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Let c(G), g(G), ω(G) and μn−1(G) denote the number of 
components, the girth, the clique number and the second 
smallest Laplacian eigenvalue of the graph G, respectively. 
The strength η(G) and the fractional arboricity γ(G) are 
defined by

η(G) = min
F⊆E(G)

|F |
c(G− F ) − c(G)

and

γ(G) = max
H⊆G

|E(H)|
|V (H)| − 1

,

where the optima are taken over all edge subsets F and 
all subgraphs H whenever the denominator is non-zero, 
respectively. Nash-Williams and Tutte proved that G has k
edge-disjoint spanning trees if and only if η(G) ≥ k; and Nash-
Williams showed that G can be covered by at most k forests if 
and only if γ(G) ≤ k. In this paper, for integers r ≥ 2, s and 
t, and any simple graph G of order n with minimum degree 
δ ≥ 2s

t
and either clique number ω(G) ≤ r or girth g ≥ 3, we 

* Corresponding author.
E-mail addresses: zmhong@mail.ustc.edu.cn (Z.-M. Hong), xzj@mail.ustc.edu.cn (Z.-J. Xia), 

hjlai@math.wvu.edu (H.-J. Lai), rfliu@zzu.edu.cn (R. Liu).
https://doi.org/10.1016/j.laa.2020.10.023
0024-3795/© 2020 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.laa.2020.10.023
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/laa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.laa.2020.10.023&domain=pdf
mailto:zmhong@mail.ustc.edu.cn
mailto:xzj@mail.ustc.edu.cn
mailto:hjlai@math.wvu.edu
mailto:rfliu@zzu.edu.cn
https://doi.org/10.1016/j.laa.2020.10.023


136 Z.-M. Hong et al. / Linear Algebra and its Applications 611 (2021) 135–147
prove that if μn−1(G) > 2s−1
tϕ(δ,r) or μn−1(G) > 2s−1

tN(δ,g) , then 
η(G) ≥ s

t
, where ϕ(δ, r) = max{δ + 1, � rδ

r−1 �} and N(δ, g) is 
the Moore bound on the smallest possible number of vertices 
such that there exists a δ-regular simple graph with girth g. 
As corollaries, sufficient conditions on μn−1(G) such that G
has k edge-disjoint spanning trees are obtained. Analogous 
result involving μn−1(G) to characterize fractional arboricity 
of graphs with given clique number is also presented. Former 
results in Liu et al. (2014) [17] and Hong et al. (2016) [11] are 
extended, and the result in Liu et al. (2019) [18] is improved.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

We only consider finite undirected simple graphs in this paper. Undefined notation 
and terminologies will follow Bondy and Murty [1]. Throughout the paper, k, r, s, t are 
positive integers. Let G = (V, E) be a graph of order n. We use δ(G) and c(G) to denote 
the minimum degree and the number of components of a graph G, respectively. The 
clique number ω(G) of a graph G is the maximum cardinality of a complete subgraph 
of G. For a vertex subset X ⊆ V (G), G[X] is the subgraph of G induced by X. For any 
subset X, Y ⊆ V (G) with X ∩ Y = ∅, e(X, Y ) denotes the number of edges between X
and Y , and dG(X) (or simply d(X)) is the number of edges between X and V (G) \X, 
that is d(X) = e(X, V (G) \X).

For a simple graph G with vertex set V (G) = {v1, v2, . . . , vn}, the adjacency matrix 
of G is defined to be a (0, 1)-matrix A(G) = (aij)n×n, where aij = 1 if vi and vj are 
adjacent, and aij = 0 otherwise. As G is simple and undirected, A(G) is a symmetric 
(0, 1)-matrix. The adjacency eigenvalues of G are the eigenvalues of A(G). Denoted by 
D(G) = diag{dG(v1), dG(v2), . . . , dG(vn)}, the diagonal degree matrix of G, where dG(vi)
denotes the degree of vi. The matrices L(G) = D(G) −A(G) and Q(G) = D(G) +A(G)
are called the Laplacian matrix and the signless Laplacian matrix of G, respectively. 
We use λi(G), μi(G) and qi(G) to denote the ith largest eigenvalue of A(G), L(G)
and Q(G), respectively. The second smallest Laplacian eigenvalue μn−1(G) is called 
algebraic connectivity by Fiedler [6]. It is well known that μn−1(G) > 0 if and only if G
is connected.

