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a b s t r a c t

For integers s ≥ 0 and t ≥ 0, a graph G is (s, t)-supereulerian if for any disjoint edge sets
X, Y ⊆ E(G) with |X | ≤ s and |Y | ≤ t , G has a spanning closed trail that contains X and
avoids Y . Pulleyblank in [J. Graph Theory, 3 (1979) 309-310] showed that determining
whether a graph is (0, 0)-supereulerian, even when restricted to planar graphs, is NP-
complete. Settling an open problem of Bauer, Catlin in [J. Graph Theory, 12 (1988) 29–45]
showed that every simple graph G on n vertices with δ(G) ≥

n
5 −1, when n is sufficiently

large, is (0, 0)-supereulerian or is contractible to K2,3. We prove the following for any
nonnegative integers s and t .

(i) For any real numbers a and b with 0 < a < 1, there exists a family of finitely
many graphs F(a, b; s, t) such that if G is a simple graph on n vertices with κ ′(G) ≥ t+2
and δ(G) ≥ an+ b, then either G is (s, t)-supereulerian, or G is contractible to a member
in F(a, b; s, t).

(ii) Let ℓK2 denote the connected loopless graph with two vertices and ℓ parallel
edges. If G is a simple graph on n vertices with κ ′(G) ≥ t + 2 and δ(G) ≥

n
2 − 1, then

when n is sufficiently large, either G is (s, t)-supereulerian, or for some integer j with
t + 2 ≤ j ≤ s + t , G is contractible to a jK2.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

We consider finite loopless graphs that may have parallel edges and follow [4] for undefined terms and notation. For
vertex subset or an edge subset X of a graph G, G[X] denotes the subgraph induced by X . As in [4], we use δ(G), κ(G)
nd κ ′(G) to denote the minimum degree, connectivity and the edge-connectivity of a graph G, respectively.
We define a relation ‘‘∼’’ on E(G) such that e1 ∼ e2 if e1 = e2, or if e1 and e2 form a cycle in G. It is routine to check

hat ∼ is an equivalence relation and edges in the same equivalence class are parallel edges with the same end vertices.
e use [uv] to denote the set of all edges between u and v in a graph, and shorten |[uv]| to |uv|. If G is a graph, then
(G) = max{|uv| : uv ∈ E(G)} is the multiplicity of G. Let ℓK2 denote the connected loopless graph with two vertices and
parallel edges. Thus for each edge e ∈ E(G), the edges parallel to e in G induces a subgraph isomorphic to |e|K2.
A graph G is supereulerian if G has a spanning closed trail. The supereulerian problem, which aims to characterize

upereulerian graphs, was first introduced by Boesch, Suffel and Tindell in [3]. Pulleyblank in [20] showed determining if
graph is supereulerian, even within planar graphs, is NP complete. Supereulerian graphs have been intensively studied,
s can be seen in the survey of Catlin [6], as well as the additional updated surveys on the subject in [10,14].
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The notion of (s, t)-supereulerian was formally introduced in [16,17], as a generalization of supereulerian graphs. For
ntegers s ≥ 0 and t ≥ 0, a graph G is (s, t)-supereulerian if for any disjoint edge sets X, Y ⊆ E(G) with |X | ≤ s and |Y | ≤ t ,
G has a spanning closed trail that contains X and avoids Y . Thus supereulerian graphs are precisely (0, 0)-supereulerian
raphs. A number of research results on the (s, t)-supereulerian problem and similar topics have been obtained, as seen
n [9,11–13,15–17,23], among others. Settling an open problem of Bauer posed in [1,2], Catlin [5] proved the following
heorem.

heorem 1.1 (Catlin, Theorem 9 of [5]). Let G be a simple graph on n vertices with κ ′(G) ≥ 2. If δ(G) ≥
n
5 − 1, then when n

is sufficiently large, G is (0, 0)-supereulerian, or G can be contracted to a K2,3.

It is natural to consider whether Theorem 1.1 can be extended to (s, t)-supereulerian graphs for all possible values of s
and t . By definition, if a graph G is (s, t)-supereulerian, then κ ′(G) ≥ t + 2. This motivates the current research. Our main
results are the following.

Theorem 1.2. For any nonnegative integers s and t, and any real numbers a and b with 0 < a < 1, there exists a family of
finitely many graphs F(a, b; s, t) such that if G is a simple graph on n vertices with κ ′(G) ≥ t + 2 and δ(G) ≥ an + b, then
one of the following must hold.
(i) G is (s, t)-supereulerian.
(ii) G is contractible to a member in F(a, b; s, t).

