
ORIGINAL PAPER

Supereulerian Graphs with Constraints on the Matching
Number and Minimum Degree

Mansour J. Algefari1 • Hong-Jian Lai2

Received: 20 January 2020 / Revised: 20 January 2020 / Accepted: 17 August 2020
� Springer Japan KK, part of Springer Nature 2020

Abstract
A graph is supereulerian if it has a spanning eulerian subgraph. We show that a

connected simple graph G with n ¼ jVðGÞj� 2 and dðGÞ� a0ðGÞ is supereulerian if

and only if G 6¼ K1;n�1 if n is even or G 6¼ K2;n�2 if n is odd. Consequently, every

connected simple graph G with dðGÞ� a0ðGÞ has a hamiltonian line graph.

Keywords Supereulerian graph � Hamiltonian line graph � Matching � Minimum

degree � Contraction

1 Introduction

We follow Bondy and Murty [5] for terms and notation, unless otherwise stated.

Graphs considered in this paper are finite and loopless, but multiple edges are

allowed. As in [5], jðGÞ; j0ðGÞ, dðGÞ, aðGÞ and a0ðGÞ denote the connectivity, the

edge connectivity, the minimum degree, the stability number (also called the

independence number), and the matching number of a graph G, respectively. Let G
be a graph and let O(G) denote the set of odd degree vertices of G. If G is connected

and OðGÞ ¼ ;, then G is an Eulerian graph. Thus a graph G is Eulerian if and only

if G has a closed trail traversing every edge exactly once. A graph is supereulerian
if it has a spanning eulerian subgraph. In particular, K1 is both eulerian and

supereulerian. The study of supereulerian graphs was initiated in [4]. Pulleyblank

[15] showed that, even within planar graphs, it is NP-complete to determine if a
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graph is supereulerian. For the literature on supereulerian graphs, see the survey of

Catlin [7] and its updates in [8, 14].

If X � EðGÞ, the contraction G/X is the graph obtained from G by identifying

the two ends of each edge in X and then deleting the resulting loops. If H is a

subgraph of G, we write G/H for G/E(H). We define G=; ¼ G=K1 ¼ G.

Chvátal and Erdös proved a classic result on hamiltonian graph, revealing an

interesting property of using a relationship between connectivity and independence

number of a graph to predict the hamiltonicity of the graph.

Theorem 1.1 (Chvátal and Erdös, [9]) If jðGÞ� aðGÞ, then G is hamiltonian.

There have been results following Theorem 1.1 and using similar relations

involving edge-connectivity, stability number or matching number to predict

supereulerianicity of a graph, as seen in [1, 10, 13, 16] and [17], among others. The

theorem below presents some of these results.

Theorem 1.2 Each of the following holds.

(i) ([13]) Let G be a graph with j0ðGÞ� 2 and a0ðGÞ� 2. Then G is
supereulerian if and only if G is not contractible to a K2;t. for some odd
integer t� 3.

(ii) (Bang-Jensen and Maddaloni [2]) Let G be a graph on at least three
vertices. If j0ðGÞ� aðGÞ, then G is supereulerian.

(iii) (An and Xiong, [1]) Let G be a graph with j0ðGÞ� 2 and a0ðGÞ� 2. Then
either G is supereulerian or G has a connected subgraph H such that for
some odd integer t � 3, G=H ffi K2;t.

(iv) (An and Xiong, [1]) If j0ðGÞ� 3 and a0ðGÞ� 5, then G is supereulerian if
and only if G is not contractible to the Petersen graph.

A natural question is whether j0ðGÞ� a0ðGÞ would warrant G to be supereulerian.

The following useful theorem was first proved by Jaeger in [12] and extended by

Catlin in [6].

Theorem 1.3 (Jaeger [12] and Catlin [6]) Every 4-edge-connected graph is
supereulerian.

Thus by Theorem 1.3 and Theorem 1.2(i) and (iv), it is known that for a

connected graph G, if j0ðGÞ� a0ðGÞ, then G is supereulerian if and only if for any

integer t� 0, G is not isomorphic to a K2;2tþ1.

