ORIGINAL PAPER

Supereulerian Graphs with Constraints on the Matching Number and Minimum Degree

Mansour J. Algefari¹ · Hong-Jian Lai² 🕞

Received: 20 January 2020/Revised: 20 January 2020/Accepted: 17 August 2020 © Springer Japan KK, part of Springer Nature 2020

Abstract

A graph is superculerian if it has a spanning culerian subgraph. We show that a connected simple graph G with $n = |V(G)| \ge 2$ and $\delta(G) \ge \alpha'(G)$ is superculerian if and only if $G \ne K_{1,n-1}$ if n is even or $G \ne K_{2,n-2}$ if n is odd. Consequently, every connected simple graph G with $\delta(G) \ge \alpha'(G)$ has a hamiltonian line graph.

Keywords Superculerian graph \cdot Hamiltonian line graph \cdot Matching \cdot Minimum degree \cdot Contraction

1 Introduction

We follow Bondy and Murty [5] for terms and notation, unless otherwise stated. Graphs considered in this paper are finite and loopless, but multiple edges are allowed. As in [5], $\kappa(G)$, $\kappa'(G)$, $\delta(G)$, $\alpha(G)$ and $\alpha'(G)$ denote the connectivity, the edge connectivity, the minimum degree, the stability number (also called the independence number), and the matching number of a graph *G*, respectively. Let *G* be a graph and let O(G) denote the set of odd degree vertices of *G*. If *G* is connected and $O(G) = \emptyset$, then *G* is an **Eulerian** graph. Thus a graph *G* is Eulerian if and only if *G* has a closed trail traversing every edge exactly once. A graph is **supereulerian** if it has a spanning eulerian subgraph. In particular, K_1 is both eulerian and supereulerian. The study of supereulerian graphs was initiated in [4]. Pulleyblank [15] showed that, even within planar graphs, it is NP-complete to determine if a

 Hong-Jian Lai hjlai@math.wvu.edu
 Mansour J. Algefari mans3333@gmail.com

¹ Department of Management and Humanities Sciences, Community College, Qassim University, Buraydah, Kingdom of Saudi Arabia

² Department of Mathematics, West Virginia University, Morgantown, WV 26506, USA

graph is supereulerian. For the literature on supereulerian graphs, see the survey of Catlin [7] and its updates in [8, 14].

If $X \subseteq E(G)$, the **contraction** G/X is the graph obtained from G by identifying the two ends of each edge in X and then deleting the resulting loops. If H is a subgraph of G, we write G/H for G/E(H). We define $G/\emptyset = G/K_1 = G$.

Chvátal and Erdös proved a classic result on hamiltonian graph, revealing an interesting property of using a relationship between connectivity and independence number of a graph to predict the hamiltonicity of the graph.

Theorem 1.1 (*Chvátal and Erdös*, [9]) If $\kappa(G) \ge \alpha(G)$, then G is hamiltonian.

There have been results following Theorem 1.1 and using similar relations involving edge-connectivity, stability number or matching number to predict supereulerianicity of a graph, as seen in [1, 10, 13, 16] and [17], among others. The theorem below presents some of these results.

Theorem 1.2 Each of the following holds.

- (i) ([13]) Let G be a graph with $\kappa'(G) \ge 2$ and $\alpha'(G) \le 2$. Then G is supereulerian if and only if G is not contractible to a $K_{2,t}$. for some odd integer $t \ge 3$.
- (ii) (Bang-Jensen and Maddaloni [2]) Let G be a graph on at least three vertices. If $\kappa'(G) \ge \alpha(G)$, then G is supereulerian.
- (iii) (An and Xiong, [1]) Let G be a graph with $\kappa'(G) \ge 2$ and $\alpha'(G) \le 2$. Then either G is supereulerian or G has a connected subgraph H such that for some odd integer $t \ge 3$, $G/H \cong K_{2,t}$.
- (iv) (An and Xiong, [1]) If $\kappa'(G) \ge 3$ and $\alpha'(G) \le 5$, then G is supereulerian if and only if G is not contractible to the Petersen graph.

