Supereulerian Graphs with Constraints on the Matching Number and Minimum Degree

Mansour J. Algefari ${ }^{1} \cdot$ Hong-Jian Lai ${ }^{2}$ (D)

Received: 20 January 2020 / Revised: 20 January 2020 / Accepted: 17 August 2020
© Springer Japan KK, part of Springer Nature 2020

Abstract

A graph is supereulerian if it has a spanning eulerian subgraph. We show that a connected simple graph G with $n=|V(G)| \geq 2$ and $\delta(G) \geq \alpha^{\prime}(G)$ is supereulerian if and only if $G \neq K_{1, n-1}$ if n is even or $G \neq K_{2, n-2}$ if n is odd. Consequently, every connected simple graph G with $\delta(G) \geq \alpha^{\prime}(G)$ has a hamiltonian line graph.

Keywords Supereulerian graph • Hamiltonian line graph • Matching • Minimum degree • Contraction

1 Introduction

We follow Bondy and Murty [5] for terms and notation, unless otherwise stated. Graphs considered in this paper are finite and loopless, but multiple edges are allowed. As in [5], $\kappa(G), \kappa^{\prime}(G), \delta(G), \alpha(G)$ and $\alpha^{\prime}(G)$ denote the connectivity, the edge connectivity, the minimum degree, the stability number (also called the independence number), and the matching number of a graph G, respectively. Let G be a graph and let $O(G)$ denote the set of odd degree vertices of G. If G is connected and $O(G)=\emptyset$, then G is an Eulerian graph. Thus a graph G is Eulerian if and only if G has a closed trail traversing every edge exactly once. A graph is supereulerian if it has a spanning eulerian subgraph. In particular, K_{1} is both eulerian and supereulerian. The study of supereulerian graphs was initiated in [4]. Pulleyblank [15] showed that, even within planar graphs, it is NP-complete to determine if a

[^0]graph is supereulerian. For the literature on supereulerian graphs, see the survey of Catlin [7] and its updates in [8, 14].

If $X \subseteq E(G)$, the contraction G / X is the graph obtained from G by identifying the two ends of each edge in X and then deleting the resulting loops. If H is a subgraph of G, we write G / H for $G / E(H)$. We define $G / \emptyset=G / K_{1}=G$.

Chvátal and Erdös proved a classic result on hamiltonian graph, revealing an interesting property of using a relationship between connectivity and independence number of a graph to predict the hamiltonicity of the graph.

Theorem 1.1 (Chvátal and Erdös, [9]) If $\kappa(G) \geq \alpha(G)$, then G is hamiltonian.
There have been results following Theorem 1.1 and using similar relations involving edge-connectivity, stability number or matching number to predict supereulerianicity of a graph, as seen in [1, 10, 13, 16] and [17], among others. The theorem below presents some of these results.

Theorem 1.2 Each of the following holds.
(i) ([13]) Let G be a graph with $\kappa^{\prime}(G) \geq 2$ and $\alpha^{\prime}(G) \leq 2$. Then G is supereulerian if and only if G is not contractible to a $K_{2, t}$. for some odd integer $t \geq 3$.
(ii) (Bang-Jensen and Maddaloni [2]) Let G be a graph on at least three vertices. If $\kappa^{\prime}(G) \geq \alpha(G)$, then G is supereulerian.
(iii) (An and Xiong, [1]) Let G be a graph with $\kappa^{\prime}(G) \geq 2$ and $\alpha^{\prime}(G) \leq 2$. Then either G is supereulerian or G has a connected subgraph H such that for some odd integer $t \geq 3, G / H \cong K_{2, t}$.
(iv) (An and Xiong, [1]) If $\kappa^{\prime}(G) \geq 3$ and $\alpha^{\prime}(G) \leq 5$, then G is supereulerian if and only if G is not contractible to the Petersen graph.

A natural question is whether $\kappa^{\prime}(G) \geq \alpha^{\prime}(G)$ would warrant G to be supereulerian. The following useful theorem was first proved by Jaeger in [12] and extended by Catlin in [6].

Theorem 1.3 (Jaeger [12] and Catlin [6]) Every 4-edge-connected graph is supereulerian.

Thus by Theorem 1.3 and Theorem 1.2(i) and (iv), it is known that for a connected graph G, if $\kappa^{\prime}(G) \geq \alpha^{\prime}(G)$, then G is supereulerian if and only if for any integer $t \geq 0, G$ is not isomorphic to a $K_{2,2 t+1}$.