These motivates the current research. As it is well known that in a graph G, we

always have dðGÞ� j0ðGÞ� jðGÞ, it is natural to consider whether we can use

dðGÞ� a0ðGÞ to replace j0ðGÞ� a0ðGÞ in predicting supereulerianicity of a graph.

The main result of this paper is the following.

Theorem 1.4 Let G be a connected simple graph with n ¼ jVðGÞj � 2 and
dðGÞ� a0ðGÞ. Then G is supereulerian if and only if G 6¼ K1;n�1 if n is even or
G 6¼ K2;n�2 if n is odd.
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Our result implies a new condition for hamiltonian line graphs. The line graph of

a graph G, denoted by L(G), has E(G) as its vertex set, where two vertices in

L(G) are adjacent if and only if the corresponding edges in G have at least one

vertex in common. Harary and Nash-Williams showed that there is a close

relationship between a graph and its line graph concerning Hamilton cycles.

Theorem 1.5 (Harary and Nash-Williams, [11]) Let G be a graph with jEðGÞj � 3.
Then L(G) is hamiltonian if and only if G has an eulerian subgraph H with
EðG � VðHÞÞ ¼ ;.

Using Theorem 1.5, we obtain the corollary below, as an immediate application

of Theorem 1.4.

Corollary 1.1 Every connected simple graph G with jEðGÞj � 3 and with
dðGÞ� a0ðGÞ has a hamiltonian line graph.

In the next section, we present some preliminaries and prove an associated result.

These will be utilized in Sect. 3 to justify the main results. Sharpness of the main

result will be discussed in the last section.

2 Preliminaries

Throughout the rest of this section, G always denotes a simple graph under

discussion. For subsets X; Y � VðGÞ, define

ðX; YÞG ¼ fxy 2 EðGÞ : x 2 X; y 2 Yg:

When Y ¼ VðGÞ � X, we define

oGðXÞ ¼ ðX;VðGÞ � XÞG:

For a vertex v 2 VðGÞ, dGðvÞ ¼ joGðfvgÞj is the degree of v in G. When G is

understood from the context, we often use d(v) for dGðvÞ.
Let M be a matching in G. We use V(M) to denote the set V(G[M]). A path P in G

is an M-augmenting path if the edges of P are alternately in M and in EðGÞ � M,

and if both end vertices of P are not in V(M). We start with a fundamental theorem

of Berge.

Theorem 2.1 (Berge, [3]) A matching M in G is a maximum matching if and only if
G does not have M-augmenting paths.

Lemma 2.1 Let k[ 0 be an integer and G be a graph with a matching M such that
jMj ¼ k. Suppose that VðGÞ � VðMÞ has a subset X with jXj � 2 such that for any
v 2 X, dðvÞ� k. If X has at least one vertex u such that dðuÞ� k þ 1, then M is not a
maximum matching of G.

Proof By contradiction, we assume that M is a maximum matching in G. By

Theorem 2.1, G has no M-augmenting path. Let u; v 2 X be distinct vertices such

that dðuÞ� k þ 1. Since M is maximum, u and v are not adjacent in G, and any

vertices adjacent to u or v must be in V(M). By the assumption that M is a maximum
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matching and by Theorem 2.1, we have the following claim.

Claim 1. For each edge e ¼ xy 2 M, exactly one in fux; vyg can be in E(G), and

exactly one in fuy; vxg can be in E(G).

Claim 2 below now follows immediately from Claim 1.

Claim 2. For any edge e ¼ xy 2 M, if ux; uy 2 EðGÞ, or if ux; vx 2 EðGÞ, or if
vx; vy 2 EðGÞ, then jðfu; vg; fx; ygÞGj � 2.

By Claim 2, we conclude that joðuÞ [ oðvÞj � 2jMj. As dðvÞ� k and dðuÞ� k þ 1,

we are lead to a contradiction: 2k þ 1 ¼ k þ ðk þ 1Þ� dðvÞ þ dðuÞ ¼ joðvÞ [
oðuÞj � 2jMj ¼ 2k: This proves the lemma. h

Corollary 2.1 Let G be a graph with a0ðGÞ ¼ k. If j0ðGÞ� a0ðGÞ, then

(i) j0ðGÞ ¼ a0ðGÞ when jVðGÞj � 2k þ 2, and
(ii) j0ðGÞ� 2a0ðGÞ when 2k� jVðGÞj � 2k þ 1.

