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Abstract
A graph G is strongly spanning trailable if for any e1 ¼ u1v1; e2 ¼ u2v2 2 EðGÞ
(possibly e1 ¼ e2), Gðe1; e2Þ, which is obtained from G by replacing e1 by a path

u1ve1v1 and by replacing e2 by a path u2ve2v2, has a spanning ðve1 ; ve2Þ-trail. A graph

G is Hamilton-connected if there is a spanning path between any two vertices of

V(G). In this paper, we first show that every 2-connected 3-edge-connected graph

with circumference at most 8 is strongly spanning trailable with an exception of

order 8. As applications, we prove that every 3-connected fK1;3;N1;2;4g-free graph is
Hamilton-connected and every 3-connected fK1;3;P10g-free graph is Hamilton-

connected with a well-defined exception. The last two results extend the results in

Hu and Zhang (Graphs Comb 32: 685–705, 2016) and Bian et al. (Graphs Comb 30:

1099–1122, 2014) respectively.
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1 Introduction

For the notation or terminology not defined here, see [2]. A graph is called trivial if
it has only one vertex, non-trivial otherwise. An empty graph is one in which no two
vertices are adjacent. For a connected graph G, we use jðGÞ, j0ðGÞ, c(G) and

g(G) to denote the connectivity, edge connectivity, circumference and girth of G,
respectively. Throughout this paper, we use Pn, Cn to denote a path or a cycle of

order n. The graph Ni;j;k is a triangle with disjoint paths of length i, j, k each

attaching to distinct vertices of the triangle; Hi denotes the graph formed from two

triangles, which are connected by a single path of length i. The graph Ni;j;k is defined

but we are defining Bi;j = Ni;j;0 and Zi ¼ Ni;0;0 here.

A graph G is Hamilton-connected if there is a spanning path between any pair

vertices of V(G). For a collection H of graphs, graph G is said to be H-free if

G does not contain H as an induced subgraph for all H 2 H (see [11]). Any

Hamilton-connected graph is 3-connected. Then it is natural to consider which

forbidden pairs of graphs fR; Sg imply that a 3-connected fR; Sg-free graph G is

Hamilton-connected. Faudree and Gould in [10] showed that one of them must be

K1;3. We now list the known graphs S which, together with the K1;3, imply that a

3-connected fK1;3; Sg-free graph is Hamilton-connected.

Theorem 1 Let G be a 3-connected fK1;3; Sg-free graph satisfying one of the
following:

(1) (Shepherd [24]) S ffi N1;1;1,

(2) (Faudree and Gould [10]) S ffi Z2,
(3) (Chen and Gould [8]) S 2 fB1;2; Z3;P6g,
(4) (Faudree et al. [9]) S 2 fN1;1;3;N1;2;2;P8g,
(5) (Bian et al. [1]) S ffi P9,

(6) (Hu and Zhang [12]) S ffi N1;2;3,

(7) (Broersma et al. [3]) S ffi H1.

Then G is Hamilton-connected.

Theorem 1 shows that the progress in forbidden pair guaranteeing a 3-connected

graph to be Hamilton-connected is very slowly, although it is also popular.

Motivated by the above results, we intend to extend Theorem 1(1)–(6).

The line graph of a given graph G, denoted by L(G), is a graph with vertex set

E(G) such that two vertices in L(G) are adjacent if and only if the corresponding

edges in G are incident to a common vertex in G. Following [2], the Wagner graph,

denoted by W8, is obtained from the cycle C8 by adding all four pairs of vertices of

maximum distance in C8 as four chords in C8, and is depicted in Fig. 1. Now we

define a set of graphs G ¼ fLðWÞ : W is obtained from W8 by adding at least one

pendant edge at each vertex of W8g.

Theorem 2 Let G be a 3-connected graph. Then each of the following holds.

(1) If G is fK1;3;P10g-free, then G is Hamilton-connected or G is a spanning
subgraph of a member in G.
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(2) If G is fK1;3;N1;2;4g-free, then G is Hamilton-connected.

In fact, Faudree et al. [9] showed that if i, j, k are positive integers such that

every 3-connected fK1;3;Ni;j;kg-free graph is Hamilton-connected, then

iþ jþ k� 7. Hence Theorem 2(2) is sharp.

We use (u, v)-trail, P(u, v) to denote a trail and a path with u, v as end-vertices,

respectively. A graph is called supereulerian if it contains a spanning Eulerian

subgraph. Let e1 ¼ u1v1 and e2 ¼ u2v2 denote two edges of G. If e1 6¼ e2, then the

graph Gðe1; e2Þ is obtained from G by replacing e1 by a path u1ve1v1 and by

replacing e2 by a path u2ve2v2 , where ve1 ; ve2 are two new vertices not in V(G). If
e1 ¼ e2, then the graph Gðe1; e2Þ is also denoted by G(e) and is obtained from G by

replacing e ¼ u1v1 by a path u1ve1v1. A graph G is strongly spanning trailable if

for any e1; e2 2 EðGÞ, Gðe1; e2Þ has a spanning ðve1 ; ve2Þ-trail. As e1 ¼ e2 is

possible, strongly spanning trailable graphs are supereulerian.

It is known [14, 21] that the line graph of a strongly spanning trailable graph is

Hamilton-connected. In order to prove Theorem 2, we need the following associate

result, which is itself interesting and shall have potential useful applications.

Theorem 3 Every 2-connected 3-edge-connected graph G with cðGÞ� 8 other than
W8 is strongly spanning trailable.

The proofs of Theorems 3 and 2 are placed in Sects. 3 and 4, respectively. In the

rest of this section, we prepare some terminology and notation to be used in this

article. For the notation or terminology not defined here, see [2]. The degree of a

vertex u in a graph G, denoted by dGðuÞ, is the number of edges of G incident with

u, each loop counting as two edges. Call u a k-vertex if dGðuÞ ¼ k. Define DiðGÞ ¼
fu 2 VðGÞ : dGðuÞ ¼ ig and D� iðGÞ ¼ fu 2 VðGÞ : dGðuÞ� ig. We denote by

DðGÞ and dðGÞ the maximum degree and minimum degree of the vertices of

G. For subsets S � VðGÞ and E � EðGÞ, we denote by G� S and G� E the

subgraphs of G induced by VðGÞnS and EðGÞnE, respectively, define NGðSÞ to be
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the set of vertices in VðGÞnS that are adjacent to a vertex in S and

NG½S� ¼ NGðSÞ [ S. Define Eðu; SÞ ¼ fus : s 2 Sg. When S ¼ fsg, E ¼ feg, we

use G� s, NGðsÞ, NG½s� and G� e for G� fsg, NGðfsgÞ, NG½fsg� and G� feg,
respectively. We use H � G, H ffi G to denote the fact that H is a subgraph of G,
H and G are isomorphic. For any two sets S1; S2, define

S1MS2 ¼ ðS1 [ S2ÞnðS1 \ S2Þ.

2 Reductions and Reduced Graphs

In this section, we prepare some definitions and additional results and prove two

theorems.

For a graph G and X � EðGÞ, the contraction G/X is the graph obtained from

G by identifying the edges in X. If X ¼ feg, then we use G/e for G=feg. When H is

a subgraph of G, then we use G/H for G/E(H). If H is connected, then the vertex in

G/H onto which H is contracted is denoted by vH , and H is the preimage of vH in G.
For a graph G, let O(G) denote the set of odd degree vertices in G. In [5], Catlin

defined collapsible graphs. A graph G is collapsible if for any even subset R of

V(G), G has a spanning connected subgraph CR with OðCÞ ¼ R. The reduction of

G is obtained from G by contracting all maximal collapsible subgraphs of G. A
graph is reduced if it is the reduction of some graph.

Let F(G) be the minimum number of additional edges that must be added to G so

that the resulting graph has two edge-disjoint spanning trees. Catlin (Theorem 2 of

[6]) shows that a connected graph G is collapsible if FðGÞ ¼ 0. Let Km;n be the

complete bipartite graph with partition sets of size m and n. Fig. 1 depicts some of

the related graphs in this paper, including the Petersen graph P(10).
We summarize some results on Catlin’s reduction method and other related facts

below.

Theorem 4 Let G be a connected graph, H � G be a collapsible subgraph and G0

be the reduction of G, respectively. Then each of the following holds.

(1) (Catlin [5]) G is collapsible if and only if G/H is collapsible. And G is
collapsible if and only if G0 is K1.

(2) (Catlin [5]) G is reduced if and only if G has no non-trivial collapsible
subgraphs.

(3) (Catlin [5]) gðG0Þ � 4 and dðG0Þ � 3.

(4) (Catlin [6], see also Theorem 3.4 of [19]) FðG0Þ ¼ 2jVðG0Þj � 2� jEðG0Þj.
(5) (Catlin et al. [7]) If FðGÞ� 2, then G0 2 fK1;K2;K2;tg for some t� 1; if

FðGÞ� 2 and j0ðGÞ� 3, then G is collapsible. Consequently, K�
3;3 is

collapsible.
(6) (Lai et al. [15]) If dðGÞ� 3 and jVðGÞj � 13, then G0 2 fK1;K2;

K1;2;K1;3;Pð10Þ;P1ð12Þ;P2ð12Þ;P3ð12Þg.