A natural question is whether $\kappa'(G) \ge \alpha'(G)$ would warrant *G* to be supereulerian. The following useful theorem was first proved by Jaeger in [12] and extended by Catlin in [6].

Theorem 1.3 (*Jaeger* [12] and *Catlin* [6]) *Every* 4-edge-connected graph is supereulerian.

Thus by Theorem 1.3 and Theorem 1.2(i) and (iv), it is known that for a connected graph *G*, if $\kappa'(G) \ge \alpha'(G)$, then *G* is superculerian if and only if for any integer $t \ge 0$, *G* is not isomorphic to a $K_{2,2t+1}$.

These motivates the current research. As it is well known that in a graph *G*, we always have $\delta(G) \ge \kappa'(G) \ge \kappa(G)$, it is natural to consider whether we can use $\delta(G) \ge \alpha'(G)$ to replace $\kappa'(G) \ge \alpha'(G)$ in predicting superculerianicity of a graph. The main result of this paper is the following.

Theorem 1.4 Let G be a connected simple graph with $n = |V(G)| \ge 2$ and $\delta(G) \ge \alpha'(G)$. Then G is supereulerian if and only if $G \ne K_{1,n-1}$ if n is even or $G \ne K_{2,n-2}$ if n is odd.

Our result implies a new condition for hamiltonian line graphs. The **line graph** of a graph G, denoted by L(G), has E(G) as its vertex set, where two vertices in L(G) are adjacent if and only if the corresponding edges in G have at least one vertex in common. Harary and Nash-Williams showed that there is a close relationship between a graph and its line graph concerning Hamilton cycles.

Theorem 1.5 (*Harary and Nash-Williams*, [11]) Let G be a graph with $|E(G)| \ge 3$. Then L(G) is hamiltonian if and only if G has an eulerian subgraph H with $E(G - V(H)) = \emptyset$.

Using Theorem 1.5, we obtain the corollary below, as an immediate application of Theorem 1.4.

Corollary 1.1 Every connected simple graph G with $|E(G)| \ge 3$ and with $\delta(G) \ge \alpha'(G)$ has a hamiltonian line graph.

In the next section, we present some preliminaries and prove an associated result. These will be utilized in Sect. 3 to justify the main results. Sharpness of the main result will be discussed in the last section.

2 Preliminaries

Throughout the rest of this section, G always denotes a simple graph under discussion. For subsets $X, Y \subseteq V(G)$, define

$$(X, Y)_G = \{xy \in E(G) : x \in X, y \in Y\}.$$

When Y = V(G) - X, we define

$$\partial_G(X) = (X, V(G) - X)_G.$$

For a vertex $v \in V(G)$, $d_G(v) = |\partial_G(\{v\})|$ is the degree of v in G. When G is understood from the context, we often use d(v) for $d_G(v)$.

Let *M* be a matching in *G*. We use V(M) to denote the set V(G[M]). A path *P* in *G* is an *M*-augmenting path if the edges of *P* are alternately in *M* and in E(G) - M, and if both end vertices of *P* are not in V(M). We start with a fundamental theorem of Berge.

Theorem 2.1 (*Berge*, [3]) *A matching M in G is a maximum matching if and only if G does not have M-augmenting paths.*

Lemma 2.1 Let k > 0 be an integer and G be a graph with a matching M such that |M| = k. Suppose that V(G) - V(M) has a subset X with $|X| \ge 2$ such that for any $v \in X$, $d(v) \ge k$. If X has at least one vertex u such that $d(u) \ge k + 1$, then M is not a maximum matching of G.

Proof By contradiction, we assume that M is a maximum matching in G. By Theorem 2.1, G has no M-augmenting path. Let $u, v \in X$ be distinct vertices such that $d(u) \ge k + 1$. Since M is maximum, u and v are not adjacent in G, and any vertices adjacent to u or v must be in V(M). By the assumption that M is a maximum

matching and by Theorem 2.1, we have the following claim.

Claim 1. For each edge $e = xy \in M$, exactly one in $\{ux, vy\}$ can be in E(G), and exactly one in $\{uy, vx\}$ can be in E(G).

Claim 2 below now follows immediately from Claim 1.