These motivates the current research. As it is well known that in a graph G, we always have $\delta(G) \geq \kappa^{\prime}(G) \geq \kappa(G)$, it is natural to consider whether we can use $\delta(G) \geq \alpha^{\prime}(G)$ to replace $\kappa^{\prime}(G) \geq \alpha^{\prime}(G)$ in predicting supereulerianicity of a graph. The main result of this paper is the following.

Theorem 1.4 Let G be a connected simple graph with $n=|V(G)| \geq 2$ and $\delta(G) \geq \alpha^{\prime}(G)$. Then G is supereulerian if and only if $G \neq K_{1, n-1}$ if n is even or $G \neq K_{2, n-2}$ if n is odd.

Our result implies a new condition for hamiltonian line graphs. The line graph of a graph G, denoted by $L(G)$, has $E(G)$ as its vertex set, where two vertices in $L(G)$ are adjacent if and only if the corresponding edges in G have at least one vertex in common. Harary and Nash-Williams showed that there is a close relationship between a graph and its line graph concerning Hamilton cycles.

Theorem 1.5 (Harary and Nash-Williams, [11]) Let G be a graph with $|E(G)| \geq 3$. Then $L(G)$ is hamiltonian if and only if G has an eulerian subgraph H with $E(G-V(H))=\emptyset$.

Using Theorem 1.5, we obtain the corollary below, as an immediate application of Theorem 1.4.

Corollary 1.1 Every connected simple graph G with $|E(G)| \geq 3$ and with $\delta(G) \geq \alpha^{\prime}(G)$ has a hamiltonian line graph.

In the next section, we present some preliminaries and prove an associated result. These will be utilized in Sect. 3 to justify the main results. Sharpness of the main result will be discussed in the last section.

2 Preliminaries

Throughout the rest of this section, G always denotes a simple graph under discussion. For subsets $X, Y \subseteq V(G)$, define

$$
(X, Y)_{G}=\{x y \in E(G): x \in X, y \in Y\} .
$$

When $Y=V(G)-X$, we define

$$
\partial_{G}(X)=(X, V(G)-X)_{G} .
$$

For a vertex $v \in V(G), d_{G}(v)=\left|\partial_{G}(\{v\})\right|$ is the degree of v in G. When G is understood from the context, we often use $d(v)$ for $d_{G}(v)$.

Let M be a matching in G. We use $V(M)$ to denote the set $V(G[M])$. A path P in G is an M-augmenting path if the edges of P are alternately in M and in $E(G)-M$, and if both end vertices of P are not in $V(M)$. We start with a fundamental theorem of Berge.

Theorem 2.1 (Berge, [3]) A matching M in G is a maximum matching if and only if G does not have M-augmenting paths.

Lemma 2.1 Let $k>0$ be an integer and G be a graph with a matching M such that $|M|=k$. Suppose that $V(G)-V(M)$ has a subset X with $|X| \geq 2$ such that for any $v \in X, d(v) \geq k$. If X has at least one vertex u such that $d(u) \geq k+1$, then M is not a maximum matching of G.

Proof By contradiction, we assume that M is a maximum matching in G. By Theorem 2.1, G has no M-augmenting path. Let $u, v \in X$ be distinct vertices such that $d(u) \geq k+1$. Since M is maximum, u and v are not adjacent in G, and any vertices adjacent to u or v must be in $V(M)$. By the assumption that M is a maximum
matching and by Theorem 2.1, we have the following claim.
Claim 1. For each edge $e=x y \in M$, exactly one in $\{u x, v y\}$ can be in $E(G)$, and exactly one in $\{u y, v x\}$ can be in $E(G)$.

Claim 2 below now follows immediately from Claim 1.
Claim 2. For any edge $e=x y \in M$, if $u x, u y \in E(G)$, or if $u x, v x \in E(G)$, or if $v x, v y \in E(G)$, then $\left|(\{u, v\},\{x, y\})_{G}\right| \leq 2$.

By Claim 2, we conclude that $|\partial(u) \cup \partial(v)| \leq 2|M|$. As $d(v) \geq k$ and $d(u) \geq k+1$, we are lead to a contradiction: $2 k+1=k+(k+1) \leq d(v)+d(u)=\mid \partial(v) \cup$ $\partial(u)|\leq 2| M \mid=2 k$. This proves the lemma.

Corollary 2.1 Let G be a graph with $\alpha^{\prime}(G)=k$. If $\kappa^{\prime}(G) \geq \alpha^{\prime}(G)$, then
(i) $\quad \kappa^{\prime}(G)=\alpha^{\prime}(G)$ when $|V(G)| \geq 2 k+2$, and
(ii) $\quad \kappa^{\prime}(G) \leq 2 \alpha^{\prime}(G)$ when $2 k \leq|V(G)| \leq 2 k+1$.