For two disjoint subsets V1;V2 and a 4-cycle C ¼ x1x2x3x4x1 of graph G, define
G=pðV1;V2Þ to be the graph obtained from G� EðG½V1 [ V2�Þ by identifying V1 to
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form a vertex v1, by identifying V2 to form a vertex v2, and by adding a new edge

ep ¼ v1v2, and define G=pðCÞ ¼ G=pðfx1; x3g; fx2; x4gÞ.

Theorem 5 (Catlin [6]) For the graphs G and G=pðCÞ defined above, if G=pðCÞ is
collapsible, then G is collapsible.

In [20], the authors gave a method to verify whether a subgraph of G is

collapsible. They construct a C-subpartition ðX1;X2Þ of G starting with a 4-cycle

x1x2x3x4x1 � G.

1. X1 :¼ fx1; x3g, X2 :¼ fx2; x4g, fi; jg ¼ f1; 2g
2. While u 2 NGðX1 [ X2Þ 6¼ ;, NGðX1Þ \ NGðX2Þ ¼ ; and NGðuÞ \ NG½X1 [ X2� 6

¼ ; do

fXi :¼ Xi [ fug;Xj :¼ Xj; if jEðu;XiÞj� 2;Xi :¼ Xi [ ðNGðXiÞ \ NG½u�Þ;
Xj :¼ Xj; elseifNGðXiÞ \ NG½u� 6¼ ;;Xi :¼ Xi [ ðNGðXjÞ \ NGðuÞÞ;
Xj :¼ Xj [ fug; else:g

The following result would play an important role in the proofs in Sects. 2 and 3.

Lemma 1 (Liu et al. [20]) Let G be a graph with gðGÞ ¼ 4 and ðX1;X2Þ be a C-
subpartition of G. Then

(1) G½X1 [ X2 [ X12� is collapsible for any non-empty set X12 �
NGðX1Þ \ NGðX2Þ,

(2) if G=pðX1;X2Þ is collapsible, then G is collapsible.

An edge cut X is essential if G� X has at least two non-trivial components. A

graph G is essentially k-edge-connected if G does not have an essential edge cut

X with jXj\k.

Theorem 6 (Lai et al. [16]) Let G be a graph. If j0ðGÞ� 3 and cðGÞ� 8, then G is
supereulerian.

The following theorem extends Theorem 6.

Theorem 7 Let G be an essentially 3-edge-connected graph such that j0ðGÞ� 2,

cðGÞ� 8 and jD2ðGÞj � 1. Then G is collapsible.

Proof By contradiction, assume that G is a counter-example with |V(G)| minimized.

Then G is reduced; for otherwise, the reduction G0 of G is a non-trivial counter-

example with smaller order than G, a contradiction. By Theorem 4(2), G has no

non-trivial collapsible subgraphs.

Besides, jðGÞ� 2; for otherwise, each block of G is collapsible by the

minimality of G if G has a cut-vertex, a contradiction.

We then claim that gðGÞ ¼ 4. If not, then by Theorem 4(3), gðGÞ� 5. Take a

longest path P0 ¼ x1x2 � � � xl of G with dGðx1Þ� dGðxlÞ. Since jD2ðGÞj � 1,

dGðx1Þ� 3, and so x1 has at least three neighbors in P0. As gðGÞ� 5 and
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cðGÞ� 8, fx1x5; x1x8g � EðGÞ. Using the alternative longest path

x4x3x2x1x5x6 � � � xl, we get x4x8 2 EðGÞ by the same argument if dGðx4Þ� 3,

yielding a C4 ¼ x1x5x4x8x1. This means that D2ðGÞ ¼ fx4g. Using the alternative

longest path x7x6x5x4x3x2x1x8 � � � xl, we get x7x3 2 EðGÞ. Since gðGÞ� 5 and

cðGÞ� 8, Eðx6;VðP0Þnfx5; x7gÞ ¼ ;, and so x6 has a neighbor x06 outside P0 such

that Eðx06;VðP0Þnfx6gÞ ¼ ;. Therefore, there is a longer path

x006x
0
6x6x7x3x4x5x1x8 � � � xl of order lþ 1 for any x006 2 NGðx06ÞnVðP0Þ than P0, a

contradiction.

So G has a 4-cycle C4 ¼ x1x2y1y2x1 � G. As every cycle in G=pðC4Þ
corresponds to a cycle in G, we have cðG=pðC4ÞÞ� cðGÞ� 8. As jD2ðGÞj � 1,

jD2ðG=pðC4ÞÞj � 1. If j0ðG=pðC4ÞÞ� 3, then the minimality of G implies that

G=pðC4Þ is collapsible. Thus by Theorem 5, G is collapsible, a contradiction.

Therefore, we must have j0ðG=pðC4ÞÞ� 2. We consider the following two cases to

finish our proof.

Case 1. j0ðG=pðC4ÞÞ ¼ 1.

Then ep must be the cut-edge of G=pðC4Þ, and so G� EðC4Þ has two

components G1, G2 such that x1; y1 2 VðG1Þ, x2; y2 2 VðG2Þ and VðG1Þ � D� 3ðGÞ.
As G is essentially 3-edge-connected, VðC4Þ � D� 3ðGÞ. Therefore, we can choose

longest paths Pðxi; yiÞ between xi and yi in Gi for i 2 f1; 2g. Since gðGÞ ¼ 4,

jEðPðxi; yiÞÞj � 2.

We first claim that jEðPðx1; y1ÞÞj � 3. Since otherwise, assume that Pðx1; y1Þ
¼ x1wy1. Then w has a neighbor w0 outside fx1; x2g such that G1 � w has a path

between w0 and fx1; y1g since G is 2-connected, which would produce a longer

ðx1; y1Þ-path, a contradiction.

If jEðPðx1; y1ÞÞj ¼ 3, assume that Pðx1; y1Þ ¼ x1w1w2y1, then w1 has a neighbor

w0
1 outside fx1;w2g such that G1 � w1 has no path between w0

1 and fw2; x1g and no

path of order at least 2 between w0
1 and y1 by the choice of Pðx1; y1Þ. Hence

w0
1y1 2 EðGÞ since G is 2-connected. By symmetry, w2 has a neighbor w

0
2 such that

w0
2x1 2 EðGÞ, and so x1w

0
2w2w1w

0
1y1 is a longer path than Pðx1; y1Þ, a contradiction.

This implies that jEðPðx1; y1ÞÞj ¼ 4 and jEðPðx2; y2ÞÞj ¼ 2 since cðGÞ� 8.

Assume that Pðx1; y1Þ ¼ x1w1w2w3y1, Pðx2; y2Þ ¼ x2wy2. Since gðGÞ ¼ 4 and by the

choice of Pðx1; y1Þ, w2 has a neighbor w
0
2 outside VðPðx1; y1ÞÞ such that G� w2 has

no path between w0
2 and fw1;w3g and no path of order at least 2 between w0

2 and

fx1; y1g. Then fw0
2x1;w

0
2y1g 6� EðGÞ, since otherwise, K�

3;3 � G½fx1; x2;
y1; y2;w;w

0
2g�, a contradiction. Then w0

2 has a neighbor w00
2 outside VðPðx2; y2ÞÞ [

fw0
2g such that G� fw1w2;w2w3g has no path between w2w

0
2w

00
2 and C by the choice

of Pðx2; y2Þ, i.e., fw1w2;w2w3g is an essential 2-edge-cut of G, a contradiction.

Case 2. j0ðG=pðC4ÞÞ ¼ 2

If G=pðC4Þ is essentially 3-edge-connected, then G=pðC4Þ has a 2-vertex

u0 2 VðepÞ, and so VðCÞ \ D2ðGÞ 6¼ ;. Then D2ðG=pðC4ÞÞ ¼ 1, and so G=pðC4Þ is
collapsible by the minimality of G, and hence G is collapsible by Theorem 5, a

contradiction. This implies that G=pðC4Þ has an essential 2-edge-cut fep; z1z2g such
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that G� VðC4Þ has a cut-edge z1z2 such that ðG� VðC4ÞÞ � z1z2 has two

components G1;G2 with z1 2 VðG1Þ, z2 2 VðG2Þ and VðG1Þ [ fx1; y1g
� D� 3ðGÞ. Choose longest paths Pðxi; ziÞ (say) between fxi; yig and zi in G½VðGiÞ [
fxi; yig� for i 2 f1; 2g.

Note that fz1x1; z1y1; z2x2; z2y2g 6� EðGÞ since K�
3;3 6� G½fx1; y1; z1; x2; y2; z2g�.

Then maxfjEðPðx1; z1ÞÞj; jEðPðx2; z2ÞÞjg� 2. By symmetry, assume that Pðx2; z2Þ ¼
x2w1 � � �wtz2 for some t� 1. Since cðGÞ� 8, t� 2. Suppose first that t ¼ 1. Then

NGðw1Þ � fx2; y2; z2g, since otherwise, w1 has a neighbor w0
1 outside fx2; y2; z2g

such that G� w1 has no path between w0
1 and fx2; y2; z2g by the choice of Pðx2; z2Þ,

i.e., w1 is a cut-vertex of G, a contradiction. Besides, NG2
ðz2Þ � fx2; y2;w1g.

