E(G) and | has a neighbor u/
such that G — u/ has no path between u/ and {x,u;,us, u}, i.e., u] is a cut-vertex, a
contradiction. ~Therefore s>3, ie., |E(Pi(u1,u))|>3. By symmetry,
|E(P2(v1,v))| > 3. Then xju; Py (uy, u)uvPy (v, v)vixax; is a cycle of order at least
10, a contradiction.

Hence G — e is essentially 3-edge-connected. Note that ¢(G —e;) <c(G) <8
and [V<2(G —e1)| = |V2(G — e;1)| < 1. Then G — e, is collapsible by Theorem 7.
Let G; be the graph obtained from G(e;,e,) by adding an additional vertex v and
adding edges vv,,,vv,,. Note that there is a C-subpartition ({x, v}, {x2,ve,, Ve, })
such that Gy /n({x1, v}, {x2, Ve, Ve, }) =2 G — e;. Then G is collapsible and also is
supereulerian by Lemma 1(2). Then G, has a closed spanning trail 7 such that
To — v is a spanning (v,,, v, )-trail of G(ey,e3). O

Proof of Theorem 3 Let G be a counterexample with |V(G)l minimized. By
Corollary 1, |[V(G)| >10. If G has a 2-cycle Cp, then the minimality implies that
G/Cy is strongly spanning trailable. Since F(Cp) =0 and by Lemma 4, G is
strongly spanning trailable. Then g(G) > 3. Note that G has edges e, e, (or possibly
€1 = e;) such that G(ey, ;) has no spanning (v,,, v, )-trail. O

Claim 1. G — {e;, ey} is reduced.

Proof By contradiction, assume that G — {e;,e;} has a nontrivial collapsible
subgraph H;. Then as ej,e; ¢ E(H;) and by the definition of contractions,
G/H,(e1,e2) = G(ey,e2)/H;. By the choice of G and as |V(G/H,)| < |V(G)|, G/H;
is strongly spanning trailable, and so G(e;,e,)/H; = G/H (e}, e>) has a spanning
(Ve, s Ve, )-trail. Since H; is collapsible, it follows that G(ey, e;) also has a spanning
(Ve,» Ve, )-trail, a contradiction. O

Claim 2.For any connected subgraph H containing ey, e,, |E(H)| <2|V(H)| — 3.

Proof By Claim 1, H, =H —{ej,e;} is reduced. By Theorem 4(4),
F(H,) =2|V(H)| - (|E(H)|—2) —2. By Lemma 3(2), F(H)>1. Then
F(H\)>F(H)+2>3and |[E(H)| <2|V(H)| — 3. O

Since G is 2-connected, G has a cycle C = xyx, - - - x;x; containing e, e, with
! maximized. Then 3 <7< 8. Since k(G)>2 and V(G) — V(C) # 0, there exists a
maximum path Py =ujup---u, in G—V(C) such that Ng(u;) NV(C) #
0, Ng(u;) N V(C) # 0 and [Ng({ur,u2}) NV(C)| >2. Let Vo = V(C) U V(Py).

Claim 3.
(1) If +<2, then Ng(P(ui,u;)) C V(C),
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(2) if t=3, then Ng({u1,u3}) CV(C)U{up} and either Ng(up) CV(C)U
{u1,u3} or Ng(uy) C V(C) for any u) € Ng(uz)\{u1,us}.

Proof

(1) Tt is true for r = 1. We then assume that r = 2. Without loss of generality,
assume that u, has a neighbor u) outside Vj. By the choice of Py, Ng(uy) N
Vo C {Mg,xl} if |N(;(M1) n V(C)| =1 or Ng(ulz) NVy= {uz} if
ING(u1) N V(C)| > 2. Then |Ng(uh) N Vo| <2, and so u) has a neighbor u)
outside Vy. By the choice of Py, G — {u,,u}} has no path between u) and
Vo\{u2}, and so G — u), has a path between u, and uj, and hence G — u, has
no path between {u}, 1} and Vo\{u,}, which means that u, is a cut-vertex of
G, a contradiction.

(2) Without loss of generality, assume that u3 has a neighbor u} outside Vj. By
the choice of Py, either Ng(uj) N Vo C {us,x1} or Ng(uy) NVy C {uy, us}.
Then u} has a neighbor uj outside Vj such that Ng(u) NV C {x;}. Then uf

has a neighbor ' outside Vo U {u3, uy, uy } such that G — {u}, u}} has no path

between u5 and V\{u3}. Since G is 2-connected, G — u} has a path between

uy’ and {u3,us}. By the choice of Py, G — u3 has no path between {u}, uj, uy’

and Vo\{u3}, i.e., u3 is a cut-vertex of G, a contradiction.