For a connected graph G, the spanning tree packing number, denoted by τ(G), is 
the maximum number of edge-disjoint spanning trees in G. The arboricity a(G) is the 
minimum number of edge-disjoint forests which covers all the edges of G. Fundamental 
theorems characterizing graphs G with τ(G) ≥ k and with a(G) ≤ k have been obtained 
by Nash-Williams and Tutte, and by Nash-Williams, respectively.

Theorem 1.1. Let G be a connected graph with E(G) �= ∅. Each of the following holds.



Z.-M. Hong et al. / Linear Algebra and its Applications 611 (2021) 135–147 137
(i) (Nash-Williams [19] and Tutte [24]) The spanning tree packing number τ(G) ≥ k

if and only if for any F ⊆ E(G), |F | ≥ k(c(G − F ) − 1).
(ii) (Nash-Williams [20]) The arboricity a(G) ≤ k if and only if for any subgraph H

of G, |E(H)| ≤ k(|V (H)| − 1).

Following the terminology in [3,21], the strength η(G) and the fractional arboricity
γ(G) of a graph G is defined as

η(G) = min
F⊆E(G)

|F |
c(G− F ) − c(G) and γ(G) = max

H⊆G

|E(H)|
|V (H)| − 1 ,

where the optima are taken over all edge subsets F and all subgraphs H of G whenever 
the denominator is non-zero, respectively. Theorem 1.1 implies that for a connected 
graph G, τ(G) ≥ k if and only if η(G) ≥ k, and a(G) ≤ k if and only if γ(G) ≤ k. Since 
τ(G) and a(G) are integral, we have τ(G) = �η(G)	 and a(G) = 
γ(G)�. Therefore, η(G)
is also referred to as the fractional spanning tree packing number of G.

Motivated by Kirchhoff’s matrix tree theorem [14] and by a problem of Seymour (see 
Reference [19] of [4]), Cioabă and Wong [4] initially conjectured an explicit relationship 
between τ(G) and λ2(G) of a regular graph. Afterwards, the conjecture was extended to 
general graphs.

Conjecture 1.2. (Cioabă and Wong [4], Gu et al. [9], Li and Shi [15] and Liu et al. [16]) 
Let k ≥ 2 be an integer and G be a graph with minimum degree δ ≥ 2k. If λ2(G) <
δ − 2k−1

δ+1 , then τ(G) ≥ k.

Several researchers have made progress toward Conjecture 1.2, as seen in [4,9,15–17]. 
This conjecture was finally settled in [17].

Theorem 1.3. (Liu et al. [17]) Let k ≥ 2 be an integer and G be a graph with minimum 
degree δ ≥ 2k. If μn−1(G) > 2k−1

δ+1 , or λ2(G) < δ − 2k−1
δ+1 , or q2(G) < 2δ − 2k−1

δ+1 , then 
τ(G) ≥ k.

In order to improve or extend the results in Theorem 1.3, Liu, Lai and Tian [18]
considered certain graph families such as bipartite graphs or triangle-free graphs. As 
triangle-free graphs have girth at least four, they utilize the parameter girth to investi-
gate directly more general graph families. To state their results, we need the following 
definition.

Definition 1.4. For integers δ, g with δ ≥ 2 and g ≥ 3, let t = � g−1
2 	. Define

N(δ, g) =
{

1 + δ
∑t−1

i=0(δ − 1)i, if g = 2t + 1,
2
∑t (δ − 1)i, if g = 2t + 2,

and f(δ, g) = N(δ, g) −
∑t−1

i=1
(δ − 1)i.
i=0
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Tutte [23] initiated the cage problem, which seeks, for any given integers d and g with 
d ≥ 2 and g ≥ 3, the smallest possible number of vertices n(d, g) such that there exists a 
d-regular simple graph with girth g. The value N(d, g) in Definition 1.4 is a tight lower 
bound (often called the Moore bound) on n(d, g) which can be found in [5].

