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a b s t r a c t

For a graph G, an integer s ≥ 0 and distinct vertices u, v ∈ V (G), an (s; u, v)-path-
system of G is a subgraph H consisting of s internally disjoint (u, v)-paths. The spanning
connectivity κ∗(G) is the largest integer s such that for any k with 0 ≤ k ≤ s and for any
u, v ∈ V (G) with u ̸= v, G has a spanning (k; u, v)-path-system. It is known that κ∗(G) ≤

κ(G), and determining if κ∗(G) > 0 is an NP-complete problem. A graph G is maximally
spanning connected if κ∗(G) = κ(G). Let msc(G) and sk(G) be the smallest integers m and
m′ such that Lm(G) is maximally spanning connected and κ∗(Lm

′

(G)) ≥ k, respectively. We
show that every locally-connected line graph with connectivity at least 3 is maximally
spanning connected, and that the spanning connectivity of a locally-connected line graph
can be polynomially determined. As applications, we also determine best possible upper
bounds for msc(G) and sk(G), and characterize the extremal graphs reaching the upper
bounds. Consequently, former results in Asratian (1996), Sheng et al. (1999) and Xiong
et al. (2014) are extended.

© 2021 Elsevier B.V. All rights reserved.

1. The problem

The research problem of this paper focuses on the spanning connectivity of finite graphs. As loops play no roles in
ur connectivity studies, we assume that graphs under considerations are loopless but with possible multiple edges. The
efinitions for notation and terms not specifically defined in this paper will follow those in Bondy and Murty [4]. Therefore
e shall use δ(G), κ(G) and κ ′(G) to denote the minimum degree, the connectivity and the edge connectivity of a graph
, respectively. If x, y ∈ V (G) are vertices of a graph G, then a path (or a trail, respectively) of G with termini x and y is
alled an (x, y)-path (or an (x, y)-trail, respectively). For an integer s ≥ 0 and for u, v ∈ V (G) with u ̸= v, a subgraph H
f G consisting of s internally disjoint (u, v)-paths (or edge-disjoint (u, v)-trails, respectively) is called an (s; u, v)-path-
ystem (or an (s; u, v)-trail-system, respectively) of G, and if V (H) = V (G), then H is a spanning (s; u, v)-path-system (or
spanning (s; u, v)-trail-system, respectively).
By the well-known Menger’s Theorems (Theorems 9.1 and 9.7 of [4]), we define a graph G to be k-connected (or

-edge-connected, respectively) if for any pair of distinct vertices u and v, G contains a (k; u, v)-path-system (or a (k; u, v)-
rail-system, respectively). Therefore, the connectivity κ(G) of a graph G (or the edge-connectivity κ ′(G) of G, respectively)
quals the maximum number k such that for every pair of distinct vertices u and v, G has a (k; u, v)-path-system (or a
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k; u, v)-trail-system, respectively). In [21], an (s; u, v)-path-system and a spanning (s; u, v)-path-system are also called a
-container and a k∗-container, respectively. The spanning connectivity κ∗(G) of a graph G is the largest integer s such
hat for any integer k with 0 ≤ k ≤ s and for any u, v ∈ V (G) with u ̸= v, G has a spanning (k; u, v)-path-system. A graph
is s-spanning connected if κ∗(G) ≥ s.
The concept of spanning connectivity of a network was initially formulated by Hsu in [20] to evaluate the performance

f communication of interconnected networks. Many studies have investigated spanning connectivity and its applications
n various types of communication effectiveness and fault-tolerant spanning laceability in interconnection networks as
ell as in the diffusion dynamics of multilayer networks. As of today, there have been lots of studies on spanning
onnectivity and an edge counterpart of it, as seen in [1,7,10,18,20,27–30,39–41], among others. As shown in [21], many
ormer studies on spanning connectivity have been focused on results involving degree conditions to assure a simple graph
o have spanning connectivity at least a given integer s; as well as investigations of spanning connectivity of certain family
f graphs such as Harary graphs, hypercubes and hypercube-like graphs.
By definition, a graph G is hamiltonian if and only if for any distinct vertices u, v ∈ V (G), G has a spanning (2; u, v)-

ath-system. Thus as remarked in [21], spanning connectivity of graphs can be viewed as a hybrid concept of Hamiltonicity
nd connectivity. Following [4], a graph G is Hamilton-connected if for any u, v ∈ V (G) with u ̸= v, G has a spanning
u, v)-path P . Thus κ∗(G) ≥ 1 implies that G is Hamilton-connected. It is well known that every Hamilton-connected graph
ith at least 4 vertices must be 3-connected. Hence the following fact (1) is observed.

If G is a graph with |V (G)| ≥ 4 and κ∗(G) > 0, then κ(G) ≥ 3. (1)

s every Hamilton-connected graph must also be hamiltonian, we conclude that a graph G is Hamilton-connected if and
nly if κ∗(G) > 0. Thus determining if κ∗(G) > 0 in general is an NP-complete problem. One of the motivations of this
esearch is to seek nontrivial common families of graphs in which spanning connectivity can be polynomially determined.

As it is known that the connectivity of a graph can be polynomially determined, (see, for example, [13,14]), the problem
hether high connectivity could imply positive spanning connectivity was considered. While the complete bipartite
raphs indicate that in general, high connectivity of a graph G does not warrant κ∗(G) > 0, researchers have been
nvestigating graph families in which high connectivity of a graph G in these families would imply that κ∗(G) > 0.
homassen in [38] first conjectured that every 4-connected line graph is hamiltonian. This most fascinating conjecture
as attracted many researchers.
Let L(G) denote the line graph of a graph G, which is a simple graph with vertex set E(G), and with edge set E(L(G)) =

e′e′′
: e′, e′′

∈ E(G) and e′, e′′ are adjacent in G}. A graph that does not have an induced subgraph isomorphic to K1,3 is
claw-free graph. Beineke [3] and Robertson (Page 74 of [19]) showed that line graphs are claw-free graphs. By several

ngenious closure concepts developed by Ryjáček [33] and by Ryjáček and Vrána [34], Thomassen’s above-mentioned
onjecture is shown to be equivalent to each of the following.

onjecture 1.1. Let G be a graph and let Γ be a claw-free graph.
i) (Thomassen [38] and, Kučzel and Xiong [23]) Every 4-connected line graph has spanning connectivity at least 2.
ii) (Matthews and Sumner [31], and Ryjáček and Vrána [34]) Every 4-connected claw-free graph has spanning connectivity at
east 2.