(Otherwise, since G is 2-connected and by the choice of Pðx2; z2Þ, z2 has a neighbor
z02 outside fx2; y2;w1g such that z02w1 62 EðGÞ and Eðz02; fx2; y2gÞ 6¼ ;. By the

symmetry of w1 and z02, NGðz02Þ � fz2; x2; y2g. Since cðGÞ� 8, jEðPðx1; z1ÞÞj ¼ 1,

i.e., fz1x1; z1y1g � EðGÞ. Hence K�
3;3 � G½fx1; y1; z1; x2; y2; z2; z02g�, a contradiction.)

Then jEðPðx1; z1ÞÞj � 2 and fw1; z2g \ D2ðGÞ 6¼ ; since fy2w1; y2z2g 6� EðGÞ. By
the symmetry of Pðx1; z1Þ and Pðx2; z2Þ, jEðPðx1; z1ÞÞj � 3 since jD2ðGÞj � 1, and so

G½VðPðx1; z1Þ [ Pðx2; z2Þ [ C4Þ� has a cycle of order at least 9, a contradiction.

Suppose now that t ¼ 2. Since cðGÞ� 8, jEðPðx1; z1ÞÞj ¼ 1 and

fz1x1; z1y1g � EðGÞ. Then dGðw1Þ ¼ 2. (Otherwise, assume that w1 has a neighbor

w0
1. By the choice of Pðx2; z2Þ and since G is 2-connected, w0

1z2 2 EðGÞ. Note that

fw2;w
0
1g 6� D2ðGÞ. By symmetry, either w2 has a neighbor w0

2 outside

fx2; y2; z2;w0
1g such that G� w2 has no path between w0

2 and fx2; y2; z2;w1;w
0
1g

by the choice of Pðx2; z2Þ or Eðw0
2; fx2; y2; z2;w0

1gÞ 6¼ ; and G½fx1; y1; z1;
x2; y2; z2;w1;w2;w

0
1;w

0
2g� is collapsible, a contradiction.) Hence w2 has a neighbor

w0
2 outside fx2; y2; z2g such that G� w2 has no path between w0

2 and fx2; y2:z2;w1g
by the choice of Pðx2; z2Þ and jD2ðGÞj � 1, a contradiction. h

Theorem 8 (Ma et al. [22]) Let G be a 3-edge-connected graph. Then each of the
following holds.

(1) If cðGÞ� 11, then G is supereulerian or G is contractible to P(10).
(2) If G is reduced, gðGÞ ¼ 4 and cðGÞ� 11, then there is a 4-cycle C such that

j0ðG=pðCÞÞ� 3.

(3) If G is reduced, jVðGÞj � 14 and gðGÞ� 5, then cðGÞ� 12.

The following theorem extends Theorem 8(1) and will play an important role in

the proof of Theorem 2.

Theorem 9 Let G be a 2-connected 3-edge-connected graph with cðGÞ� 11 and G0

be the reduction of G. Then either G is collapsible or G0 ffi Pð10Þ.

Proof By contradiction, assume that G is a counter-example with |V(G)| minimized.

Then G is reduced. Otherwise, G has a collapsible subgraph H. Then G/H is 2-edge-

connected, 3- edge-connected with cðG=HÞ� 11 and vH is the contraction image of

H. If jðG=HÞ� 2, then either G/H is collapsible, and then G is collapsible or the

reduction G0 of G/H is isomorphic to P(10), a contradiction. If jðG=HÞ ¼ 1, then
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the reduction G0 of G/H has at least two blocks B1 ffi B2 ffi Pð10Þ sharing one cut-

vertex vH . Since jðGÞ� 2, jNGðVðB1ÞnfvHgÞ \ VðHÞj � 2 and jNGðVðB2ÞnfvHgÞ
\VðHÞj � 2. Hence G has a cycle of order at least 18, contradicting cðGÞ� 12.

Furthermore, gðGÞ� 5. If not, then G has a 4-cycle C0 ¼ x1y1x2y2x1 such that

j0ðG=pðC0ÞÞ� 3 by Theorem 8(2). Let G0
1 be the reduction of G=pðC0Þ and ep ¼ xy.

Then jVðG0
1Þj � jVðG=pðC0ÞÞj\jVðGÞj, cðG0

1Þ� cðG=pðC0ÞÞ� 11. The minimality

of |V(G)| implies that each block of G0
1 is isomorphic to P(10). If jðG=pðC0ÞÞ� 2,

then either G=pðC0Þ ffi G0
1 ffi Pð10Þ and G ffi P3ð12Þ (see Fig. 1), and hence

cðGÞ ¼ 12, or G has a subgraph H such that VðC4Þ \ VðHÞ ¼ fx1; x2g (or

fy1; y2g), H=fx1; x2g (or H=fy1; y2g) is collapsible and ðG=pðC0ÞÞ=H ffi Pð10Þ,
and hence cðGÞ� cðP3ð12ÞÞ� 12, a contradiction. Then G=pðC0Þ has two blocks

B1;B2 such that ep 2 EðB1Þ and VðB1Þ \ VðB2Þ ¼ fxg (or fyg). This implies that

G has a subgraph H such that C0 � H and the reduction of H=pðC0Þð¼ B1Þ is

isomorphic to P(10). Then cðGÞ� cðHÞ� 12.

As cðGÞ� 11 and gðGÞ� 5, by Theorem 8(3), jVðGÞj � 13. By Theorem 4(6),

G0 2 fP1ð12Þ;P2ð12Þg. Therefore, G0 has a 12-cycle (see Fig. 1), contradicting

cðGÞ� 11. h

3 Proof of Theorem 3

Before presenting the proof, we need to prepare some results. The graphs

K 0
2;3;Pð10ÞðeÞ are depicted in Fig. 1.

Theorem 10 It holds the following.

(1) (Li et al. [18]) Every connected graph G with jVðGÞj � 12, jD1ðGÞj ¼ 0,

jD2ðGÞj � 1 either is supereulerian with 12 vertices or the reduction of G is in
fK1;K2;P3;K2;3;K

0
2;3;Pð10Þ;Pð10ÞðeÞg.

(2) (Wang [25]) Every 3-edge-connected graph G with jVðGÞj� 8 other than W8

is strongly spanning trailable.
(3) (Li et al. [18]) Let G be a 3-edge-connected graph with blocks B1; . . .;Bk.

Then G is strongly spanning trailable if and only if Bi is strongly spanning
trailable for every i ¼ 1; . . .; k.

LetW0 be the set of graphs obtained fromW8 by subdividing one edge ofW8 and

then adding at least one edge between the new vertex and exactly one of its

neighbor.

Corollary 1 Every 3-edge-connected graph G with jVðGÞj � 9 other than a member
of fW8g [W0 is strongly spanning trailable.

Proof Let G be a counter-example. Then jVðGÞj ¼ 9 by Theorem 10(2) and for

some pair of edges e1; e2, Gðe1; e2Þ does not have a spanning ðve1 ; ve2Þ-trail. Let H be

the graph obtained from Gðe1; e2Þ by adding a new vertex z and two edges zve1 ; zve2 .
Then H is 2-edge-connected, essentially 3-edge-connected and nonsupereulerian

with 12 vertices if e1 6¼ e2 or 11 vertices if e1 ¼ e2. Besides, the reduction H
0 of H is
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2-edge-connected, essentially 3-edge-connected and nonsupereulerian with

jD2ðH0Þj � 1. By Theorem 10(1), H0 2 fPð10Þ;Pð10ÞðeÞg. If H0 ffi Pð10Þ, then

H has a collapsible subgraph H1 containing z. Since z is not in a triangle,

jVðH1Þj � 4, and then jVðHÞj � 13, a contradiction. Hence H0 ffi Pð10ÞðeÞ. If

H0 ¼ H, then H ¼ W8, a contradiction. If H
0 6¼ H, then H has a collapsible subgraph

H1 with jVðH1Þj ¼ 2 since jVðHÞj ¼ 12, and then H 2 W0, a contradiction. h

Let G be a graph and S � VðGÞ be a subset with |S| even. A subgraph LS � G is

an S-join if OðLSÞ ¼ S. Thus a graph G is collapsible if for every even vertex subset

S, G has a spanning connected S-join.

Lemma 2 Let G ffi K2;t for integer t� 2 and S � VðGÞ be an even subset such that

S \ D2ðGÞ 6¼ ;. Then for any fu1; u2g � VðGÞ, exactly one of the following holds,

(1) t ¼ 2, S ¼ fu1; u2g and u1u2 62 EðGÞ,
(2) G has a spanning S-join L such that either L is connected (if D2ðGÞ 6� S) or

L has exactly two components L1; L2 such that u1 2 VðL1Þ; u2 2 VðL2Þ (if
D2ðGÞ � S).

Proof Let w1;w2 be two nonadjacent vertices of degree t in G and v1; . . .; vt be the
other vertices of G. Let V1 ¼ fv1; . . .; vtg \ S and V2 ¼ fv1; . . .; vtgnS. Let

fi; jg ¼ f1; 2g.
Suppose that t ¼ 2. Then, without loss of generality, either u1 ¼ v1; u2 ¼ v2 or

u1 ¼ v1; u2 ¼ w1. If S ¼ fw1;w2;w3;w4g, then set L1 ¼ v1w2;L2 ¼ v2w1. If

S ¼ fw1;w2g, then set L1 ¼ v1; L2 ¼ w1v2w2. If S ¼ fv1; v2g, then either u1 ¼
v1; u2 ¼ v2 and (i) holds, or u1 ¼ v1; u2 ¼ w1 and set L1 ¼ w1; L2 ¼ v1w2v2. We

then assume S ¼ fv1;w1g, then set L ¼ viwivjwj. Therefore, we then assume that

t� 3. Then V1 6¼ ;.