If ), has a neighbor u} outside Vy, then by the choice of Py, G — {uz,u)} has no
path between u and Vo\{u,}. Note that G — ) has a path between u and u, of
order at least 3. Then G — u;, has no path between {u}, 5 } and Vo\{uz}, and so u; is
a cut-vertex of G, a contradiction. O

If [ =3, by symmetry, then {e;,e;} = {x1x2,x2x3}. By the choice of C, (G —
X2) — x1x3 has no path between x; and x3. Then since G is 3-edge-connected, G has
paths Py, P, with end-vertices x;,x;, and x,x3, respectively, such that V(P;) N
V(Py) = {x»} and E(x3,P;) = E(x;,P;) = (). By Claims 2 and 3(1), |V(P;)| >3,
|[V(P,)| > 3, and so x| P1x2Ppx3x; is a cycle of order at least 9, a contradiction. Then
4 <1<8. Without loss of generality, assume that u;x; € E(G). Since ¢(G) <3,
t <5. We shall distinguish the following three cases.

Case 1. rc {4,5}.

Since ¢(G) <8, 1< 6. We then claim that |Ng(Py) N V(C)| = 2. Otherwise, assume
that  {wox;,ux;} CE(G) for some up€V(Py) and 1<i<j<l If
E(xjxjsy - xix;) N{er,ex} =0, then |V(xjxjy---xx1)|>6, since otherwise,
[V(V(xiu1Pousxj))| > 6 > |V(xjxjp1 - -xx1)|, and then xju;Pouxjxj—y---x; is a
cycle containing ej, e; of order bigger than C, contradicting the choice of C. Thus
XjXjr1 - XU - -uX; is a cycle of order at least 10, a contradiction. Hence
E(xjxjs1 - xixp) N{er,ex} #0. Then either E(xjxy---x;)N{er,ea} =0 or
E(xixis1 -+ -x;) N{er,ex} = 0. By the choice of C, either
[V(P(xix2---x;))| > |V(urPouo)| +2  or [V(P(xixiy1---x;))| > |V(uoPou,)| + 2.
Hence j>5 for uy & {uy,u,;} or j>4 for uy € {uy,u,}. Hence ug € {u;,us} and
t =4, since otherwise, xix---Xjuu;, ---u1x; is a cycle of order at least 9, a
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contradiction. Without loss of generality, assume that {u;x3,usxs} C E(G). Then
{e1,e2} = {x1x4,x3x4}. By Claim 1, uyu3 ¢ E(G), and so u3 has a neighbor i}
outside {uz, us}. By the choices of C and Py, G — {u;, u3,x4} has no path between
wy and {x1,x2,x3,u2,us} and G — u3 has no path of order at least two between u}
and {u1,x4}. Then {wfu;,uixs} C E(G). By the choice of P, and since
K33 € Gl{x4,u1,uz,u3,us,us}], No(uz) N Vo = {uy,uz}, and so u, has a neighbor
u, outside Vo U {u} such that G — u, has no path between u} and Vo U {u}}, and
hence u, is a cut-vertex of G, a contradiction.

Suppose that [ = 4. If u.x, € E(G), then t = 4 since ¢(G) < 8. Then at least one
of {x3,x4} has neighbor outside V), since otherwise, |E(G[V(C)])| > 6, contradict-
ing Claim 2. By symmetry, assume that x3x; € E(G) for some x; ¢ V;. Since
c(G) <8 and by the choice of Py, Ng(x5) N Vo € {x1,x3}, and so x} has a neighbor
¥ outside Vo U {x5} such that G — {x3,x4} has no path between x5 and V;, and
hence G — x3 has no path between {x}, x5} and Vj, i.e., x3 would be a cut-vertex of
G, a contradiction. Hence ux;, uxs & E(G) and ux3 € E(G). Then x;, x4 have no
neighbor outside Vy.(Otherwise, assume that xjx, € E(G) for some x} & V;. Since