Proof

(i) By contradiction, we assume that $\kappa^{\prime}(G) \geq k+1$. Let M denote a maximum matching of $\quad G$. Then $\quad|V(G)-V(M)| \geq 2 k+2-2 k=2$. Since $\kappa^{\prime}(G) \geq k+1$, for every vertex $u \in V(G)-V(M), d(u) \geq k+1$. It follows by Lemma 2.1 that M is not a maximum matching of G, which is a contradiction.
(ii) As $2 k \leq|V(G)| \leq 2 k+1$, for each vertex $v \in V(G)$, we have $2 k \geq d(v) \geq \kappa^{\prime}(G)$, and so $\kappa^{\prime}(G) \leq 2 \alpha^{\prime}(G)$.

Lemma 2.2 Let G be a graph with $n=|V(G)|$ and $k=\alpha^{\prime}(G)$. Let M be a maximum matching of G, and let $X=V(G)-V(M)$. If $n \geq 2 k+2$ and $\delta(G) \geq \alpha^{\prime}(G)$, then each of the following holds.
(i) For every $x \in V(G)-V(M)$, we have $d_{G}(x)=k$.
(ii) If either $n \geq 2 k+3$ or both $n=2 k+2$ and G is connected, then for every $e=a b \in M$ and for every $x \in X$, we have the following conclusions.
(ii-1) There exists exactly one $v(e) \in\{a, b\}$ such that $v(e) x$ is in $E(G)$, and the vertex $u(e) \in\{a, b\}-\{v(e)\}$ is not adjacent to any vertex in X.
(ii-2) The set $\{u(e): e \in M\}$ as specified in (ii-1) is an independent set in G such that $d(u(e))=k$ for any $e \in M$ and such that for any $e, e^{\prime} \in M$, $u(e) v\left(e^{\prime}\right), v(e) u\left(e^{\prime}\right) \in E(G)$.

Proof Let $N(X)$ denote the set of vertices in G that is adjacent to a vertex in X. Since M is a maximum matching, by Theorem 2.1

$$
\begin{equation*}
G \text { does not have an } M \text {-augmenting path. } \tag{1}
\end{equation*}
$$

As $n \geq 2 k+2$ and $|M|=k$, we have $|X| \geq 2$. Since M is a maximum matching, we have $N(X) \subseteq V(M)$, and it follows by $\delta(G) \geq k$ and by Lemma 2.1 that Lemma 2.2 (i) must hold. It remains to prove Lemma 2.2 (ii).

Case 1. $n=|V(G)| \geq 2 k+3$.
Let $m=|X|$. Then $m \geq 3$. By Lemma 2.2 (i),

$$
\begin{equation*}
\left|(X, V(M))_{G}\right|=m k \tag{2}
\end{equation*}
$$

It follows from (1) that
for any $e \in M$, the vertices of e are incident with at most m edges in $(X, V(M))_{G}$.

Let $e=a b \in M$. If $a, b \in N(X)$, then by (1), there must be a unique $x \in X$ such that x is adjacent to both a and b; and for any $x^{\prime} \in X-\{x\}, x^{\prime}$ is adjacent to neither a nor b. By Lemma 2.2 (i), x is adjacent to k vertices in $V(M)$. As $\left|(\{x\},\{a, b\})_{G}\right|=2$, it follows by (2) and $m \geq 3$ that

$$
\left|(X, V(M)-\{a, b\})_{G}\right|=m k-2 \geq m k-m+1=m(k-1)+1 .
$$

If $k>1$, then there must be an edge $f \in M-\{e\}$ such that the vertices of f are incident with at least $m+1$ edges in $(X, V(M))_{G}$, contrary to (3). Hence in this case we must have $k=1$ and $M=\{e\}$. As $|X| \geq 3$, it follows from (2) with $m \geq 3$ that G must have an M-augmenting path, contrary to (1). Hence for any $e=a b \in M$, exactly one of a and b is adjacent to vertices in X.

Thus for each $e \in M$, let $v(e)$ denote the unique vertex of e that is adjacent to vertices in X and $u(e)$ the other vertex of e which is not adjacent to any vertex in X. Then as $|X|=m,\left|(v(e), X)_{G}\right| \leq m$. It follows from (2) that

$$
k m \geq \sum_{e \in M}\left|(v(e), X)_{G}\right|=\left|(V(M), X)_{G}\right|=m k
$$

This implies that for each $x \in X$ and for each $e \in M$, both $v(e) x$ is in $E(G)$. This proves (ii-1) for Case 1.