Let m, n, s, t be positive integers with n = 2m ≥ s + t . Define G to be the graph from a disjoint union of two graphs
G1 and G2, with G1 ∼= G2 ∼= Km, and by adding a set W of s + t − 1 new edges linking vertices in G1 to vertices in G2.
Then δ(G) =

n
2 − 1. Choose a subset X ⊂ W satisfying 1 < |X | ≤ s, |W − X | ≤ t and |X | ≡ 1 (mod 2). As |X | ≡ 1 (mod 2),

− (W − X) cannot have a spanning closed trail containing X . This example indicates that the bound in the next result
s best possible in some sense.

heorem 1.3. Let s and t be two nonnegative integers. If G is a simple graph on n vertices with κ ′(G) ≥ t+2 and δ(G) ≥
n
2 −1,

then when n is sufficiently large, one of the following must hold.
(i) G is (s, t)-supereulerian.
(ii) For some integer j with t + 2 ≤ j ≤ s + t, G is contractible to a jK2.

In the next section, we summarize former results and needed tools in our arguments to prove the main results. The
ain results will be validated in the last section.

. Mechanisms

Define NG[v] = NG(v) ∪ {v} for any vertex v ∈ V (G). We write H ⊆ G to mean that H is a subgraph of G. If X, Y are
ertex subsets of V (G), then define EG[X, Y ] = {xy ∈ E(G) : x ∈ X, y ∈ Y } and ∂G(X) = EG[X, V (G) − X]. If X = {v}, then

we often use ∂G(v) for ∂G(X). If X ⊆ E(G), the contraction G/X is the graph obtained from G by identifying the two ends
of each edge in X and then deleting the resulting loops. We define G/∅ = G. If H is a subgraph of G, we write G/H for
G/E(H). If H is a connected subgraph of G and vH is the vertex in G/H onto which H is contracted, then H is the preimage
of vH in G. A vertex v in the contraction G/X is nontrivial if its preimage in G has at least two vertices.

For an integer i ≥ 0, let Di(G) = {v ∈ V (G) : dG(v) = i} and O(G) be the set of all odd degree vertices of G. A graph G is
collapsible if for any subset R of V (G) with |R| ≡ 0 (mod 2), G has a spanning connected subgraph H with O(H) = R. By
definition, the singleton graph K1 is collapsible. Collapsible graphs are introduced by Catlin in [5] (see also Proposition 1
of [14]) as a useful tool to study eulerian subgraphs. As when R = ∅, a spanning connected subgraph H with O(H) = R is
a spanning closed trail of G, collapsible graphs are supereulerian graphs. Let H1,H2, . . . ,Hc denote the list of all maximal
collapsible subgraphs. The graph G′

= G/(∪c
i=1Hi) is the collapsible reduction of G, or simply the reduction of G in short.

A graph equaling its own reduction is a collapsible reduced graph, or simply a reduced graph in short. Theorem 2.1
below presents useful properties related to collapsible graphs.

Theorem 2.1. Let G be a graph and let H be a collapsible subgraph of G. Let vH denote the vertex onto which H is contracted
in G/H. Each of the following holds.
(i) (Catlin, Theorem 3 of [5]) G is collapsible (or supereulerian, respectively) if and only if G/H is collapsible (or supereulerian,
respectively). In particular, G is collapsible if and only if the reduction of G is K1.
(ii) (Catlin, Theorem 5 of [5]) A graph is reduced if and only if it does not have a nontrivial collapsible subgraph.
(iii) (Catlin [5]) Cycles of length at most 3 are collapsible.
(iv) (Catlin [5]) The contraction of a collapsible graph blue is collapsible.
(v) Let X ⊆ E(G) be an edge subset of G. If G − X is collapsible, then G has a spanning eulerian subgraph H with X ⊆ E(H).

Proof. It remains to prove (v). Let R = O(G[X]). Then R ⊆ V (G), and |R| ≡ 0 (mod 2). Since G − X is collapsible, G − X
has a spanning connected subgraph HR with O(HR) = R. It follows that H = G[E(HR ∪ X)] is a spanning eulerian subgraph
of G with X ⊆ E(H). ■
2
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For a graph G, let τ (G) be the maximum number of edge-disjoint spanning trees in G, and F (G) be the minimum number
of additional edges that must be added to G to result in a graph with two edge-disjoint spanning tree. Thus τ (G) ≥ 2 if
and only if F (G) = 0. Theorem 2.2(iii) below can be obtained by applying Theorem 1.4 of [7] to maximal 2-connected
subgraphs of G.