¢(G) <8 and by the choice of C, either Ng(x5) NVy C {x1,x2} or Ng(x5)N

Vo C {x2,x3}, and so x5 has a neighbor x5 outside Vj such that G — {x,,x}} has no
path between x; and Vp, and hence G —x; has no path between {x,,x}} and
Vo\{x2}, i.e., x2 is a cut-vertex of G, a contradiction.) Then x,x4 € E(G) by Claim
2. By symmetry, {ej, e} = {x1x2,x2x3}, and so xyxpx3u:;1 - - - u1x; is a longer
cycle containing e, €5, or {e1,e2} = {x1x2,X3x4}, and S0 X1 Xpx4 X300, - + - Uy X7 IS @
longer cycle containing e, e;, or {e1,e2} = {x1x2,x1x4}, and so G — {e;,e,} has a
collapsible subgraph x;x3x4x;, contradicting Claim 1. Suppose that [ = 5. Then
since ¢(G)<8, r=4 and E(ug,{x2,x5}) =0. By symmetry, assume that
usx3 € E(G). By the same argument above, x,Xx4,Xxs have no neighbor outside
Vo, i.e., Ng(x;) C V(C) for i € {2,4,5}. Since ¢(G) <8, E(x2, {x4,x5}) = (). Then
|[E(GIV(C)])| > 8, contradicting Claim 2. Suppose that [ =6. Then t =4 and
usxs € E(G). By the same argument above, x;, X3, Xs, X have no neighbor outside
Vo, ie., Ng(x) CV(C) for i€{2,3,5,6}. Since ¢(G)<8, E(G[{x2,x3,
Xs5,%6}]) = {x2x3,x5x6}. Then |E(G[V(C)])| > 10, contradicting Claim 2.

Case 2. e {2,3}.

Suppose that 1 = 2. By Claims 1 and 3(1), there are four distinct vertices x1,x, €
Ng(u1) NV(C) and x,,,x, € Ng(u1) N V(C) (m<n). Note that those four vertices
divide C into four paths whose set is defined by Py and at least two of them do not
contain e, e;. Then p & [m, n], since otherwise, at least two paths in P has order at
least 4 by the choice of C, and so there is a cycle containing u;u, with order at least
10, a contradiction. By symmetry, assume that p € [1,m]. Since ¢(G) < 8 and by the
choice of C, {p,m,n} = {3,4,6}, C = x1xpx3x4x5x6x1 and {e;, ez} = {x3x4, %1%},
and so G — {x;,x3} has no path between x, and {u, us, x4, x5, x¢ }, which means that
dg(x2) = 2, a contradiction.

Suppose that t = 3. Assume that uzx; € E(G) for some x; € V(C)\{x;}. We
claim that G — {u;,u3} has no path between u, and V(C)\{xi,x;}. Suppose
otherwise. Then G — {uy, 3} has a path P(uy, x;) by Claim 3(2) for some i <j. Since
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¢(G) <8 and by the choice of C, P(up,x;) = upx; and either i =4,j =5, C =
x1xp - -xsx; and {ey,ex} = {xixs,x4x5} or i=2,j=3, C=xxy---x6x; and
{e1,e2} = {x1x2,x2x3}, and so |[E(G[Vy])| > 2|Vo| — 3, contradicting Claim 2. We
then claim that |Ng(Po)NV(C)|>3, since otherwise, {u1xi,ux;,
usxy, usxj, upxy, Xy  E(G) for some u)y € Ng(up)\Vp by Claims 1 and 3(2),
and then G[{x1,x;,u1,uz,us,ub}] — {e1,e2} = K35 is collapsible, contradicting
Claim 1. Furthermore, |Ng(Po) N V(C)| = 3 since ¢(G) < 8. By symmetry, assume
that u;x; € E(G) for some i<j. Then u, has a neighbor u, such that either
{uhx1,ubx;} C E(G) or {ujx,,uyx;} C E(G). Note that x;, x;,x; divide C into three
paths such that at least one of them does not contain ey, e, and so it has order at
least 5. By symmetry, assume that i > 5. Then x1x; - - - x;u1uou3x; - - - X1 is a cycle of
order at least 9, a contradiction.

Case 3. r=1.

Then G[V(G)\V(C)] is an empty graph. Recall |V(G)|>10. There is a subset
Vi C V(G)\V(C) such that u €Vy, |V1| =10-1 and ‘E(G[Vlu
V(O)])| >3 x (10 — I) + I. By Claim 2, |[E(G[V, UV(C)])| <17. Then [ >7.

