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a b s t r a c t

A graph G is pancyclic if it contains cycles of all possible lengths. A graph G is
1-hamiltonian if the removal of at most 1 vertices from G results in a hamiltonian
graph. In Veldman (1988) Veldman showed that the line graph L(G) of a connected graph
G with diameter at most 2 is hamiltonian. In this paper, we continue studying the line
graph L(G) of a connected graph G with |E(G)| ≥ 3 and diameter at most 2 and prove
the following:

(i) L(G) is pancyclic if and only if G is not a cycle of length 4 or 5, and G is not the
Petersen graph.

(ii) L(G) is 1-hamiltonian if and only if κ(L(G)) ≥ 3.
© 2020 Elsevier B.V. All rights reserved.

1. Introduction

We consider finite graphs without loops but permitting multiple edges, and follow [2] for undefined terms and
otation. Let G = (V (G), E(G)) be a undirected graph with vertex set V (G) and edge set E(G). For a graph G, κ(G), κ ′(G)

and δ(G) denote the connectivity, edge-connectivity and the minimum degree of G, respectively. We shall use d(u, v)
to denote the distance between a vertex u and a vertex v in G. For subgraphs H1 and H2 in a connected G, the distance
d(H1,H2) is defined to be min{d(v1, v2) : v1 ∈ V (H1) and v2 ∈ V (H2)}. When H1 is a vertex u (or edge e), we denote
d(H1,H2) by d(u,H2) (or d(e,H2)). The diameter and the edge diameter of G, denoted by diam(G) and diame(G), are
efined as diam(G) = max{d(u, v) : u, v ∈ V (G)}, and diame(G) = max{d(e1, e2) : e1, e2 ∈ E(G)}. The girth of a graph G,

denoted by g(G), is the length of a shortest cycle of G.
The line graph of a graph G, denoted by L(G), is a simple graph with E(G) as its vertex set, where two vertices in L(G) are

adjacent if and only if the corresponding edges in G are adjacent. Then diame(G) = diam(L(G)). In 1986, Thomassen initiated
ne of the most fascinating conjectures on hamiltonian line graphs, as stated in Conjecture 1.1. In [19], Ryjáček uses an
ngenious argument to show that Conjecture 1.1(i) is equivalent to a seeming stronger statement in Conjecture 1.1(ii).
ater, Ryjáček and Vrána in [20] indicated that all four statements in Conjecture 1.1 are mutually equivalent.

onjecture 1.1. (i) (Thomassen [21]) Every 4-connected line graph is hamiltonian.
(ii) (Matthews and Sumner [18]) Every 4-connected claw-free graph is hamiltonian.
(iii) (Kučzel and Xiong [14]) Every 4-connected line graph is Hamilton-connected.
(iv) (Ryjáček and Vrána [20]) Every 4-connected claw-free graph is Hamilton-connected.
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Towards Conjecture 1.1, Zhan proved the first result in this direction. The best known result is given by Kaiser and
rána, as shown below.

heorem 1.2. Let G be a graph.
(i) (Zhan, Theorem 3 in [24]) If κ(L(G)) ≥ 7, then L(G) is Hamilton-connected.
(ii) (Kaiser and Vrána [13]) If κ(L(G)) ≥ 5 and δ(L(G)) ≥ 6, then L(G) is Hamilton-connected.

A graph G with vertex set V (G) and edge set E(G) is pancyclic if it contains cycles of all lengths l, 3 ≤ l ≤ |V (G)|. For
n integer s ≥ 0, a graph G of order n ≥ s + 3 is s-hamiltonian if for any X ⊆ V (G) with |X | ≤ s, G − X is hamiltonian.
esearchers also consider the necessary and sufficient condition version of Conjecture 1.1 by asking whether there exists
n integer s ≥ 2 such that every line graph L(G) is s-hamiltonian if and only if κ(L(G)) ≥ s + 2, as seen in [4,8,16,17],
mong others.
While every conjecture in Conjecture 1.1 is till open, whether it is hard to find a counterexample remains to be

nswered. In [1], Blass and Harary indicated that using the Erdös–Rényi model [9,10] with any positive constant probability
n the occurrence of an edge in the random graph, almost every graph has diameter 2. Thus a property possessed by the
amily of graphs of diameter 2 will have a higher probability to be a property for generic graphs. Gould and Veldman
nvestigated the hamiltonian cycles in claw-free graphs of diameter 2 and the line graphs of a graph of diameter 2.

heorem 1.3. Let G be a graph with diameter at most 2.
(i) (Gould [11]) If G is 2-connected and K1,3-free, then G is hamiltonian.
(ii) (Veldman [22]) If |E(G)| ≥ 3, then L(G) is hamiltonian.

