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Abstract

A graph is supereulerian if it has a spanning eulerian subgraph. We show that a
connected simple graph G with n = |V(G)| >2 and §(G) > «(G) is supereulerian if
and only if G # K|, if n is even or G # K; ,_, if n is odd. Consequently, every
connected simple graph G with 6(G) > o/(G) has a hamiltonian line graph.

Keywords Supereulerian graph - Hamiltonian line graph - Matching - Minimum
degree - Contraction

1 Introduction

We follow Bondy and Murty [5] for terms and notation, unless otherwise stated.
Graphs considered in this paper are finite and loopless, but multiple edges are
allowed. As in [5], k(G), ¥'(G), 6(G), a(G) and o/ (G) denote the connectivity, the
edge connectivity, the minimum degree, the stability number (also called the
independence number), and the matching number of a graph G, respectively. Let G
be a graph and let O(G) denote the set of odd degree vertices of G. If G is connected
and O(G) = 0, then G is an Eulerian graph. Thus a graph G is Eulerian if and only
if G has a closed trail traversing every edge exactly once. A graph is supereulerian
if it has a spanning eulerian subgraph. In particular, K| is both eulerian and
supereulerian. The study of supereulerian graphs was initiated in [4]. Pulleyblank
[15] showed that, even within planar graphs, it is NP-complete to determine if a
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graph is supereulerian. For the literature on supereulerian graphs, see the survey of
Catlin [7] and its updates in [8, 14].

If X C E(G), the contraction G/X is the graph obtained from G by identifying
the two ends of each edge in X and then deleting the resulting loops. If H is a
subgraph of G, we write G/H for G/E(H). We define G/ = G/K, = G.

Chvatal and Erdos proved a classic result on hamiltonian graph, revealing an
interesting property of using a relationship between connectivity and independence
number of a graph to predict the hamiltonicity of the graph.

Theorem 1.1 (Chvdtal and Erdos, [9)) If k(G) > a(G), then G is hamiltonian.

There have been results following Theorem 1.1 and using similar relations
involving edge-connectivity, stability number or matching number to predict
supereulerianicity of a graph, as seen in [1, 10, 13, 16] and [17], among others. The
theorem below presents some of these results.

Theorem 1.2 Each of the following holds.

(1) ([13]) Let G be a graph with '(G)>2 and o/(G)<2. Then G is
supereulerian if and only if G is not contractible to a K, ;. for some odd
integer t > 3.

(i) (Bang-Jensen and Maddaloni [2]) Let G be a graph on at least three
vertices. If k'(G) > a(G), then G is supereulerian.

(iii)  (An and Xiong, [1]) Let G be a graph with k'(G) >2 and o/ (G) <2. Then
either G is supereulerian or G has a connected subgraph H such that for
some odd integer t >3, G/H = K»,.

(iv)  (An and Xiong, [1]) If ¥'(G) >3 and o/ (G) <5, then G is supereulerian if
and only if G is not contractible to the Petersen graph.

A natural question is whether '(G) > o/ (G) would warrant G to be supereulerian.
The following useful theorem was first proved by Jaeger in [12] and extended by
Catlin in [6].

Theorem 1.3 (Jaeger [12] and Catlin [6]) Every 4-edge-connected graph is
supereulerian.

Thus by Theorem 1.3 and Theorem 1.2(i) and (iv), it is known that for a
connected graph G, if ¥'(G) > o/(G), then G is supereulerian if and only if for any
integer ¢t > 0, G is not isomorphic to a K 54 1.

These motivates the current research. As it is well known that in a graph G, we
always have 6(G) > «'(G) > k(G), it is natural to consider whether we can use
0(G) > o/ (G) to replace k'(G) > o/(G) in predicting supereulerianicity of a graph.
The main result of this paper is the following.