Let $Y=\{u(e): e \in M\}$ and we shall show that Y is an independent set. In fact, if for some $e_{1}, e_{2} \in M, u\left(e_{1}\right) u\left(e_{2}\right) \in E(G)$, then for any distinct $x_{1}, x_{2} \in X$, $\left\{x_{1} v\left(e_{1}\right), e_{1}, u\left(e_{1}\right) u\left(e_{2}\right), e_{2}, x_{2} v\left(e_{2}\right)\right\}$ induces an M-augmenting path, contrary to (1). Thus each $u(e) \in Y$ can only be adjacent to vertices in $\{v(e): e \in M\}$. As $\mid\{v(e)$: $e \in M\} \mid=k$ and as $\delta(G) \geq k$, we conclude that for each $e \in M, d(u(e))=k$, and for any $e, e^{\prime} \in M, u(e) v\left(e^{\prime}\right), v(e) u\left(e^{\prime}\right) \in E(G)$. This proves (ii-2) for Case 1 .

Case 2. G is connected and $|V(G)|=2 k+2$.
Then $X=\{w, z\}$. Let $M=\left\{e_{1}, \cdots, e_{k}\right\}$. Let $M_{w} \subseteq M$ denote the edges in M each of which has a vertex adjacent to w. We define M_{z} similarly. By the assumption of Lemma 2.2, we have $\delta(G) \geq k$, and so $\left|M_{w}\right| \geq \frac{k}{2}$ and $\left|M_{z}\right| \geq \frac{k}{2}$.

Subcase 1. $\left|M_{w}\right|=\frac{k}{2}$ or $\left|M_{z}\right|=\frac{k}{2}$.
Note that in this case, k must be even. We assume, without loss of generality, that $M_{w}=\left\{e_{1}, \cdots, e_{\frac{k}{2}}\right\}$. By (1), we must have $M_{z}=\left\{e_{\frac{k}{2}+1}, \cdots, e_{k}\right\}$. Again by (1), for each $x \in V\left(M_{w}\right)$ and $y \in V\left(M_{z}\right)$, we conclude that $x y \notin E(G)$. Thus

$$
\left(V\left(M_{w}\right) \cup\{w\}, V\left(M_{z}\right) \cup\{z\}\right)_{G}=\emptyset,
$$

contrary to the assumption that G is connected. This shows that Subcase 1 cannot occur.

Subcase 2. $\left|M_{w}\right|>\frac{k}{2}$ and $\left|M_{z}\right|>\frac{k}{2}$.
Therefore, $M_{w} \cap M_{z} \neq \emptyset$. By (1), if an edge $e \in M$ whose vertices are adjacent to both w and z, then exactly one vertex of e can be adjacent to both w and z. Let $M^{\prime}=M_{w} \cap M_{z}=\left\{e_{i}^{\prime}=x_{i} y_{i},(i=1, \ldots, d ; 1 \leq d \leq k)\right\} \subseteq M$. Without loss of generality, we assume that each e_{i}^{\prime} has a unique vertex x_{i} with $x_{i} w, x_{i} z \in E(G)$. Let $M^{\prime \prime}=M-M^{\prime}=\left\{e_{j}^{\prime \prime}=r_{j} s_{j},(j=1, \ldots, k-d)\right\}$.

Claim 3. Each of the following holds.
(i) For each $y_{i}, y_{i} w, y_{i} z \notin E(G)$.
(ii) The set $\left\{y_{1}, y_{2}, \cdots, y_{d}\right\}$ is an independent set.
(iii) If Lemma 2.2 (ii-1) or (ii-2) does not hold, then $d \leq k-1$.
(iv) For each $e=x_{i} y_{i} \in M^{\prime},\left|\left(\left\{x_{i}, y_{i}\right\},\{w, z\}\right)_{G}\right|=2$.
(v) For each j with $1 \leq j \leq k-d$, there exists exactly one vertex in $\{w, z\}$ which is adjacent to both r_{j} and s_{j}.
(vi) For any $x_{i} y_{i} \in M^{\prime}$ and for any $r_{j} s_{j} \in M^{\prime \prime}$, we have $y_{i} r_{j}, y_{i} s_{j} \notin E(G)$.

In fact, Claim 3 (i) and (ii) follow directly from (1), and Claim 3(iv) follows from Claim 3(i). For (iii), we assume that Lemma 2.2 (ii-1) or (ii-2) does not hold. and $d=k$. Then $M=M^{\prime}$ and each x_{i} is adjacent to both w and z. By Claim 3(i), for each $e_{i}=x_{i} y_{i} \in M$, we have $y_{i} w, y_{i} z \notin E(G)$. Hence Lemma 2.2(ii-1) must hold. Also by Claim 3 (i) and (ii), each y_{i} can only be adjacent to $\left\{x_{1}, x_{2}, \cdots, x_{d}\right\}$. By the assumption of Lemma 2.2, we have $\delta(G) \geq k$ and so, for any i, we must have $d\left(y_{i}\right)=k$, and for any $1 \leq i, i^{\prime} \leq k$, we must also have $x_{i} y_{i^{\prime}} \in E(G)$. Hence Lemma 2.2(ii-2) holds as well. This contradiction implies Claim 3 (iii).