Let Cn be a cycle of length n and P(10) denote the Petersen graph. In 1993, Xiong et al. [23] discussed the pancyclicity
f the line graph and proved the following.

heorem 1.4 ([23]). Let G be a graph of order n with at least a cycle. If diam(L(G)) ≤ 2 and G ̸∈ {C4, C5}, then L(G) is pancyclic.

In this paper we consider the pancyclicity and 1-hamiltonicity of the line graph L(G) when the diameter of G is at most
. The main purpose of this research is to prove the following.

heorem 1.5. Let G be a graph with |E(G)| ≥ 3 and diam(G) ≤ 2. Then L(G) is pancyclic if and only if G /∈ {C4, C5, P(10)}.

heorem 1.6. Let G be a graph with diam(G) ≤ 2. Then L(G) is 1-hamiltonian if and only if κ(L(G)) ≥ 3.

Let P(10)′ be the graph from P(10) by adding an edge joining two neighbors of a vertex to form a 3-cycle. Then
iam(L(P(10)′)) = 3 and diam(P(10)′) = 2. Thus whether L(P(10)′) is pancyclic or not cannot be decided by Theorem 1.4.
owever, as P(10)′ is not the Petersen graph, Theorem 1.5 can be applied to conclude that L(P(10)′) is pancyclic.
In Section 2, we introduce Catlin’s reduction method and the related results. The proofs of the main results will be

iven in the last two sections.

. Preliminaries

A graph G is eulerian if G is connected with O(G) = ∅, and is supereulerian if G has a spanning eulerian subgraph.
subgraph H of a graph G is dominating if G − V (H) is edgeless. Harary and Nash–Williams proved a very useful

onnection between hamiltonian cycles in the line graph L(G) and dominating eulerian subgraphs in G.

heorem 2.1 (Harary and Nash–Williams [12]). For a connected graph G with |E(G)| ≥ 3, L(G) is hamiltonian if and only if
has a dominating eulerian subgraph.

An edge cut X of G is essential if G − X has at least two nontrivial components. For an integer k > 0, a graph
is essentially k-edge-connected if G does not have an essential edge cut X with |X | < k. In particular, the essential

dge-connectivity of G, denote by ess′(G), is the size of a minimum essential edge-cut, if one such cut exists; or infinity if
o such cut exists. For any v ∈ V (G) and an integer i ≥ 0, define Di(G) = {v ∈ V (G) : dG(v) = i}.
Let X ⊆ E(G) be an edge subset of G. The contraction G/X is the graph obtained from G by identifying the two ends

f each edge in X and then deleting the resulting loops. If H is a subgraph of G, we write G/H for G/E(H). If vH is the
vertex in G/H onto which H is contracted, then H is called the preimage of v, and denoted by PI(v). Let O(G) denote
the set of odd degree vertices of G. A graph G is eulerian if O(G) = ∅ and G is connected. A graph G is supereulerian if
G has a spanning eulerian subgraph. In [6] Catlin defined collapsible graphs. Given an even subset R of V (G), a subgraph
Γ of G is called an R-subgraph if O(Γ ) = R and G − E(Γ ) is connected. A graph G is collapsible if for any even subset
R of V (G), G has an R-subgraph. In particular, K1 is collapsible. Catlin [6] showed that for any graph G, one can obtain
the reduction G′ of G by contracting all maximal collapsible subgraphs of G. A graph G′ is reduced if G′ has no nontrivial
collapsible subgraphs. A vertex in G′ is nontrivial (or trivial) if |V (PI(x))| ≥ 2 (or |V (PI(x))| = 1). By definition, every
collapsible graph is supereulerian.