Theorem 1.4 Let G be a connected simple graph with n=|V(G)|>2 and
0(G) > o/ (G). Then G is supereulerian if and only if G # K, ,—1 if n is even or
G # Ky, ifnis odd.
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Our result implies a new condition for hamiltonian line graphs. The line graph of
a graph G, denoted by L(G), has E(G) as its vertex set, where two vertices in
L(G) are adjacent if and only if the corresponding edges in G have at least one
vertex in common. Harary and Nash-Williams showed that there is a close
relationship between a graph and its line graph concerning Hamilton cycles.

Theorem 1.5 (Harary and Nash-Williams, [11]) Let G be a graph with |E(G)| > 3.
Then L(G) is hamiltonian if and only if G has an eulerian subgraph H with
E(G-V(H))=10.

Using Theorem 1.5, we obtain the corollary below, as an immediate application
of Theorem 1.4.

Corollary 1.1 Every connected simple graph G with |E(G)|>3 and with
0(G) > o/ (G) has a hamiltonian line graph.

In the next section, we present some preliminaries and prove an associated result.
These will be utilized in Sect. 3 to justify the main results. Sharpness of the main
result will be discussed in the last section.

2 Preliminaries

Throughout the rest of this section, G always denotes a simple graph under
discussion. For subsets X, Y C V(G), define

(X,Y)s={xy€EG) : xeX,ye Y}
When Y = V(G) — X, we define
06(X) = (X, V(G) = X);-

For a vertex v € V(G), dg(v) = [0g({v})| is the degree of v in G. When G is
understood from the context, we often use d(v) for dg(v).

Let M be a matching in G. We use V(M) to denote the set V(G[M]). A path P in G
is an M-augmenting path if the edges of P are alternately in M and in E(G) — M,
and if both end vertices of P are not in V(M). We start with a fundamental theorem
of Berge.

Theorem 2.1 (Berge, [3]) A matching M in G is a maximum matching if and only if
G does not have M-augmenting paths.

Lemma 2.1 Let k > 0 be an integer and G be a graph with a matching M such that
|M| = k. Suppose that V(G) — V(M) has a subset X with |X| > 2 such that for any
v € X,d(v) > k. If X has at least one vertex u such that d(u) >k + 1, then M is not a
maximum matching of G.

Proof By contradiction, we assume that M is a maximum matching in G. By
Theorem 2.1, G has no M-augmenting path. Let u,v € X be distinct vertices such
that d(u) >k + 1. Since M is maximum, u and v are not adjacent in G, and any
vertices adjacent to u or v must be in V(M). By the assumption that M is a maximum
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matching and by Theorem 2.1, we have the following claim.

Claim 1. For each edge ¢ = xy € M, exactly one in {ux, vy} can be in E(G), and
exactly one in {uy,vx} can be in E(G).

Claim 2 below now follows immediately from Claim 1.

Claim 2. For any edge e = xy € M, if ux,uy € E(G), or if ux,vx € E(G), or if
vx,vy € E(G), then |({u,v},{x,y})s| <2.

By Claim 2, we conclude that |0(x) U 0(v)| <2|M|. Asd(v) > kand d(u) >k + 1,
we are lead to a contradiction: 2k+1=k+ (k+1)<d(v)+d(u)=1[0(v)U
0(u)| <2|M| = 2k. This proves the lemma. O

Corollary 2.1 Let G be a graph with o/ (G) = k. If ¥'(G) > d/(G), then

(i) «(G) = o (G) when |V(G)|>2k +2, and
(i) «'(G) <2d(G) when 2k <|V(G)| <2k + 1.

Proof

(i) By contradiction, we assume that k'(G) >k + 1. Let M denote a maximum
matching of G. Then |V(G)—V(M)|>2k+2—2k=2. Since
K'(G) >k + 1, for every vertex u € V(G) — V(M), d(u) >k + 1. It follows
by Lemma 2.1 that M is not a maximum matching of G, which is a
contradiction.

() As 2k<|V(G)|<2k+1, for each vertex veV(G), we have
2k>d(v) > «'(G), and so k'(G) <24'(G).