Case 1. V2 ¼ ;.

It suffices to construct a spanning S-join L of G that has exactly two components

L1; L2 such that fu1; u2g \ VðL1Þ ¼ fu1g. If t is odd, then fw1;w2g \ S ¼ fwig and

V1 has a partition ðV1
1 ;V

2
1 Þ such that jV1

1 j is odd, jV2
1 j is even, ðV1

1 [ fwigÞ
\fu1; u2g ¼ fu1g, and hence set L1 ¼ G½Eðwi;V

1
1 Þ�, L2 ¼ G½Eðwj;V

2
1 Þ�.

If t is even, then either fw1;w2g � S or fw1;w2g \ S ¼ ;. If fw1;w2g � S, then

V1 has a partition ðV3
1 ;V

4
1 Þ such that jV3

1 j, jV4
1 j are odd and ðV3

1 [ fw1gÞ
\fu1; u2g ¼ fu1g, and hence set L1 ¼ G½Eðw1;V

3
1 Þ�, L2 ¼ G½Eðw2;V

4
1 Þ�. If

fw1;w2g \ S ¼ ;, then V1 has a partition ðV5
1 ;V

6
1 Þ such that jV5

1 j, jV6
1 j are even

and ðV5
1 [ fw1gÞ \ fu1; u2g ¼ fu1g, and set L1 ¼ G½Eðw1;V

5
1 Þ�, L2 ¼ G½Eðw2;V

6
1 Þ�.

Case 2. V2 6¼ ;.

Then V1 has a partition ðV7
1 ;V

8
1 Þ such that jV8

1 j is odd. It suffices to construct a

spanning connected S-join L of G.
Suppose first that t is odd. If fw1;w2g � S, then jV1j is even, jV2j is odd, and set

L ¼ G� Eðw2;V1Þ. If fw1;w2g \ S ¼ fwig, then jV1j is odd, jV2j is even, and set

L ¼ G� Eðwj;V1Þ. If fw1;w2g \ S ¼ ;, then jV1j is even, jV7
1 j, jV2j are odd, and set
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L ¼ G� ðEðw1;V
8
1 Þ [ Eðw2;V

7
1 ÞÞ.

Suppose then t is even. If fw1;w2g � S, then jV1j; jV2j are even, jV7
1 j is odd, and

set L ¼ G� ðEðw1;V
8
1 Þ [ Eðw2;V

7
1 ÞÞ. If fw1;w2g \ S ¼ fwig, then jV1j, jV2j are

odd, jV7
1 j is even, and set L ¼ G� ðEðwi;V

7
1 Þ [ Eðwj;V

8
1 ÞÞ. If fw1;w2g \ S ¼ ;,

then jV1j, jV2j are even, and set L ¼ G� Eðw2;V1Þ. h

Lemma 3 Let G be a graph and H be a subgraph of G such that H has 2 edge-
disjoint spanning trees. If either H is essentially 3-edge-connected, or G is 3-edge-
connected, then

(1) if G is strongly spanning trailable, then G/H is strongly spanning trailable,
(2) if G/H is strongly spanning trailable, then either G is strongly spanning

trailable, or G has only one pair edges e; e0 such that H ¼ G½fe; e0g� ffi C2

and Gðe; e0Þ has no spanning ðve; ve0 Þ-trail.

Proof

(1) Suppose that G is strongly spanning trailable and let e1; e2 be two edges in G/
H. As e1; e2 2 EðGÞ � EðHÞ, Gðe1; e2Þ has a spanning ðve1 ; ve2Þ-trail T. Since
G=Hðe1; e2Þ ¼ Gðe1; e2Þ=H, T=EðHÞ \ EðTÞ is a spanning ðve1 ; ve2Þ-trail of
G/H. Hence by definition, G/H is strongly spanning trailable.

(2) Assume that G/H is strongly spanning trailable, and let vH denote the vertex in

G/H onto which H is contracted. For any e1; e2 2 EðGÞ, we shall show that

Gðe1; e2Þ always has a spanning ðve1 ; ve2Þ-trail. If fe1; e2g \ EðHÞ ¼ ;, then
e1; e2 2 EðG=HÞ. As G/H is strongly spanning trailable, G/H has a spanning

ðve1 ; ve2Þ-trail T1 containing the vertex vH . Let X1 ¼ VðHÞ \ OðG½EðT1Þ�.
Then since vH has even degree in T1, jX1j is even. Then H has a spanning

connected X1-join L1. It follows by definition that G½EðT1Þ [ EðL1Þ� is a

spanning ðve1 ; ve2Þ-trail in G.

Suppose next that jfe1; e2g \ EðHÞj ¼ 1, and by symmetry we may assume that

e1 2 EðHÞ and e2 62 EðHÞ. Since H has 2-edge-disjoint spanning trees, Hðe1Þ is

collapsible. Let e01 6¼ e2 be an edge in G/H incident with vH . Then e01; e2 2 EðG=HÞ.
Since G/H is strongly spanning trailable, G=Hðe01; e2Þ has a spanning ðve0

1
; ve2Þ-trail

T 0
2. Since e

0
1 is incident with vH , T

0
2 can be adjusted to a spanning ðvH ; ve2Þ-trail T2 in

G=Hðe2Þ, where

T2 ¼
T 0
2 � ve0

1
vH if ve0

1
vH 2 EðT 0

2Þ
T 0
2 � ve0

1
þ e01 if ve0

1
vH 62 EðT 0

2Þ:

(

Let X2 ¼ VðHÞ \ OðG½EðT2Þ�. Then since vH has odd degree in T2, jX2j is odd, and
so X0

2 ¼ X2Mfve1g is an even subset of VðHðe1ÞÞ. Since Hðe1Þ is collapsible, Hðe1Þ
has a spanning connected X0

2-join. It follows by definition that G½EðT2Þ [ EðL2Þ� is a
spanning ðve1 ; ve2Þ-trail in G.

Therefore, we assume that fe1; e2g � EðHÞ. If Hðe1; e2Þ is collapsible, then since

G/H is strongly spanning trailable, G/H has a spanning closed trail T3. Let

X3 ¼ VðHÞ \ OðG½EðT3Þ�Þ. Since vH has even degree in T3, jX3j is even, and so
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X0
3 ¼ X3 [ fve1 ; ve2g is also an even subset. Since Hðe1; e2Þ is collapsible, Hðe1; e2Þ

has a spanning connected X0
3-join L3. It follows by definition that G½EðT3Þ [ EðL3Þ�

is a spanning ðve1 ; ve2Þ-trail in G.
Thus we may assume that Hðe1; e2Þ is not collapsible. If FðHðe1; e2ÞÞ� 1, then

Hðe1; e2Þ is collapsible. Hence FðHðe1; e2ÞÞ ¼ 2. Let H0 be the reduction of

Hðe1; e2Þ. Thus there exists a subgraph J of Hðe1; e2Þ such that each component of

J is collapsible and such that Hðe1; e2Þ=J ¼ H0. By Theorem 4(5), H0 ¼ K2;t for

some t� 2. If jfve1 ; ve2g \ VðH0Þj � 1, then FðH0Þ �FðHÞ þ 1� 1, contrary to the

fact H0 ¼ K2;t. Hence ve1 ; ve2 must be two distinct vertices in D2ðH0Þ, and each of

fve1 ; ve2g is not incident with any edges in E(G). As G/H is strongly spanning

trailable, G/H has a spanning closed trail T4. Let X4 ¼ VðHÞ \ OðG½EðT4Þ�Þ. Since
vH has even degree in T4, jX4j is even, and so X0

4 ¼ X4 [ fve1 ; ve2g is also an even

subset. Define X00 ¼ fv 2 VðH0Þ : the preimage of v in Hðe1; e2Þ contains an odd

number of vertices in X0
4g. Then jX00j is even with ve1 ; ve2 2 X00. If t� 3, then by

Lemma 2, H0 has a spanning X00-join L such that either L is connected (if

D2ðH0Þ 6� X00), or L has exactly two components L1 and L2 with the preimage of Li
in Hðe1; e2Þ containing ui for i 2 f1; 2g (if D2ðH0Þ � X00). Note that if D2ðH0Þ � X00,
then there exist vertices u1; u2 2 VðHðe1; e2ÞÞ such that u1; u2 are in the same

component of G½EðT4Þ� and such that u1 and u2 are contained in different vertices of

H0. It happens that G=J½EðT4Þ [ EðLÞ� is a spanning ðve1 ; ve2Þ-trail of G/J. Since
each component of J is collapsible, G=J½EðT4Þ [ EðLÞ� can be lifted to a spanning

ðve1 ; ve2Þ-trail of G by replacing each vertex v 2 VðH0Þ by a spanning connected

subgraph of its preimage in Hðe1; e2Þ. We then assume that t ¼ 2 and

H0 ¼ u1ve1u2ve2u1. Then fe; e0g ¼ fe1; e2g ¼ fu1u2; u1u2g and H ¼
G½fe; e0g� ffi C2. h

Let Pð10Þ þ e be a graph obtained from the Petersen graph P(10) by adding an

additional edge e between two adjacent vertices x, y. In fact, e, xy are multiple

edges. Then cðPð10Þ þ eÞ ¼ 9. By Corollary 1, ðPð10Þ þ eÞ=fe; xyg is strongly

spanning trailable. On the other hand, ðPð10Þ þ eÞðe; xyÞ has no spanning ðve; vxyÞ-
trail. This implies that the condition cðGÞ� 8 in Lemma 4 is sharp.