Theorem 1.5. (Liu et al. [18]) Let g and k be integers with g ≥ 3 and k ≥ 2, and G be a 
simple graph of order n with minimum degree δ ≥ 2k and girth g. If μn−1(G) > 2k−1

f(δ,g) , 
or λ2(G) < δ − 2k−1

f(δ,g) , or q2(G) < 2δ − 2k−1
f(δ,g) , then τ(G) ≥ k.

Since τ(G) = �η(G)	, to extend Theorem 1.3, Hong et al. [11] investigated the rela-
tionship between η(G) and the eigenvalues of G. They also discussed the relationship 
between the fractional arboricity γ(G) and algebraic connectivity μn−1(G).

Theorem 1.6. (Hong et al. [11]) Let G be a graph with minimum degree δ ≥ 2s/t. If 
μn−1(G) > 2s−1

t(δ+1) , or λ2(G) < δ − 2s−1
t(δ+1) , or q2(G) < 2δ − 2s−1

t(δ+1) , then η(G) ≥ s
t .

Theorem 1.7. (Hong et al. [11]) Let G be a graph of order n ≥ �2s
t 	 + 1 with degree 

sequence d1 ≥ d2 ≥ · · · ≥ dn. Let β = 2s
t − 1

� 2s
t �+1

∑� 2s
t �+1

i=1 di.

(i) If β ≥ 1, then γ(G) ≤ s
t .

(ii) If 0 < β < 1, n ≥ �2s
t 	 + 1 + 2s−2

tβ and μn−1(G) > n(2s/t−2/t−β(�2s/t�+1))
(�2s/t�+1)(n−�2s/t�−1) , then 

γ(G) ≤ s
t .

These results motivate the current research. The girth of a graph is larger than three 
if and only if its clique number is no more than two. By this fact and the former results, 
in this paper, we investigate the relationship between η(G) and the eigenvalues of G with 
given girth or clique number, and the relationship between γ(G) and the eigenvalues of 
G with given clique number. As can be seen in Section 4 of this paper or in Corollary 1.7 
of [12], for any real number p ≥ 0, if q2(G) < 2δ−p or λ2(G) < δ−p, then μn−1(G) > p. 
Therefore, we focus on establishing the lower bounds on μn−1(G). The main results of 
this paper are presented as Theorems 1.8, 1.9 and 1.13, where Theorems 1.8 and 1.9
extend Theorem 1.6, and Theorem 1.13 extends Theorem 1.7.

Theorem 1.8. Let r ≥ 2 be an integer, and G be a graph of order n with minimum 
degree δ ≥ 2s/t and clique number ω(G) ≤ r. Let ϕ(δ, r) = max{δ + 1, 

⌊
rδ
r−1

⌋
}. If 

μn−1(G) > 2s−1
tϕ(δ,r) , then η(G) ≥ s

t .

Theorem 1.9. Let G be a graph of order n with minimum degree δ ≥ 2s/t and girth g ≥ 3. 
If μn−1(G) > 2s−1

tN(δ,g) , then η(G) ≥ s
t .

By Theorem 1.8 and Theorem 1.9, we have the following two corollaries immediately.
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Corollary 1.10. Let k ≥ 2 and r ≥ 2 be integers, and G be a graph of order n with 
minimum degree δ ≥ 2k and clique number ω(G) ≤ r. Let ϕ(δ, r) = max{δ + 1, 

⌊
rδ
r−1

⌋
}. 

If μn−1(G) > 2k−1
ϕ(δ,r) , then τ(G) ≥ k.

Corollary 1.11. Let G be a graph of order n with minimum degree δ ≥ 2k and girth g ≥ 3. 
If μn−1(G) > 2k−1

N(δ,g) , then τ(G) ≥ k.

Remark 1.12. As τ(G) = �η(G)	, Theorem 1.8 and Theorem 1.9 deduce Corollary 1.10
and Corollary 1.11, respectively. Since ϕ(δ, r) ≥ δ+1 and N(δ, g) ≥ δ+1, Theorems 1.8
and 1.9 extend Theorem 1.6 and Corollaries 1.10 and 1.11 extend Theorem 1.3. As 
f(δ, g) = N(δ, g) −

∑t−1
i=1(δ−1)i, we have N(δ, g) > f(δ, g) when δ ≥ 2 and t = � g−1

2 	 ≥ 2, 
which implies 2k−1

N(δ,g) < 2k−1
f(δ,g) and so Corollary 1.11 improves Theorem 1.5 when g(G) ≥ 5.