O

Lemma 2.2 Let G be a graph withn = |V(G)| and k = o/ (G). Let M be a maximum
matching of G, and let X = V(G) — V(M). If n>2k+2 and 6(G) > o' (G), then
each of the following holds.

(i) Forevery x € V(G) — V(M), we have dg(x) = k.
(ii)  If either n > 2k + 3 or both n = 2k 4+ 2 and G is connected, then for every
e = ab € M and for every x € X, we have the following conclusions.

(ii-1) There exists exactly one v(e) € {a,b} such that v(e)x is in E(G), and the
vertex u(e) € {a,b} — {v(e)} is not adjacent to any vertex in X.

(ii-2) The set {u(e) : e € M} as specified in (ii-1) is an independent set in G
such that d(u(e)) =k for any e €M and such that for any e, € M,
u(e)v(e'),v(e)u(e') € E(G).

Proof Let N(X) denote the set of vertices in G that is adjacent to a vertex in X.
Since M is a maximum matching, by Theorem 2.1

G does not have an M-augmenting path. (1)

As n>2k+ 2 and |M| = k, we have |X| > 2. Since M is a maximum matching, we
have N(X) C V(M), and it follows by d(G) > k and by Lemma 2.1 that Lemma 2.2
(i) must hold. It remains to prove Lemma 2.2 (ii).
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Case 1. n=|V(G)| >2k + 3.
Let m = |X|. Then m > 3. By Lemma 2.2 (i),

|(X, V(M))g| = mk. (2)
It follows from (1) that

for any e € M, the vertices of e are incident with at most m edges in (X,V(M));.
3)

Lete =ab € M. If a,b € N(X), then by (1), there must be a unique x € X such that
x is adjacent to both a and b; and for any ¥’ € X — {x}, ¥’ is adjacent to neither a nor
b. By Lemma 2.2 (i), x is adjacent to k vertices in V(M). As |({x}, {a,b})s| =2, it
follows by (2) and m >3 that

(X, V(M) —{a,b})g| =mk —2>mk —m+1=m(k—1)+ 1.

If k > 1, then there must be an edge f € M — {e} such that the vertices of f are
incident with at least m + 1 edges in (X, V(M)), contrary to (3). Hence in this case
we must have k = 1 and M = {e}. As |X| > 3, it follows from (2) with m > 3 that G
must have an M-augmenting path, contrary to (1). Hence for any e = ab € M,
exactly one of a and b is adjacent to vertices in X.

Thus for each e € M, let v(e) denote the unique vertex of e that is adjacent to
vertices in X and u(e) the other vertex of e which is not adjacent to any vertex in X.
Then as [X| =m, |(v(e),X)s| < m. It follows from (2) that

km>y " |(v(e), X)gl = |(V(M),X)g| = mk.
eeM
This implies that for each x € X and for each e € M, both v(e)x is in E(G). This
proves (ii-1) for Case 1.

Let Y = {u(e) : e € M} and we shall show that ¥ is an independent set. In fact,
if for some ej,ex € M, u(ey)u(es) € E(G), then for any distinct x;,x; € X,
{x1v(er),er,ule))u(er), e2,x2v(ez)} induces an M-augmenting path, contrary to (1).
Thus each u(e) € Y can only be adjacent to vertices in {v(e) : e € M}. As |{v(e) :
e € M}| = k and as 6(G) > k, we conclude that for each e € M, d(u(e)) = k, and for
any e, e’ € M, u(e)v(e'),v(e)u(e’) € E(G). This proves (ii-2) for Case 1.

Case 2. G is connected and |V(G)| = 2k + 2.

Then X = {w,z}. Let M = {ey,-- -, ex}. Let M,, C M denote the edges in M each
of which has a vertex adjacent to w. We define M, similarly. By the assumption of
Lemma 2.2, we have §(G) >k, and so |M,,|> % and |M,| > &.