Claim 2. For any edge $e = xy \in M$, if $ux, uy \in E(G)$, or if $ux, vx \in E(G)$, or if $vx, vy \in E(G)$, then $|(\{u, v\}, \{x, y\})_G| \le 2$.

By Claim 2, we conclude that $|\partial(u) \cup \partial(v)| \le 2|M|$. As $d(v) \ge k$ and $d(u) \ge k+1$, we are lead to a contradiction: $2k+1 = k + (k+1) \le d(v) + d(u) = |\partial(v) \cup \partial(u)| \le 2|M| = 2k$. This proves the lemma.

Corollary 2.1 Let G be a graph with $\alpha'(G) = k$. If $\kappa'(G) \ge \alpha'(G)$, then

- (i) $\kappa'(G) = \alpha'(G)$ when $|V(G)| \ge 2k + 2$, and
- (ii) $\kappa'(G) \le 2\alpha'(G)$ when $2k \le |V(G)| \le 2k + 1$.

Proof

- (i) By contradiction, we assume that $\kappa'(G) \ge k + 1$. Let *M* denote a maximum matching of *G*. Then $|V(G) V(M)| \ge 2k + 2 2k = 2$. Since $\kappa'(G) \ge k + 1$, for every vertex $u \in V(G) V(M)$, $d(u) \ge k + 1$. It follows by Lemma 2.1 that *M* is not a maximum matching of *G*, which is a contradiction.
- (ii) As $2k \le |V(G)| \le 2k+1$, for each vertex $v \in V(G)$, we have $2k \ge d(v) \ge \kappa'(G)$, and so $\kappa'(G) \le 2\alpha'(G)$.

Lemma 2.2 Let G be a graph with n = |V(G)| and $k = \alpha'(G)$. Let M be a maximum matching of G, and let X = V(G) - V(M). If $n \ge 2k + 2$ and $\delta(G) \ge \alpha'(G)$, then each of the following holds.

- (i) For every $x \in V(G) V(M)$, we have $d_G(x) = k$.
- (ii) If either $n \ge 2k + 3$ or both n = 2k + 2 and G is connected, then for every $e = ab \in M$ and for every $x \in X$, we have the following conclusions.

(ii-1) There exists exactly one $v(e) \in \{a, b\}$ such that v(e)x is in E(G), and the vertex $u(e) \in \{a, b\} - \{v(e)\}$ is not adjacent to any vertex in X.

(ii-2) The set $\{u(e) : e \in M\}$ as specified in (ii-1) is an independent set in G such that d(u(e)) = k for any $e \in M$ and such that for any $e, e' \in M$, $u(e)v(e'), v(e)u(e') \in E(G)$.

Proof Let N(X) denote the set of vertices in G that is adjacent to a vertex in X. Since M is a maximum matching, by Theorem 2.1

$$G$$
 does not have an M -augmenting path. (1)

As $n \ge 2k + 2$ and |M| = k, we have $|X| \ge 2$. Since *M* is a maximum matching, we have $N(X) \subseteq V(M)$, and it follows by $\delta(G) \ge k$ and by Lemma 2.1 that Lemma 2.2 (i) must hold. It remains to prove Lemma 2.2 (ii).

Case 1. $n = |V(G)| \ge 2k + 3$. Let m = |X|. Then $m \ge 3$. By Lemma 2.2 (i),

$$|(X, V(M))_G| = mk.$$
⁽²⁾

It follows from (1) that

for any $e \in M$, the vertices of e are incident with at most m edges in $(X, V(M))_G$. (3)

Let $e = ab \in M$. If $a, b \in N(X)$, then by (1), there must be a unique $x \in X$ such that x is adjacent to both a and b; and for any $x' \in X - \{x\}, x'$ is adjacent to neither a nor b. By Lemma 2.2 (i), x is adjacent to k vertices in V(M). As $|(\{x\}, \{a, b\})_G| = 2$, it follows by (2) and $m \ge 3$ that

$$|(X, V(M) - \{a, b\})_G| = mk - 2 \ge mk - m + 1 = m(k - 1) + 1$$

If k > 1, then there must be an edge $f \in M - \{e\}$ such that the vertices of f are incident with at least m + 1 edges in $(X, V(M))_G$, contrary to (3). Hence in this case we must have k = 1 and $M = \{e\}$. As $|X| \ge 3$, it follows from (2) with $m \ge 3$ that G must have an M-augmenting path, contrary to (1). Hence for any $e = ab \in M$, exactly one of a and b is adjacent to vertices in X.