Theorem 2.2. Let G be a connected graph. Each of the following holds.
(i) (Catlin, Theorem 7 of [5]) If F (G) ≤ 1, then G is collapsible if and only if κ ′(G) ≥ 2. In particular, every graph G with
(G) ≥ 2 is collapsible.
ii) (Catlin et al. Theorem 1.3 of [7]) If F (G) ≤ 2, then either G is collapsible or its reduction is a member in {K2, K2,t : t ≥ 1}.
iii) (Catlin et al. Theorem 1.4 of [7]) If F (G) ≤ 2 and κ ′(G) ≥ 3, then G is collapsible.
iv) (Catlin et al. Lemma 2.3 of [7]) If G is a reduced graph with |V (G)| ≥ 2, then F (G) = 2|V (G)| − |E(G)| − 2.

As F (G) = 0 amounts to τ (G) ≥ 2, utilizing the spanning tree packing theorem of Nash-Williams [19] and Tutte [21],
he following is obtained.

heorem 2.3 (Catlin et al. Theorems 1.1 and 1.3 of [8]). Let G be a graph, ϵ ∈ {0, 1} and ℓ ≥ 1 be integers. The following are
quivalent:
i) G is (2ℓ + ϵ)-edge-connected;
ii) For any X ⊆ E(G) with |X | ≤ ℓ + ϵ, τ (G − X) ≥ ℓ.

Theorem 2.3 has a seemingly more general corollary, as stated below.

orollary 2.4 (Xiong et al. [22]). Let G be a connected graph, and ϵ, k, ℓ be integers with ϵ ∈ {0, 1}, ℓ ≥ 2 and 2 ≤ k ≤ ℓ.
he following are equivalent.
i) κ ′(G) ⩾ 2ℓ + ϵ.
ii) For any X ⊆ E(G) with |X | ≤ 2ℓ − k + ϵ, τ (G − X) ≥ k.

An elementary subdivision of an e = uv ∈ E(G) is the operation to form a new graph G(e) from G − e by adding a
ath uvev with ve being a new vertex in G(e). If X ⊆ E(G) is an edge subset, then G(X) denotes the resulting graph formed
y elementarily subdividing each edge in X . Observation 2.5 follows immediately from the definition.

bservation 2.5. For an edge subset X ⊆ E(G), let VX = {ve : e ∈ X}, EX = {uve, vev : e = uv ∈ X} and
′

X = {vev : e = uv ∈ X}. Each of the following holds.
i) VX = V (G(X)) − V (G) and EX = E(G(X)) − E(G).
ii) There exists a bijection between X and {veu : e ∈ X} and so G(X)/E ′

X
∼= G.

iii) For any 2-edge-connected subgraph H ′ of G(X), and for any e = uv ∈ X, if ve ∈ V (H ′), then both veu, vev ∈ E(H ′); and if
uve, vve} ∩ E(H ′) ̸= ∅, then {uve, vve} ⊂ E(H ′). Thus in view of Observation 2.5(ii), H = H ′/(E ′

X ∩ E(H ′)) is a subgraph of G,
alled the restoration of H ′ in G.
iv) G has a spanning eulerian subgraph H with X ⊆ E(H) and Y ∩ E(H) = ∅ if and only if (G − Y )(X) is supereulerian.

Chen, Chen and Luo (Theorem 4.1 of [9]) prove that if κ ′(G) ≥ 4, t ≤
κ ′(G)
2 and s + t + 1 ≤ κ ′(G), then G is

(s, t)-supereulerian. Proposition 2.6(ii) below extends this result when κ ′(G) ≥ 5.

Proposition 2.6. Let s, t be nonnegative integers and let G be a graph. Each of the following holds.
(i) If G is (s, t)-supereulerian, then any contraction of G is also (s, t)-supereulerian.
ii) Suppose that H is a graph with κ ′(H) ≥ max{s + t + 1, t + 2, 5}. Then H is (s, t)-supereulerian.
iii) If H = ℓK2 with ℓ ≥ max{s + t + 1, t + 2, 4}, then G is (s, t)-supereulerian if and only if G/H is (s, t)-supereulerian.

roof. Suppose that G is (s, t)-supereulerian and e0 ∈ E(G). Let Γ = G/e0. To prove (i), it suffices to show that Γ is also
(s, t)-supereulerian. Let X, Y ⊆ E(Γ ) be arbitrary edge subsets with X ∩ Y = ∅, |X | ≤ s and |Y | ≤ t . As E(Γ ) ⊆ E(G), and
since G is (s, t)-supereulerian, it follows from Observation 2.5(iv) that (G − Y )(X) has a spanning eulerian subgraph J . As
e0 ∈ E(G− (X ∪ Y )), let J + e0 denote the subgraph of (G− Y )(X) induced by E(J)∪ {e0}. Since J is eulerian, it follows that
J ′ = (J + e0)/e0 is also a connected graph without a vertex of odd degree, and so J ′ is a spanning eulerian subgraph of Γ .
Hence (i) holds.