Proof

(i) By contradiction, we assume that j0ðGÞ� k þ 1. Let M denote a maximum

matching of G. Then jVðGÞ � VðMÞj � 2k þ 2� 2k ¼ 2. Since

j0ðGÞ� k þ 1, for every vertex u 2 VðGÞ � VðMÞ, dðuÞ� k þ 1. It follows

by Lemma 2.1 that M is not a maximum matching of G, which is a

contradiction.

(ii) As 2k� jVðGÞj � 2k þ 1, for each vertex v 2 VðGÞ, we have

2k� dðvÞ� j0ðGÞ, and so j0ðGÞ� 2a0ðGÞ.

h

Lemma 2.2 Let G be a graph with n ¼ jVðGÞj and k ¼ a0ðGÞ. Let M be a maximum
matching of G, and let X ¼ VðGÞ � VðMÞ. If n� 2k þ 2 and dðGÞ� a0ðGÞ, then
each of the following holds.

(i) For every x 2 VðGÞ � VðMÞ, we have dGðxÞ ¼ k.
(ii) If either n� 2k þ 3 or both n ¼ 2k þ 2 and G is connected, then for every

e ¼ ab 2 M and for every x 2 X, we have the following conclusions.

(ii-1) There exists exactly one vðeÞ 2 fa; bg such that v(e)x is in E(G), and the
vertex uðeÞ 2 fa; bg � fvðeÞg is not adjacent to any vertex in X.

(ii-2) The set fuðeÞ : e 2 Mg as specified in (ii-1) is an independent set in G
such that dðuðeÞÞ ¼ k for any e 2 M and such that for any e; e0 2 M,

uðeÞvðe0Þ; vðeÞuðe0Þ 2 EðGÞ.

Proof Let N(X) denote the set of vertices in G that is adjacent to a vertex in X.
Since M is a maximum matching, by Theorem 2.1

G does not have an M-augmenting path. ð1Þ

As n� 2k þ 2 and jMj ¼ k, we have jXj � 2. Since M is a maximum matching, we

have NðXÞ � VðMÞ, and it follows by dðGÞ� k and by Lemma 2.1 that Lemma 2.2

(i) must hold. It remains to prove Lemma 2.2 (ii).
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Case 1. n ¼ jVðGÞj � 2k þ 3.

Let m ¼ jXj. Then m� 3. By Lemma 2.2 (i),

jðX;VðMÞÞGj ¼ mk: ð2Þ

It follows from (1) that

for any e 2 M, the vertices of e are incident with at most m edges in ðX;VðMÞÞG:

ð3Þ

Let e ¼ ab 2 M. If a; b 2 NðXÞ, then by (1), there must be a unique x 2 X such that

x is adjacent to both a and b; and for any x0 2 X � fxg, x0 is adjacent to neither a nor

b. By Lemma 2.2 (i), x is adjacent to k vertices in V(M). As jðfxg; fa; bgÞGj ¼ 2, it

follows by (2) and m� 3 that

jðX;VðMÞ � fa; bgÞGj ¼ mk � 2�mk � m þ 1 ¼ mðk � 1Þ þ 1:

If k [ 1, then there must be an edge f 2 M � feg such that the vertices of f are
incident with at least m þ 1 edges in ðX;VðMÞÞG, contrary to (3). Hence in this case

we must have k ¼ 1 and M ¼ feg. As jXj � 3, it follows from (2) with m� 3 that G
must have an M-augmenting path, contrary to (1). Hence for any e ¼ ab 2 M,

exactly one of a and b is adjacent to vertices in X.
Thus for each e 2 M, let v(e) denote the unique vertex of e that is adjacent to

vertices in X and u(e) the other vertex of e which is not adjacent to any vertex in X.
Then as jXj ¼ m, jðvðeÞ;XÞGj �m. It follows from (2) that

km�
X

e2M

jðvðeÞ;XÞGj ¼ jðVðMÞ;XÞGj ¼ mk:

This implies that for each x 2 X and for each e 2 M, both v(e)x is in E(G). This

proves (ii-1) for Case 1.