Thus for each $e \in M$, let v(e) denote the unique vertex of e that is adjacent to vertices in X and u(e) the other vertex of e which is not adjacent to any vertex in X. Then as |X| = m, $|(v(e), X)_G| \le m$. It follows from (2) that

$$km \ge \sum_{e \in M} |(v(e), X)_G| = |(V(M), X)_G| = mk.$$

This implies that for each $x \in X$ and for each $e \in M$, both v(e)x is in E(G). This proves (ii-1) for Case 1.

Let $Y = \{u(e) : e \in M\}$ and we shall show that *Y* is an independent set. In fact, if for some $e_1, e_2 \in M$, $u(e_1)u(e_2) \in E(G)$, then for any distinct $x_1, x_2 \in X$, $\{x_1v(e_1), e_1, u(e_1)u(e_2), e_2, x_2v(e_2)\}$ induces an *M*-augmenting path, contrary to (1). Thus each $u(e) \in Y$ can only be adjacent to vertices in $\{v(e) : e \in M\}$. As $|\{v(e) : e \in M\}| = k$ and as $\delta(G) \ge k$, we conclude that for each $e \in M$, d(u(e)) = k, and for any $e, e' \in M$, $u(e)v(e'), v(e)u(e') \in E(G)$. This proves (ii-2) for Case 1.

Case 2. G is connected and |V(G)| = 2k + 2.

Then $X = \{w, z\}$. Let $M = \{e_1, \dots, e_k\}$. Let $M_w \subseteq M$ denote the edges in M each of which has a vertex adjacent to w. We define M_z similarly. By the assumption of Lemma 2.2, we have $\delta(G) \ge k$, and so $|M_w| \ge \frac{k}{2}$ and $|M_z| \ge \frac{k}{2}$.

Subcase 1. $|M_w| = \frac{k}{2}$ or $|M_z| = \frac{k}{2}$.

Note that in this case, k must be even. We assume, without loss of generality, that $M_w = \{e_1, \dots, e_{\frac{k}{2}}\}$. By (1), we must have $M_z = \{e_{\frac{k}{2}+1}, \dots, e_k\}$. Again by (1), for each $x \in V(M_w)$ and $y \in V(M_z)$, we conclude that $xy \notin E(G)$. Thus

$$(V(M_w) \cup \{w\}, V(M_z) \cup \{z\})_G = \emptyset,$$

contrary to the assumption that G is connected. This shows that Subcase 1 cannot occur.

Subcase 2. $|M_w| > \frac{k}{2}$ and $|M_z| > \frac{k}{2}$.

Therefore, $M_w \cap M_z \neq \emptyset$. By (1), if an edge $e \in M$ whose vertices are adjacent to both *w* and *z*, then exactly one vertex of *e* can be adjacent to both *w* and *z*. Let $M' = M_w \cap M_z = \{e'_i = x_i y_i, (i = 1, ..., d; 1 \le d \le k)\} \subseteq M$. Without loss of generality, we assume that each e'_i has a unique vertex x_i with $x_i w, x_i z \in E(G)$. Let $M'' = M - M' = \{e''_i = r_j s_j, (j = 1, ..., k - d)\}$.

Claim 3. Each of the following holds.

- (i) For each y_i , y_iw , $y_iz \notin E(G)$.
- (ii) The set $\{y_1, y_2, \dots, y_d\}$ is an independent set.
- (iii) If Lemma 2.2 (ii-1) or (ii-2) does not hold, then $d \le k 1$.
- (iv) For each $e = x_i y_i \in M'$, $|(\{x_i, y_i\}, \{w, z\})_G| = 2$.
- (v) For each j with $1 \le j \le k d$, there exists exactly one vertex in $\{w, z\}$ which is adjacent to both r_j and s_j .
- (vi) For any $x_i y_i \in M'$ and for any $r_i s_j \in M''$, we have $y_i r_j, y_i s_j \notin E(G)$.