Lemma 4 Let G be a 3-edge-connected graph with cðGÞ� 8. If G has a subgraph
H such that H has 2 edge-disjoint spanning trees, then G/H is strongly spanning
trailable if and only if G is strongly spanning trailable.

Proof By Lemma 3(2), assume that G/H is strongly spanning trailable, it suffices to

prove that for one pair edges e1; e2 of G such that H ¼ G½fe1; e2g� ffi C2, Gðe1; e2Þ
has a spanning ðve1 ; ve2Þ-trail. Let G be a counter-example with |V(G)| minimized.

By Theorem 10(3), G is 2-connected. Furthermore, G� fe1; e2g is reduced. If not,

assume that G� fe1; e2g has a nontrivial collapsible subgraph H1. As e1; e2 62
EðH1Þ and by the definition of contractions, G=H1ðe1; e2Þ ¼ Gðe1; e2Þ=H1. By the

choice of G and as jVðG=H1Þj\jVðGÞj, G=H1 is strongly spanning trailable, and so

Gðe1; e2Þ=H1 ¼ G=H1ðe1; e2Þ has a spanning ðve1 ; ve2Þ-trail. Since H1 is collapsible,

it follows that Gðe1; e2Þ also has a spanning ðve1 ; ve2Þ-trail, a contradiction.

Assume that fe1; e2g ¼ fx1x2; x2x1g. If G� e1 has an essential 2-edge-cut

fx1x2; uvg for some uv 2 EðGÞ, then G� fx1; x2g � uv has two components F1;F2
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such that u 2 VðF1Þ, v 2 VðF2Þ and Eðx1;F2Þ ¼ Eðx2;F1Þ ¼ ;. Since G is 3-edge-

connected, jNGðx1Þ \ VðF1Þj� 2 and jNGðx2Þ \ VðF2Þj � 2. Choose longest paths

P1ðu1; uÞ between NGðx1Þ \ VðF1Þ and u in F1 and P2ðv1; vÞ between NGðx2Þ \
VðF2Þ and v in F2. Then jEðP1ðu1; uÞÞj � 1. Assume that P1ðu1; uÞ ¼ u1 � � � usu. If
s� 2, then u1 has a neighbor u01 outside VðP1ðu1; uÞÞ. By the choice of P1ðu1; uÞ,
either G� u1 has no path between u01 and fx1; ug (if s ¼ 1) or G� fu1; ug has no

path between u01 and fx1; ug and G� u1 has no path of order at least 2 between u01
and u (if s ¼ 2). Then s� 2 and if s ¼ 2, then u01u 2 EðGÞ and u01 has a neighbor u

00
1

such that G� u01 has no path between u001 and fx1; u1; u2; ug, i.e., u01 is a cut-vertex, a
contradiction. Therefore s� 3, i.e., jEðP1ðu1; uÞÞj � 3. By symmetry,

jEðP2ðv1; vÞÞj � 3. Then x1u1P1ðu1; uÞuvP2ðv1; vÞv1x2x1 is a cycle of order at least

10, a contradiction.

Hence G� e1 is essentially 3-edge-connected. Note that cðG� e1Þ� cðGÞ� 8

and jV� 2ðG� e1Þj ¼ jV2ðG� e1Þj � 1. Then G� e1 is collapsible by Theorem 7.

Let G1 be the graph obtained from Gðe1; e2Þ by adding an additional vertex v and

adding edges vve1 ; vve2 . Note that there is a C-subpartition ðfx1; vg; fx2; ve1 ; ve2gÞ
such that G1=pðfx1; vg; fx2; ve1 ; ve2gÞ ffi G� e1. Then G1 is collapsible and also is

supereulerian by Lemma 1(2). Then G1 has a closed spanning trail T0 such that

T0 � v is a spanning ðve1 ; ve2Þ-trail of Gðe1; e2Þ. h

Proof of Theorem 3 Let G be a counterexample with |V(G)| minimized. By

Corollary 1, jVðGÞj� 10. If G has a 2-cycle C0, then the minimality implies that

G=C0 is strongly spanning trailable. Since FðC0Þ ¼ 0 and by Lemma 4, G is

strongly spanning trailable. Then gðGÞ� 3. Note that G has edges e1; e2 (or possibly
e1 ¼ e2) such that Gðe1; e2Þ has no spanning ðve1 ; ve2Þ-trail. h

Claim 1. G� fe1; e2g is reduced.

Proof By contradiction, assume that G� fe1; e2g has a nontrivial collapsible

subgraph H1. Then as e1; e2 62 EðH1Þ and by the definition of contractions,

G=H1ðe1; e2Þ ¼ Gðe1; e2Þ=H1. By the choice of G and as jVðG=H1Þj\jVðGÞj, G=H1

is strongly spanning trailable, and so Gðe1; e2Þ=H1 ¼ G=H1ðe1; e2Þ has a spanning

ðve1 ; ve2Þ-trail. Since H1 is collapsible, it follows that Gðe1; e2Þ also has a spanning

ðve1 ; ve2Þ-trail, a contradiction. h

Claim 2.For any connected subgraph H containing e1; e2, jEðHÞj � 2jVðHÞj � 3.

Proof By Claim 1, H1 ¼ H � fe1; e2g is reduced. By Theorem 4(4),

FðH1Þ ¼ 2jVðHÞj � ðjEðHÞj � 2Þ � 2. By Lemma 3(2), FðHÞ� 1. Then

FðH1Þ�FðHÞ þ 2� 3 and jEðHÞj� 2jVðHÞj � 3. h

Since G is 2-connected, G has a cycle C ¼ x1x2 � � � xlx1 containing e1; e2 with

l maximized. Then 3� l� 8. Since jðGÞ� 2 and VðGÞ � VðCÞ 6¼ ;, there exists a

maximum path P0 ¼ u1u2 � � � ut in G� VðCÞ such that NGðu1Þ \ VðCÞ 6¼
;;NGðutÞ \ VðCÞ 6¼ ; and jNGðfu1; u2gÞ \ VðCÞj � 2. Let V0 ¼ VðCÞ [ VðP0Þ.

Claim 3.

(1) If t� 2, then NGðPðu1; utÞÞ � VðCÞ,
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(2) if t ¼ 3, then NGðfu1; u3gÞ � VðCÞ [ fu2g and either NGðu2Þ � VðCÞ [
fu1; u3g or NGðu02Þ � VðCÞ for any u02 2 NGðu2Þnfu1; u3g.

Proof

(1) It is true for t ¼ 1. We then assume that t ¼ 2. Without loss of generality,

assume that u2 has a neighbor u02 outside V0. By the choice of P0, NGðu02Þ \
V0 � fu2; x1g if jNGðu1Þ \ VðCÞj ¼ 1 or NGðu02Þ \ V0 ¼ fu2g if

jNGðu1Þ \ VðCÞj � 2. Then jNGðu02Þ \ V0j � 2, and so u02 has a neighbor u002
outside V0. By the choice of P0, G� fu2; u02g has no path between u002 and

V0nfu2g, and so G� u02 has a path between u2 and u002, and hence G� u2 has
no path between fu02; u002g and V0nfu2g, which means that u2 is a cut-vertex of

G, a contradiction.

(2) Without loss of generality, assume that u3 has a neighbor u03 outside V0. By

the choice of P0, either NGðu03Þ \ V0 � fu3; x1g or NGðu03Þ \ V0 � fu1; u3g.
Then u03 has a neighbor u

00
3 outside V0 such that NGðu003Þ \ V0 � fx1g. Then u003

has a neighbor u0003 outside V0 [ fu3; u03; u003g such that G� fu03; u003g has no path
between u0003 and V0nfu3g. Since G is 2-connected, G� u003 has a path between

u0003 and fu3; u03g. By the choice of P0, G� u3 has no path between fu03; u003; u0003 g
and V0nfu3g, i.e., u3 is a cut-vertex of G, a contradiction.

If u02 has a neighbor u002 outside V0, then by the choice of P0, G� fu2; u02g has no

path between u002 and V0nfu2g. Note that G� u02 has a path between u002 and u2 of

order at least 3. Then G� u2 has no path between fu02; u002g and V0nfu2g, and so u2 is
a cut-vertex of G, a contradiction. h

If l ¼ 3, by symmetry, then fe1; e2g ¼ fx1x2; x2x3g. By the choice of C, ðG�
x2Þ � x1x3 has no path between x1 and x3. Then since G is 3-edge-connected, G has

paths P1, P2 with end-vertices x1; x2, and x2; x3, respectively, such that VðP1Þ \
VðP2Þ ¼ fx2g and Eðx3;P1Þ ¼ Eðx1;P2Þ ¼ ;. By Claims 2 and 3(1), jVðP1Þj � 3,

jVðP2Þj � 3, and so x1P1x2P2x3x1 is a cycle of order at least 9, a contradiction. Then
4� l� 8. Without loss of generality, assume that u1x1 2 EðGÞ. Since cðGÞ� 8,

t� 5. We shall distinguish the following three cases.