Subcase 1. |[M,|=%or |M.| =%

Note that in this case, k must be even. We assume, without loss of generality, that
M, = {ey,---,es}. By (1), we must have M: = {ex |, -, ex}. Again by (1), for

each x € V(M,,) and y € V(M;), we conclude that xy & E(G). Thus
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(V(My) U{w}, V(M) U{z})g =0,

contrary to the assumption that G is connected. This shows that Subcase 1 cannot
occur.

Subcase 2. |M,|> %and [M| > L

Therefore, M,, N M, # (). By (1), if an edge ¢ € M whose vertices are adjacent to
both w and z, then exactly one vertex of e can be adjacent to both w and z. Let
M =M,NM,={e =xy;,(i=1,..,d;1<d<k)} C M. Without loss of gener-
ality, we assume that each ¢! has a unique vertex x; with x;w,x;z € E(G). Let
M'=M-M ={e =rns;,(j=1,...k—d)}.

Claim 3. Each of the following holds.

(i) For each y;, yw,yiz € E(G).
(i) The set {y1,y2,---,y4} is an independent set.
(iii) If Lemma 2.2 (ii-1) or (ii-2) does not hold, then d <k — 1.
(iv) For each e = x;y; € M', |({xi, i}, {w,2})gl = 2.
(v) For each j with 1<j<k —d, there exists exactly one vertex in {w,z}
which is adjacent to both r; and s;.
(vi) For any x;y; € M’ and for any r;s; € M”, we have y;rj,y;s; & E(G).

In fact, Claim 3 (i) and (ii) follow directly from (1), and Claim 3(iv) follows from
Claim 3(i). For (iii), we assume that Lemma 2.2 (ii-1) or (ii-2) does not hold. and
d = k. Then M = M’ and each x; is adjacent to both w and z. By Claim 3(i), for each
e; = x;y; € M, we have y;w,y;z ¢ E(G). Hence Lemma 2.2(ii-1) must hold. Also by
Claim 3 (i) and (ii), each y; can only be adjacent to {xj,xz,---,xs}. By the
assumption of Lemma 2.2, we have 6(G)>k and so, for any i, we must have
d(y;) =k, and for any 1<i i <k, we must also have x;y; € E(G). Hence
Lemma 2.2(ii-2) holds as well. This contradiction implies Claim 3 (iii).

We argue by contradiction to prove Claim 3(v). By the definition of M”, for each
j with 1 <j<k —d, there exists at most one vertex in {w,z} which is adjacent to
both r; and s By contradiction, we assume that ris; € M” with
|({w,z},{ri,s1})g| <1. For any other rs; € M” with j>2, we have
[({w,z}, {7, 5;})gl < 2. It follows from Lemma 2.2(i) and Claim 3(iv) that

2k :|({W7Z}7V(M )G|
:|({W7 Z}7 V(M/))Gl + |({Wa Z}7 {rlvsl})G‘
k—d
+ ) 1w, 2}, {5 hgl <2+ 14 2(k—d — 1) = 2k — 1 <2k.
=2

Jj=

This contradiction justifies Claim 3(v).

We again argue by contradiction to prove Claim 3(vi). Assume that y;r; € E(G).
By Claim 3(v), we may assume that r;s; € M,,, and so {wsj, ris;, rjyi,xiyi,z,xi} will
induce an M-augmenting path, contrary to (1). When we have y;s; € E(G), the same
argument would also lead the a contradiction. This justifies Claim 3(vi), and
completes the proof for Claim 3.
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We argue by contradiction to prove Lemma 2.2(ii). As M’ = M,, "M, # (), we
have d > 1 and so y; exists. By Claim 3(i), (ii) and (vi), the neighbors of y; can only
be among {x1,x, -+, x4} Hence d(y;) < |{x1,x2, -+, x4}| = d. As 6(G) > k and by
Claim 3(iii), we must have k <d(y;) <d < (k — 1). This contradiction implies that
we must have d = k, and so by Claim 3(iii), Lemma 2.2(ii) must hold in Case 2. [

Theorem 2.2 Let G be a simple graph withn = |V(G)| >2 and k = o' (G) such that
G is connected when n =2k + 2. If 6(G) >k, then k'(G) > k. Furthermore, if, in
addition, n > 2k + 2, then ¥'(G) = k.