In fact, Claim 3 (i) and (ii) follow directly from (1), and Claim 3(iv) follows from Claim 3(i). For (iii), we assume that Lemma 2.2 (ii-1) or (ii-2) does not hold. and d = k. Then M = M' and each x_i is adjacent to both w and z. By Claim 3(i), for each $e_i = x_i y_i \in M$, we have $y_i w, y_i z \notin E(G)$. Hence Lemma 2.2(ii-1) must hold. Also by Claim 3 (i) and (ii), each y_i can only be adjacent to $\{x_1, x_2, \dots, x_d\}$. By the assumption of Lemma 2.2, we have $\delta(G) \ge k$ and so, for any i, we must have $d(y_i) = k$, and for any $1 \le i, i' \le k$, we must also have $x_i y_{i'} \in E(G)$. Hence Lemma 2.2(ii-2) holds as well. This contradiction implies Claim 3 (ii).

We argue by contradiction to prove Claim 3(v). By the definition of M'', for each j with $1 \le j \le k - d$, there exists at most one vertex in $\{w, z\}$ which is adjacent to both r_j and s_j . By contradiction, we assume that $r_1s_1 \in M''$ with $|(\{w, z\}, \{r_1, s_1\})_G| \le 1$. For any other $r_js_j \in M''$ with $j \ge 2$, we have $|(\{w, z\}, \{r_j, s_j\})_G| \le 2$. It follows from Lemma 2.2(i) and Claim 3(iv) that

$$2k = |(\{w, z\}, V(M))_G| = |(\{w, z\}, V(M'))_G| + |(\{w, z\}, \{r_1, s_1\})_G| + \sum_{j=2}^{k-d} |(\{w, z\}, \{r_j, s_j\})_G| \le 2d + 1 + 2(k - d - 1) = 2k - 1 < 2k.$$

This contradiction justifies Claim 3(v).

We again argue by contradiction to prove Claim 3(vi). Assume that $y_i r_j \in E(G)$. By Claim 3(v), we may assume that $r_j s_j \in M_w$, and so $\{ws_j, r_j s_j, r_j y_i, x_i y_i, zx_i\}$ will induce an *M*-augmenting path, contrary to (1). When we have $y_i s_j \in E(G)$, the same argument would also lead the a contradiction. This justifies Claim 3(vi), and completes the proof for Claim 3. We argue by contradiction to prove Lemma 2.2(ii). As $M' = M_w \cap M_z \neq \emptyset$, we have $d \ge 1$ and so y_1 exists. By Claim 3(i), (ii) and (vi), the neighbors of y_1 can only be among $\{x_1, x_2, \dots, x_d\}$. Hence $d(y_1) \le |\{x_1, x_2, \dots, x_d\}| = d$. As $\delta(G) \ge k$ and by Claim 3(iii), we must have $k \le d(y_1) \le d \le (k-1)$. This contradiction implies that we must have d = k, and so by Claim 3(iii), Lemma 2.2(ii) must hold in Case 2. \Box

Theorem 2.2 Let G be a simple graph with $n = |V(G)| \ge 2$ and $k = \alpha'(G)$ such that G is connected when n = 2k + 2. If $\delta(G) \ge k$, then $\kappa'(G) \ge k$. Furthermore, if, in addition, $n \ge 2k + 2$, then $\kappa'(G) = k$.

Proof Let M be a matching of maximum size of G. Assume first that $2k \le n \le 2k + 1$.

Arbitrarily pick a nonempty proper subset $X \subset V(G)$, and let Y = V(G) - X. As $|X| + |Y| = n \le 2k + 1$, we have either $1 \le |X| \le k$ or $1 \le |Y| \le k$. By symmetry, we assume that $1 \le |X| = m \le k$. Since $\kappa'(G) \ge k$, for each $x \in X$, we have $|(\{x\}, Y)_G| \ge k - (m - 1)$. Thus $|\partial_G(X)| \ge m(k - (m - 1)) = -m^2 + m(k + 1)$. As this is a quadratic function with $1 \le m \le k$, it follows that $|\partial_G(X)| \ge -m^2 + m(k + 1) \ge k$. Thus $\kappa'(G) \ge k$, and so the theorem holds if $2k \le n \le 2k + 1$.