Subcase 3.1 [=7.

Since  [E(GIV; UV(C)])| = [EGIV(C)| + |E(V, V(©)| <17 and  [E(Vi,
V(C))| =3 x (10=7) =9, |[E(G]V(C)])| <8. Without loss of generality, at least
one of the following holds: {uixy, u1xz,u1x3} C E(G), {u1xy, uxz,u1x4} C E(G),
{ulxl,ulxz, M]Xs} Q E(G) or {M]XI,M]X3, M]X5} g E(G)

If {urxy,u1x0,1x3} C E(G), then {ey, e} = {x1x2,xx3}. We claim that x4,x7
have no neighbor outside V(C). Suppose otherwise. By symmetry, choose
X} € Ng(x2)\V(C). Since ¢(G) <8, E(x}, {x2,x3,x5}) = 0. Besides, xjx; & E(G);
for otherwise, E(x),{xi,x¢}) =0, and so dg(xj) =2, a contradiction. So
{xjx1,x,x¢} C E(G). Note that xsx; ¢ E(G). Then either x; has a neighbor x/
outside V(C) or xs has a neighbor x5 outside V(C) such that Ng(x}) C {x;} or
Ng(x5) C {xs} since ¢(G) <38, a contradiction. Since |E(G[V(C)])| <8, xux7 €
E(G) and xs has a neighbor x§ outside V(C) such that Ng(x5) C {x3,xs5}, a
contradiction.

Suppose next that {ujx;,u1xz, u1xs} C E(G). Since ¢(G) <8, xix; € {e1,e2}.
Note that Ng(x3) C {x3,x6}, No(x5) C {x1,x5,x7} and {xsx;,x5x7} € E(G) for any
x5 € Ng(x3)\V(C) and any xi € Ng(xs5)\V(C). Since |[E(G[V(C)])| <8, x3, x5 have
no neighbor outside V(C) and x3xs € E(G). Then x; has a neighbor x/ outside
V(C) such that Ng(x;) C {xs5,x7}, a contradiction.

Suppose then that {uxy,u1x,uixs} C E(G). Then xjx, € {e,e,}. Besides,
X4,%¢ have no neighbor outside V(C). ( Otherwise, by symmetry, assume that there
is a vertex xg € Ng(x6)\V(C). Since ¢(G) <8, E(xg,{x2,x3,x5, x7}) =0 and
{xgx1,xx4} € E(G), ie., dg(xg) =2, a contradiction.) Then x4x¢ € E(G) and x;
has a neighbor x} outside V(C) such that Ng(x;) C {x7}, a contradiction.

Therefore, we assume that {u;xi,u1x3,u1x5} C E(G). Then xp,x4 have no
neighbor outside V(C). (Otherwise, by symmetry, assume that x4 has a neighbor x);
outsidle ~ V(C). By symmetry, E(xj,{x3,xs})=10. Since ¢(G)<S,
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E(x}, {x2,%6,x7}) = 0. Then dg(x;) <2, a contradiction.) Then x4xs € E(G) and x¢
has a neighbor x outside V(C) such that Ng(xgz) C {x1,x6}, a contradiction.

Subcase 3.2 [=28.

Since  |E(G[V1 UV(O)])| = [EGIV(C)))| + [EVi, V(C)I 17 and  [E(Vi,
V(C))| =3 x (10 —8) = 6, |[E(G[V(C)])| < 11. Without loss of generality, at least
one of the following holds: {u;x1,u1x3,u1x5} C E(G) or {u1x1, u1x3, u1x6 } C E(G).

If {ux1,u1x3,u1x5} C E(G), then x;,x4 have no neighbor outside V(C), since
otherwise, Ng(x}) C {x;} for any x; € Ng(x;) and i€ {2,4}, a contradiction.
Besides, xg,xs have no neighbor outside V(C). (Otherwise, by symmetry, choose
x5 € Ng(xg). Since ¢(G) <8, E(xg, {x1,x4,%6,%7,x3}) = 0 and {x{x2, x¢x3} € E(G).
Then dg(xg) <2, a contradiction.) Since ¢(G) <8, E(G[{x2,x4,X6,x3}]) C {x6x3}.
Then x¢xg € E(G) since |[E(G[V(C)])| <11, and hence E(x7, {x2,x4}) = 0 and x;
has a neighbor x} outside V(C) such that Ng(x;) C {x7}, a contradiction.