Theorem 1.13. Let r ≥ 2 be an integer, and G be a graph of order n ≥ �2s
t 	 + 1 with 

degree sequence d1 ≥ d2 ≥ · · · ≥ dn = δ and clique number ω(G) ≤ r. Let β = 2s
t −

1
� 2s

t �+1
∑� 2s

t �+1
i=1 di and θ = max{�2s

t 	 + 1, � rδ
r−1	 − 1}.

(i) If β > 2s−2
tθ , then γ(G) ≤ s

t .
(ii) If 0 < β ≤ 2s−2

tθ , n ≥ θ + 2s−2
tβ and μn−1(G) > n(2s/t−2/t−βθ)

θ(n−θ) , then γ(G) ≤ s
t .

In Section 2, we display some preliminaries and mechanisms, which will be applied in 
the proofs of the main results, to be presented in Section 3. As corollaries, adjacency and 
signless Laplacian eigenvalue conditions to characterize strength and fractional arboricity
are obtained at the last section.

2. Preliminaries

In this section, we present some of the preliminaries to be used in the proof of main 
results. For X ⊆ V (G), we use d̄G(X) or simply d̄(X) to denote the average degree of 
all vertices of X in G, that is d̄(X) = 1

|X|
∑

v∈V (G) dG(v). The following result is the 
famous theorem of Turán [22].

Lemma 2.1. (Turán [22]) Let r ≥ 1 be an integer, and G be a graph of order n. If the 
clique number ω(G) ≤ r, then |E(G)| ≤

⌊
r−1
2r · n2⌋.

Lemma 2.2. (Hong et al. [13]) Let r ≥ 2 be an integer, and G be a graph with minimum 
degree δ and clique number ω(G) ≤ r, and X be a non-empty proper subset of V (G). If 
d(X) < δ, then |X| ≥ max{δ + 1, 

⌊
rδ
r−1

⌋
}.

Lemma 2.3. Let r ≥ 2 be an integer, and G be a graph with clique number ω(G) ≤ r. Let 
X be a nonempty proper subset of V (G), Y = V (G) \X, and d̄(X) be the average degree 

of all vertices of X in G. If e(X, Y ) < d̄(X), then |X| > max{d̄(X), rd̄(X) − 2}.
r−1
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Proof. We first show that X contains more than d̄(X) vertices. Since each vertex in X
is adjacent to at most |X| − 1 vertices of X, we obtain

d̄(X)|X| =
∑
x∈X

dG(x) ≤ |X|(|X| − 1) + e(X,Y ) < |X|(|X| − 1) + d̄(X),

and so (|X| − 1)(|X| − d̄(X)) > 0, which means that |X| > d̄(X).
Next we show that |X| > rd̄(X)

r−1 − 2. By Lemma 2.1, we conclude that

|E(G[X])| ≤ (r − 1)|X|2
2r . (2.1)

Since 
∑

x∈X dG(x) = 2|E(G[X])| + e(X, Y ), by (2.1)

d̄(X)|X| =
∑
x∈X

dG(x) ≤ 2(r − 1)|X|2
2r + e(X,Y ) < (r − 1)|X|2

r
+ d̄(X)

and so |X|2 − rd̄(X)
r−1 |X| + rd̄(X)

r−1 > 0. It follows that

(|X| − 1)(|X| − rd̄(X)
r − 1 + 1) > −1. (2.2)

If |X| = 1, then e(X, Y ) = d̄(X), a contradiction. Hence, |X| ≥ 2 and so 1
|X|−1 ≤ 1. By 

(2.2),

|X| > rd̄(X)
r − 1 − 1 − 1

|X| − 1 ≥ rd̄(X)
r − 1 − 2.

The result follows. �
Lemma 2.4. (Hong et al. [13]) Let G be a simple connected graph with minimum degree 
δ ≥ 2 and girth g ≥ 3, and X be a non-empty proper subset of V (G). If d(X) < δ, then 
|X| ≥ N(δ, g).