Assume that κ ′(H) ≥ max{s+ t +1, t +2, 5}. Let X, Y be disjoint edge subsets of H with |X | ≤ s and |Y | ≤ t . By adding
edges to X if needed, we assume that |X | = s. If s+ t ≤ κ ′(H)−2, then by Corollary 2.4 (with k = 2), H − (X ∪ Y ) has two
edge-disjoint spanning trees, and so by Theorem 2.1(i), H−(X∪Y ) is collapsible. It follows from Theorem 2.1(iii) that H−Y
has a spanning eulerian subgraph containing X . Hence we assume that s+ t = κ ′(H)−1, and so s = κ ′(H)− t −1 ≥ 1. Let

⊆ X ∪Y with |W | = 2 and |W ∩ X | > 0 such that if s ≥ 2, then W ⊆ X; and let Z = (X ∪Y )−W . Hence |Z | ≤ s+ t −2,
nd so κ ′(H − Z) ≥ 3. By Corollary 2.4, τ (H − Z) ≥ 2. It follows that F ((H − Z)(W )) ≤ 2. As κ ′(H − Z) ≥ 3, then only edge
uts of size 2 in (H − Z)(W ) are those of the form ∂(H−Z)(W )(ve) for some e ∈ W . By Theorem 2.2(ii), either (H − Z)(W ) is
ollapsible or the reduction of (H − Z)(W ) is a K = K . As the latter case contradicts to the fact that κ ′(H − Z) ≥ 3,
2,|W | 2,2

3
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e conclude that (H−Z)(W ) is collapsible. By Theorem 2.1(v), (H−Y )(W ) has a spanning eulerian subgraph that contains
X − W , and so H − Y has a spanning eulerian subgraph that contains X . This proves (ii).

By (i), to prove (iii), it remains to assume that G/H is (s, t)-supereulerian to show that G is (s, t)-supereulerian. Let
GH = G/H and let vH denote the vertex in GH onto which H is contracted. By (ii), we may assume that H is not a spanning
subgraph of G, and so GH is nontrivial. Let X, Y be disjoint edge subsets of G with |X | ≤ s and |Y | ≤ t . Define X ′

= X−E(H),
′′

= X ∩ E(H), Y ′
= Y − E(H), and Y ′′

= Y ∩ E(H). Then |X ′
| ≤ s and |Y ′

| ≤ t . Since GH is a nontrivial (s, t)-supereulerian
graph, it follows by Observation 2.5(iv) that (GH − Y ′)(X ′) contains a spanning eulerian subgraph L′.

We need to extend L′ to a spanning eulerian subgraph of (G− Y )(X). Let G′′
= (G− Y )(X) and H ′′

= (H − Y ′′)(X ′′). Then
as E(L′) ∩ Y ′′

= ∅, by their definitions, both E(L′) ⊆ E((GH − Y ′)(X ′)) ⊆ E(G′′) and H ′′ is a subgraph of G′′. It follows that

(GH − Y ′)(X ′) = (G/H − Y ′)(X ′) = (G − Y ′)(X ′)/H = (G − Y )(X)/[(H − Y ′′)(X ′′)] = G′′/H ′′.

Since H = ℓK2 with ℓ ≥ max{s+ t +1, t +2, 4}, and since |X ′′
| ≤ s and |Y ′′

| ≤ t , H ′′ is a graph in which every edge lies in
a cycle of length at most 3, and so by Theorem 2.1(i) and (iii), H ′′ is collapsible. Let R = O(G′′

[E(L′)]). Then |R| ≡ 0 (mod
2). As L′ is an eulerian subgraph of (GH − Y ′)(X ′) = (G − Y )(X)/H = G′′/H ′′, we have R ⊆ V (H ′′). Since H ′′ is collapsible,
H ′′ has a spanning connected subgraph L′′ with O(L′′) = R. It follows that G′′

[E(L′)∪ E(L′′)] is a spanning eulerian subgraph
of G′′

= (G − Y )(X). By definition, G is (s, t)-supereulerian. ■

For given non negative integers s and t , let Ls,t denote the family of all (s, t)-supereulerian graphs. By definition,
K1 ∈ Ls,t . A graph H is a contractible configuration of Ls,t (or (s, t)-contractible, in short), if for any graph G containing
H as a subgraph, the following always holds:

G ∈ Ls,t if and only if G/H ∈ Ls,t .