Suppose then that {ux;,u1x3,u1x6} C E(G). Then x, has no neighbor outside
V(C); for otherwise, Ng(xy) C {x2,x6} for any x), € Ng(xz) since ¢(G)<8, a
contradiction. Besides, x5, x; have no neighbor outside V(C); for otherwise, without
loss of generality, Ng(x%) C {x3,xs} for any xi € Ng(xs) since ¢(G)<8, a
contradiction. What’s more, x4,x3 have no neighbor outside V(C). Suppose
otherwise. By symmetry, assume that there is a vertex x) € Ng(x4), then
E(xy, {x2,x5,x7}) =0 and xjxs ¢ E(G) since c¢(G)<8. Then {xjx;,x}x¢}
C E(G). Note that any pair {x,,xs,x7,x3} are nonadjacent in G — x7xg since
¢(G) <8. Then |E(G[V(C) U {uy,x,}])| > 18, contradicting Claim 2. Since c(G) <8
and |E(G[V(C)])| < 11, {X4Xg,xSX7} - E(G) HOWCVCI‘, X5X7X8X4X3X2X1 U1 X6 X5 is a
9-cycle, a contradiction. This completes the proof of Theorem 3. O

4 Applications of Theorem 3

We now turn our attention to Theorem 3. Its proof will need some additional
concepts and notations. A vertex x € V(G) is said to be eligible if G[Ng(x)] is a
connected noncomplete graph. We will use Vg, (G) to denote the set of all eligible
vertices of G. The local completion of G at a vertex x is the graph G} obtained from
G by adding all edges with both vertices in Ng(x). One concept of a strong
multigraph closure of a claw-free graph G was introduced in [13] as follows.

For a given claw-free graph G, we construct a strong multigraph closure (or
briefly an SM-closure) G of graph G by the following construction.

(1) If G is Hamilton-connected, we set GM = cl(G).

(2) If G is not Hamilton-connected, we recursively perform the local completion
operation at such eligible vertices for which the resulting graph is still not
Hamilton-connected, as long as this is possible. We obtain a sequence of
graphs Gy, ..., Gy such that

(@ G =¢G,
(b) Giy1 = (Gi),, for some x; € Vi), i=1,...,k,
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(¢) Gy has no Hamiltonian (a, b)-path for some a,b € V(Gy),
(d) for any x € Vi (Gy), (Gx); is Hamilton-connected, and set G¥ = G;.

The following results show the properties of GM.
Theorem 11 Let G be a claw-free graph and let GM be the SM-closure. Then

1. (KuZel et al. [13])) G™ is Hamilton-connected if and only if G is Hamilton-
connected.

2. (Brousek et al. [4]) If G is H-free, then GM is H-free for any integers i,j, k> 1
and H € {Nii/}hpi}-

Given a trail 7 and an edge e in a multigraph H, we say that e is dominated
(internally dominated) by 7 if e is incident to a vertex (to an internal vertex) of 7,
respectively. A trail T in H is called an internally dominating trail, shortly IDT, if
T internally dominates all the edges in H.

Theorem 12 (Li et al. [17]) Let H be a multigraph with |E(H)| > 3. Then G = L(H)
is Hamilton-connected if and only if for any pair of edges e|,e, € E(H), H has an
internally dominating (e, ez)-trail.

Define the core of H, denoted by Hy, to be the graph obtained from H by deleting
all the vertices of degree 1, and contracting the edge xy for each path xyz with
y e Dz (H )

Theorem 13 (Shao [23]) Let H be a connected, essentially 3-edge-connected
graph. Then the core Hy of H satisfies the following.

(1) Hy is uniquely defined and «'(Hp) >3,
(2) if Hy is strongly spanning trailable, then L(H) is Hamilton-connected.

We say H has a Hi-minor if H; is isomorphic to the contraction image of a
subgraph of H. The graph T} is obtained by identifying one vertex v with an end-
vertex of three paths P, Pj.; and Py, respectively.

Proof of Theorem 2 Assume that G is not Hamilton-connected. By Theorem 11, we
may assume that G is SM-closed and H is a multigraph such that L(H) = G. Let Hy
be the core of H. By Theorem 13(1), x'(Hp) > 3. Then we shall obtain a 75 3 s-minor
and either obtain a Py;-minor or L(H) € G. By Theorem 12, there are at least two
edges e; = ujvy,e; = upv, of H such that H has no internally dominating (e, e2)-
trail. Without loss of generality, assume that u;,u, € V(Hp). Note that the graph
H can be regarded as the graph obtained from H, by adding an additional vertex set
Vi such that Vi = Di(H), and by subdividing each edge of an edge subset
E, C E(Hy).