Let x = (x1, x2, . . . , xn)T ∈ Rn, and let G be a graph with vertex set V (G) =
{1, 2, . . . , n}. Then x can be considered as a function defined on V (G), that is, for any 
vertex i, we map it to xi = x(i). Fiedler [7] derived a very useful expression for algebraic 
connectivity μn−1(G) as follows.

Lemma 2.5. (Fiedler [7]) Let G be a graph with vertex set V = {1, 2, . . . , n} and edge set 
E. Then

μn−1(G) = min
n

∑
ij∈E

(xi − xj)2∑
(xi − xj)2

,

i,j∈V,i<j
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where the minimum is taken over all non-constant vectors (x1, x2, . . . , xn)T ∈ Rn.

Given two non-increasing real sequences μ1 ≥ μ2 ≥ · · · ≥ μn and λ1 ≥ λ2 ≥ · · · ≥ λm

with n > m, the second sequence is said to interlace the first one if μi ≥ λi ≥ μn−m+i

for i = 1, . . . , m. The following result is known as the Cauchy Interlacing Theorem. A 
proof of this theorem can be found on page 27 of [2].

Theorem 2.6 (Cauchy Interlacing). Let B be a principal submatrix of a symmetric matrix 
A. Then the eigenvalues of B interlace the eigenvalues of A.

Let A be a symmetric matrix of order n and V1, . . . , Vk be a partition of {1, . . . , n}. 
For any 1 ≤ i, j ≤ k, let bij denote the average number of neighbors in Vj of the vertices 
in Vi. The quotient matrix of this partition is the k × k matrix B whose (i, j)-th entry 
equals bij . Haemers [10] showed the eigenvalues of the quotient matrix B in fact interlace 
the eigenvalues of A.

Theorem 2.7. (Haemers [10]) Let A be a symmetric matrix. Then the eigenvalues of 
every quotient matrix of A interlace the eigenvalues of A.

3. The proof of main results

In this section, we present the proofs of Theorems 1.8, 1.9 and 1.13.

3.1. A unified way to prove Theorems 1.8 and 1.9

We need the following lemma, which comes from a special case of Lemma 3.2 in [17]
when a = −1. In [8], Gu pointed out that this Lemma also holds for multigraphs. For 
the sake of completeness, we intuitively present a proof here.

Lemma 3.1. (Liu et al. [17]) Let G be a graph and suppose that X, Y ⊂ V (G) with X∩Y =
∅. If μn−1(G) ≥ min{d(X)

|X| , 
d(Y )
|Y | }, then [e(X, Y )]2 ≥ (|X|μn−1(G) −d(X))(|Y |μn−1(G) −

d(Y )).

Proof. Let LXY be the principal submatrix of Laplacian matrix of G induced by the 
vertices in X ∪Y . Let |X ∪Y | = m. Then by Theorem 2.6, λm−1(LXY ) ≥ μn−1(G). The 
quotient matrix of LXY with respect to the partition (X, Y ) is

L2 =
(

d(X)
|X| − e(X,Y )

|X|

− e(X,Y )
|Y |

d(Y )
|Y |

)
.

By Theorem 2.7, the eigenvalues of L2 interlace the eigenvalues of LXY , and so λ1(L2) ≥
λm−1(LXY ) ≥ μn−1(G). Since μn−1(G) ≥ min{d(X)

|X| , 
d(Y )
|Y | }, by det(λ1(L2)I − L2) = 0

we have



142 Z.-M. Hong et al. / Linear Algebra and its Applications 611 (2021) 135–147
[e(X,Y )]2

|X||Y | =(λ1(L2) −
d(X)
|X| )(λ1(L2) −

d(Y )
|Y | )

≥(μn−1(G) − d(X)
|X| )(μn−1(G) − d(Y )

|Y | ).

The result follows. �
Remark 3.2. Instead of μn−1(G) ≥ max{d(X)

|X| , 
d(Y )
|Y | } in Lemma 3.2 of [17] when a = −1, 

μn−1(G) ≥ min{d(X)
|X| , 

d(Y )
|Y | } in Lemma 3.1 is sufficient to guarantee the conclusion holds.