Let Y ¼ fuðeÞ : e 2 Mg and we shall show that Y is an independent set. In fact,

if for some e1; e2 2 M, uðe1Þuðe2Þ 2 EðGÞ, then for any distinct x1; x2 2 X,
fx1vðe1Þ; e1; uðe1Þuðe2Þ; e2; x2vðe2Þg induces an M-augmenting path, contrary to (1).

Thus each uðeÞ 2 Y can only be adjacent to vertices in fvðeÞ : e 2 Mg. As jfvðeÞ :
e 2 Mgj ¼ k and as dðGÞ� k, we conclude that for each e 2 M, dðuðeÞÞ ¼ k, and for
any e; e0 2 M, uðeÞvðe0Þ; vðeÞuðe0Þ 2 EðGÞ. This proves (ii-2) for Case 1.

Case 2. G is connected and jVðGÞj ¼ 2k þ 2.

Then X ¼ fw; zg. Let M ¼ fe1; � � � ; ekg. Let Mw � M denote the edges in M each

of which has a vertex adjacent to w. We define Mz similarly. By the assumption of

Lemma 2.2, we have dðGÞ� k, and so jMwj � k
2
and jMzj � k

2
.

Subcase 1. jMwj ¼ k
2
or jMzj ¼ k

2
.

Note that in this case, k must be even. We assume, without loss of generality, that

Mw ¼ fe1; � � � ; ek
2
g. By (1), we must have Mz ¼ fek

2
þ1; � � � ; ekg. Again by (1), for

each x 2 VðMwÞ and y 2 VðMzÞ, we conclude that xy 62 EðGÞ. Thus
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ðVðMwÞ [ fwg;VðMzÞ [ fzgÞG ¼ ;;

contrary to the assumption that G is connected. This shows that Subcase 1 cannot

occur.

Subcase 2. jMwj[ k
2
and jMzj[ k

2
.

Therefore, Mw \ Mz 6¼ ;. By (1), if an edge e 2 M whose vertices are adjacent to

both w and z, then exactly one vertex of e can be adjacent to both w and z. Let
M0 ¼ Mw \ Mz ¼ fe0i ¼ xiyi; ði ¼ 1; :::; d; 1� d � kÞg � M. Without loss of gener-

ality, we assume that each e0i has a unique vertex xi with xiw; xiz 2 EðGÞ. Let
M00 ¼ M � M0 ¼ fe00j ¼ rjsj; ðj ¼ 1; :::; k � dÞg.

Claim 3. Each of the following holds.

(i) For each yi, yiw; yiz 62 EðGÞ.
(ii) The set fy1; y2; � � � ; ydg is an independent set.

(iii) If Lemma 2.2 (ii-1) or (ii-2) does not hold, then d � k � 1.

(iv) For each e ¼ xiyi 2 M0, jðfxi; yig; fw; zgÞGj ¼ 2.

(v) For each j with 1� j� k � d, there exists exactly one vertex in fw; zg
which is adjacent to both rj and sj.

(vi) For any xiyi 2 M0 and for any rjsj 2 M00, we have yirj; yisj 62 EðGÞ.

In fact, Claim 3 (i) and (ii) follow directly from (1), and Claim 3(iv) follows from

Claim 3(i). For (iii), we assume that Lemma 2.2 (ii-1) or (ii-2) does not hold. and

d ¼ k. Then M ¼ M0 and each xi is adjacent to both w and z. By Claim 3(i), for each

ei ¼ xiyi 2 M, we have yiw; yiz 62 EðGÞ. Hence Lemma 2.2(ii-1) must hold. Also by

Claim 3 (i) and (ii), each yi can only be adjacent to fx1; x2; � � � ; xdg. By the

assumption of Lemma 2.2, we have dðGÞ� k and so, for any i, we must have

dðyiÞ ¼ k, and for any 1� i; i0 � k, we must also have xiyi0 2 EðGÞ. Hence

Lemma 2.2(ii-2) holds as well. This contradiction implies Claim 3 (iii).