There have been intensive studies towards Conjecture 1.1, as shown in the surveys [12,16,17]. By Menger’s Theo-
em [32], see also Theorem 9.1 of [4], for any graph G, we always have κ(G) ≥ κ∗(G). Thus graphs G with κ(G) = κ∗(G)
re of particular interests. In view of (1), we define a connected graph G to be maximally spanning connected if both
(G) ≥ 3 and κ(G) = κ∗(G). A similar concept of super spanning connected graph is formerly defined in [21], which
mplies that K2 is super spanning connected. By the definition in this paper, K2 is not maximally spanning connected. As
xamples, complete graphs of order at least 4 are maximally spanning connected, but complete bipartite graphs of any
rders are not maximally spanning connected.
As of today, little is known on maximally spanning connected graph families other than the complete graphs and a

ew others. This motivates the current study. For a vertex v ∈ V (G), define NG(v) = {u ∈ V (G) : uv ∈ E(G)}. The vertex
is locally connected if the induced subgraph G[NG(v)] is connected. A graph G is locally connected if every vertex v
f G is locally connected. Asratian [2] and Y. Sheng, F. Tian and B. Wei [37] studied connectivity conditions for a locally
onnected claw-free graph G to have spanning connectivity at least 2. As line graphs are claw-free, their result is also
alid for line graphs. A class of maximally spanning connected line graphs has also been studied in [22] and [7].

heorem 1.2. Let G be a connected graph.
i) (Asratian [2] and Y. Sheng, F. Tian and B. Wei [37]) If G is an locally connected claw-free graph with κ(G) ≥ 3, then
∗(G) ≥ 2.
ii) (Huang and Hsu [22], and Chen et al. [7]) Let k ≥ 3 be an integer. If a graph G has k-edge-disjoint spanning trees, then
(G) is maximally spanning connected.

Theorem 1.3(i), one of our main results, has identified a new family of graphs whose line graphs are maximally span-
ing connected, which extends Theorem 1.2(i). As connectivity of a graph can be polynomially determined, Theorem 1.3(ii)
ollows from Theorem 1.3(i).
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heorem 1.3. Each of the following holds.
i) Every 3-connected, locally connected line graph L(G) is maximally spanning connected.
ii) The spanning connectivity of a locally connected line graph can be polynomially determined.

For an integer m > 0, define L0(G) = G, and the iterated line graph Lm(G) = L(Lm−1(G)). A path P of G is a divalent
ath of G if every internal vertex of P has degree 2 in G. Following [24,26,41,42], define

ℓ(G) = max{m : G has a length m divalent path that is not in a K3}. (2)

or discussional convenience, we in this paper denote G to be the family of all connected nontrivial graphs that are not
somorphic to a path, a cycle or a K1,3. To study iterated line graphs, we only consider graphs in G. The iterated line graph
ndex problem is also an intensively studied topic in graph theory. Chartrand and Wall in [6] initiated the study of the
mallest integer k ≥ 0, called the hamiltonian index h(G) of a graph G, such that the iterated line graph Lk(G) becomes
amiltonian. Other hamiltonian like indices were defined and studied by Clark and Wormald in [11]. More generally, we
ave the following definition.

efinition 1.4 ([25]). Let P denote a graphical property and G be a connected graph G ∈ G. Then P(G), the P-index of G,
s defined by

P(G) =

{
min{k : Lk(G) has property P} if for some integer j > 0, Lj(G) has property P ,
∞ otherwise.

lark and Wormald in [11] studied the existence of the indices for the properties of being edge-hamiltonian, pancyclic,
ertex-pancyclic, edge-pancyclic, hamiltonian-connected, respectively. Additional studies of these indices can also be
ound in [25]. In [35], Ryjáček, Woeginger and Xiong indicated that determining the value of h(G) is a difficult problem.
he index problem for graphical properties has been intensively studied, as seen in [6,8,9,11,15,24–26,35,36,41,42], among
thers.
In this research, we consider some indices related to spanning connectivity of graphs. For an integer k ≥ 2, and a graph
∈ G, let sk(G) be the smallest integer m such that κ∗(Lm(G)) ≥ k. When k is small, upper bounds for sk(G) have been

nvestigated.

heorem 1.5. Let G ∈ G be a connected graph with maximum degree ∆(G).
i) (Chen et al. Theorem 22 of [9]) s2(G) ≤ |V (G)| − ∆(G) + 1.
ii) (Xiong et al. Theorem 1.3 of [41]) s3(G) ≤ ℓ(G) + 6.

The results in Theorem 1.5 also motivate our current study. A divalent path P of G is a bridge divalent path if every
dge of P is a cut edge of G; and is a divalent (s, t)-path if the two end vertices of P are of degree s and t , respectively.
he next main result studies best possible bounds for sk(G). When k = 2, Theorem 1.6(iv) improves Theorem 1.5(i) and
hen k = 3, Theorem 1.6(iii) sharpens Theorem 1.5(ii).

heorem 1.6. Let G ∈ G be a graph and let k ≥ 3 be an integer.
i) s2(G) ≤ ℓ(G) + 2.
ii) sk(G) ≤ ℓ(G)+ k− 1. Furthermore, sk(G) = ℓ(G)+ k− 1 only if for some integer t ≥ 3, G has a bridge divalent (3, t)-path
f length ℓ(G).
iii) s3(G) = ℓ(G) + 2 if and only if for some integer t ≥ 3, G has a bridge divalent (3, t)-path of length ℓ(G).
iv) sk(G) ≤ |V (G)| − ∆(G) + k − 2.

For a graph G ∈ G, define msc(G) to be the smallest integer m such that Lm(G) is maximally spanning connected. A best
ossible upper bound for msc(G) is also obtained.

heorem 1.7. Let G ∈ G be a graph.
i) msc(G) ≤ ℓ(G) + 2, and for any integer m ≥ ℓ(G) + 2, κ(Lm(G)) = κ∗(Lm(G)). Moreover, msc(G) = ℓ(G) + 2 if and only if
or some integer t ≥ 3, G has a bridge divalent (3, t)-path of length ℓ(G).
ii) msc(G) ≤ |V (G)| − ∆(G) + 2, and for any integer m ≥ |V (G)| − ∆(G) + 2, κ(Lm(G)) = κ∗(Lm(G)).

The tools to assist our arguments to prove the main results are summarized and developed in the next section. In
ection 3, we will prove the main results. Related open problems will be discussed in the last section.