Theorem 3.3. Let G be a graph of order n with minimum degree δ ≥ 2s
t . If |X|μn−1(G) >

2s−1
t for any X ⊂ V (G) with d(X) < δ, then η(G) ≥ s

t .

Proof. As μn−1(G) > 2s−1
t|X| > 0, G is connected and so c(G) = 1. By the definition of 

η(G), it suffices to prove for any F ⊆ E(G), t|F | ≥ s(c(G − F ) − 1).
Let c = c(G − F ) and Vi be the vertex set of each component of G − F for each 

i ∈ {1, 2 . . . , c}, which satisfy d(V1) ≤ d(V2) ≤ · · · ≤ d(Vc). If t · d(V2) ≥ 2s, then 
t|F | ≥ t

2
∑c

i=1 d(Vi) ≥ s(c − 1). Thus, we may assume that t · d(V2) ≤ 2s − 1.
Let q be the largest index such that t · d(Vq) ≤ 2s − 1. Then 2 ≤ q ≤ c and 

d(Vq) ≤ 2s−1
t < δ. By the hypothesis, we have |Vi|μn−1(G) > 2s−1

t ≥ d(Vi) for each 
i ∈ {1, 2, . . . , q}. Hence, by Lemma 3.1, for each i ∈ {2, . . . , q},

[e(V1, Vi)]2 ≥(|V1|μn−1(G) − d(V1))(|Vi|μn−1(G) − d(Vi))

>

(
2s− 1

t
− d(V1)

)(
2s− 1

t
− d(Vi)

)

≥
(

2s− 1
t

− d(Vi)
)2

.

It follows that e(V1, Vi) > 2s−1
t − d(Vi), or equivalently t · e(V1, Vi) ≥ 2s − t · d(Vi). Then 

t · d(V1) ≥ t 
∑q

i=2 e(V1, Vi) ≥
∑q

i=2(2s − t · d(Vi)). Therefore t 
∑q

i=1 d(Vi) ≥ 2s(q − 1). 
Thus,

2t|F | ≥t
c∑

i=1
d(Vi) = t

q∑
i=1

d(Vi) + t
c∑

i=q+1
d(Vi)

≥2s(q − 1) + 2s(c− q)

=2s(c− 1),

which completes the proof. �
As τ(G) = �η(G)	, by Theorem 3.3, we get the following corollary.
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Corollary 3.4. Let G be a graph of order n with minimum degree δ ≥ 2k. If |X|μn−1(G) >
2k − 1 for any X ⊂ V (G) with d(X) < δ, then τ(G) ≥ k.

By Lemma 2.2, |X| ≥ δ + 1 for any X ⊂ V (G) with d(X) < δ for any graph G. 
Combining this with the hypothesis of Theorem 1.3, we have |X|μn−1(G) > 2k − 1 and 
so τ(G) ≥ k. So Theorem 1.3 could be derived from Lemma 2.2 and Corollary 3.4.

Proofs of Theorems 1.8 and 1.9. If G is a graph with clique number ω(G) ≤ r, then by 
Lemma 2.2 we get |X| ≥ ϕ(δ, r) for any X ⊂ V (G) with d(X) < δ; if G is a graph with 
girth g ≥ 3, then by Lemma 2.4 we get |X| ≥ N(δ, g) for any X ⊂ V (G) with d(X) < δ. 
Therefore, in both cases, we have |X|μn−1(G) > 2s−1

t . By Theorem 3.3, η(G) ≥ s
t . �

It is easy to see that the condition of Theorem 3.3 is weaker than the one of The-
orems 1.8 and 1.9. Meanwhile, Theorem 3.3 presents a unified way to deal with girth, 
clique number and other graph parameters together with eigenvalues, and Theorems 1.3, 
1.8 and 1.9 are direct results of this unified viewpoint. For graphs with other structure 
parameter, we only need to discuss the lower bound of |X| for any X ⊂ V (G) with 
d(X) < δ.