Hence we assume that $n \ge 2k + 2$. By Corollary 2.1, it suffices to show that $\kappa'(G) \ge k$. Let X be an arbitrary nonempty proper vertex subset with satisfying $\emptyset \ne X \subset V(G)$. We will prove $\kappa'(G) \ge k$ by showing that $|\partial_G(X)| \ge k$.

Let Z = V(G) - V(M). By Lemma 2.2 (ii-1), for any $e = uv \in M$, there exists a unique $v(e) \in \{u, v\}$ such that for any $z \in Z$, $v(e)z \in E(G)$. Let $M_v = \{v(e) : e \in M\}$, and $M_u = V(M) - M_v$. Let $m \ge 2$ be the integer satisfying n = 2k + m. By Lemma 2.2, for any $v \in M_v$, and any $u \in Z \cup M_u$, we have $vu \in E(G)$.

Subcase 2.1. $(M_u \cup Z) \subseteq X$ (or $(M_u \cup Z) \cap X = \emptyset$). We assume that $M_u \cup Z \subseteq X$ as by symmetry, the proof for $(M_u \cup Z) \cap X = \emptyset$ is similar. As $V(G) = M_u \cup M_v \cup Z$, there exists a $y \in M_v - X \subseteq V(G) - X$. By Lemma 2.2, $|\partial_G(X)| \ge |(M_u \cup Z, \{y\})_G| = |Z| + |M_u| = k + m > k$.

Subcase 2.2. $M_v \subseteq X$ (or $M_v \subseteq V(G) - X$). We assume that $M_v \subseteq X$, as by symmetry, the proof for $M_v \subseteq V(G) - X$ is similar. Then $M_u \cup Z - X \neq \emptyset$. Pick $y \in M_u \cup Z - X$. Then by Lemma 2.2, $|\partial_G(X)| \ge |(M_v, \{y\})_G| = |M_v| = k$.

Subcase 2.3. Both $M_u \cup Z - X \neq \emptyset$ and $X \cap (M_u \cup Z) \neq \emptyset$, and both $M_v - X \neq \emptyset$ and $X \cap M_v \neq \emptyset$. In this subcase, we pick an $x \in X \cap (M_u \cup Z)$ and a $y \in (M_u \cup Z) - X$. It follows by Lemma 2.2 that $|\partial_G(X)| \ge |(\{x\}, M_v - X)_G| +$ $|(M_v \cap X, \{y\})_G| = |M_v - X| + |M_v \cap X| = |M_v| = k$. It follows that we always have $|\partial_G(X)| \ge k$, and so $\kappa'(G) \ge k$. By Corollary 2.1, $\kappa'(G) = k$. This completes the proof of the theorem.

3 The Main Result

Our main result, Theorem 1.4, will be proved in this section. Theorem 1.3 in Sect. 1 will be utilized here.

Suppose that G is a connected simple graph with $|V(G)| \ge 2$ and $\alpha'(G) = 1$. For each vertex $w \in V(G)$, let $E_G(w)$ be the set of edges in G incident with w. Let $e = uv \in E(G)$ be such that $\{e\}$ is a maximum matching of G. We assume that $d_G(u) \ge d_G(v)$. Since $\{e\}$ is a maximum matching of G, we have $E_G(u) = E(G)$ and $E_G(v) = \{e\}$, unless $G = K_3$. We state this observation as the lemma below.

Lemma 3.1 Let G be a connected simple graph with $n = |V(G)| \ge 2$ and $\alpha'(G) = 1$. Then either $G = K_3$ or $G = K_{1,n-1}$.

We will prove a slightly stronger version of Theorem 1.4 in this section, as stated below.

Theorem 3.1 Let G be a simple graph with $n = |V(G)| \ge 2$ and $k = \alpha'(G)$ such that G is connected when n = 2k + 2. Suppose that $\delta(G) \ge k$. Then G is supereulerian if and only if $G \ne K_{1,n-1}$ if n is even or $G \ne K_{2,n-2}$ if n is odd.