We argue by contradiction to prove Claim 3(v). By the definition of M00, for each
j with 1� j� k � d, there exists at most one vertex in fw; zg which is adjacent to

both rj and sj. By contradiction, we assume that r1s1 2 M00 with

jðfw; zg; fr1; s1gÞGj � 1. For any other rjsj 2 M00 with j� 2, we have

jðfw; zg; frj; sjgÞGj � 2. It follows from Lemma 2.2(i) and Claim 3(iv) that

2k ¼jðfw; zg;VðMÞÞGj
¼jðfw; zg;VðM0ÞÞGj þ jðfw; zg; fr1; s1gÞGj

þ
Xk�d

j¼2

jðfw; zg; frj; sjgÞGj � 2d þ 1þ 2ðk � d � 1Þ ¼ 2k � 1\2k:

This contradiction justifies Claim 3(v).

We again argue by contradiction to prove Claim 3(vi). Assume that yirj 2 EðGÞ.
By Claim 3(v), we may assume that rjsj 2 Mw, and so fwsj; rjsj; rjyi; xiyi; zxig will

induce an M-augmenting path, contrary to (1). When we have yisj 2 EðGÞ, the same

argument would also lead the a contradiction. This justifies Claim 3(vi), and

completes the proof for Claim 3.
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We argue by contradiction to prove Lemma 2.2(ii). As M0 ¼ Mw \ Mz 6¼ ;, we
have d � 1 and so y1 exists. By Claim 3(i), (ii) and (vi), the neighbors of y1 can only

be among fx1; x2; � � � ; xdg. Hence dðy1Þ� jfx1; x2; � � � ; xdgj ¼ d. As dðGÞ� k and by

Claim 3(iii), we must have k � dðy1Þ� d �ðk � 1Þ: This contradiction implies that

we must have d ¼ k, and so by Claim 3(iii), Lemma 2.2(ii) must hold in Case 2. h

Theorem 2.2 Let G be a simple graph with n ¼ jVðGÞj � 2 and k ¼ a0ðGÞ such that
G is connected when n ¼ 2k þ 2. If dðGÞ� k, then j0ðGÞ� k. Furthermore, if, in
addition, n� 2k þ 2, then j0ðGÞ ¼ k.

Proof Let M be a matching of maximum size of G. Assume first that

2k � n� 2k þ 1.

Arbitrarily pick a nonempty proper subset X � VðGÞ, and let Y ¼ VðGÞ � X. As
jXj þ jY j ¼ n� 2k þ 1, we have either 1� jXj � k or 1� jY j � k. By symmetry, we

assume that 1� jXj ¼ m� k. Since j0ðGÞ� k, for each x 2 X, we have

jðfxg; YÞGj � k � ðm � 1Þ. Thus joGðXÞj�mðk � ðm � 1ÞÞ ¼ �m2 þ mðk þ 1Þ. As
this is a quadratic function with 1�m� k, it follows that

joGðXÞj � � m2 þ mðk þ 1Þ� k. Thus j0ðGÞ� k, and so the theorem holds if

2k � n� 2k þ 1.

Hence we assume that n� 2k þ 2. By Corollary 2.1, it suffices to show that

j0ðGÞ� k. Let X be an arbitrary nonempty proper vertex subset with satisfying

; 6¼ X � VðGÞ. We will prove j0ðGÞ� k by showing that joGðXÞj� k.
Let Z ¼ VðGÞ � VðMÞ. By Lemma 2.2 (ii-1), for any e ¼ uv 2 M, there exists a

unique vðeÞ 2 fu; vg such that for any z 2 Z, vðeÞz 2 EðGÞ. Let

Mv ¼ fvðeÞ : e 2 Mg, and Mu ¼ VðMÞ � Mv. Let m� 2 be the integer satisfying

n ¼ 2k þ m. By Lemma 2.2, for any v 2 Mv, and any u 2 Z [ Mu, we have

vu 2 EðGÞ.
Subcase 2.1. ðMu [ ZÞ � X (or ðMu [ ZÞ \ X ¼ ;). We assume that Mu [ Z � X

as by symmetry, the proof for ðMu [ ZÞ \ X ¼ ; is similar. As

VðGÞ ¼ Mu [ Mv [ Z, there exists a y 2 Mv � X � VðGÞ � X. By Lemma 2.2,

joGðXÞj � jðMu [ Z; fygÞGj ¼ jZj þ jMuj ¼ k þ m[ k.