Proposition 2.6 indicates that Ls,t is closed under taking contraction, and, if ℓ ≥ max{s + t + 1, t + 2, 4}, then ℓK2 is a
contractible configuration of Ls,t . A a graph Γ is (s, t)-reduced if Γ does not contain any nontrivial subgraph that is a
contractible configuration of Ls,t . For a graph G, the (s, t)-reduction of G, is the graph Γ formed from G by contracting
all maximal (s, t)-contractible subgraphs of G. By definition, if Γ is the (s, t)-reduction of G, then

G ∈ Ls,t if and only if Γ ∈ Ls,t . (1)

For a graph G, the (collapsible) reduction of G and the (s, t)-reduction of G may not be the same. To describe the
relationship between the two, we need a few more terms.

Definition 2.7. Let s and t be nonnegative integers, G be a graph, X and Y be disjoint edge subsets of G with |X | ≤ s and
|Y | ≤ t , and let J = (G − Y )(X) and J ′ be the reduction of J . For any vertex z ∈ V (J ′), let H ′

z denote the preimages of z in
J , and let Hz be the restorations of H ′

z in G − Y . Define

M = G[

⋃
z∈V (J ′)

E(Hz)],

M ′
= J[

⋃
z∈V (J ′)

E(H ′

z)],

X ′
= X ∩ E(M ′) and J ′′ = (G − Y )(X ′)/M ′.

Define Y ′
= {uv ∈ Y : there exists a graph L ∈ {Hz : z ∈ V (J ′)} such that u, v ∈ V (L)}, and Y ′′

= Y − Y ′.

The following lemma describes a relationship between the (collapsible) reduction of G and the (s, t)-reduction of G,
and will be needed in our arguments.

Lemma 2.8. We adopt the notation in Definition 2.7 and let X ′′
= X − X ′. Each of the following holds.

(i) X ′′
⊆ E(J ′′) and J ′′ = (G − Y )(X ′)/M ′

= (G − Y ′′)(X ′)/M ′.
(ii) J ′ = J ′′(X ′′) = ((G − Y ′′)/M)(X ′′).
(iii) If J is not supereulerian, then G can be contracted to an (s, t)-reduced and non (s, t)-supereulerian graph with order at

most |V (J ′)|.

Proof. Let G, J and J ′ be graphs defined as in Definition 2.7, for given edge subsets X, Y ⊆ E(G) with X ∩ Y = ∅, |X | ≤ s
and |Y | ≤ t .

Since J ′ is the reduction of J = (G − Y )(X), for any vertex z ∈ V (J ′), let H ′
z denote the preimage of z in J , and let Hz be

the restoration of H ′
z in G − Y . Thus V (G) = V (G − Y ) = ∪z∈V (J ′)V (Hz).

By Definition 2.7, J ′′ = (G − Y )(X ′)/M ′
= (G − Y ′′)(X ′)/M ′. As X ′

= X ∩ E(M ′), we have X ′′
⊆ E(J ′′), and so (i) follows.

Fix an arbitrary vertex z ∈ V (J ′). Since H ′
z is collapsible, κ ′(Hz) ≥ 2, and so for any vertex v ∈ V (Hz) ∩ VX , both

edges incident with v in J must also be in E(H ′
z). It follows from Theorem 2.1(iv) that Hz is a collapsible subgraph of G.

By definition, J ′ = J/M ′. Then by their definitions, the edges in Y ′ will become loops and be deleted in the process of
contracting M ′. It follows that J ′ = J/M ′

= [(G − Y )(X)]/M ′
= [(G − Y ′′)(X)]/M ′

= [(G − Y ′′)(X ′)]/M ′(X ′′) = J ′′(X ′′). By
Definition 2.7, J ′′ = (G − Y )(X ′)/M ′

= (G − Y ′′)/M , and so J ′ = J ′′(X ′′) = ((G − Y ′′)/M)(X ′′). This justifies (ii).
4
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Since J is not supereulerian, it follows by Theorem 2.1(i) that J ′ is not supereulerian. By Lemma 2.8(i) and (ii), the graph

[(G/M) − Y ′′
](X ′′) = ((G − Y ′′)/M)(X ′′) = [(G − Y ′′)(X ′)]/M ′(X ′′) = J ′′(X ′′) = J ′ (2)

is not supereulerian. Since |X ′′
| ≤ |X | ≤ s and |Y ′′

| ≤ |Y | ≤ t , G/M is not (s, t)-supereulerian. Let Γ be the (s, t)-
reduction of G/M . It follows by (1) that Γ is not (s, t)-supereulerian. By (2), the restoration of J ′ is G/M − Y ′′ and so
|V (Γ )| ≤ |V (G/M − Y ′′)| = |V (G/M)| ≤ |V (J ′)|. This completes the proof of the lemma. ■

In [22], an edge-connectivity necessary condition for (s, t)-supereulerian graph has been found.