Proof It is routine to show that for any integer n > 0, the graphs $K_{1,n-1}$ and $K_{2,n-2}$ (when *n* is odd) are not superculerian. It suffices to show the sufficiency. By Theorem (2.2), we have $\kappa'(G) \ge k$.

If k = 1, then Theorem 3.1 follows from Lemma 3.1. Hence we assume that $k \ge 2$. If $k \ge 4$, then by Theorem 1.3, *G* must be superculerian. If k = 3, then by Theorem 1.2(iv), *G* must also be superculerian as the Petersen graph has a matching of size 5. Hence we may assume that $\kappa'(G) \ge \alpha'(G) = 2$.

By Theorem 1.2(iii), *G* is superculerian if and only if *G* does not have a connected subgraph *H* and an odd integer $t \ge 3$ such that $G/H = K_{2,t}$. If $H = K_1$, then $G = K_{2,t}$ with n - 2 = t being odd. Hence the sufficiency of Theorem 3.1 holds. Therefore we assume that *H* is a connected nontrivial simple graph. Let v_H be the vertex in *G*/*H* onto which *H* is contracted, u, u' be the two vertices of degree *t* in this $K_{2,t}$ and let v_1, v_2, \dots, v_t be the vertices of degree 2 in this $K_{2,t}$. Let $e_i = uv_i$ and $e'_i = u'v_i$, for each *i* with $1 \le i \le t$. Note that $\{e_i, e'_i : 1 \le i \le t\} \subseteq E(G)$, by the definition of contraction.

If v_H has degree 2 in G/H, then we may assume that $v_H = v_1$. Since H is a connected nontrivial simple graph, E(H) contains an edge e_H . It follows that $\{e_H, e_2, e'_3\}$ is a matching of G, contrary to the assumption that $\alpha'(G) = 2$. Hence v_H has degree t in G/H, and so we may assume that $v_H = u$.

Denote $e_i = u_i v_i$ with $u_i \in V(H)$, for $1 \le i \le t$. If for some $1 \le i' < i'' \le t$, we have $u_{i'} \ne u_{i''}$, then as $t \ge 3$, there exist an $i''' \notin \{i', i''\}$ with $1 \le i''' \le t$. Thus $\{e_{i'}, e_{i''}, e_{i'''}\}$ is a matching of size 3 in *G*. Hence we may assume that $u_1 = u_2 = ... = u_t \in V(H)$. As *H* is nontrivial, u_1 is a cut vertex of *G*, and so $\kappa'(H) \ge \kappa'(G) \ge 2$. Since *H* is simple with $\kappa'(H) \ge 2$, *H* contains an edge e'_H not incident with u_1 . It follows that $\{e'_H, e_1, e'_2\}$ is a matching of size 3 in *G*, contrary to that $\alpha'(G) = 2$. These contradictions force that $H = K_1$ and so $G = K_{1,n-2}$. This completes the proof of Theorem 3.1.

Fig. 1 The graph G_t

4 Sharpness Discussion

Theorem 1.4 is sharp in the sense that there exist infinitely many connected nonsupereulerian graphs *G* with $\delta(G) < \alpha'(G)$, such that *G* is isomorphic to neither a $K_{1,n}$ nor to a $K_{2,n-2}$.

Example 4.1 For each integer $t \ge 1$, let G_t be a graph with

$$V(G_t) = \{v_1, v_2, v_3, u_1, u_2, u_3, x_1, x_2, \dots, x_t\}$$

and

$$E(G_t) = \{v_1u_1, u_1v_3, v_3u_3, u_3v_1, v_2u_2, u_2v_3\} \cup (\cup_{i=1}^t \{v_1x_j, x_jv_2\}),\$$

as depicted in Fig. 1. Then $\{G_t\}_{t\geq 1}$ is an infinite family of connected graphs with $\delta(G) = 2$ and $\alpha'(G) = 3$. To see that each G_t is not supereulerian, we assume otherwise that G_t has a spanning closed trail *S*. Then as *S* is spanning, we must have $\{u_1v_3, u_2v_3, u_3v_3\} \subset E(S)$. However, as $d_{G_t}(v_3) = 3$, it implies that $d_S(v_3) = 3$, contrary to the assumption that *S* is an eulerian graph.