Let H}, be the graph obtained from Hy by contracting all collapsible subgraphs of
Hy[V(Hy) — V({e1,e2})]. Let H' be the graph obtained from H; by adding an
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additional vertex set V; such that viu; € E(H') if and only if vi € Vi, viu| € E(H)
and u; is a contraction image of non-trivial collapsible subgraph of Hy[V(Hy) —
V({e1,e2})] containing |, and then subdividing each edge of an edge subset E] C
E(H]) such that uv € E} if and only if u, v are contraction images of two collapsible
subgraphs of Hy[V(Hy) — V({ej, e2})] containing «’,v and u'v' € E|. O

Claim 1. Each internally dominating (ey,e;)-trail Ty of H' can be extended an
internally dominating (ey, e;)-trail of H.

Proof By the construction of H', V({e1,e2}) C V(H') and {e,e2} C Tp. By the
definition of collapsible, we can replace each contraction image of collapsible graph
by a spanning subgraph of its preimage such that the resulting graph T is a (ey, e3)-
trail, and then subdividing each edge of E; N E(Ty). Then the resulting graph is an
internally dominating (ey, 5 )-trail of H. O

Note that H' and Hj, are two minors of H. Then H', H, have no T3 s-minor and
Pyy-minor if H has no 7> 3s-minor and Pj;-minor. By Claim 1, H{(e;,e;) has no
(Ve,, Ve, )-trail and it suffices to replace H,Hy,E, by H' Hj,E|, respectively.
Besides, Hy has at most two edge-disjoint cycles with order at most 3, which
contains at least one of {ey,e,}, respectively.

A vertex of Hy is called non-trivial if it is adjacent to at least one 1-vertex in H,
trivial otherwise. Call an edge of Hy non-trivial if its two end vertices are non-
trivial. For i € {1,2}, ¢; € E, if and only if either ¢; C Hy is non-trivial or ¢; C
uvix; C H for v; € Dy(H) and let u;x; = e;. Then Ey C H,.

Claim 2. If Hy is collapsible, then Ey # () and Hy — Ey is not collapsible.

Proof

(1) If min{dy(v1),du(v2)} =2, then Ey # (. If not, then ey, e, € E(Hy). Since
H, is collapsible, Hy has a spanning (u,uy)-trail Ty. If {e;, e} N E(T}) = 0,
then subdivide some edges of T} U{ej,e;} and the resulting trail is an
internally dominating (ey, e;)-trail of H, a contradiction. Then by symmetry,
assume that e; C T; C Hy and u; is non-trivial in Hy. If v; is non-trivial, then
e; € Ey. Hence we assume that v; is trivial. Note that Hy has a spanning
(v1, up)-trail T,. By symmetry, e; C T» C Hy and u; is non-trivial in Hy. Then
v, is non-trivial and e, € Ey; for otherwise, Hy has a spanning (vy, v,)-trail T,
and then the trail by subdividing some edges in 73 is an internally dominating
(e1, e2)-trail of H, a contradiction.

(2) Assume that Hy — E is collapsible. Then Hy — Ey has a spanning (up, us)-
trail Ty. Let Ty = Ty Ue; if ¢; € Ty for any i € {1,2}. Then at least one of
{e1, e2}, by symmetry, assume e; C Ty and u; is non-trivial, v; is trivial. Note
that Hy — Ey has a spanning (vq,u;)-trail Ts. By symmetry, v, is trivial and
Hy — E, has a spanning (v;, v;)-trail, which can be extended to an internally
dominating (e, e,)-trail of H, a contradiction.

O
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Choose a longest cycle Cy = x1x, - - - x;x1 € Hy. We then consider the following
two cases to finish our proof.

Casel. [>09.

Claim 3. H has Pyi-minor and T, 3 s-minor.

Proof We argue by contradiction. Then if Hy has a cycle Cy of order at least 10,
then V(Cy) = V(Hy). Since otherwise, there is a vertex y; € Ng,(x;) outside V(Cy)
such that Hy has a Py;. Besides, either Ny, (y;) = {x1} and d,(y1) = 1 or Hj has a
T, 35 as its subgraph, a contradiction.