We argue by contradiction to prove Claim 3(v). By the definition of $M^{\prime \prime}$, for each j with $1 \leq j \leq k-d$, there exists at most one vertex in $\{w, z\}$ which is adjacent to both r_{j} and s_{j}. By contradiction, we assume that $r_{1} s_{1} \in M^{\prime \prime}$ with $\left|\left(\{w, z\},\left\{r_{1}, s_{1}\right\}\right)_{G}\right| \leq 1$. For any other $r_{j} s_{j} \in M^{\prime \prime}$ with $j \geq 2$, we have $\left|\left(\{w, z\},\left\{r_{j}, s_{j}\right\}\right)_{G}\right| \leq 2$. It follows from Lemma 2.2(i) and Claim 3(iv) that

$$
\begin{aligned}
2 k= & \left|(\{w, z\}, V(M))_{G}\right| \\
= & \left|\left(\{w, z\}, V\left(M^{\prime}\right)\right)_{G}\right|+\left|\left(\{w, z\},\left\{r_{1}, s_{1}\right\}\right)_{G}\right| \\
& +\sum_{j=2}^{k-d}\left|\left(\{w, z\},\left\{r_{j}, s_{j}\right\}\right)_{G}\right| \leq 2 d+1+2(k-d-1)=2 k-1<2 k
\end{aligned}
$$

This contradiction justifies Claim 3(v).
We again argue by contradiction to prove Claim 3(vi). Assume that $y_{i} r_{j} \in E(G)$. By Claim 3(v), we may assume that $r_{j} s_{j} \in M_{w}$, and so $\left\{w s_{j}, r_{j} s_{j}, r_{j} y_{i}, x_{i} y_{i}, z x_{i}\right\}$ will induce an M-augmenting path, contrary to (1). When we have $y_{i} s_{j} \in E(G)$, the same argument would also lead the a contradiction. This justifies Claim 3(vi), and completes the proof for Claim 3.

We argue by contradiction to prove Lemma 2.2(ii). As $M^{\prime}=M_{w} \cap M_{z} \neq \emptyset$, we have $d \geq 1$ and so y_{1} exists. By Claim 3(i), (ii) and (vi), the neighbors of y_{1} can only be among $\left\{x_{1}, x_{2}, \cdots, x_{d}\right\}$. Hence $d\left(y_{1}\right) \leq\left|\left\{x_{1}, x_{2}, \cdots, x_{d}\right\}\right|=d$. As $\delta(G) \geq k$ and by Claim 3(iii), we must have $k \leq d\left(y_{1}\right) \leq d \leq(k-1)$. This contradiction implies that we must have $d=k$, and so by Claim 3(iii), Lemma 2.2(ii) must hold in Case 2.

Theorem 2.2 Let G be a simple graph with $n=|V(G)| \geq 2$ and $k=\alpha^{\prime}(G)$ such that G is connected when $n=2 k+2$. If $\delta(G) \geq k$, then $\kappa^{\prime}(G) \geq k$. Furthermore, if, in addition, $n \geq 2 k+2$, then $\kappa^{\prime}(G)=k$.

Proof Let M be a matching of maximum size of G. Assume first that $2 k \leq n \leq 2 k+1$.

Arbitrarily pick a nonempty proper subset $X \subset V(G)$, and let $Y=V(G)-X$. As $|X|+|Y|=n \leq 2 k+1$, we have either $1 \leq|X| \leq k$ or $1 \leq|Y| \leq k$. By symmetry, we assume that $1 \leq|X|=m \leq k$. Since $\kappa^{\prime}(G) \geq k$, for each $x \in X$, we have $\left|(\{x\}, Y)_{G}\right| \geq k-(m-1)$. Thus $\left|\partial_{G}(X)\right| \geq m(k-(m-1))=-m^{2}+m(k+1)$. As this is a quadratic function with $1 \leq m \leq k$, it follows that $\left|\partial_{G}(X)\right| \geq-m^{2}+m(k+1) \geq k$. Thus $\kappa^{\prime}(G) \geq k$, and so the theorem holds if $2 k \leq n \leq 2 k+1$.