Subcase 2.2. Mv � X (or Mv � VðGÞ � X). We assume that Mv � X, as by

symmetry, the proof for Mv � VðGÞ � X is similar. Then Mu [ Z � X 6¼ ;. Pick
y 2 Mu [ Z � X. Then by Lemma 2.2, joGðXÞj � jðMv; fygÞGj ¼ jMvj ¼ k.

Subcase 2.3. Both Mu [ Z � X 6¼ ; and X \ ðMu [ ZÞ 6¼ ;, and both Mv � X 6¼ ;
and X \ Mv 6¼ ;. In this subcase, we pick an x 2 X \ ðMu [ ZÞ and a

y 2 ðMu [ ZÞ � X. It follows by Lemma 2.2 that joGðXÞj � jðfxg;Mv � XÞGj þ
jðMv \ X; fygÞGj ¼ jMv � Xj þ jMv \ Xj ¼ jMvj ¼ k: It follows that we always

have joGðXÞj � k, and so j0ðGÞ� k. By Corollary 2.1, j0ðGÞ ¼ k. This completes the

proof of the theorem. h

3 The Main Result

Our main result, Theorem 1.4, will be proved in this section. Theorem 1.3 in

Sect. 1 will be utilized here.
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Suppose that G is a connected simple graph with jVðGÞj � 2 and a0ðGÞ ¼ 1. For

each vertex w 2 VðGÞ, let EGðwÞ be the set of edges in G incident with w. Let
e ¼ uv 2 EðGÞ be such that feg is a maximum matching of G. We assume that

dGðuÞ� dGðvÞ. Since feg is a maximum matching of G, we have EGðuÞ ¼ EðGÞ and
EGðvÞ ¼ feg, unless G ¼ K3. We state this observation as the lemma below.

Lemma 3.1 Let G be a connected simple graph with n ¼ jVðGÞj � 2 and a0ðGÞ ¼ 1.
Then either G ¼ K3 or G ¼ K1;n�1.

We will prove a slightly stronger version of Theorem 1.4 in this section, as stated

below.

Theorem 3.1 Let G be a simple graph with n ¼ jVðGÞj � 2 and k ¼ a0ðGÞ such that
G is connected when n ¼ 2k þ 2. Suppose that dðGÞ� k. Then G is supereulerian if
and only if G 6¼ K1;n�1 if n is even or G 6¼ K2;n�2 if n is odd.

Proof It is routine to show that for any integer n[ 0, the graphs K1;n�1 and K2;n�2

(when n is odd) are not supereulerian. It suffices to show the sufficiency. By

Theorem (2.2), we have j0ðGÞ� k.
If k ¼ 1, then Theorem 3.1 follows from Lemma 3.1. Hence we assume that

k � 2. If k � 4, then by Theorem 1.3, G must be supereulerian. If k ¼ 3, then by

Theorem 1.2(iv), G must also be supereulerian as the Petersen graph has a matching

of size 5. Hence we may assume that j0ðGÞ� a0ðGÞ ¼ 2.

By Theorem 1.2(iii), G is supereulerian if and only if G does not have a

connected subgraph H and an odd integer t � 3 such that G=H ¼ K2;t. If H ¼ K1,

then G ¼ K2;t with n � 2 ¼ t being odd. Hence the sufficiency of Theorem 3.1

holds. Therefore we assume that H is a connected nontrivial simple graph. Let vH be

the vertex in G/H onto which H is contracted, u; u0 be the two vertices of degree t in
this K2;t and let v1; v2; � � � ; vt be the vertices of degree 2 in this K2;t. Let ei ¼ uvi and

e0i ¼ u0vi, for each i with 1� i� t. Note that fei; e0i : 1� i� tg � EðGÞ, by the

definition of contraction.