Example 4.2 For any odd integers $t \ge 3$ and $k \ge \frac{5(t+1)}{2}$, there exists a 2-connected nonsuperculerian graph G with $\delta(G) = t$ and $\alpha'(G) \ge k$.

Let $\{v_1, v_2, v_3, v_4, v_5\}$ denote the vertex set of a $K_{2,3}$. Obtain a 2-connected graph G by blowing up each of v_1, v_2, v_3 and v_4 into a K_{t+1} , and by blowing up v_5 into a $K_{2k'}$, where k' = k - 2(t + 1). Then each of these complete subgraphs of G isomorphic to K_{t+1} contains a perfect matching of size $\frac{t+1}{2}$, and $K_{2k'}$ contains a perfect matching of size k'. It follows that $\alpha'(G) \ge 4 \cdot \frac{t+1}{2} + k' = k$, and $\delta(G) = \delta(K_{t+1}) = t$. Since G is contractible to a nonsupereulerian graph $K_{2,3}$, G must also be nonsupereulerian as well.

Acknowledgements The research of second author is supported in part by NNSFC (Nos. 11771039 and 11771443).

References

- 1. An, M., Xiong, L.: Supereulerian graphs, collapsible graphs and matchings, Acta Math. Appl. Sin. **39**, 871–877 (2016). (Chinese)
- 2. Bang-Jensen, J., Maddaloni, A.: Sufficient conditions for a digraph to be supereulerian. J. Graph Theory **79**(1), 8–20 (2015)
- 3. Berge, C.: Two theorems in graph theory. Proc. Nat. Acad. Sci. USA 43, 842-844 (1957)
- 4. Boesch, F.T., Suffel, C., Tindell, R.: The spanning subgraphs of eulerian graphs. J. Graph Theory 1, 79–84 (1977)
- 5. Bondy, J.A., Murty, U.S.R.: Graph Theory. Springer, New York (2008)
- 6. Catlin, P.A.: Reduction method to find spanning Eulerian subgraphs. J. Graph Theory **12**, 29–44 (1988)
- 7. Catlin, P.A.: Supereulerian graphs: a survey. J.Graph Theory 16, 177-196 (1992)
- Chen, Z.H., Lai, H.-J.: Reduction Techniques for Super-Eulerian Graphs and Related Topics-A Survey, Combinatorics and Graph Theory, vol. 95, pp. 53–69. World Science Publishing, River Edge (1995)
- 9. Chvátal, V., Erdös, P.: A note on Hamiltonian circuits. Discret. Math. 2, 111-113 (1972)
- Han, L., Lai, H.-J., Xiong, L., Yan, H.: The Chvátal-Erdös condition for supereulerian graphs and the Hamiltonian index. Discret. Math 310, 2082–2090 (2010)
- Harary, F., Nash-Williams, CStJA: On eulerian and hamiltonian graphs and line graphs. Can. Math. Bull. 8, 701–709 (1965)
- 12. Jaeger, F.: A note on subeulerian graphs. J. Graph Theory 3, 91-93 (1979)
- 13. Lai, H.-J., Yan, H.Y.: Supereulerian graphs and matchings. Appl. Math. Lett. 24, 1867–1869 (2011)
- 14. Lai, H.-J., Shao, Y., Yan, H.: An Update on Supereulerian Graphs. WSEAS Trans. Math. 12, 926–940 (2013)
- 15. Pulleyblank, W.R.: A note on graphs spanned by Eulerian graphs. J. Graph Theory 3, 309–310 (1979)
- Tian, R., Xiong, L.: The Chvátal-Erdös condition for a graph to have a spanning trail. Graphs Comb. 31, 1739–1754 (2015)
- 17. Xu, J., Li, P., Miao, Z., Wang, K., Lai, H.-J.: Supereulerian graphs with small matching number and 2-connected hamiltonian claw-free graphs. Int. J. Comput. Math. **91**, 1662–1672 (2014)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.