. Mechanisms

To facilitate our proofs of the main results, a number of tools will be displayed and developed in this section. Given
graph G and an integer i ≥ 0, let Di(G) be the set of all vertices of degree i in G and O(G) = ∪j≥0D2j+1(G) be the set of
ll odd degree vertices in G. By an n-cycle we mean a cycle C with |V (C)| = n; and C is a short cycle if 2 ≤ |E(C)| ≤ 3.
xtending the definition in [5], a graph G is triangular if every edge e ∈ E(G) lies in a short cycle Ce of G.
By definition, a spanning (2; u, v)-path system is a Hamilton cycle and a spanning (2; u, v)-trail system is a spanning

ulerian subgraph in a graph G. Harary and Nash-Williams proved a well-known relationship between Hamilton cycles
n L(G) and dominating eulerian subgraphs in G.
104
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heorem 2.1 (Harary and Nash-Williams [19]). Let G a graph with |E(G)| ≥ 3. The following are equivalent.
(i) L(G) has a Hamilton cycle.
(ii) G has an eulerian subgraph H such that E(G − V (H)) = ∅.

Chen et al. in [7] extended Theorem 2.1 by displaying a relationship between spanning connectivity in L(G) and certain
type of dominating trail systems in G. This will be a key tool in our arguments. As in [4], a trail in a graph G can be
xpressed as a sequence

T = v0, e1, v1, e2, . . . , ek, vk (3)

such that for each i with 1 ≤ i ≤ k, the edge ei is incident with the two vertices vi−1 and vi, and such that if 1 ≤ i < j ≤ k,
hen ei ̸= ej. A trial T (with the notation in (3)) is open (or closed, respectively) if v0 ̸= vk (or v0 = vk, respectively). We
define the internal vertices of the trail in (3) to be the set {v1, v2, . . . , vk−1}, if T is open, and to be V (T ) if T is closed. As
in an open trail, vertices may occur more than once, it is also possible for the end vertices v0 or vk in (3) to be internal. A
trail T of G is dominating if every edge of G is incident with an internal vertex of T , and is spanning if it is dominating
with V (T ) = V (G).

Let e′, e′′
∈ E(G) be two edges of G. A trail T of G is an (e′, e′′)-trail of G if the two end edges of T are e′ and e′′,

respectively. As an example, the trail in (3) is an (e1, ek)-trail. Two (e′, e′′)-trails T1 and T2 are internally edge-disjoint if
E(T1) ∩ E(T2) = {e′, e′′

}. For a given integer s ≥ 0, an (s; e′, e′′)-trail system in G is a subgraph J consisting of s internally
edge-disjoint (e′, e′′)-trails (T1, T2, . . . , Ts). A vertex v is an internal vertex of J if for some i with 1 ≤ i ≤ s, v is an internal
vertex of Ti. For an (s; e′, e′′)-trail system J , define

∂G(J) = {e ∈ E(G) − E(J) :e is incident with an internal vertex of J}.

An (s; e′, e′′)-trail system J is dominating if E(G) − E(J) = ∂G(J), and is spanning if it is dominating with V (G) = V (J).

Theorem 2.2 (Chen et al. Theorem 2.1 of [7]). Let G be a graph with |E(G)| ≥ 3 and let s ≥ 3 be an integer. Then κ∗(L(G)) ≥ s
if and only if for any edge e′, e′′

∈ E(G), and for each integer k with 1 ≤ k ≤ s, G has a dominating (k; e′, e′′)-trail-system.

Recall that ℓ(G) is defined in (2), the connectivity of iterated line graphs have been investigated. The following former
results will be useful in our arguments.

Theorem 2.3. Let k > 0 be an integer and G ∈ G be a graph.
(i) (Zhang et al. Lemma 3.2 [42]) If G ∈ G, then Lℓ(G)(G) is triangular.
(ii) (Zhang et al. Proposition 2.3 [43]) If G is a connected triangular simple graph, then L(G) is triangular. If, in addition, G is
k-connected, then L(G) is (k + 1)-connected.
(iii) For any integer m ≥ ℓ(G) + k − 1, κ(Lm(G)) ≥ m − ℓ(G) + 1 ≥ k.

Proof. It suffices to justify (iii). Let ℓ = ℓ(G). By Theorem 2.3(i), Lℓ(G) is 1-connected and triangular. By repeated
application of Theorem 2.3 (ii), κ(Lm(G)) ≥ m − ℓ(G) + 1 ≥ k. ■

In the following of this section, we always assume that G ∈ G is a connected graph. We shall show certain relationship
between the subgraphs of a graph G and the subgraphs of its line graph L(G). Let H(G) denote the collection of all
edge-induced subgraphs of G and let L(G) denote the collection of all induced subgraphs of L(G). Thus for any subgraph
H ∈ H(G), we have L(H) = L(G[E(H)]) ∈ L(G). If J ∈ L(G) then V (J) ⊆ E(G) and so the edge-induced subgraph
G[V (J)] ∈ H(G) satisfying L(G[V (J)]) = J . Thus we may view L : H(G) → L(G) as a bijective mapping and let L−1 denote the
inverse mapping of L. By the definition of iterated line graphs, if s ≥ 1 is an integer, then we denote Ls to be the mapping
that maps subgraphs in H(G) into subgraphs in Ls(G), and we use L−s to denote the pull back mapping that sends the
induced subgraphs in Ls(G) back to the subgraphs in H(G). For notational convenience, If j and k are nonnegative integers,
then we also use Lj to denote the corresponding mapping from H(Lk(G)) to L(Lk+j(G)), and L−j its corresponding pull back
mapping. Using the notation thus defined, we summarize some observations from the definition of line graphs in the
following proposition.

Proposition 2.4. Let G ∈ G be a connected graph and let L : H(G) → L(G) denote the bijection mapping defined above. For
each edge e ∈ E(G) (also viewed as the subgraph induced by the single edge e), define ve = L(e). Each of the following holds.
(i) For each edge e ∈ E(G), the vertex ve is a cut vertex of L(G) if and only if {e} is an essential edge-cut of G.
(ii) Let e1, e2 ∈ E(G). Then if ve1ve2 is an edge in E(L(G)) not lying in a complete graph of order at least 3 in L(G), then G[{e1, e2}]
is a divalent path of G.
(iii) Let P be a divalent path in G with |E(P)| = h > 0. For any integer k with 0 ≤ k < h, Lk(P) is a divalent path in Lk(G) with
|E(Lk(P))| = h − k, and Lh(P) is a vertex of Lh(G). Furthermore, if P is a bridge divalent path of G, then Lk(P) is also a bridge
divalent path in Lk(G), and Lh(P) is a cut vertex of Lh(G).
(iv) Let s and t be integers with s ≥ t ≥ 2. If v is a cut vertex of Ls(G), then, viewing v as a subgraph induced by the single
vertex v, L−t (v) is a bridge divalent path of length t in Ls−t (G) in which every edge is an essential cut edge; likewise, if e is an
edge which is not in a complete subgraph of order at least 3 in Ls(G), then L−t (e) is a divalent path of length t + 1 in Ls−t (G).
(v) Let e′, e′′