3.2. Proof of Theorem 1.13

Proof of Theorem 1.13. Suppose to the contrary that γ(G) > s/t. By the definition of 
γ(G), there exists a nontrivial subgraph H of G with V (H) = V1 and E(H) = E1
satisfying |E1| > (|V1| − 1)s/t. It follows that t|E1| > (|V1| − 1)s, or equivalently t|E1| ≥
(|V1| − 1)s + 1. Thus,

|E1| ≥ (|V1| − 1)s/t + 1/t. (3.1)

Since H is simple, |V1|(|V1| − 1) ≥ 2|E1| > 2(|V1| − 1)s/t. Then |V1| > 2s/t, and so

|V1| ≥ �2s/t	 + 1. (3.2)

Let d̄1 = 1
|V1|

∑
v∈V1

dG(v). Since |V1| ≥ �2s/t	 + 1 and β > 0, we have

2s
t

>
2s
t

− β = 1
�2s

t 	 + 1

� 2s
t �+1∑
i=1

di ≥ d̄1 ≥ 2|E1|
|V1|

>
2(|V1| − 1)s/t

|V1|
>

2s
t

− 1,

which yields to

2s/t− 1 < d̄1 ≤ 2s/t− β < 2s/t. (3.3)

Since d(V1) =
∑

v∈V dG(v) − 2|E1| = |V1|d̄1 − 2|E1|, by (3.1), we have

1
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d(V1) ≤ |V1|d̄1 − 2(|V1| − 1)s/t− 2/t. (3.4)

By (3.4) and (3.3),

d(V1) ≤ |V1|(2s/t− β) − 2(|V1| − 1)s/t− 2/t = 2s/t− 2/t− β|V1|. (3.5)

By (3.5) and d(V1) ≥ 0, we get

|V1| ≤
2s− 2
tβ

. (3.6)

Moreover, by (3.4) and (3.3),

d(V1) ≤ |V1|d̄1 − 2(|V1| − 1)s/t− 2/t < |V1|d̄1 − d̄1(|V1| − 1) − 2/t < d̄1.

Hence, d(V1) < d̄1. Thus, by Lemma 2.3,

|V1| ≥ max{�d̄1	 + 1,
⌊

rd̄1

r − 1

⌋
− 1}.

Combining this with (3.2) and 2s/t > d̄1 ≥ δ, we have

|V1| ≥ max{�2s/t	+1, �d̄1	+1,
⌊

rd̄1

r − 1

⌋
−1} ≥ max{�2s/t	+1,

⌊
rδ

r − 1

⌋
−1} = θ. (3.7)

By (3.6) and (3.7),

θ ≤ |V1| ≤
2s− 2
tβ

, (3.8)

which implies β ≤ 2s−2
tθ . This yields a contradiction to the condition of (i). Therefore, if 

β > 2s−2
tθ , then γ(G) ≤ s

t . The proof of (i) is completed.
Combining n ≥ θ + 2s−2

tβ with (3.8), we obtain

|V1|(n− |V1|) ≥ θ(n− θ). (3.9)

Let (x1, x2, . . . , xn)T ∈ Rn. If i ∈ V1, then set xi = 1
2 ; if i /∈ V1, then set xi = −1

2 . Thus,

∑
ij∈E

(xi − xj)2 = d(V1) and
∑

ij∈V,i<j

(xi − xj)2 = |V1|(n− |V1|). (3.10)

By (3.5), (3.8), (3.9) and (3.10),

n
∑

ij∈E

(xi − xj)2∑
(xi − xj)2

= n · d(V1)
|V1|(n− |V1|)

≤ n · (2s/t− 2/t− β|V1|)
|V1|(n− |V1|)

≤ n(2s/t− 2/t− βθ)
θ(n− θ) .
i,j∈V,i<j
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By Lemma 2.5,

μn−1(G) ≤
n

∑
ij∈E

(xi − xj)2∑
i,j∈V,i<j

(xi − xj)2
≤ n(2s/t− 2/t− βθ)

θ(n− θ) ,

which yields a contradiction. Thus the proof of (ii) is completed. �
4. Adjacency eigenvalues and signless Laplacian eigenvalues

In this section, we present the relationship between η(G) (or τ(G), γ(G)) and λ2(G)
(or q2(G)).

Theorem 4.1 (Courant-Weyl Inequalities). Let A and B be Hermitian matrices of order 
n, and let 1 ≤ i, j ≤ n. If i + j ≤ n + 1, then λi(A) + λj(B) ≥ λi+j−1(A + B).