Hence we assume that $n \geq 2 k+2$. By Corollary 2.1, it suffices to show that $\kappa^{\prime}(G) \geq k$. Let X be an arbitrary nonempty proper vertex subset with satisfying $\emptyset \neq X \subset V(G)$. We will prove $\kappa^{\prime}(G) \geq k$ by showing that $\left|\partial_{G}(X)\right| \geq k$.

Let $Z=V(G)-V(M)$. By Lemma 2.2 (ii-1), for any $e=u v \in M$, there exists a unique $v(e) \in\{u, v\}$ such that for any $z \in Z, \quad v(e) z \in E(G)$. Let $M_{v}=\{v(e): e \in M\}$, and $M_{u}=V(M)-M_{v}$. Let $m \geq 2$ be the integer satisfying $n=2 k+m$. By Lemma 2.2, for any $v \in M_{v}$, and any $u \in Z \cup M_{u}$, we have $v u \in E(G)$.

Subcase 2.1. $\left(M_{u} \cup Z\right) \subseteq X$ (or $\left(M_{u} \cup Z\right) \cap X=\emptyset$). We assume that $M_{u} \cup Z \subseteq X$ as by symmetry, the proof for $\left(M_{u} \cup Z\right) \cap X=\emptyset$ is similar. As $V(G)=M_{u} \cup M_{v} \cup Z$, there exists a $y \in M_{v}-X \subseteq V(G)-X$. By Lemma 2.2, $\left|\partial_{G}(X)\right| \geq\left|\left(M_{u} \cup Z,\{y\}\right)_{G}\right|=|Z|+\left|M_{u}\right|=k+m>k$.

Subcase 2.2. $M_{v} \subseteq X$ (or $M_{v} \subseteq V(G)-X$). We assume that $M_{v} \subseteq X$, as by symmetry, the proof for $M_{v} \subseteq V(G)-X$ is similar. Then $M_{u} \cup Z-X \neq \emptyset$. Pick $y \in M_{u} \cup Z-X$. Then by Lemma 2.2, $\left|\partial_{G}(X)\right| \geq\left|\left(M_{v},\{y\}\right)_{G}\right|=\left|M_{v}\right|=k$.

Subcase 2.3. Both $M_{u} \cup Z-X \neq \emptyset$ and $X \cap\left(M_{u} \cup Z\right) \neq \emptyset$, and both $M_{v}-X \neq \emptyset$ and $X \cap M_{v} \neq \emptyset$. In this subcase, we pick an $x \in X \cap\left(M_{u} \cup Z\right)$ and a $y \in\left(M_{u} \cup Z\right)-X$. It follows by Lemma 2.2 that $\left|\partial_{G}(X)\right| \geq\left|\left(\{x\}, M_{v}-X\right)_{G}\right|+$ $\left|\left(M_{v} \cap X,\{y\}\right)_{G}\right|=\left|M_{v}-X\right|+\left|M_{v} \cap X\right|=\left|M_{v}\right|=k$. It follows that we always have $\left|\partial_{G}(X)\right| \geq k$, and so $\kappa^{\prime}(G) \geq k$. By Corollary $2.1, \kappa^{\prime}(G)=k$. This completes the proof of the theorem.

3 The Main Result

Our main result, Theorem 1.4 , will be proved in this section. Theorem 1.3 in Sect. 1 will be utilized here.

Suppose that G is a connected simple graph with $|V(G)| \geq 2$ and $\alpha^{\prime}(G)=1$. For each vertex $w \in V(G)$, let $E_{G}(w)$ be the set of edges in G incident with w. Let $e=u v \in E(G)$ be such that $\{e\}$ is a maximum matching of G. We assume that $d_{G}(u) \geq d_{G}(v)$. Since $\{e\}$ is a maximum matching of G, we have $E_{G}(u)=E(G)$ and $E_{G}(v)=\{e\}$, unless $G=K_{3}$. We state this observation as the lemma below.

Lemma 3.1 Let G be a connected simple graph with $n=|V(G)| \geq 2$ and $\alpha^{\prime}(G)=1$. Then either $G=K_{3}$ or $G=K_{1, n-1}$.

We will prove a slightly stronger version of Theorem 1.4 in this section, as stated below.

Theorem 3.1 Let G be a simple graph with $n=|V(G)| \geq 2$ and $k=\alpha^{\prime}(G)$ such that G is connected when $n=2 k+2$. Suppose that $\delta(G) \geq k$. Then G is supereulerian if and only if $G \neq K_{1, n-1}$ if n is even or $G \neq K_{2, n-2}$ if n is odd.

Proof It is routine to show that for any integer $n>0$, the graphs $K_{1, n-1}$ and $K_{2, n-2}$ (when n is odd) are not supereulerian. It suffices to show the sufficiency. By Theorem (2.2), we have $\kappa^{\prime}(G) \geq k$.