∈ E(G) be distinct edges and let s ≥ 1 be an integer. If L(G) has an (s; e′, e′′)-path-system, then G has an
′ ′′
(s; e , e )-trail-system.
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roof. Proposition 2.4(i), (ii) and (iii) follow from the definitions of line graphs, of divalent paths and of bridge divalent
aths. To prove (iv), let v ∈ V (Ls(G)) be a vertex. Then there must be an edge e ∈ E(Ls−1(G)) such that v = ve := L(e),
r e = L−1(v). Since G ∈ G, it follows by the definition of line graphs that Ls−1(G) ∈ G, and so Ls(G) − v has at least
wo components, which implies that e is a bridge divalent path of length 1 in Ls−1(G) and {e} is an essential edge-cut of
s−1(G); and L−2(v) is a bridge divalent path of length 2 in Ls−2(G) in which every edge is an essential cut edge of Ls−2(G).
nductively, for t ≥ 2, L−t (v) is a bridge divalent path of length t in Ls−t (G) in which every edge is an essential cut edge
f Ls−t (G). The proof for the edge part is similar and so it is omitted.
We are to prove (v). Let H be an (s; e′, e′′)-path-system consisting of s internally disjoint (e′, e′′)-paths P1, P2, . . . , Ps.

hoose such an (s; e′, e′′)-path-system H . For each i with 1 ≤ i ≤ s, as V (Pi) ⊆ E(G), G[V (Pi)] is an edge-induced connected
ubgraph in G containing both edges e′ and e′′, and so G[V (Pi)] contains an (e′, e′′)-trail Ti. Since P1, P2, . . . , Ps are internally
isjoint in L(G), we conclude that P1, P2, . . . , Ps are internally edge-disjoint in G, and so G has an (s; e′, e′′)-trail-system. ■

. The main results and their proofs

The symmetric difference of two sets X and Y , is

X△Y = X ∪ Y − (X ∩ Y ).

et G be a connected graph and k > 0 be an integer. An edge-cut X of G is an essential k-edge-cut of G if |X | = k and each
ide of G − X has an edge. The essential edge-connectivity of a connected graph G, denoted by ess′(G), is the smallest
nteger k such that G has an essential k-edge-cut, if G has at least one essential edge cut; or ess′(G) = |E(G)| − 1, if G does
ot have an essential edge cut. We say that G is essentially k-edge-connected if ess′(G) ≥ k. By the definition of a line
raph, we observe that

κ(L(G)) ≥ k if and only if ess′(G) ≥ k. (4)

.1. Maximally spanning connectedness in locally connected line graphs

We start with some preliminary results to understand the impact of local connectedness of L(G) on the graph G. For a
ertex v ∈ V (G), define EG(v) = {e ∈ E(G) : e is incident with v in G}.

emma 3.1. Let G be a connected graph with |E(G)| ≥ 3. The following are equivalent.
i) L(G) is locally connected.
ii) Every edge e = uv ∈ E(G) with min{dG(u), dG(v)} ≥ 2 lies in a short cycle Ce of G.

roof. Assume (i). Let e = uv ∈ E(G) be an edge with min{dG(u), dG(v)} ≥ 2, which is not lying in a cycle of length 2.
y the definition of a line graph, NL(G)(e) = (EG(u) ∪ EG(v)) − {e}. Since min{dG(u), dG(v)} ≥ 2, each of EG(u) and EG(v) is
ot empty. Since L(G)[NL(G)(e)] is connected, there must be an edge eu ∈ EG(u) and ev ∈ EG(v) such that euev ∈ E(L(G)). It
ollows that eu and ev would share a common vertex in G, and so Ce = G[{e, eu, ev}] is a 3-cycle in G that contains e. Thus
ii) must hold.

Conversely, we assume that (ii) holds. Let e ∈ V (L(G)) be given. We shall show that e is a locally connected vertex in
(G). By symmetry, we assume that e = uv ∈ E(G) with |NG(u)| ≥ |NG(v)|. If |NG(v)| = 1, then NL(G)(e) = EG(u) − {e}, and
o L(G)[NL(G)(e)] is a complete graph. Assume that |NG(v)| ≥ 2. By definition, NL(G)(e) = EG(u)∪E(G(v)−{e}), and so NL(G)(e)
s spanned by two complete subgraphs L(G)[EG(u) − {e}] and L(G)[EG(v) − {e}]. By (ii), e lies in a short cycle Ce of G. If
(Ce) = {e, e1}, then e1 ∈ (EG(u) ∩ E(G(v)) − {e}), and so L(G)[NL(G)(e)] is connected. Now assume that E(Ce − e) = {e1, e2}.
e may assume that e1 ∈ EG(u) and e2 ∈ EG(v). Since Ce is a 3-cycle, e1 and e2 are incident with a common vertex in G,

nd so in L(G), e1e2 ∈ E(L(G)). This implies that in any case, (i) must hold. ■

In view of Lemma 3.1, we define a graph G to be almost triangular if every edge e = uv ∈ E(G) with
in{dG(u), dG(v)} ≥ 2 lies in a short cycle in G. A subgraph H is near spanning in G if V (G) − D1(G) = V (H). The
ext lemma is useful.

emma 3.2. Let s ≥ 1 be an integer and G be a connected almost triangular graph with ess′(G) ≥ 3. For any e′, e′′
∈ E(G), if

has an (s; e′, e′′)-trail system, then G has a near spanning and dominating (s; e′, e′′)-trail system.

Proof. Suppose that G has an (s; e′, e′′)-trail system. Choose an (s; e′, e′′)-trail system J of G such that

|V (J)| + |E(J)| is maximized, among all (s; e′, e′′)-trail systems of G, (5)

nd subject to (5),

|∂G(J)| is as large as possible. (6)

et J = (T1, T2, . . . , Ts), where each Ti is an (e′, e′′)-trail, 1 ≤ i ≤ s.
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By contradiction, and as G is connected, we assume that there must be a vertex v ∈ V (G) − (V (J) ∪ D1(G)) such that
or some wv ∈ V (J), vwv ∈ E(G). Assume further that there exists a vertex v ∈ V (G) − V (J) such that for some i with
1 ≤ i ≤ s, wv is an internal vertex Ti. As v /∈ D1(G) and wv is an internal vertex of J , we have min{dG(v), dG(wv)} ≥ 2.
Since G is almost triangular, there must be a short cycle Cvw with vwv ∈ E(Cvw). Since v /∈ V (J), both edges incident with
in Cvw are not in J . If |E(Cvw)| = 2, then Ti can be extended to G[E(Ti)∪ E(Cvw)], which is also an (e′, e′′)-trail, internally
dge-disjoint from the other (e′, e′′)-trail in J , contrary to (5). Hence we assume that |E(Cvw)| = 3.
Let ev denote the edge in Cvw that is not incident with v. We assume that if ev ∈ E(J), (including the case when

ev ∈ {e′, e′′
}), then ev ∈ E(Ti). Define

T ′

i =

{
G[E(Ti)△E(Cvw)] if ev /∈ {e′, e′′

}

G[E(Ti) ∪ E(Cvw)] if ev ∈ {e′, e′′
}
.