For real numbers a, b with b > 0 and a ≥ −b, let λi(G, a, b) be the ith largest eigenvalue 
of the matrix aD + bA.

Corollary 4.2. Let p ≥ 0, b > 0 and a ≥ −b be real numbers and G be a graph of order n
with minimum degree δ. If λ2(G, a, b) < (a + b)δ − bp, then μn−1(G) > p. In particular, 
if q2(G) < 2δ − p or λ2(G) < δ − p, then μn−1(G) > p.

Proof. Let A and D be the adjacency matrix and degree diagonal matrix of G. Since 
b(D − A) + (aD + bA) = (a + b)D, by Theorem 4.1, λn−1(b(D − A)) + λ2(aD + bA) ≥
λn((a + b)D). As b > 0 and a + b ≥ 0, bμn−1(G) + λ2(G, a, b) ≥ (a + b)δ. Therefore, 
if λ2(G, a, b) < (a + b)δ − bp, then μn−1(G) > p. In particular, λ2(G, 1, 1) = q2(G) and 
λ2(G, 0, 1) = λ2(G). The result follows. �

By Corollary 4.2 and the sufficient conditions on μn−1(G) in Theorems 1.8, 1.9 and 
1.13, we can obtain sufficient conditions on λ2(G, a, b), especially on λ2(G) and q2(G). 
We assume that b > 0 and a ≥ −b are real numbers and list the results as follows.

Theorem 4.3. Let r ≥ 2 be an integer, and G be a graph of order n with minimum degree 
δ ≥ 2s/t and clique number ω(G) ≤ r. If λ2(G, a, b) < (a + b)δ− b(2s−1)

tϕ(δ,r) , then η(G) ≥ s
t . 

In particular, if μn−1(G) > 2s−1
tϕ(δ,r) , or λ2(G) < δ − 2s−1

tϕ(δ,r) , or q2(G) < 2δ − 2s−1
tϕ(δ,r) , then 

η(G) ≥ s
t .

Corollary 4.4. Let k ≥ 2 and r ≥ 2 be integers, and G be a graph of order n with minimum 
degree δ ≥ 2k and clique number ω(G) ≤ r. If λ2(G, a, b) < (a + b)δ − b(2k−1)

ϕ(δ,r) , then 

τ(G) ≥ k. In particular, if μn−1(G) > 2k−1
ϕ(δ,r) , or λ2(G) < δ− 2k−1

ϕ(δ,r) , or q2(G) < 2δ− 2k−1
ϕ(δ,r) , 

then τ(G) ≥ k.
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Theorem 4.5. Let G be a graph of order n with minimum degree δ ≥ 2s/t and girth g ≥ 3. 
If λ2(G, a, b) < (a + b)δ − b(2s−1)

tN(δ,g) , then η(G) ≥ s
t . In particular, if μn−1(G) > 2s−1

tN(δ,g) , 
or λ2(G) < δ − 2s−1

tN(δ,g) , or q2(G) < 2δ − 2s−1
tN(δ,g) , then η(G) ≥ s

t .

Corollary 4.6. Let G be a graph of order n with minimum degree δ ≥ 2k and girth g ≥ 3. 
If λ2(G, a, b) < (a + b)δ− b(2k−1)

N(δ,g) , then τ(G) ≥ k. In particular, if μn−1(G) > 2k−1
N(δ,g) , or 

λ2(G) < δ − 2k−1
N(δ,g) , or q2(G) < 2δ − 2k−1

N(δ,g) , then τ(G) ≥ k.

Theorem 4.7. Let r ≥ 2 be an integer, and G be a graph of order n ≥ �2s
t 	 + 1 with 

degree sequence d1 ≥ d2 ≥ · · · ≥ dn = δ and clique number ω(G) ≤ r. Let β = 2s
t −

1
� 2s

t �+1
∑� 2s

t �+1
i=1 di and θ = max{�2s

t 	 + 1, � rδ
r−1	 − 1}. If 0 < β ≤ 2s−2

tθ , n ≥ θ + 2s−2
tβ

and λ2(G, a, b) < (a + b)δ − bn(2s/t−2/t−βθ)
θ(n−θ) , then γ(G) ≤ s

t .
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