Proposition 2.9 (Xiong et al. [22]). Let s, t be nonnegative integers. Define

j0(s, t) =

{
s + t +

1−(−1)s
2 if s ≥ 1 and s + t ≥ 3,

t + 2 otherwise.
(3)

If a graph G is (s, t)-supereulerian, then κ ′(G) ≥ j0(s, t).

The next lemma is also useful.

Lemma 2.10 (Liu et al. Lemma 3.1 of [18]). Let G be a simple graph with δ = δ(G), and X ⊆ V (G) be a subset. If |∂G(X)| < δ,
then |X | ≥ δ + 1.

3. Proof of Theorem 1.2

Let a, b, s, t be given as in the statement of Theorem 1.2, ℓ = max{s + t + 1, t + 2, 5}, and

c = max
{

10a
1 + a

+ 1, 4
}

. (4)

Define N = N(a, b, s, t) by

N = max
{
1
a

+ s + 3,
4 − b
a

,
|b + 1| − a(b + 1)

a2
,
c + t − b + 1

a
,
(1 + a)(c + 1) − 10a

a(c − 3)

}
, (5)

nd define F = F(a, b; s, t) to be the family of all (s, t)-reduced non (s, t)-supereulerian graphs of order at most N . By
Proposition 2.6(iii), every graph G in F has multiplicity at most ℓ − 1. Thus F is a family of finitely many graphs. In
particular, by Proposition 2.9,

{jK2 : 1 ≤ j ≤ j0 − 1} ⊂ F . (6)

To prove Theorem 1.2, we argue by contradiction, and assume that there exists a counterexample graph G with n = |V (G)|
minimized among all counterexample to the theorem. We have the following observations, stated as Claim 1.

Claim 1. The graph G satisfies the hypotheses of Theorem 1.2, as well as each of the following.
(i) G cannot be contracted to a member in F , and so n ≥ N + 1.
(ii) There exist disjoint edge subsets X, Y ⊆ E(G) with |X | = s and |Y | = t such that G− Y does not have a spanning closed

trail that contains all edges in X.

Let X and Y be the edge subsets assured by Claim 1(ii), and define J = (G − Y )(X). We adopt the notation in
Observation 2.5 for the definition of VX and EX . As κ ′(G) ≥ t + 2 and by Observation 2.5(iv),

κ ′(J) ≥ 2 and J is not supereulerian. (7)

Let J ′ denote the reduction of J , and define h = |D2(J ′)| and h1 = |D2(J ′) ∩ VX |. We have the following claim.

Claim 2. F (J ′) ≥ 3.

Suppose that F (J ′) ≤ 2. By Theorem 2.2(ii), either J ′ is supereulerian, whence by Theorem 2.1(i), J is supereulerian;
or J ′ = K2,h with h ≡ 1 (mod 2) and h ≥ 3. By (7), we must have J ′ = K2,h. Let Dh(J ′) = {u1, u2}, and let H ′

1,H
′

2 be the
preimages of u1 and u2 in J , respectively; and let H1 and H2 be the restorations of H ′

1 and H ′

2 in G − Y , respectively. Thus
V (G) = V (G − Y ) = V (H1) ∪ V (H2).

If h = h1, then h ≤ |X | ≤ s ≤ max{s+ t, 1}, and so by (6), G/(H1 ∪H2) = hK2 is a member in F , contrary to Claim 1(i).
hus we must have h > h1. Then for each vertex z ∈ D2(J ′) − VX , let H ′

z denote the preimage of z in J , and Hz be the
estoration of H ′

z in G − Y . Since H ′
z is collapsible, we have κ ′(Hz) ≥ 2. Pick a vertex v ∈ V (Hz). As z ∈ D2(J ′) − VX and by

n > N ≥
4−b
a , we have |V (Hz)| ≥ |NG[v]| − 2 ≥ an + b − 1 ≥ 3, It follows that there must be a vertex v′

∈ V (Hz) such
hat NG[z ′

] ⊆ V (Hz). Thus for each z ∈ D2(J ′) − VX , |V (Hz)| ≥ an + b + 1. This implies, by n > N ≥
|b+1|−a(b+1)

a2
in (5), that

h − h1 ≤
n

=
an + b + 1 − b − 1

=
1

−
b + 1

<
1

+ 1.

an + b + 1 a(an + b + 1) a a(an + b + 1) a

5



L. Lei, W. Xiong, Y. Xie et al. Discrete Mathematics 344 (2021) 112239

I
c

f

B

B

T

W
b

J
i
I

W

C
(
(
(
(

t follows by h1 ≤ s and (5) that |V (J ′)| = 2 + h = 2 + h1 + (h − h1) < 1
a + s + 3 ≤ N . By Lemma 2.8 and by (7), G can be

ontracted to an (s, t)-reduced graph with at most N vertices, which is in F , contrary to Claim 1(i). This proves Claim 2.
For each integer i, let di = |Di(J ′)|. By Claim 2, F (J ′) ≥ 3 and so by Theorem 2.2(iv), we have 4|V (J ′)| − 2|E(J ′)| ≥ 10.