Then T ′

i is also an (e′, e′′)-trail. As v /∈ V (J), T ′

i is also internally edge-disjoint from Tj, where 1 ≤ j ≤ s and j ̸= i. It follows
that J ′ = (T1, . . . , Ti−1, T ′

i , Ti+1, . . . , Ts) is an (s; e′, e′′)-trail system with |V (J)|+|E(J)| < |V (J ′)|+|E(J ′)|, contrary (5). Hence
we assume that no vertex in V (G)− (D1(G)∪V (J)) is incident with an internal vertex of any Ti. This implies that any path
connecting a vertex in V (J) and a vertex in V (G)−V (J) must use at least one of the edges {e′, e′′

}. This implies that {e′, e′′
}

is an essential edge cut of G, contrary to the assumption that ess′(G) ≥ 3. This justifies Claim 1.
By Claim 1, J is near spanning. If J is also dominating, then done. Hence we assume that

there exists an edge e0 ∈ E(G) − E(J) not incident with any internal vertex of J . (7)

Suppose that e0 = u0v0 is incident with v0 ∈ D1(G). By ess′(G) ≥ 3, dG(u0) ≥ 4. By (7), u0 cannot be an internal
vertex of J . Hence we may assume that e′

= u′v′ with u0 = u′ not being an internal vertex of J . This implies that
v′ must be an internal vertex of J . It follows that we have min{dG(u0), dG(v′)} ≥ 2. Since G is almost triangular, G
has a short cycle C0 containing e′

= u0v. If E(C0) − EG(u0) has an edge in E(J), then we may assume that this edge
is in T1. Define T ′′

1 = G[(E(T1)△E(C0)) ∪ {e′
}]. Thus J ′′ = (T ′′

1 , T2, . . . , Ts) is also an (s; e′, e′′)-trail system of G with
|V (J)| + |E(J)| ≤ |V (J ′′)| + |E(J ′′)| and ∂G(J) ∪ {e0} ⊆ ∂G(J ′′), contrary to (6).

Hence e0 is not incident with a vertex of degree 1 in G. By (7), we may assume that e′
= u′v′, e′′

= u′′v′′, e0 = u′u′′ and
for any i with 1 ≤ i ≤ s, Ti is an (u′, u′′)-trial with the first edge being e′ and the last edge being e′′. Since G is triangular,
e′

= u′v′ lies in a short cycle Ce′ of G. Let e′

1 denote the edge in Ce′ − {e′
} that is incident with u′. If e′

1 ∈ E(J), then u′

is an internal vertex of J , contrary to (7). Hence e′

1 /∈ E(J). By definition, |E(Ce′ )| ∈ {2, 3}. When E(Ce′ ) = {e′, e′

1, e
′

2}, we
ssume by symmetry that, if e′

2 ∈ E(J), then e′

2 ∈ E(T1). With this assumption, define T ′′′

1 = G[(E(T1)△E(Ce′ )) ∪ {e′
}]. Thus

′′′
= (T ′′′

1 , T2, . . . , Ts) is also an (s; e′, e′′)-trail system of G with |V (J)|+ |E(J)| ≤ |V (J ′′′)|+ |E(J ′′′)| and ∂G(J)∪ {e0} ⊆ ∂G(J ′′),
ontrary to (6). Thus every possibility of the assumption (7) always leads to a contradiction, and so J must be dominating.
his completes the proof of the lemma. ■

emma 3.3. Let k ≥ 1 be an integer and G be a graph.
i) Let e′, e′′

∈ E(G). If L(G) has a (k; e′, e′′)-trial system, then G has a (k; e′, e′′)-trail system.
ii) Suppose that G is a connected almost triangular graph with ess′(G) ≥ 3. Then L(G) is maximally spanning connected.

roof. For any e′, e′′
∈ E(G), assume that L(G) has a (k; e′, e′′)-trial system H consisting of internally edge-disjoint

e′, e′′)-trails P1, P2, . . . , Pk with |E(H)| minimized. Then by the minimality of |E(H)|, each Pi in H must be a path. By
roposition 2.4(v), G has a (k; e′, e′′)-trail system. This proves (i).
Let κ(L(G)) = k. As ess′(G) ≥ 3, by (4), k ≥ 3. Thus for every integer s with 1 ≤ s ≤ k, L(G) is s-connected. By Menger

heorem, for any e′, e′′
∈ E(G), L(G) has an (s; e′, e′′)-path system. By Lemma 3.3(i), G has an (s; e′, e′′)-trail system.

Fix an integer s with 1 ≤ s ≤ k, and let e′, e′′ be arbitrarily chosen edges in G. Since G is a connected almost triangular
raph with ess′(G) ≥ 3, and since G has an (s; e′, e′′)-trail system, it follows by Lemma 3.2 that G must also have a

dominating (s; e′, e′′)-trail system. By Theorem 2.2, L(G) has a spanning (s; e′, e′′)-path system. As e′, e′′ are arbitrarily
chosen, it follows from the definition of spanning connectivity that k = κ(L(G)) ≥ κ∗(L(G)) ≥ k, completing the proof for
(ii). ■

Proof of Theorem 1.3(i). Since L(G) is locally connected, by Lemma 3.1, G is almost triangular. Since κ(L(G)) ≥ 3, it
follows from (4) that G must be essentially 3-edge-connected. By Lemma 3.3(ii), L(G) is maximally connected. This proves
heorem 1.3(i). ■

.2. The spanning connected indices of graphs

The main purpose of this subsection is to prove Theorems 1.6 and 1.7. Before proving these theorems, we present the
ollowing examples, which are useful to illustrate the process determining the graphs in Theorems 1.6(i) and 1.7(i) that
each the upper bounds. (See Fig. 1 for an illustration of the iterated line graphs of a bridge divalent (3, t)-path with ℓ = 2
in Example 3.4.)
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Fig. 1. Illustration for Example 3.4.

Example 3.4. Let d′, d′′ and ℓ be positive integers with d′′
̸= 2, d′

≥ 3 and ℓ ≥ 2; and G ∈ G be a graph with ℓ(G) = ℓ
hat contains a bridge divalent (d′, d′′)-path P = v0e1v1 · · · vℓ−1eℓvℓ with dG(v0) = d′ and dG(vℓ) = d′′. If d′

= 3, then let
e′

1, e
′

2, e1 ∈ E(G) be the three edges incident with v0 in G. It is routine to apply Proposition 2.4 to verify the following.
(i) For any j with 0 ≤ j ≤ ℓ − 1, Lj(G) has a bridge divalent (d′, d′′)-path.
(ii) If d′

= 3 and d′′
≥ 3, then Lℓ(G) has a cut vertex which is incident with an essential edge cut of size 2.