For a graph G, let F (G) be the minimum number of additional edges that must be added to G so that the resulting
graph has two edge-disjoint spanning trees. The following theorem summarizes the useful results on collapsible graphs
and reduced graphs needed in our arguments.
2
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heorem 2.2 (Catlin, [6]). Let G be a connected graph. Then each of the following holds:
(i) G is reduced if and only if G has no nontrivial collapsible subgraphs.
(ii) For n ̸= 2, the complete graph Kn and the 2-cycle C2 are collapsible.
(iii) If G is reduced, then G is simple, K3-free, g(G) ≥ 4 and δ(G) ≤ 3.
(iv) If H is a collapsible subgraph of G, then G is collapsible if and only if G/H is collapsible.
(v)If G is reduced, then F (G) = 2|V (G)| − |E(G)| − 2.
(vi) Let H be a collapsible graph of G and let vH denote the vertex of G/H onto which H is contracted. If G/H has an eulerian

ubgraph L′ containing vH , then G has a eulerian subgraph L with E(L′) ⊆ E(L) and V (H) ⊆ V (L).

heorem 2.3 (Catlin et al. Theorem 1.5 of [7]). Let G be a connected graph and let G′ be the reduction of G. If F (G) ≤ 2, then
′
∈ {K1, K2, K2,t} for some integer t ≥ 1. Therefore, G is supereulerian if and only if G′

̸∈ {K2, K2,t} for some odd integer t.

Let H is a subgraph of G, define

∂G(H) = {uv ∈ E(G) : u ∈ V (H), v ∈ V (G) − V (H)}.

he subscript G in the notation above might be omitted if G is understood from the context. From Theorem 2.1 one easily
roves a more general result.

heorem 2.4 ([3]). The line graph L(G) of a graph G contains a cycle of length l ≥ 3 if and only if G has an eulerian subgraph
such that |E(H)| ≤ l ≤ |E(H)| + |∂G(H)|.

A useful tool is introduced to investigate the pancyclicity of line graphs. Define

spL(G) = {l : there is an eulerian subgraph H ⊆ G such that |E(H)| ≤ l ≤ |E(H)| + |∂G(H)|}.

orollary 2.5. Let G be a graph with |E(G)| ≥ 3. Then L(G) is pancyclic if and only if for any integer l with 3 ≤ l ≤ m,
∈ spL(G).

emma 2.6. Let G be spanned by a K1,n−1 with n ≥ 2 and m = |E(G)| ≥ 4. Then the following statements hold.
(i) L(G) is pancyclic.
(ii) If G is essentially 3-edge-connected, then for any e0 ∈ E(G), (G − e0) − D1(G − e0) is supereulerian.

roof. By assumption, G has K1,n−1 as a spanning subgraph. Let v0 be the vertex of degree n− 1 in this K1,n−1. If n = 2, 3
r if G = K1,n−1, then L(G) is a complete graph and so both (i) and (ii) hold. Assume that n ≥ 4, m ≥ n.
(i) Since m ≥ n, every edge of G − D1(G) lies in a cycle of length at most 3 that contains v0. It follows that G − D1(G)

as edge-disjoint subgraphs S1, S2, . . . , St each of which contains v0 such that 2 ≤ |E(Si)| ≤ 3 (1 ≤ i ≤ t), and ∪
t
i=1Si is a

ominating eulerian subgraph of G. Let s0 =
∑t

i=1 |E(Si)| = |E(∪t
i=1Si)|. For any integer l with 3 ≤ l ≤ m, if l ≥ s0, then as

t
i=1Si is a dominating eulerian subgraph, l ∈ spL(G). Thus we assume that 3 ≤ l < s0. Then there exist S1, S2, . . . , St ′ with

′ < t and an integer r such that l =
∑t ′

i=1 |E(Si)| + r and 0 ≤ r ≤ 2. Let H = ∪
t ′
i=1Si. Then |E(H)| ≤ l ≤ |E(H)| + |∂G(H)|.