If $k=1$, then Theorem 3.1 follows from Lemma 3.1. Hence we assume that $k \geq 2$. If $k \geq 4$, then by Theorem $1.3, G$ must be supereulerian. If $k=3$, then by Theorem 1.2(iv), G must also be supereulerian as the Petersen graph has a matching of size 5 . Hence we may assume that $\kappa^{\prime}(G) \geq \alpha^{\prime}(G)=2$.

By Theorem 1.2(iii), G is supereulerian if and only if G does not have a connected subgraph H and an odd integer $t \geq 3$ such that $G / H=K_{2, t}$. If $H=K_{1}$, then $G=K_{2, t}$ with $n-2=t$ being odd. Hence the sufficiency of Theorem 3.1 holds. Therefore we assume that H is a connected nontrivial simple graph. Let v_{H} be the vertex in G / H onto which H is contracted, u, u^{\prime} be the two vertices of degree t in this $K_{2, t}$ and let $v_{1}, v_{2}, \cdots, v_{t}$ be the vertices of degree 2 in this $K_{2, t}$. Let $e_{i}=u v_{i}$ and $e_{i}^{\prime}=u^{\prime} v_{i}$, for each i with $1 \leq i \leq t$. Note that $\left\{e_{i}, e_{i}^{\prime}: 1 \leq i \leq t\right\} \subseteq E(G)$, by the definition of contraction.

If v_{H} has degree 2 in G / H, then we may assume that $v_{H}=v_{1}$. Since H is a connected nontrivial simple graph, $E(H)$ contains an edge e_{H}. It follows that $\left\{e_{H}, e_{2}, e_{3}^{\prime}\right\}$ is a matching of G, contrary to the assumption that $\alpha^{\prime}(G)=2$. Hence v_{H} has degree t in G / H, and so we may assume that $v_{H}=u$.

Denote $e_{i}=u_{i} v_{i}$ with $u_{i} \in V(H)$, for $1 \leq i \leq t$. If for some $1 \leq i^{\prime}<i^{\prime \prime} \leq t$, we have $u_{i^{\prime}} \neq u_{i^{\prime \prime}}$, then as $t \geq 3$, there exist an $i^{\prime \prime \prime} \notin\left\{i^{\prime}, i^{\prime \prime}\right\}$ with $1 \leq i^{\prime \prime \prime} \leq t$. Thus $\left\{e_{i^{\prime}}, e_{i^{\prime \prime}}, e_{i^{\prime \prime \prime}}^{\prime}\right\}$ is a matching of size 3 in G. Hence we may assume that $u_{1}=u_{2}=\ldots=u_{t} \in V(H)$. As H is nontrivial, u_{1} is a cut vertex of G, and so $\kappa^{\prime}(H) \geq \kappa^{\prime}(G) \geq 2$. Since H is simple with $\kappa^{\prime}(H) \geq 2, H$ contains an edge e_{H}^{\prime} not incident with u_{1}. It follows that $\left\{e_{H}^{\prime}, e_{1}, e_{2}^{\prime}\right\}$ is a matching of size 3 in G, contrary to that $\alpha^{\prime}(G)=2$. These contradictions force that $H=K_{1}$ and so $G=K_{1, n-2}$. This completes the proof of Theorem 3.1.

Fig. 1 The graph G_{t}

4 Sharpness Discussion

Theorem 1.4 is sharp in the sense that there exist infinitely many connected nonsupereulerian graphs G with $\delta(G)<\alpha^{\prime}(G)$, such that G is isomorphic to neither a $K_{1, n}$ nor to a $K_{2, n-2}$.

Example 4.1 For each integer $t \geq 1$, let G_{t} be a graph with

$$
V\left(G_{t}\right)=\left\{v_{1}, v_{2}, v_{3}, u_{1}, u_{2}, u_{3}, x_{1}, x_{2}, \ldots, x_{t}\right\}
$$

and

$$
E\left(G_{t}\right)=\left\{v_{1} u_{1}, u_{1} v_{3}, v_{3} u_{3}, u_{3} v_{1}, v_{2} u_{2}, u_{2} v_{3}\right\} \cup\left(\cup_{j=1}^{t}\left\{v_{1} x_{j}, x_{j} v_{2}\right\}\right),
$$

as depicted in Fig. 1. Then $\left\{G_{t}\right\}_{t \geq 1}$ is an infinite family of connected graphs with $\delta(G)=2$ and $\alpha^{\prime}(G)=3$. To see that each G_{t} is not supereulerian, we assume otherwise that G_{t} has a spanning closed trail S. Then as S is spanning, we must have $\left\{u_{1} v_{3}, u_{2} v_{3}, u_{3} v_{3}\right\} \subset E(S)$. However, as $d_{G_{t}}\left(v_{3}\right)=3$, it implies that $d_{S}\left(v_{3}\right)=3$, contrary to the assumption that S is an eulerian graph.