(iii) If d′
= 3 and d′′

≥ 3, then Lℓ+1(G) is triangular and has a vertex 2-cut.
(iv) If d′

= 3 and d′′
≥ 3, then msc(G) ≥ ℓ + 2.

(v) If G does not have a bridge divalent (3, t)-path for some integer t ≥ 3, then Lℓ(G) is essentially 3-edge-connected.

Proof. By the definition of line graphs, an edge e incident with a vertex of degree d lies in a maximal clique of order d
in the line graph. Hence the edge incident with the vertex of degree s in a bridge divalent (s, t)-path of length at least
2 becomes a vertex in a bridge divalent path of degree s. By Proposition 2.4(iii), Lj(G) has a bridge divalent (d′, d′′)-path.
This justifies (i).

Assume that d′
= 3 and d′′

≥ 3. By (i), Lℓ−1(G) has a bridge divalent (3, d′′)-path of length 1, which is a cut edge
f0 = w1w2 in Lℓ−1(G). Assume that the edges incident with w1 in Lℓ−1(G) are f0, f1, f2. Since d′′

≥ 3, f0 is an essential cut
edge. By Proposition 2.4(ii), in Lℓ(G), f0 is a cut vertex, and so {f0f1, f0f2} is an essential edge cut in Lℓ(G). This proves (ii).

As (iii) implies that Lℓ+1(G) is not 3-connected, (iv) follows from (iii), and so it suffices to justify (iii). By Theorem 2.3(i)
nd (ii), Lℓ+1(G) is triangular. By (ii), the essential edge cut of size 2 in Lℓ(G) becomes a vertex 2-cut in Lℓ+1(G). Hence (iii)
ust hold.
Now assume that G does not have a bridge divalent (3, t)-path for some integer t ≥ 3. Let X be an essential edge cut

f Lℓ(G). By Theorem 2.3(i), Lℓ(G) is triangular, and so |X | ≥ 2. By contradiction, we assume that X = {f1, f2} is an edge
ut of Lℓ(G). As Lℓ(G) is triangular, f1, f2 must be incident with a common vertex w0 in Lℓ(G). Since {f1, f2} is an essential
dge cut of Lℓ(G), w0 must be a cut vertex of Lℓ(G). By Proposition 2.4, for some integer t ≥ 3, L−ℓ(w0) is a bridge divalent
3, t)-path of length ℓ in G, contrary to the assumption of (v). ■

emma 3.5. Let G ∈ G with ℓ = ℓ(G). Then

Lℓ(G)+1(G) is triangular and κ ′(Lℓ(G)+1(G)) ≥ κ(Lℓ(G)+2(G)) ≥ 3. (8)

roof. By Theorem 2.3(i), Lℓ(G)(G) is triangular. By definition, a connected triangular graph must also be 2-edge-connected.
t follows by Theorem 2.3(ii) that Lℓ(G)+1(G) is triangular and κ ′(Lℓ(G)+1(G)) ≥ κ(Lℓ(G)+1(G)) ≥ 3. ■

For graphs that does not have bridge divalent (3, t)-path of length ℓ, a slightly stronger assertion can be stated.

emma 3.6. Let G ∈ G be a connected graph and let ℓ = ℓ(G) ≥ 2. Suppose that for any integer t ≥ 3, G does not have a
ridge divalent (3, t)-path of length ℓ. Each of the following holds.
i) Lℓ(G) is triangular with ess′(Lℓ(G)) ≥ 3.
ii) For any integer j ≥ 1, Lℓ+j(G) is triangular with κ∗(Lℓ+j(G)) = κ(Lℓ+j(G)) ≥ j + 2.

roof. (i) follows from Theorem 2.3(i) and Example 3.4(v). By Lemma 3.6(i), (4), and by Lemma 3.3(ii), Lemma 3.6(ii)
olds when j = 1. Inductively, assume that (ii) holds for smaller values of j and j ≥ 2. Then by induction, Lℓ+j−1(G) is
riangular with κ∗(Lℓ+j−1(G)) = κ(Lℓ+j−1(G)) ≥ (j− 1)+ 2. By Theorem 2.3(ii) and Lemma 3.3(ii), we conclude that Lℓ+j(G)
s triangular with κ∗(Lℓ+j(G)) = κ(Lℓ+j(G)) ≥ j + 2, and so (ii) follows by induction. This proves the lemma. ■

The iterated line graphs of graphs with special structures will reach the triangular state and higher spanning
onnectivity somewhat earlier, as seen in the example below. The justification of the conclusions in Example 3.7 is similar
o those in Lemma 3.6.

xample 3.7. Let ℓ ≥ 4 and d ≥ 3 be integers, and let Cℓ = v1v2...vℓv1 denote a cycle on ℓ vertices and let
u1, u2, . . . , ud−2, w1, w2} be a set of vertices disjoint from V (Cℓ). Let V = V (Cℓ)∪ {u1, u2, . . . , ud}. Define graphs Q1(ℓ, d),
2(ℓ, d), Q3(ℓ, d), Q4(ℓ, d) and, when d ≥ 4, Q5(ℓ, d) as follows.

V (Q (ℓ, d)) = V and E(Q (ℓ, d)) = E(C ) ∪ {v u : 1 ≤ i ≤ d − 2}.
1 1 ℓ 1 i
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Fig. 2. Some graphs in Example 3.7.

V (Q2(ℓ, d)) = V ∪ {w1} and E(Q2(ℓ, d)) = E(Cℓ) ∪ {v1ui : 1 ≤ i ≤ d − 2} ∪ {u1w1}.

V (Q3(ℓ, d)) = V ∪ {w1, w2} and E(Q3(ℓ, d)) = E(Cℓ) ∪ {v1ui : 1 ≤ i ≤ d − 2} ∪ {u1w1, w1w2}.

V (Q4(ℓ, d)) = V ∪ {w1, w2} and E(Q4(ℓ, d)) = E(Cℓ) ∪ {v1ui : 1 ≤ i ≤ d − 2} ∪ {u1w1, u1w2}.