o l ∈ spL(G). This completes the proof of (i).
(ii) By contraction, we assume that G is a counterexample with |V (G)|+|E(G)| smallest. Then there exists some e0 ∈ E(G)

uch that G⋆
= (G − e0) − D1(G − e0) is not supereulerian. If G⋆ contains a nontrivial collapsible subgraph H , then we set

′
= |V (G/H)|. Since G is spanned by K1,n−1, G/H is spanned by K1,n′−1. By the minimality of G, (G/H − e0)−D1(G/H − e0)

s supereulerian, and so by Theorem 2.2(vi), (G − e0) − D1(G − e0) is supereulerian. So we assume that G − e0 is reduced.
f G− e0 = K1,n−1, then (G− e0)−D1(G− e0) = K1 is supereulerian. Therefore, e0 is incident to v0 and G contains either a
-cycle or a 4-cycle that contains e0. Without loss of generality, we assume that e0 = v0v1. If G contains a triangle, then
his triangle must be C3 = v0v1v2v0. Thus {v0v1, v0v2} is an essential 2-edge-cut, a contradiction. If G contains a 4-cycle,
hen this 4-cycle must be C4 = v0v2v1v3v0 for some vertices v2, v3 ∈ NG(v1). It follows that C4 is a spanning cycle of
G − e0) − D1(G − e0), contrary to the assumption that G is a counterexample. ■

efinition 2.7. Let C = x1x2y1y2x1 be a 4-cycle in G with a partition π (C) = ⟨{x1, y1}, {x2, y2}⟩. Following [5], we define
/π (C) to be the graph obtained from G − E(C) by identifying x1 and y1 to form a vertex v1, by identifying x2 and y2 to
orm a vertex v2, and by adding an edge eπ (C) = v1v2.

heorem 2.8 (Catlin, [5]). Let G be a graph that contains a 4-cycle C and let G/π (C) be defined as above. Each of the following
olds.
(a) If G/π (C) is collapsible, then G is collapsible.
(b) If G/π (C) has a spanning eulerian subgraph, then G has a spanning eulerian subgraph.

emma 2.9. Let G be a connected graph on n ≥ 4 vertices with diam(G) ≤ 2 and let C = x1x2y1y2x1 be a 4-cycle of G. Using
he notation in Definition 2.7, each of the following holds.

(i) diam(G/π (C)) ≤ 2.
(ii) Either κ(G/π (C)) ≥ 2 or G/π (C) is spanned by K .
1,n−1

3
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roof. (i) By contradiction, assume that diam(G/π (C)) ≥ 3. Then there are two vertices x ∈ NG/π (C)(v1) − {v2}, y ∈

G/π (C)(v2) − {v1} such that dG/π (C)(x, y) ≥ 3. Without loss of generality, we assume that x ∈ NG(x1) and y ∈ NG(x2). Then
G(x, y) ≥ 3, a contradiction. So diam(G/π (C)) ≤ 2.
(ii) Assume that κ(G/π (C)) = 1. By (i), G/π (C) is spanned by K1,n−1. ■

. Proof of Theorem 1.5

Let s, k be two positive integers. Let H1 ∼= K2,s and H2 ∼= K2,k be two complete bipartite graphs. Let v1, u1 be two
onadjacent vertices of degree s in H1, and v2, u2 be two nonadjacent vertices of degree k in H2. Let Ss,k denote the graph
btained from H1 and H2 by identifying v1 and v2 and connecting u1 and u2 with a new edge u1u2. Note that S1,1 is the
ame as C5, the 5-cycle.

heorem 3.1 (Lai [15]). Let G be a reduced graph. If diam(G) = 2, then exactly one of the following holds:
(a) G ∼= K1,t , t ≥ 2;
(b) G ∼= K2,t , t ≥ 2;
(c) G ∼= Ss,k, s, k ≥ 1;
(d) G is P(10), the Petersen graph.

emma 3.2. Let G ̸∈ {C4, C5, P(10)} be a graph with m = |E(G)| ≥ 3 and diam(G) ≤ 2, and let s ≥ 3 be an integer. If G has
trail T with |E(T )| ≤ s ≤ |E(T )| + |∂(T )|, then G has an eulerian subgraph H such that |E(H)| ≤ s ≤ |E(H)| + |∂G(H)|.

roof. By contradiction, we assume that

there is an integer s ≥ 3 such that the conclusion of Lemma 3.2 is false. (1)

As m ≥ 3, G ̸∈ {C4, C5} and diam(G) ≤ 2, we have ∆(G) ≥ 3. By (1), s ≥ 4. Let T = v0v1v2 · · · vt−1vt . We will apply the
ollowing operations in order on T .