As |V (J ′)| =
∑

ı≥2 di and 2|E(J ′)| ≥
∑

i≥2 idi, we have

2d2 + d3 ≥ 10 +

∑
i≥5

(i − 4)di. (8)

For each vertex v ∈ V (J ′) − VX , let H ′
v be the maximal collapsible subgraph in J which is the contraction preimage of v,

and let Hv be the restoration of H ′
v . Thus Hv is a subgraph of G.

Claim 3. Let n′
= |V (J ′)|, and define Zc = {v ∈ V (J ′) : dJ ′ (v) ≤ c}. Each of the following holds.

(i) For any z ∈ Zc , |V (Hz)| ≥ an + b + 1.
(ii) |Zc | ≤

1
a + 1.

(iii) n′
≤ N.

Fix a vertex z ∈ Zc . Then by (5), for any v ∈ V (Hz), as n > N ≥
c+t−b+1

a , we have |∂G(V (Hz))| ≤ c + t < an + b. It
ollows by Lemma 2.10 that |V (Hz)| ≥ an + b + 1. Thus (i) holds. By (i), we have

n = |V (G)| ≥

∑
z∈Zc

|V (Hz)| ≥ |Zc |(an + b + 1), and so |Zc | ≤
n

an + b + 1
.

y (5), n ≥ N ≥
|b+1|−a(b+1)

a2
, implying that |Zc | ≤

1
a + 1, and so (ii) follows as well.

To prove (iii), we observe that for any vertex v ∈ V (J ′) − Zc , dJ ′ (v) ≥ c + 1, and so by F (J ′) ≥ 3,

(c + 1)|V (J ′) − Zc | ≤

∑
v∈V (J ′)

dJ ′ (v) = 2|E(J ′)| ≤ 4n′
− 10.

It follows that |V (J ′) − Zc | ≤
4n′

−10
c+1 , and so by Claim 3(ii),

1
a

+ 1 ≥ |Zc | = n′
− |V (J ′) − Zc | ≥ n′

−
4n′

− 10
c + 1

= n′

(
1 −

4
c + 1

)
+

10
c + 1

. (9)

y algebraic manipulations and by (9), (4) and (5), we have

n′
≤

(1 + a)(c + 1) − 10a
a(c − 3)

≤ N.

hus (iii) holds, and so the claim is justified.
By Claim 3(iii), and by Lemma 2.8, G can be contracted to a member in F , contrary to Claim 1(i). This completes the

proof of Theorem 1.2.

4. Proof of Theorem 1.3

Let G be a graph satisfying the hypothesis of Theorem 1.3, and set

N = max{2t + 9, 2(2s + t + 2)}. (10)

e shall assume that n ≥ N and that Theorem 1.3(i) fails to show that Theorem 1.3(ii) must hold. As Theorem 1.3(i) fails,
y Observation 2.5(iv), there exist edge disjoint subsets X, Y ⊆ E(G) such that |X | ≤ s, |Y | ≤ t and

(G − Y )(X) is not supereulerian. (11)

Let J = (G−Y )(X) and J ′ be the reduction of J . Since κ ′(G) ≥ t +2, we have κ ′(J ′) ≥ 2. If F (J ′) ≤ 1, then by Theorem 2.2(i),
′ is collapsible, and so by Theorem 2.1(i), J is supereulerian, contrary to (11). Hence we must have F (J ′) ≥ 2. For each
nteger i, we again let di = |Di(J ′)|. By Theorem 2.2(iv), 2|V (J ′)| − |E(J ′)| − 2 = F (J ′) ≥ 2, and so 4

∑
i≥2 di ≥ 8 +

∑
i≥2 idi.

t follows that

2d2 + d3 ≥ 8 +

∑
i≥5

(i − 4)di. (12)

e will validate the following claim.

laim 4. Each of the following holds.
i) ∆(J ′) ≤ 2s.
ii) Every vertex in (

⋃2s
i=3 Di(J ′)) ∪ (D2(J ′) − VX ) is nontrivial.

iii) Let m be the number of nontrivial vertices in J ′. Then m ≤ 2.
′ ′ ∼ ′
iv) Let h = |D2(J )|. Then h ≡ 1 (mod 2), h ≥ 3, J = K2,h and D2(J ) ⊆ VX .