Example 4.2 For any odd integers $t \geq 3$ and $k \geq \frac{5(t+1)}{2}$, there exists a 2-connected nonsupereulerian graph G with $\delta(G)=t$ and $\alpha^{\prime}(G) \geq k$.

Let $\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\}$ denote the vertex set of a $K_{2,3}$. Obtain a 2 -connected graph G by blowing up each of v_{1}, v_{2}, v_{3} and v_{4} into a K_{t+1}, and by blowing up v_{5} into a $K_{2 k^{\prime}}$, where $k^{\prime}=k-2(t+1)$. Then each of these complete subgraphs of G isomorphic to K_{t+1} contains a perfect matching of size $\frac{t+1}{2}$, and $K_{2 k^{\prime}}$ contains a perfect matching of size k^{\prime}. It follows that $\alpha^{\prime}(G) \geq 4 \cdot \frac{t+1}{2}+k^{\prime}=k$, and $\delta(G)=\delta\left(K_{t+1}\right)=t$. Since G is contractible to a nonsupereulerian graph $K_{2,3}$, G must also be nonsupereulerian as well.

Acknowledgements The research of second author is supported in part by NNSFC (Nos. 11771039 and 11771443).

References

1. An, M., Xiong, L.: Supereulerian graphs, collapsible graphs and matchings, Acta Math. Appl. Sin. 39, 871-877 (2016). (Chinese)
2. Bang-Jensen, J., Maddaloni, A.: Sufficient conditions for a digraph to be supereulerian. J. Graph Theory 79(1), 8-20 (2015)
3. Berge, C.: Two theorems in graph theory. Proc. Nat. Acad. Sci. USA 43, 842-844 (1957)
4. Boesch, F.T., Suffel, C., Tindell, R.: The spanning subgraphs of eulerian graphs. J. Graph Theory 1, 79-84 (1977)
5. Bondy, J.A., Murty, U.S.R.: Graph Theory. Springer, New York (2008)
6. Catlin, P.A.: Reduction method to find spanning Eulerian subgraphs. J. Graph Theory 12, 29-44 (1988)
7. Catlin, P.A.: Supereulerian graphs: a survey. J.Graph Theory 16, 177-196 (1992)
8. Chen, Z.H., Lai, H.-J.: Reduction Techniques for Super-Eulerian Graphs and Related Topics-A Survey, Combinatorics and Graph Theory, vol. 95, pp. 53-69. World Science Publishing, River Edge (1995)
9. Chvátal, V., Erdös, P.: A note on Hamiltonian circuits. Discret. Math. 2, 111-113 (1972)
10. Han, L., Lai, H.-J., Xiong, L., Yan, H.: The Chvátal-Erdös condition for supereulerian graphs and the Hamiltonian index. Discret. Math 310, 2082-2090 (2010)
11. Harary, F., Nash-Williams, CStJA: On eulerian and hamiltonian graphs and line graphs. Can. Math. Bull. 8, 701-709 (1965)
12. Jaeger, F.: A note on subeulerian graphs. J. Graph Theory 3, 91-93 (1979)
13. Lai, H.-J., Yan, H.Y.: Supereulerian graphs and matchings. Appl. Math. Lett. 24, 1867-1869 (2011)
14. Lai, H.-J., Shao, Y., Yan, H.: An Update on Supereulerian Graphs. WSEAS Trans. Math. 12, 926-940 (2013)
15. Pulleyblank, W.R.: A note on graphs spanned by Eulerian graphs. J. Graph Theory 3, 309-310 (1979)
16. Tian, R., Xiong, L.: The Chvátal-Erdös condition for a graph to have a spanning trail. Graphs Comb. 31, 1739-1754 (2015)
17. Xu, J., Li, P., Miao, Z., Wang, K., Lai, H.-J.: Supereulerian graphs with small matching number and 2-connected hamiltonian claw-free graphs. Int. J. Comput. Math. 91, 1662-1672 (2014)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

[^0]: Hong-Jian Lai
 hjlai@math.wvu.edu
 Mansour J. Algefari
 mans3333@gmail.com
 1 Department of Management and Humanities Sciences, Community College, Qassim University, Buraydah, Kingdom of Saudi Arabia
 2 Department of Mathematics, West Virginia University, Morgantown, WV 26506, USA