Step 1). If dT (v0) > 1, then delete the edge v0v1 from T to have the new trail T1 = v1v2 · · · vt ; if dT (vt ) > 1, then delete
he edge vtvt−1 from T . Repeat this step until the two end vertices have degree one in the trail. After Step 1 is finished,
e assume that Tl1 = v1

0v
1
1 · · · v1

t1 .

Step 2). If NG(v1
0)−V (Tl1 ) ̸= ∅ and |E(Tl1 )| < s, then we assume that y10 ∈ NG(v1

0)−V (Tl1 ). Replace T by T2 = y10v
1
0v

1
1 · · · v1

t1 .
Keep applying this operation on y10 if NG(y10) − V (T2) ̸= ∅ and |E(T2)| < s, and v1

t1 if NG(v1
t1 ) − V (T2) ̸= ∅ and |E(T2)| < s.

fter Step 2 is finished, we assume that Tl2 = v2
0v

2
1 · · · v2

t2 .

Step 3). If dTl2 (v
2
1) ≥ 4, then replace Tl2 by T3 = v2

2v
2
3 · · · v2

t2 .
Repeat Steps 1–3 until the degree of the second and last second vertices have degree 2 in the trail.

Claim 1. Assume that T ′
= x0x1 · · · xk is the trail obtained from T by applying Steps 1–3. Then we have the following.

(i) |E(T ′)| ≤ s ≤ |E(T ′)| + |∂(T ′)|.
(ii) dT ′ (x0) = dT ′ (xk) = 1.
(iii) If |E(T ′)| < s, then NG(x0) ⊆ V (T ′) and NG(xk) ⊆ V (T ′).
(iv) dT ′ (x1) = dT ′ (xk−1) = 2.

Proof of Claim 1. If dT (v0) > 1, then v1v2 is not a cut edge of T . Then |E(T1)| = |E(T )| − 1. As dT (v0) > 1,
|E(T1)| + |∂(T1)| = |E(T )| + |∂(T )|. Keep applying this operation on the end vertices of trail if their degrees are greater
than 1 in the trail. Although the number of edges would be smaller, |E(H)| + |∂(T )| cannot be changed. After Step 1 is
finished, we assume that Tl1 = v1

0v
1
1 · · · v1

t1 . Then dTl1 (v
1
0) = dTl1 (v

1
t1 ) = 1 and |E(Tl1 )| ≤ s ≤ |E(Tl1 )| + |∂(Tl1 )|.

If NG(v1
0)−V (Tl1 ) ̸= ∅ and |E(Tl1 )| < s, then |E(T2)| = |E(Tl1 )|+1 and |E(Tl1 )|+|∂(Tl1 )| ≤ |E(T2)|+|∂(T2)|. As |E(Tl1 )| < s,

|E(T2)| ≤ s ≤ |E(T2)| + |∂(T2)|. Keep applying this operation on y10 if NG(y10) − V (T2) ̸= ∅ and |E(T2)| < s, and v1
t1 if

G(v1
t1 )−V (T2) ̸= ∅ and |E(T2)| < s. After Step 2 is finished, we have dTl2 (v

2
0) = dTl2 (v

2
t2 ) = 1, |E(Tl2 )| ≤ s ≤ |E(Tl2 )|+|∂(Tl2 )|,

nd NG(v2
0) ⊆ V (Tl2 ) and NG(v2

t2 ) ⊆ V (Tl2 ) if |E(Tl2 )| < s.
If dTl2 (v

2
1) ≥ 4, then, as dTl2 (v

2
0) = 1, v2

1v
2
2 is not a cut edge of Tl2 . If |E(Tl2 )| < s, as NG(v2

0) ⊆ V (Tl2 ), we have
E(T3)| + |∂(T3)| = |E(T )| + |∂(T )|. Thus |E(T3)| ≤ s ≤ |E(T3)| + |∂(T3)|. If |E(Tl2 )| = s, then, as dTl2 (v