Case 1. t 2 f4; 5g.

Since cðGÞ� 8, l� 6. We then claim that jNGðP0Þ \ VðCÞj ¼ 2. Otherwise, assume

that fu0xi; utxjg � EðGÞ for some u0 2 VðP0Þ and 1\i\j� l. If

Eðxjxjþ1 � � � xlx1Þ \ fe1; e2g ¼ ;, then jVðxjxjþ1 � � � xlx1Þj � 6, since otherwise,

jVðVðx1u1P0utxjÞÞj � 6[ jVðxjxjþ1 � � � xlx1Þj, and then x1u1P0utxjxj�1 � � � x1 is a

cycle containing e1; e2 of order bigger than C, contradicting the choice of C. Thus
xjxjþ1 � � � x1u1u2 � � � utxj is a cycle of order at least 10, a contradiction. Hence

Eðxjxjþ1 � � � xlx1Þ \ fe1; e2g 6¼ ;. Then either Eðx1x2 � � � xiÞ \ fe1; e2g ¼ ; or

Eðxixiþ1 � � � xjÞ \ fe1; e2g ¼ ;. By the choice of C, either

jVðPðx1x2 � � � xiÞÞj[ jVðu1P0u0Þj þ 2 or jVðPðxixiþ1 � � � xjÞÞj[ jVðu0P0utÞj þ 2.

Hence j� 5 for u0 62 fu1; utg or j� 4 for u0 2 fu1; utg. Hence u0 2 fu1; u4g and

t ¼ 4, since otherwise, x1x2 � � � xjutut1 � � � u1x1 is a cycle of order at least 9, a
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contradiction. Without loss of generality, assume that fu1x3; u4x4g � EðGÞ. Then
fe1; e2g ¼ fx1x4; x3x4g. By Claim 1, u1u3 62 EðGÞ, and so u3 has a neighbor u03
outside fu2; u4g. By the choices of C and P0, G� fu1; u3; x4g has no path between

u03 and fx1; x2; x3; u2; u4g and G� u3 has no path of order at least two between u03
and fu1; x4g. Then fu03u1; u03x4g � EðGÞ. By the choice of P0 and since

K�
3;3 6� G½fx4; u1; u2; u3; u4; u03g�, NGðu2Þ \ V0 ¼ fu1; u3g, and so u2 has a neighbor

u02 outside V0 [ fu03g such that G� u2 has no path between u02 and V0 [ fu03g, and
hence u2 is a cut-vertex of G, a contradiction.

Suppose that l ¼ 4. If utx2 2 EðGÞ, then t ¼ 4 since cðGÞ� 8. Then at least one

of fx3; x4g has neighbor outside V0, since otherwise, jEðG½VðCÞ�Þj � 6, contradict-

ing Claim 2. By symmetry, assume that x3x
0
3 2 EðGÞ for some x03 62 V0. Since

cðGÞ� 8 and by the choice of P0, NGðx03Þ \ V0 � fx1; x3g, and so x03 has a neighbor
x003 outside V0 [ fx03g such that G� fx3; x03g has no path between x003 and V0, and

hence G� x3 has no path between fx03; x003g and V0, i.e., x3 would be a cut-vertex of

G, a contradiction. Hence utx2; utx4 62 EðGÞ and utx3 2 EðGÞ. Then x2; x4 have no

neighbor outside V0.(Otherwise, assume that x02x2 2 EðGÞ for some x02 62 V0. Since

cðGÞ� 8 and by the choice of C, either NGðx02Þ \ V0 � fx1; x2g or NGðx02Þ\
V0 � fx2; x3g, and so x02 has a neighbor x

00
2 outside V0 such that G� fx2; x02g has no

path between x002 and V0, and hence G� x2 has no path between fx02; x002g and

V0nfx2g, i.e., x2 is a cut-vertex of G, a contradiction.) Then x2x4 2 EðGÞ by Claim

2. By symmetry, fe1; e2g ¼ fx1x2; x2x3g, and so x1x2x3utut�1 � � � u1x1 is a longer

cycle containing e1; e2, or fe1; e2g ¼ fx1x2; x3x4g, and so x1x2x4x3utut�1 � � � u1x1 is a
longer cycle containing e1; e2, or fe1; e2g ¼ fx1x2; x1x4g, and so G� fe1; e2g has a

collapsible subgraph x2x3x4x2, contradicting Claim 1. Suppose that l ¼ 5. Then

since cðGÞ� 8, t ¼ 4 and Eðu4; fx2; x5gÞ ¼ ;. By symmetry, assume that

u4x3 2 EðGÞ. By the same argument above, x2; x4; x5 have no neighbor outside

V0, i.e., NGðxiÞ � VðCÞ for i 2 f2; 4; 5g. Since cðGÞ� 8, Eðx2; fx4; x5gÞ ¼ ;. Then
jEðG½VðCÞ�Þj � 8, contradicting Claim 2. Suppose that l ¼ 6. Then t ¼ 4 and

u4x4 2 EðGÞ. By the same argument above, x2; x3; x5; x6 have no neighbor outside

V0, i.e., NGðxiÞ � VðCÞ for i 2 f2; 3; 5; 6g. Since cðGÞ� 8, EðG½fx2; x3;
x5; x6g�Þ ¼ fx2x3; x5x6g. Then jEðG½VðCÞ�Þj � 10, contradicting Claim 2.

Case 2. t 2 f2; 3g.

Suppose that t ¼ 2. By Claims 1 and 3(1), there are four distinct vertices x1; xp 2
NGðu1Þ \ VðCÞ and xm; xn 2 NGðu1Þ \ VðCÞ (m\n). Note that those four vertices

divide C into four paths whose set is defined by P0 and at least two of them do not

contain e1; e2. Then p 62 ½m; n�, since otherwise, at least two paths in P0 has order at

least 4 by the choice of C, and so there is a cycle containing u1u2 with order at least

10, a contradiction. By symmetry, assume that p 2 ½1;m�. Since cðGÞ� 8 and by the

choice of C, fp;m; ng ¼ f3; 4; 6g, C ¼ x1x2x3x4x5x6x1 and fe1; e2g ¼ fx3x4; x1x6g,
and so G� fx1; x3g has no path between x2 and fu1; u2; x4; x5; x6g, which means that

dGðx2Þ ¼ 2, a contradiction.

Suppose that t ¼ 3. Assume that u3xj 2 EðGÞ for some xj 2 VðCÞnfx1g. We

claim that G� fu1; u3g has no path between u2 and VðCÞnfx1; xjg. Suppose

otherwise. Then G� fu1; u3g has a path Pðu2; xiÞ by Claim 3(2) for some i\j. Since
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cðGÞ� 8 and by the choice of C, Pðu2; xiÞ ¼ u2xi and either i ¼ 4; j ¼ 5, C ¼
x1x2 � � � x5x1 and fe1; e2g ¼ fx1x5; x4x5g or i ¼ 2; j ¼ 3, C ¼ x1x2 � � � x6x1 and

fe1; e2g ¼ fx1x2; x2x3g, and so jEðG½V0�Þj[ 2jV0j � 3, contradicting Claim 2. We

then claim that jNGðP0Þ \ VðCÞj � 3, since otherwise, fu1x1; u1xj;
u3x1; u3xj; u

0
2x1; u

0
2xjg � EðGÞ for some u02 2 NGðu2ÞnV0 by Claims 1 and 3(2),

and then G½fx1; xj; u1; u2; u3; u02g� � fe1; e2g ffi K�
3;3 is collapsible, contradicting

Claim 1. Furthermore, jNGðP0Þ \ VðCÞj ¼ 3 since cðGÞ� 8. By symmetry, assume

that u1xi 2 EðGÞ for some i\j. Then u2 has a neighbor u02 such that either

fu02x1; u02xig � EðGÞ or fu02x1; u02xjg � EðGÞ. Note that x1; xi; xj divide C into three

paths such that at least one of them does not contain e1; e2, and so it has order at

least 5. By symmetry, assume that i� 5. Then x1x2 � � � xiu1u2u3xj � � � x1 is a cycle of
order at least 9, a contradiction.

Case 3. t ¼ 1.

Then G½VðGÞnVðCÞ� is an empty graph. Recall jVðGÞj � 10. There is a subset

V1 � VðGÞnVðCÞ such that u1 2 V1, jV1j ¼ 10� l and jEðG½V1[
VðCÞ�Þj � 3	 ð10� lÞ þ l. By Claim 2, jEðG½V1 [ VðCÞ�Þj � 17. Then l� 7.

Subcase 3.1 l ¼ 7.

Since jEðG½V1 [ VðCÞ�Þj ¼ jEðG½VðCÞ�Þj þ jEðV1;VðCÞÞj � 17 and jEðV1;
VðCÞÞj � 3	 ð10� 7Þ ¼ 9, jEðG½VðCÞ�Þj � 8. Without loss of generality, at least

one of the following holds: fu1x1; u1x2; u1x3g � EðGÞ, fu1x1; u1x2; u1x4g � EðGÞ,
fu1x1; u1x2; u1x5g � EðGÞ or fu1x1; u1x3; u1x5g � EðGÞ.