If vH has degree 2 in G/H, then we may assume that vH ¼ v1. Since H is a

connected nontrivial simple graph, E(H) contains an edge eH . It follows that

feH ; e2; e03g is a matching of G, contrary to the assumption that a0ðGÞ ¼ 2. Hence vH

has degree t in G/H, and so we may assume that vH ¼ u.
Denote ei ¼ uivi with ui 2 VðHÞ, for 1� i� t. If for some 1� i0\i00 � t, we have

ui0 6¼ ui00 , then as t� 3, there exist an i000 62 fi0; i00g with 1� i000 � t. Thus fei0 ; ei00 ; e0i000 g
is a matching of size 3 in G. Hence we may assume that u1 ¼ u2 ¼ ::: ¼ ut 2 VðHÞ.
As H is nontrivial, u1 is a cut vertex of G, and so j0ðHÞ� j0ðGÞ� 2. Since H is

simple with j0ðHÞ� 2, H contains an edge e0H not incident with u1. It follows that

fe0H ; e1; e02g is a matching of size 3 in G, contrary to that a0ðGÞ ¼ 2. These

contradictions force that H ¼ K1 and so G ¼ K1;n�2. This completes the proof of

Theorem 3.1. h
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4 Sharpness Discussion

Theorem 1.4 is sharp in the sense that there exist infinitely many connected

nonsupereulerian graphs G with dðGÞ\a0ðGÞ, such that G is isomorphic to neither a

K1;n nor to a K2;n�2.

Example 4.1 For each integer t� 1;, let Gt be a graph with

VðGtÞ ¼ fv1; v2; v3; u1; u2; u3; x1; x2; :::; xtg

and

EðGtÞ ¼ fv1u1; u1v3; v3u3; u3v1; v2u2; u2v3g [ ð[t
j¼1fv1xj; xjv2gÞ;

as depicted in Fig. 1. Then fGtgt � 1 is an infinite family of connected graphs with

dðGÞ ¼ 2 and a0ðGÞ ¼ 3. To see that each Gt is not supereulerian, we assume

otherwise that Gt has a spanning closed trail S. Then as S is spanning, we must have

fu1v3; u2v3; u3v3g � EðSÞ. However, as dGt
ðv3Þ ¼ 3, it implies that dSðv3Þ ¼ 3,

contrary to the assumption that S is an eulerian graph.

Example 4.2 For any odd integers t� 3 and k � 5ðtþ1Þ
2

, there exists a 2-connected

nonsupereulerian graph G with dðGÞ ¼ t and a0ðGÞ� k.
Let fv1; v2; v3; v4; v5g denote the vertex set of a K2;3. Obtain a 2-connected graph

G by blowing up each of v1; v2; v3 and v4 into a Ktþ1, and by blowing up v5 into a

K2k0 , where k0 ¼ k � 2ðt þ 1Þ. Then each of these complete subgraphs of G

isomorphic to Ktþ1 contains a perfect matching of size tþ1
2
, and K2k0 contains a

perfect matching of size k0. It follows that a0ðGÞ� 4 � tþ1
2
þ k0 ¼ k, and

dðGÞ ¼ dðKtþ1Þ ¼ t. Since G is contractible to a nonsupereulerian graph K2;3,

G must also be nonsupereulerian as well.
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Fig. 1 The graph Gt

123

Graphs and Combinatorics



References

1. An, M., Xiong, L.: Supereulerian graphs, collapsible graphs and matchings, Acta Math. Appl. Sin.

39, 871–877 (2016). (Chinese)

2. Bang-Jensen, J., Maddaloni, A.: Sufficient conditions for a digraph to be supereulerian. J. Graph

Theory 79(1), 8–20 (2015)

3. Berge, C.: Two theorems in graph theory. Proc. Nat. Acad. Sci. USA 43, 842–844 (1957)

4. Boesch, F.T., Suffel, C., Tindell, R.: The spanning subgraphs of eulerian graphs. J. Graph Theory 1,
79–84 (1977)

5. Bondy, J.A., Murty, U.S.R.: Graph Theory. Springer, New York (2008)

6. Catlin, P.A.: Reduction method to find spanning Eulerian subgraphs. J. Graph Theory 12, 29–44
(1988)

7. Catlin, P.A.: Supereulerian graphs: a survey. J.Graph Theory 16, 177–196 (1992)

8. Chen, Z.H., Lai, H.-J.: Reduction Techniques for Super-Eulerian Graphs and Related Topics-A

Survey, Combinatorics and Graph Theory, vol. 95, pp. 53–69. World Science Publishing, River Edge

(1995)
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