2
1) ≥ 4, we have

2
0v

2
1, v

2
1v

2
2 ∈ ∂(T3). Thus |E(T3)| < s ≤ |E(T3)| + |∂(T3)|. Repeat Steps 1–3 on this new trail T3. Once this procedure cannot

e performed, (i)-(iv) are true. Claim 1 holds. ■
By (1), x0 ̸= xk. By Claim 1(iv), xk ̸= x1, x0 ̸= xk−1, and x1 ̸= xk−1. By (1) and Claim 1(iii),

x1xk, x0xk−1 ̸∈ E(G). (2)

Claim 2. s ≥ 5.

Proof of Claim 2. By contradiction, we assume that s = 4. By (1), we have
∆(G) ≤ 3,G has no a 4-cycle, and if G has a cycle Ck(k = 2, 3), then |∂(Ck)| ≤ 3 − k. (3)

4
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If |E(T ′)| ≤ 3, by Claim 1(iii), NG(x0) ⊆ V (T ′) and NG(xk) ⊆ V (T ′). If |E(T ′)| = 2, then dG(x1) ≥ 4 since |E(T ′)|+|∂(T ′)| ≥ 4,
ontrary to (3). If |E(T ′)| = 3, by (3), x0x3, x0x2, x1x3 ̸∈ E(G). Thus dG(x0) = dG(x3) = 1. This implies that distG(x1, x3) = 3,
contradiction. So |E(T ′)| = 4.
If x2 = x4, then H1 = x2x3x2 is an eulerian subgraph with |E(H1)| = 2 and x1x2 ∈ ∂(H1). By (3), ∂(H1) = {x1x2}. Thus

G(x3) = 2 and dG(x2) = 3. So distG(x0, x3) = 3, a contradiction. By symmetry, x0, x1, . . . , x4 are different vertices. Also we
ssume that x0x4 ∈ E(G) (Otherwise, if x0x4 ̸∈ E(G), by (3), x1x4 ̸∈ E(G). Thus there is a vertex w1 ̸∈ {x0, x1, . . . , x4} such
hat w1x1, w1x4 ∈ E(G), and so x1x2x3x4w1x1 is a 5-cycle. Thus we use the new eulerian trail T ′′

= x1x2x3x4w1 to discuss
nstead of T ′.)

As G ̸= C5, there is a vertex u1 ̸∈ {x0, x1, . . . , x4} such that NG(u1) ∩ {x0, . . . , x4} ̸= ∅. Without loss of generality, we
ssume that x1u1 ∈ E(G). By (3), u1x3, u1x4 ̸∈ E(G). As distG(u1, x3) ≤ 2 and distG(u1, x4) ≤ 2, there are vertices u3, u4 ̸∈

x0, . . . , x4} such that x4u4, x3u3, u1u3, u1u4 ∈ E(G). By (3), u4x2 ̸∈ E(G). Thus there is a vertex u2 ̸∈ {u1, u3, u4, x0, . . . , x4}
uch that u4u2, u2x2 ∈ E(G). Similarly, there is a vertex u0 ̸∈ {u1, u2, u3, u4, x0, . . . , x4} such that u0x0, u0u3 ∈ E(G). If
0u2 ̸∈ E(G), there is a vertex w2 ̸∈ {u0, . . . , u4, x0, . . . , x4} such that w2u0, w2u2 ∈ E(G). As ∆(G) ≤ 3, distG(w2, x4) ≥ 3,
contradiction. So u0u2 ∈ E(G). Therefore, G = P(10), a contradiction. Claim 2 holds. ■
Notice that |E(T ′)| + |∂(T ′)| ≥ s. If |E(T ′)| = 2, then dG(x1) ≥ s, contrary to (1). If |E(T ′)| = 3, then |∂(T ′)| ≥ s − 3.