6
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i
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m
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By contradiction, we assume that ∆(J ′) ≥ 2s+1. Then for some j ≥ 2s+1, dj > 1, and so by (12), 2(d2+d3) ≥ 8+ (2s+
1− 4) = 2s+ 5. As both sides of the inequality are integers, we have d2 + d3 ≥ s+ 3. Since |VX ∩ D2(J ′)| ≤ |VX | = s, there
must be at least three vertices z1, z2, z3 ∈ D2(J ′)∪D3(J ′)−VX . For each i ∈ {1, 2, 3}, let H ′

zi denote the contraction preimage
of zi in J , and let Hzi denote the restoration of H ′

zi in G−Y . By (10), n ≥ N ≥ 2t+9, and so δ(G) ≥
n
2 −1 > 3+ t ≥ |∂G(Hzi )|.

By Lemma 2.10, |V (Hzi )| ≥
n
2 . It follows that n = |V (G)| ≥

∑3
i=1 |V (Hzi )| ≥

3n
2 , contrary to the fact n > 0. This proves (i).

Let z ∈ (
⋃2s

i=3 Di(J ′)) ∪ (D2(J ′) − VX ), H ′
z be the contraction preimage of z in J , and Hz denote the restoration of H ′

z in
G − Y . By (10), n ≥ N ≥ 2(2s + t + 2) ≥ 4, and so δ(G) ≥

n
2 − 1 > 2s + t ≥ |∂G(Hz)|. By Lemma 2.10, |V (Hz)| ≥

n
2 ≥ 2,

nd so (ii) follows.
By contradiction, we assume that J ′ has at least three nontrivial vertices, say w1, w2, w3. For each i ∈ {1, 2, 3}, let H ′

wi
enote the contraction preimage of wi in J , and let Hwi denote the restoration of H ′

wi
in G−Y . By (10), n ≥ N ≥ 2(2s+t+2),

nd so by Claim 4(i) that δ(G) ≥
n
2 − 1 > 2s + t ≥ |∂G(Hwi )|. By Lemma 2.10, |V (Hwi )| ≥

n
2 . It follows that

= |V (G)| ≥
∑3

i=1 |V (Hwi )| ≥
3n
2 , contrary to the fact n > 0. This proves (iii).

By Claim 4(i), dj = 0 for any j ≥ 2s+ 1, and so by Claim 4(ii), |V (J ′)|− |D2(J ′) ∩ VX | =
∑

i≥2 di −|D2(J ′) ∩ VX | ≤ 2. Thus
V (J ′)| ≤ |D2(J ′)| + 2. By Claim 4(iii), m ≤ 2. Let u1, . . . , um denote the nontrivial vertices of J ′. If at least one of the wi’s
s of even degree in J ′, then since the number of odd degree vertices of a graph must be even, it follows by m ≤ 2 that
′ is an eulerian graph, and so supereulerian. By Theorem 2.1(i), J is supereulerian, contrary to (11). Hence we must have

= 2 and both u1 and u2 are of odd degree in J ′. Since J ′ is reduced, J ′ contains no cycles of length at most 3, and so we
ust have NJ ′ (u1) = NJ ′ (u2) = D2(J ′). By (11), J ′ cannot be eulerian, and so h ≡ 1 (mod 2). Since κ ′(J ′) ≥ 2, we must have

h ≥ 3. Finally, since both u1 and u2 are not in D2(J ′), it follows by Claim 4(ii) and (iii) that D2(J ′) ⊆ VX . This proves (iv),
as well as Claim 4.

By Claim 4(iv), J ′ ∼= K2,h for some odd integer h ≥ 3. We continue using u1, u2 to denote the two vertices of degree h
in J ′, and define H ′

ui to be the preimage of ui in J , and Hui the restoration of H ′
ui in G − Y . By Claim 4(iv), D2(J ′) ⊆ VX . Let

X ′′
= {e ∈ X : ve ∈ D2(J ′)}. Since J ′ ∼= K2,h, we have V (G) = V (Hu1 ) ∪ V (Hu2 ) and X ′′

⊆ EG[V (Hu1 ), V (Hu2 )] ⊆ X ′′
∪ Y . Let

j = |EG[V (Hu1 ), V (Hu2 )]|. Then by κ ′(G) ≥ t + 2, we have t + 2 ≤ j ≤ |X ′′
| + |Y | ≤ s + t and G/(Hu1 ∪ Hu2 ) = jK2. Thus

Theorem 1.3(ii) must hold. This completes the proof of Theorem 1.3.
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