If fu1x1; u1x2; u1x3g � EðGÞ, then fe1; e2g ¼ fx1x2; x2x3g. We claim that x4; x7
have no neighbor outside V(C). Suppose otherwise. By symmetry, choose

x04 2 NGðx4ÞnVðCÞ. Since cðGÞ� 8, Eðx04; fx2; x3; x5gÞ ¼ ;. Besides, x04x7 62 EðGÞ;
for otherwise, Eðx04; fx1; x6gÞ ¼ ;, and so dGðx04Þ ¼ 2, a contradiction. So

fx04x1; x04x6g � EðGÞ. Note that x5x7 62 EðGÞ. Then either x7 has a neighbor x07
outside V(C) or x5 has a neighbor x05 outside V(C) such that NGðx07Þ � fx7g or

NGðx05Þ � fx5g since cðGÞ� 8, a contradiction. Since jEðG½VðCÞ�Þj � 8, x4x7 2
EðGÞ and x5 has a neighbor x05 outside V(C) such that NGðx05Þ � fx3; x5g, a

contradiction.

Suppose next that fu1x1; u1x2; u1x4g � EðGÞ. Since cðGÞ� 8, x1x2 2 fe1; e2g.
Note that NGðx03Þ � fx3; x6g, NGðx05Þ � fx1; x5; x7g and fx05x1; x05x7g 6� EðGÞ for any
x03 2 NGðx3ÞnVðCÞ and any x05 2 NGðx5ÞnVðCÞ. Since jEðG½VðCÞ�Þj � 8, x3; x5 have
no neighbor outside V(C) and x3x5 2 EðGÞ. Then x7 has a neighbor x07 outside

V(C) such that NGðx07Þ � fx5; x7g, a contradiction.

Suppose then that fu1x1; u1x2; u1x5g � EðGÞ. Then x1x2 2 fe1; e2g. Besides,

x4; x6 have no neighbor outside V(C). ( Otherwise, by symmetry, assume that there

is a vertex x06 2 NGðx6ÞnVðCÞ. Since cðGÞ� 8, Eðx06; fx2; x3; x5; x7gÞ ¼ ; and

fx06x1; x06x4g 6� EðGÞ, i.e., dGðx06Þ ¼ 2, a contradiction.) Then x4x6 2 EðGÞ and x7
has a neighbor x07 outside V(C) such that NGðx07Þ � fx7g, a contradiction.

Therefore, we assume that fu1x1; u1x3; u1x5g � EðGÞ. Then x2; x4 have no

neighbor outside V(C). (Otherwise, by symmetry, assume that x4 has a neighbor x04
outside V(C). By symmetry, Eðx04; fx3; x5gÞ ¼ ;. Since cðGÞ� 8,
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Eðx04; fx2; x6; x7gÞ ¼ ;. Then dGðx04Þ� 2, a contradiction.) Then x4x6 2 EðGÞ and x6
has a neighbor x06 outside V(C) such that NGðx06Þ � fx1; x6g, a contradiction.

Subcase 3.2 l ¼ 8.

Since jEðG½V1 [ VðCÞ�Þj ¼ jEðG½VðCÞ�Þj þ jEðV1;VðCÞÞj � 17 and jEðV1;
VðCÞÞj � 3	 ð10� 8Þ ¼ 6, jEðG½VðCÞ�Þj � 11. Without loss of generality, at least

one of the following holds: fu1x1; u1x3; u1x5g � EðGÞ or fu1x1; u1x3; u1x6g � EðGÞ.
If fu1x1; u1x3; u1x5g � EðGÞ, then x2; x4 have no neighbor outside V(C), since

otherwise, NGðx0iÞ � fxig for any x0i 2 NGðxiÞ and i 2 f2; 4g, a contradiction.

Besides, x6; x8 have no neighbor outside V(C). (Otherwise, by symmetry, choose

x06 2 NGðx6Þ. Since cðGÞ� 8, Eðx06; fx1; x4; x6; x7; x8gÞ ¼ ; and fx06x2; x06x3g 6� EðGÞ.
Then dGðx06Þ� 2, a contradiction.) Since cðGÞ� 8, EðG½fx2; x4; x6; x8g�Þ � fx6x8g.
Then x6x8 2 EðGÞ since jEðG½VðCÞ�Þj � 11, and hence Eðx7; fx2; x4gÞ ¼ ; and x7
has a neighbor x07 outside V(C) such that NGðx07Þ � fx7g, a contradiction.

Suppose then that fu1x1; u1x3; u1x6g � EðGÞ. Then x2 has no neighbor outside

V(C); for otherwise, NGðx02Þ � fx2; x6g for any x02 2 NGðx2Þ since cðGÞ� 8, a

contradiction. Besides, x5; x7 have no neighbor outside V(C); for otherwise, without
loss of generality, NGðx05Þ � fx3; x5g for any x05 2 NGðx5Þ since cðGÞ� 8, a

contradiction. What’s more, x4; x8 have no neighbor outside V(C). Suppose

otherwise. By symmetry, assume that there is a vertex x04 2 NGðx4Þ, then

Eðx04; fx2; x5; x7gÞ ¼ ; and x04x8 62 EðGÞ since cðGÞ� 8. Then fx04x1; x04x6g
� EðGÞ. Note that any pair fx2; x5; x7; x8g are nonadjacent in G� x7x8 since

cðGÞ� 8. Then jEðG½VðCÞ [ fu1; x04g�Þj � 18, contradicting Claim 2. Since cðGÞ� 8

and jEðG½VðCÞ�Þj � 11, fx4x8; x5x7g � EðGÞ. However, x5x7x8x4x3x2x1u1x6x5 is a

9-cycle, a contradiction. This completes the proof of Theorem 3. h

4 Applications of Theorem 3

We now turn our attention to Theorem 3. Its proof will need some additional

concepts and notations. A vertex x 2 VðGÞ is said to be eligible if G½NGðxÞ� is a

connected noncomplete graph. We will use VELðGÞ to denote the set of all eligible

vertices of G. The local completion of G at a vertex x is the graph G

x obtained from

G by adding all edges with both vertices in NGðxÞ. One concept of a strong

multigraph closure of a claw-free graph G was introduced in [13] as follows.

For a given claw-free graph G, we construct a strong multigraph closure (or

briefly an SM-closure) GM of graph G by the following construction.

(1) If G is Hamilton-connected, we set GM ¼ clðGÞ.
(2) If G is not Hamilton-connected, we recursively perform the local completion

operation at such eligible vertices for which the resulting graph is still not

Hamilton-connected, as long as this is possible. We obtain a sequence of

graphs G1; . . .;Gk such that

(a) G1 ¼ G,

(b) Giþ1 ¼ ðGiÞ
xi for some xi 2 VELðGiÞ, i ¼ 1; . . .; k,
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(c) Gk has no Hamiltonian (a, b)-path for some a; b 2 VðGkÞ,
(d) for any x 2 VELðGkÞ, ðGkÞ
x is Hamilton-connected, and set GM ¼ Gk.

The following results show the properties of GM .

Theorem 11 Let G be a claw-free graph and let GM be the SM-closure. Then

1. (Kužel et al. [13]) GM is Hamilton-connected if and only if G is Hamilton-
connected.

2. (Brousek et al. [4]) If G is H-free, then GM is H-free for any integers i; j; k� 1

and H 2 fNi;j;k;Pig.

Given a trail T and an edge e in a multigraph H, we say that e is dominated
(internally dominated) by T if e is incident to a vertex (to an internal vertex) of T,
respectively. A trail T in H is called an internally dominating trail, shortly IDT, if

T internally dominates all the edges in H.

Theorem 12 (Li et al. [17]) Let H be a multigraph with jEðHÞj � 3. Then G ¼ LðHÞ
is Hamilton-connected if and only if for any pair of edges e1; e2 2 EðHÞ, H has an
internally dominating ðe1; e2Þ-trail.

Define the core of H, denoted by H0, to be the graph obtained from H by deleting

all the vertices of degree 1, and contracting the edge xy for each path xyz with

y 2 D2ðHÞ.

Theorem 13 (Shao [23]) Let H be a connected, essentially 3-edge-connected
graph. Then the core H0 of H satisfies the following.

(1) H0 is uniquely defined and j0ðH0Þ� 3,

(2) if H0 is strongly spanning trailable, then L(H) is Hamilton-connected.

We say H has a H1-minor if H1 is isomorphic to the contraction image of a

subgraph of H. The graph Ti;j;k is obtained by identifying one vertex v with an end-

vertex of three paths Piþ1;Pjþ1 and Pkþ1, respectively.