V (Q5(ℓ, d)) = V ∪ {w1, w2} and E(Q4(ℓ, d)) = E(Cℓ) ∪ {v1ui : 1 ≤ i ≤ d − 2} ∪ {u1w1, u2w2}.

or each i with 1 ≤ i ≤ 5, let Qi denote the family of graphs such that G ∈ Qi if and only is G is spanned by a Qi(ℓ, d)
ith V (Cℓ − v1) ⊆ D2(G) and ∆(G) = d. For any Qi ∈ Qi, let G ∈ {Q1,Q2,Q3,Q4,Q5}, n = |V (G)| and ∆ = ∆(G). We have
he following observations (see Fig. 2 for illustrative examples).
i) ℓ(Qi(ℓ, d)) = n − ∆ + 3 − i if i ∈ {1, 2} and ℓ(Q3(ℓ, d)) = ℓ(Q4(ℓ, d)) = ℓ(Q5(ℓ, d)) = n − ∆.
ii) Ln−∆(G) is triangular with ess′(Ln−∆(G)) ≥ 3.
iii) For any integer j ≥ 1, Ln−∆+j(G) is triangular with κ∗(Ln−∆+j(G)) = κ(Ln−∆+j(G)) ≥ j + 2.

emma 3.8. Let G ∈ G − (Q1 ∪ Q2) with ℓ = ℓ(G) ≥ 2. Each of the following holds.
i) ℓ ≤ |V (G)| − ∆.
ii) If G has a bridge divalent path P of length ℓ, then ℓ = |V (G)| − ∆ only if G has a unique bridge divalent (∆, 1)-path of
ength ℓ.
iii) If for some integers d′, d′′

≥ 3, G has a bridge divalent (d′, d′′)-path P of length ℓ, then ℓ(G) ≤ |V (G)| − ∆ − 2.

roof. Let G ∈ G − (Q1 ∪ Q2) be a graph with ∆ = ∆(G) and ℓ = ℓ(G). Since G ∈ G, we have ∆ > 2. Pick a vertex
0 ∈ V (G) with dG(w0) = ∆ with NG(w0) = {u1, u2, . . . , u∆}. Let P be a longest divalent path in G. Thus |E(P)| = ℓ(G).
ince P is a divalent path, |E(P) ∩ {u1w0, u2w0, . . . , u∆w0}| ≤ 2, where equality holds if and only if P is a cycle Cℓ with
vertices and contains w0. In this case, if |V (G) − (V (Cℓ) ∪ NG(w0))| ≤ 1, then G ∈ Q1 ∪ Q2, contrary to the assumption.
hus either |V (G) − (V (Cℓ) ∪ NG(w0))| ≥ 2, or |E(P) ∩ {u1w0, u2w0, . . . , u∆w0}| ≤ 1. In any case, at least ∆ + 1 vertices in
cannot be the internal vertices of P , which implies that ℓ = |E(P)| ≤ |V (G)| − (∆ + 1) + 1 = |V (G)| − ∆. This justifies

emma 3.8(i).
To prove (ii) and (iii), we assume that

P = v0v1...vℓ−1vℓ (9)

s a bridge divalent path of length ℓ in G. By symmetry, we assume that d′
= dG(v0) ≥ dG(vℓ) = d′′. (We allow that in

he proof for (ii), d′′
= 1.) By definition of ℓ(G), v0, vℓ /∈ D2(G). Assume that dG(v0) < ∆ and w0 is a vertex in V (G)

ith dG(w0) = ∆. Then since P is a divalent path, we observe that w0 /∈ V (P), and so NG(w0) ∩ V (P) = ∅. Hence
(P) ⊆ V (G) − (NG(w0) ∪ {w0}). It follows that

ℓ = |E(P)| ≤ |V (G) − (NG(w0) ∪ {w0})| − 1 (10)
= |V (G)| − (∆ + 1) − 1 = |V (G)| − ∆ − 2.

To complete the proof for (ii), we assume that ℓ = |V (G)| − ∆. By (10) we may assume that dG(v0) = ∆. If
G(vℓ) ̸= 1, then dG(vℓ) ≥ 3. Since P is a bridge divalent path and ℓ ≥ 2, |NG(v0) ∩ NG(vℓ)| ≤ 1. Hence the vertices
n (NG(v0) ∪ NG(vℓ)) − (NG(v0) ∩ NG(vℓ)) cannot be internal vertices of P . It follows that

ℓ = |E(P)| ≤ |V (G)| − |(NG(v0) ∪ NG(vℓ)) − (NG(v0) ∩ NG(vℓ))| − 1 (11)
≤ |V (G)| − (∆ + 3 − 1) − 1 = |V (G)| − ∆ − 3, (12)

contradiction. This forces that dG(vℓ) = 1, and so P must be a divalent (∆, 1)-path.
To show that uniqueness in (ii), we assume that G has two bridge divalent (∆, 1)-paths P and P ′, each of length ℓ. As

hown above, |V (P) ∩ V (P ′)| ≤ 1 and there is at most one vertex of degree ∆ in V (P) ∩ V (P ′). Thus there are at most
wo internal vertices of P and P ′ incident with a vertex of degree ∆ in G, and so there are at least ∆ − 1 vertices in
G(w0) ∪ {w0} that cannot be internal vertices of P or P ′. It follows that the total number of internal vertices of P and
′ is at most |V (G)| − (∆ − 1) − 2 = |V (G)| − ∆ − 1. This implies that 2ℓ = |E(P)| + |E(P ′)| ≤ |V (G)| − ∆ − 1 + 2. As

ℓ = |V (G)| − ∆, this forces that |V (G)| = ∆ + 1, implying that G is spanned by a K1,|V (G)|−1, contrary to the assumption
that ℓ ≥ 2. Thus (ii) must hold.
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To prove (iii), we assume that the path P in (9) is a bridge divalent (d′, d′′)-path P of length ℓ with d ≥ 3. By
contradiction assume that ℓ(G) > |V (G)|−∆−2. By (10), we must have dG(v0) = ∆, and so V (G) = NG(v0)∪V (P)∪NG(vℓ).
t follows by d′′

≥ 3 that ℓ = |E(P)| = |V (G) − (NG(v0) ∪ NG(vℓ))| + 1 = |V (G)| − ∆ − 2, contrary to the assumption that
ℓ(G) > |V (G)| − ∆ − 2. ■

We are now ready to complete the proofs of the main results. For some technical reason, we first prove Theorem 1.7.