We then claim that [ < 11; for otherwise, Py; C Hy and either Hy[V(Cy)] contains
a Tr35 or xj,xs,x9 are in three edge-disjoint cycles of order at most 3, a
contradiction.

Besides, P(10) is not an induced subgraph of Hj; for otherwise, either Hj =
P(10) with at least one non-trivial vertex or cut-vertex of Hy, and hence there are
T>35, P11 in any cases of them, a contradiction.

Then H, is collapsible by Theorem 9 and Ey # () by Claim 2. Suppose that
10<I<11. Then 10<|V(Hp)| <11 and H has a Py;-minor. If there is an edge
x1x] € E(Co), then either H has a T»3s-minor or xox; & E(Hp), xjx; ¢ E(Hy) for
i,j#1€{l,...,I} and |j — i| > 3, and so x,, x5, x; are in three vertex-disjoint cycles
of order at most 3, a contradiction. We then assume that x;x, € E|. Replace x;x, by
x1vi1xy in Hy. Then either x1, x4, xg are in three vertex-disjoint cycles of order at most
3 or there is a 7> 35, a contradiction.

Hence [ = 9. If |[V(H))| <9, then Hy € W, by Corollary 1 and one of {e;,e,} is
in a 2-cycle, and so Hy(ej,ez) has a (ve,v,,)-trail, a contradiction. Then
|V(Hp)| > 10 and there is at least one vertex u € V(Hp)\V(Cy). If u has a neighbor
outside V(Cy), then there are subgraphs T>35 and Ppj, a contradiction. Then
Ng, (1) C V(Cp). Without loss of generality, assume that {ux,, uxs,uxs} C E(Hy),
{uxy, uxs,uxe} C E(Hy) or {uxy,uxsq,uxs} C E(Hp). By (4.1), E(Co) NEy = 0.
Besides, E(u, Cy) N Ey = (), since otherwise, there are Pyj-minor and T, 3 s-minor.
Hence, there is an edge ey ¢ E(Co)UE(u,Cy) and ey€Ey. If
{uxy,uxs,uxs} C E(Hp), then Ey Z {x1x3,x1x5,x3x5} since Hy — {x1x3,X1X5, X3X5 }
is collapsible. Then at least one of {x,,x4,X¢,X7, X3, X9, u} has a neighbor outside
V(Co) U {u} and there is a T3 s-minor. In addition, there is a Py;-minor if one of
{x2,%4,%x¢6,x3,u} or all of {x7,xg} have neighbors outside V(Cp)U {u}. Then
E() = {60} - E({X7,Xg}, {X[,X3,X5}), and then H] = H()[V(C()) U {M}] — €y is a
2-edge-connected graph with order 11 and exactly one 2-vertex. By Theorem 10(1),
either H, is collapsible, and then Hy — ey is collapsible or H; = P(10)(e) and has a
P11, a contradiction. By the same but easier argument, we will obtain a contradiction
if either {ux|,uxs, ux¢} C E(Hy) or {uxa,uxys,uxe} C E(Hp).

Case 2. [<8.
By Theorem 13(2), Hy is not strongly spanning trailable. Then at least one of

block By of Hy is not strongly spanning trailable by Theorem 3 and |V(By)| > 10 by
Corollary 1. By Theorem 3, By = Wg. If By has a cut-vertex of H, then at least one
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vertex xo of V(By) belongs to a P4 of Hy — V(By), and hence Hy has Py; and T»3 5
as its subgraphs, a contradiction. Then Hy=~Wg and E(H,) = E(Cy)
U{x1xs, X2X¢, X3X7, X4Xg }. By symmetry, assume that Hy has no spanning (v, vy,)-
trail for f; = xixs,f> =x3x7. Since Hy, and Hjy — ey are collapsible for any
ey € {f1,/»}. Then Ey = {fi,f»} by Claim 2. Besides, either E(Cy) C E; or
V2, V4, Vs, vg are non-trivial. Then there is a 75 3 5. In addition, either there is a Py; or
each vertex of H is non-trivial and L(H) € G. O

5 Concluding Remark

In this paper, we extend the results in [1, 12] in Theorem 2 whose proofs are quite
shorter than the original ones with the help of Theorem 3. We believe Theorem 3
may be used to show that every 3-connected {Kj 3, S}-free graph G is Hamilton-
connected for § € {N],|75,N|73,3,N2,273}.
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