Proof of Theorem 2 Assume that G is not Hamilton-connected. By Theorem 11, we

may assume that G is SM-closed and H is a multigraph such that LðHÞ ¼ G. Let H0

be the core of H. By Theorem 13(1), j0ðH0Þ� 3. Then we shall obtain a T2;3;5-minor

and either obtain a P11-minor or LðHÞ 2 G. By Theorem 12, there are at least two

edges e1 ¼ u1v1; e2 ¼ u2v2 of H such that H has no internally dominating ðe1; e2Þ-
trail. Without loss of generality, assume that u1; u2 2 VðH0Þ. Note that the graph

H can be regarded as the graph obtained from H0 by adding an additional vertex set

V1 such that V1 ¼ D1ðHÞ, and by subdividing each edge of an edge subset

E1 � EðH0Þ.
Let H0

0 be the graph obtained from H0 by contracting all collapsible subgraphs of

H0½VðH0Þ � Vðfe1; e2gÞ�. Let H0 be the graph obtained from H0
0 by adding an
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additional vertex set V1 such that v1u1 2 EðH0Þ if and only if v1 2 V1, v1u
0
1 2 EðHÞ

and u1 is a contraction image of non-trivial collapsible subgraph of H0½VðH0Þ �
Vðfe1; e2gÞ� containing u01, and then subdividing each edge of an edge subset E0

1 �
EðH0

0Þ such that uv 2 E0
1 if and only if u, v are contraction images of two collapsible

subgraphs of H0½VðH0Þ � Vðfe1; e2gÞ� containing u0; v0 and u0v0 2 E1. h

Claim 1. Each internally dominating ðe1; e2Þ-trail T0 of H0 can be extended an
internally dominating ðe1; e2Þ-trail of H.

Proof By the construction of H0, Vðfe1; e2gÞ � VðH0Þ and fe1; e2g � T0. By the

definition of collapsible, we can replace each contraction image of collapsible graph

by a spanning subgraph of its preimage such that the resulting graph T1 is a ðe1; e2Þ-
trail, and then subdividing each edge of E1 \ EðT1Þ. Then the resulting graph is an

internally dominating ðe1; e2Þ-trail of H. h

Note that H0 and H0
0 are two minors of H. Then H0;H0

0 have no T2;3;5-minor and

P11-minor if H has no T2;3;5-minor and P11-minor. By Claim 1, H0
0ðe1; e2Þ has no

ðve1 ; ve2Þ-trail and it suffices to replace H;H0;E1 by H0;H0
0;E

0
1, respectively.

Besides, H0 has at most two edge-disjoint cycles with order at most 3, which

contains at least one of fe1; e2g, respectively.
A vertex of H0 is called non-trivial if it is adjacent to at least one 1-vertex in H;

trivial otherwise. Call an edge of H0 non-trivial if its two end vertices are non-

trivial. For i 2 f1; 2g, ei 2 E0 if and only if either ei � H0 is non-trivial or ei �
uivixi � H for vi 2 D2ðHÞ and let uixi ¼ ei. Then E0 � H0.

Claim 2. If H0 is collapsible, then E0 6¼ ; and H0 � E0 is not collapsible.

Proof

(1) If minfdHðv1Þ; dHðv2Þg ¼ 2, then E0 6¼ ;. If not, then e1; e2 2 EðH0Þ. Since
H0 is collapsible, H0 has a spanning ðu1; u2Þ-trail T1. If fe1; e2g \ EðT1Þ ¼ ;,
then subdivide some edges of T1 [ fe1; e2g and the resulting trail is an

internally dominating ðe1; e2Þ-trail of H, a contradiction. Then by symmetry,

assume that e1 � T1 � H0 and u1 is non-trivial in H0. If v1 is non-trivial, then
e1 2 E0. Hence we assume that v1 is trivial. Note that H0 has a spanning

ðv1; u2Þ-trail T2. By symmetry, e2 � T2 � H0 and u2 is non-trivial in H0. Then

v2 is non-trivial and e2 2 E0; for otherwise, H0 has a spanning ðv1; v2Þ-trail T3,
and then the trail by subdividing some edges in T3 is an internally dominating

ðe1; e2Þ-trail of H, a contradiction.

(2) Assume that H0 � E0 is collapsible. Then H0 � E0 has a spanning ðu1; u2Þ-
trail T4. Let T4 ¼ T4 [ ei if ei 6� T4 for any i 2 f1; 2g. Then at least one of

fe1; e2g, by symmetry, assume e1 � T4 and u1 is non-trivial, v1 is trivial. Note
that H0 � E0 has a spanning ðv1; u2Þ-trail T5. By symmetry, v2 is trivial and

H0 � E0 has a spanning ðv1; v2Þ-trail, which can be extended to an internally

dominating ðe1; e2Þ-trail of H, a contradiction.

h
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Choose a longest cycle C0 ¼ x1x2 � � � xlx1 � H0. We then consider the following

two cases to finish our proof.

Case 1. l� 9.

Claim 3. H has P11-minor and T2;3;5-minor.

Proof We argue by contradiction. Then if H0 has a cycle C0 of order at least 10,

then VðC0Þ ¼ VðH0Þ. Since otherwise, there is a vertex y1 2 NH0
ðx1Þ outside VðC0Þ

such that H0 has a P11. Besides, either NH0
ðy1Þ ¼ fx1g and dH0

ðy1Þ ¼ 1 or H0 has a

T2;3;5 as its subgraph, a contradiction.

We then claim that l� 11; for otherwise, P11 � H0 and either H0½VðC0Þ� contains
a T2;3;5 or x1; x5; x9 are in three edge-disjoint cycles of order at most 3, a

contradiction.

Besides, P(10) is not an induced subgraph of H0; for otherwise, either H0 ffi
Pð10Þ with at least one non-trivial vertex or cut-vertex of H0, and hence there are

T2;3;5, P11 in any cases of them, a contradiction.

Then H0 is collapsible by Theorem 9 and E0 6¼ ; by Claim 2. Suppose that

10� l� 11. Then 10� jVðH0Þj � 11 and H has a P11-minor. If there is an edge

x1x
0
1 62 EðC0Þ, then either H has a T2;3;5-minor or x2xl 62 EðH0Þ, xjxi 62 EðH0Þ for

i; j 6¼ 1 2 f1; . . .; lg and jj� ij � 3, and so x2; x5; xl are in three vertex-disjoint cycles
of order at most 3, a contradiction. We then assume that x1x2 2 E1. Replace x1x2 by
x1v1x2 in H0. Then either x1; x4; x8 are in three vertex-disjoint cycles of order at most

3 or there is a T2;3;5, a contradiction.

Hence l ¼ 9. If jVðH0Þj � 9, then H0 2 W0 by Corollary 1 and one of fe1; e2g is

in a 2-cycle, and so H0ðe1; e2Þ has a ðve1 ; ve2Þ-trail, a contradiction. Then

jVðH0Þj � 10 and there is at least one vertex u 2 VðH0ÞnVðC0Þ. If u has a neighbor

outside VðC0Þ, then there are subgraphs T2;3;5 and P11, a contradiction. Then

NH0
ðuÞ � VðC0Þ. Without loss of generality, assume that fux1; ux3; ux5g � EðH0Þ,

fux1; ux3; ux6g � EðH0Þ or fux2; ux4; ux6g � EðH0Þ. By (4.1), EðC0Þ \ E0 ¼ ;.
Besides, Eðu;C0Þ \ E0 ¼ ;, since otherwise, there are P11-minor and T2;3;5-minor.

Hence, there is an edge e0 62 EðC0Þ [ Eðu;C0Þ and e0 2 E0. If

fux1; ux3; ux5g � EðH0Þ, then E0 6� fx1x3; x1x5; x3x5g since H0 � fx1x3; x1x5; x3x5g
is collapsible. Then at least one of fx2; x4; x6; x7; x8; x9; ug has a neighbor outside

VðC0Þ [ fug and there is a T2;3;5-minor. In addition, there is a P11-minor if one of

fx2; x4; x6; x8; ug or all of fx7; x8g have neighbors outside VðC0Þ [ fug. Then

E0 ¼ fe0g � Eðfx7; x8g; fx1; x3; x5gÞ, and then H1 ¼ H0½VðC0Þ [ fug� � e0 is a

2-edge-connected graph with order 11 and exactly one 2-vertex. By Theorem 10(1),

either H1 is collapsible, and then H0 � e0 is collapsible or H1 ffi Pð10ÞðeÞ and has a

P11, a contradiction. By the same but easier argument, we will obtain a contradiction

if either fux1; ux3; ux6g � EðH0Þ or fux2; ux4; ux6g � EðH0Þ.

Case 2. l� 8.

By Theorem 13(2), H0 is not strongly spanning trailable. Then at least one of

block B0 of H0 is not strongly spanning trailable by Theorem 3 and jVðB0Þj � 10 by

Corollary 1. By Theorem 3, B0 ffi W8. If B0 has a cut-vertex of H0, then at least one
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vertex x0 of VðB0Þ belongs to a P4 of H0 � VðB0Þ, and hence H0 has P11 and T2;3;5
as its subgraphs, a contradiction. Then H0 ffi W8 and EðH0Þ ¼ EðC0Þ
[fx1x5; x2x6; x3x7; x4x8g. By symmetry, assume that H0 has no spanning ðvf1 ; vf2Þ-
trail for f1 ¼ x1x5; f2 ¼ x3x7. Since H0 and H0 � e0 are collapsible for any

e0 2 ff1; f2g. Then E0 ¼ ff1; f2g by Claim 2. Besides, either EðC0Þ � E1 or

v2; v4; v6; v8 are non-trivial. Then there is a T2;3;5. In addition, either there is a P11 or

each vertex of H0 is non-trivial and LðHÞ 2 G. h

5 Concluding Remark

In this paper, we extend the results in [1, 12] in Theorem 2 whose proofs are quite

shorter than the original ones with the help of Theorem 3. We believe Theorem 3

may be used to show that every 3-connected fK1;3; Sg-free graph G is Hamilton-

connected for S 2 fN1;1;5;N1;3;3;N2;2;3g.
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