Proof of Theorem 1.7. By (8) and by Lemmas 3.3 and 3.2, we must have κ(Lℓ(G)+2(G)) = κ∗((Lℓ(G)+2(G))). Thus Lℓ(G)+2(G)
s triangular and maximally spanning connected. For any integer m > ℓ(G) + 2, assuming that Lm−1(G) is 3-connected,
riangular and maximally spanning connected. By Theorem 2.3(ii), Lm(G) is also 3-connected and triangular; and by
emma 3.2, Lm(G) is maximally spanning connected. It follows by induction that for any m ≥ ℓ(G) + 2, Lm(G) is also
aximally spanning connected.
By Example 3.4 (iv), if for some integer t ≥ 3, G has a bridge divalent (3, t)-path, then msc(G) ≥ ℓ(G)+2. This, together

ith the conclusions above, forces that msc(G) = ℓ(G)+ 2. Conversely, we assume that G ∈ G satisfies msc(G) = ℓ(G)+ 2.
f G does not have a bridge divalent (3, t)-path for some integer t ≥ 3, then by Example 3.4(v) and Theorem 2.3(i), Lℓ(G)
s essentially 3-edge-connected and triangular. Hence by Lemma 3.2, Lℓ+1(G) is maximally spanning connected, contrary
o the assumption of msc(G) = ℓ(G) + 2. This completes the proof of Theorem 1.7(i).

If ℓ(G) = 1, then |V (G)| − ∆(G) + 2 ≥ 3. By Theorem 1.7(i), for any m ≥ 3, Lm(G) is maximally spanning connected.
ssume that ℓ(G) ≥ 2. By Example 3.7 (if G ∈ Q1 ∪ Q2) or by Lemma 3.8(i), ℓ(G) ≤ |V (G)| − ∆(G) + 1, and so by
heorem 1.7(i), we have

msc(G) ≤ ℓ(G) + 2 ≤ |V (G)| − ∆ + 3. (13)

f G ∈ G satisfying msc(G) = |V (G)|−∆+3, then by (13), we must have msc(G) = ℓ(G)+2. It follows by Theorem 1.7(i) that
must have bridge divalent path of length ℓ. By Lemma 3.8(ii), G has a unique bridge divalent (∆, 1)-path of length ℓ. By
heorem 2.3(i), Lℓ(G) is triangular. By Example 3.4(v), Lℓ(G) is essentially 3-edge-connected. It follows from Lemma 3.2 and
heorem 2.2 that Lℓ+1(G) is maximally spanning connected. This contradicts to the assumption of msc(G) = |V (G)|−∆+3.
ence, for any G ∈ G, we must have msc(G) ≤ |V (G)| − ∆ + 2. By (8), Lemmas 3.3 and 3.2, it is routine to show that for
ny m ≥ |V (G)| − ∆ + 2, Lm(G) is maximally spanning connected. This completes the proof of Theorem 1.7. ■

roof of Theorem 1.6. Let ℓ = ℓ(G). Assume first that k ∈ {2, 3}. By Theorem 1.7(i), Lℓ+2(G) is maximally spanning
onnected. By Lemma 3.5, κ∗(Lℓ+2(G)) ≥ 3. Thus s2(G) ≤ s3(G) ≤ ℓ + 2. This proves Theorem 1.6(i).
Let k ≥ 3 be an integer and let m(k) = ℓ+ k− 1 ≥ ℓ+ 2. By Theorem 1.7(i), Lm(k)(G) is maximally spanning connected.

his, together with Theorem 2.3(iii), implies κ∗(Lm(k)(G)) = κ(Lm(k)(G)) ≥ k. This shows that sk(G) ≤ m(k) = ℓ + k − 1.
uppose that for any integer t ≥ 3, G does not have a bridge divalent (3, t)-path of length ℓ. By Lemma 3.6(ii) with
= k − 2, we conclude that if for any integer t ≥ 3, G does not have a bridge divalent (3, t)-path of length ℓ, then

k(G) ≤ ℓ + k − 2. This completes the proof of Theorem 1.6(ii).
To prove (iii), by Theorem 1.6(ii) with k = 3, we assume that for some integer t ≥ 3, G has a bridge divalent (3, t)-path.

y Example 3.4(iii), κ(Lℓ+1(G)) < 3, and so s3(G) ≥ ℓ(G)+2. This implies that in this case, we must have s3(G) = ℓ(G)+2.
his completes the proof of Theorem 1.6(iii).
Let k ≥ 3 be an integer. If G has a bridge divalent (3, t)-path P of length ℓ for some integer t ≥ 3, then by Lemma 3.8(iii),

(G) ≤ |V (G)| − ∆ − 2. By Theorem 1.6(ii), sk(G) ≤ |V (G)| − ∆ + k − 3. Theorem 1.6(iv) follows in this case.
Suppose that for any integer t ≥ 3, G does not have a bridge divalent (3, t)-path. If every bridge divalent (d′, d′′)-path
of length ℓ satisfies min{d′, d′′

} = 1, then as the degree 1 vertex cannot be an internal vertex of P , there are at least
+ 2 vertices in G that are not internal vertices of P . It follows that ℓ ≤ |V (G)| − ∆ − 1. If every divalent (d′, d′′)-path
of length ℓ satisfies min{d′, d′′

} ≥ 4, then either P is a bridge divalent path, whence ℓ = |E(P)| ≤ |V (G)| − ∆; or P is
not a bridge divalent path, whence ℓ ≤ |E(P)| < |V (G)| − ∆. By Lemma Lemma 3.6(ii) with j = k − 2, we conclude that
sk(G) ≤ ℓ + k − 2 ≤ |V (G)| − ∆ − 1 + k − 2 = |V (G)| − ∆ + k − 3. Thus Theorem 1.6(iv) follows in this case also.

Hence we assume that G has a bridge divalent path of length ℓ, and every bridge divalent path P of length ℓ is a
(d′, d′′)-path with min{d′, d′′

} ≥ 4. By Example 3.4(iv) and Theorem 2.3(i), Lℓ(G) is triangular with ess′(G) ≥ 3. ■

4. Concluding remarks

The research has found a new family of maximally spanning connected line graphs and the tools developed in this
research have also improved some of the former results. The existence of other natural and commonly studied graph
families that are also maximally spanning connected would be of interests. Motivated by Conjecture 1.1, we present the
following problems for future researches.

Problem 4.1. Let G be a connected graph and s ≥ 2 be an integer.
(i) Determine the existence of, and if it exists, the smallest value of an integer f (s), such that every f (s)-connected line
graph is s-spanning connected.
(i) Determine the existence of, and if it exists, the smallest value of an integer h(s), such that every h(s)-connected claw-free
graph is s-spanning connected.
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As every line graph is a claw-free graph, we have h(s) ≥ f (s) if they exist. As stated in Conjecture 1.1, Thomassen [38]
nd, Kučzel and Xiong [23] conjecture that f (2) = 4, and Matthews and Sumner [31], and Ryjáček and Vrána [34]
onjectured that h(2) = 4 also. Furthermore, Ryjáček and Vrána [34] proved that f (2) = 4 is equivalent to h(2) = 4.
e conjecture that these values f (s) and h(s) exist for all s ≥ 2, and Theorem 1.3 supports the conjecture that f (s) exists.
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