Proof Let M be a matching of maximum size of G. Assume first that
2k<n<2k+ 1.

Arbitrarily pick a nonempty proper subset X C V(G), and let ¥ = V(G) — X. As
|X| + Y| = n <2k + 1, we have either 1 <|X| <k or 1 <|Y| <k. By symmetry, we
assume that 1<|X|=m<k. Since «'(G)>k, for each x€ X, we have
|({x},Y)| >k — (m—1). Thus [06(X)|>m(k — (m—1)) = —m* + m(k + 1). As
this is a quadratic function with 1<m<k, it follows that
|06(X)| > —m? + m(k+ 1) >k. Thus «'(G) >k, and so the theorem holds if
2k<n<2k+1.

Hence we assume that n>2k + 2. By Corollary 2.1, it suffices to show that
K'(G) > k. Let X be an arbitrary nonempty proper vertex subset with satisfying
0 # X C V(G). We will prove k'(G) >k by showing that |0 (X)| > k.

Let Z = V(G) — V(M). By Lemma 2.2 (ii-1), for any e = uv € M, there exists a
unique  v(e) € {u,v} such that for any z€Z, v(e)z€E(G). Let
M, ={v(e) : e€ M}, and M, = V(M) — M,. Let m>2 be the integer satisfying
n=2k+m. By Lemma 2.2, for any ve M,, and any u € ZUM,, we have
vu € E(G).

Subcase 2.1. (M, UZ) C X (or (M, UZ) N X = ()). We assume that M, UZ C X
as by symmetry, the proof for (M,UZ)NX=0 1is similar. As
V(G) =M, UM, UZ, there exists a ye M, — X C V(G) —X. By Lemma 2.2,
[06(X)| = (My UZ, {9))g] = 121 + M. = k+m > k.

Subcase 2.2. M, CX (or M, C V(G) — X). We assume that M, C X, as by
symmetry, the proof for M, C V(G) — X is similar. Then M, UZ — X # (. Pick
y € M, UZ — X. Then by Lemma 2.2, [0(X)| > |(M,, {y})s| = IM,| = k.

Subcase 2.3. Both M, UZ — X # () and X N (M,, U Z) # (), and both M, — X # ()
and XNM, #0. In this subcase, we pick an xeXN(M,UZ) and a
y€ (M,UZ)—X. It follows by Lemma 2.2 that |[0g(X)|>|({x},M, — X)s| +
(M, N X, {3})g| = M, — X| + M, NX| =|M,| =k. It follows that we always
have |06(X)| > k, and so ' (G) > k. By Corollary 2.1, x'(G) = k. This completes the
proof of the theorem. O

3 The Main Result

Our main result, Theorem 1.4, will be proved in this section. Theorem 1.3 in
Sect. 1 will be utilized here.
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Suppose that G is a connected simple graph with |[V(G)| >2 and o/(G) = 1. For
each vertex w € V(G), let Eg(w) be the set of edges in G incident with w. Let
e =uv € E(G) be such that {e} is a maximum matching of G. We assume that
dg(u) > dg(v). Since {e} is a maximum matching of G, we have Eg(u) = E(G) and
Eg(v) = {e}, unless G = K3. We state this observation as the lemma below.

Lemma 3.1 Let G be a connected simple graph withn = |V(G)| >2 and o/ (G) = 1.
Then either G = K3 or G = K 1.

We will prove a slightly stronger version of Theorem 1.4 in this section, as stated
below.

Theorem 3.1 Let G be a simple graph withn = |V(G)| > 2 and k = o' (G) such that
G is connected when n = 2k + 2. Suppose that 5(G) > k. Then G is supereulerian if
and only if G # K ,—1 if n is even or G # K, ,—» if n is odd.

Proof 1t is routine to show that for any integer n > 0, the graphs K ,_; and K ,_»
(when n is odd) are not supereulerian. It suffices to show the sufficiency. By
Theorem (2.2), we have «'(G) > k.

If k=1, then Theorem 3.1 follows from Lemma 3.1. Hence we assume that
k>2. If k>4, then by Theorem 1.3, G must be supereulerian. If k = 3, then by
Theorem 1.2(iv), G must also be supereulerian as the Petersen graph has a matching
of size 5. Hence we may assume that ¥'(G) > o' (G) = 2.

By Theorem 1.2(iii), G is supereulerian if and only if G does not have a
connected subgraph H and an odd integer >3 such that G/H = K,,. If H = K|,
then G = K, with n —2 =1t being odd. Hence the sufficiency of Theorem 3.1
holds. Therefore we assume that H is a connected nontrivial simple graph. Let vy be
the vertex in G/H onto which H is contracted, u, u’ be the two vertices of degree ¢ in
this K, ; and let v, vy, - - -, v, be the vertices of degree 2 in this K5 ,. Let ¢; = uv; and
e; = u'v;, for each i with 1<i<t Note that {e;e!:1<i<r} CE(G), by the
definition of contraction.

If vy has degree 2 in G/H, then we may assume that vy = v;. Since H is a
connected nontrivial simple graph, E(H) contains an edge egy. It follows that
{en, ez, €4} is a matching of G, contrary to the assumption that o/ (G) = 2. Hence vy
has degree ¢ in G/H, and so we may assume that vy = u.

Denote ¢; = u;v; with u; € V(H), for 1 <i<¢. If for some 1 <i <i” <t, we have
uy # up, then as r > 3, there exist an i ¢ {i/, "} with 1 <7/ <t. Thus {ey, ey, €} }
is a matching of size 3 in G. Hence we may assume that u; = u, = ... = u, € V(H).
As H is nontrivial, u; is a cut vertex of G, and so «'(H) > «'(G) >2. Since H is
simple with «'(H) > 2, H contains an edge ¢}, not incident with u;. It follows that
{€};,e1,¢,} is a matching of size 3 in G, contrary to that o(G) =2. These
contradictions force that H = K; and so G = K ,—,. This completes the proof of
Theorem 3.1. U
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Fig. 1 The graph G;

4 Sharpness Discussion

Theorem 1.4 is sharp in the sense that there exist infinitely many connected
nonsupereulerian graphs G with (G) <a'(G), such that G is isomorphic to neither a
Ki, nortoa K, ».

Example 4.1 For each integer 1 > 1,, let G, be a graph with
V(Gy) = {vi,va, V3, Uy, Up, U3, X1, X2, ..oy X }
and
E(G;) = {viu1, u1vs, vauz, usvy, voup, upv3 } U (U}:I{vl)qj,xjvz}),

as depicted in Fig. 1. Then {G,},. is an infinite family of connected graphs with
0(G) =2 and o/(G) =3. To see that each G, is not supereulerian, we assume
otherwise that G, has a spanning closed trail S. Then as S is spanning, we must have
{uvs, upv3, uzv3} C E(S). However, as dg,(v3) = 3, it implies that ds(v3) = 3,
contrary to the assumption that S is an eulerian graph.

Example 4.2 For any odd integers 1 >3 and k > 5(’; 1), there exists a 2-connected

nonsupereulerian graph G with 6(G) = ¢ and o' (G) > k.

Let {v,v2,v3,v4,vs5} denote the vertex set of a K, 3. Obtain a 2-connected graph
G by blowing up each of v, v,,v3 and v4 into a K,,, and by blowing up vs into a
Ky, where k' =k —2(t+1). Then each of these complete subgraphs of G
isomorphic to K,y; contains a perfect matching of size %, and Ky contains a
perfect matching of size K. It follows that o (G)>4-ZL+k' =k, and
0(G) = 0(Ki4+1) =t. Since G is contractible to a nonsupereulerian graph K3,
G must also be nonsupereulerian as well.

Acknowledgements The research of second author is supported in part by NNSFC (Nos. 11771039 and
11771443).
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