y (1) and Claim 1(iii), x0x2, x1x3 ̸∈ E(G) and x0x3 ̸∈ E(G). Thus dG(x0) = dG(x3) = 1. This implies that distG(x0, x3) = 3,
contradiction. If |E(T ′)| = 4, as |E(T ′)| < s ≤ |E(T ′)| + |∂(T ′)| and Claim 1(iii), x0x4 ̸∈ E(G) and x0x3, x1x4 ∈ E(G). As

distG(x0, x4) ≤ 2, we have x0x2, x2x4 ∈ E(G). Therefore, the eulerian subgraph H2 = x0x1x2x0 satisfies that |E(H2)| < s ≤

|E(H2)| + |∂(H2)| if s = 5, or H2 = x2x0x1x2x4x3x2 satisfies |E(H2)| ≤ s ≤ |E(H2)| + |∂(H2)| = |E(T )| + |∂(T )| if s ≥ 6,
ontrary to (1). So |E(T ′)| ≥ 5.
As k = |E(T ′)| ≥ 5 and by Claim 1(iv), x1xk−1 ̸∈ E(T ). If x1xk−1 ∈ E(G), then the eulerian subgraph H3 = x1x2 · · · xk−1x1

satisfies x0x1, xk−1xk ∈ ∂(H3). By (1), |E(T ′)| < s. By Claim 1(iii), |E(T ′)| + |∂(T ′)| = |E(H3)| + |∂(H3)| and so |E(H3)| < s ≤

E(H3)|+|∂(H3)|, contrary to (1). So x1xk−1 ̸∈ E(G). As distG(x1, xk−1) ≤ 2, there is a vertex w2 such that w2x1, w2xk−1 ∈ E(G).
y (1) and Claim 1(iii), w2 ∈ {x0, x2, xk, xk−2}. By (2), w2 ∈ {x2, xk−2}. Without loss of generality, we assume that w2 = x2.
hus x2xk−1 ∈ E(G). Let H4 = x2x3 · · · xk−1x2. Then x1x2, xk−1xk ∈ ∂(H4) and |E(H4)| = |E(T ′)| − 2. If |E(T ′)| = s, then H4 is
n eulerian subgraph with |E(H4)| < s ≤ |E(H4)| + |∂(H4)|, contrary to (1). So |E(T ′)| ≤ s− 1. Thus x0xk ̸∈ E(G), otherwise,
he eulerian subgraph H5 = x0x1 · · · xkx0 satisfies |E(H5)| = |E(T ′)| + 1 ≤ s and |E(H5)| + |∂(H5)| = |E(T ′)| + |∂(T ′)| ≥ s,
ontrary to (1).
Assume that |E(T ′)| = s− 1. As |E(H4)| = |E(T ′)| − 2 = s− 3 and x1x2, xkxk−1 ∈ ∂(H4), |E(H4)| + |∂(H4)| ≥ s− 1. By (1),

E(H4)|+|∂(H4)| = s−1, and so ∂(H4) = {x1x2, xkxk−1}. By Claim 1(iii), dG(x0) = 1 and so dist(x0, xk−1) = 3, a contradiction.
o |E(T ′)| ≤ s − 2. As distG(x0, xk) ≤ 2, there is a vertex w3 such that w3x0, w3xk ∈ E(G). By (2), w3 ̸∈ {x1, xk−1}. By

Claim 1(ii), w3x0, w3xk ̸∈ E(T ′). Thus the eulerian subgraph H6 = x0x1 · · · xkw3x0 satisfies |E(H6)| = |E(T ′)| + 2 ≤ s ≤

|E(H6)| + |∂(H6)|, a contradiction. ■

Proof of Theorem 1.5. If L(G) is pancyclic, then L(G) contains Ck with 3 ≤ k ≤ |E(G)|. But L(C4) has no 3-cycle, L(C5) has no
3-cycle and 4-cycle, L(P(10)) has no 4-cycle. Thus G ̸∈ {C4, C5, P(10)}. It remains to prove the sufficiency of Theorem 1.5.
Let G be a connected graph with order n. By Lemma 2.6, we assume that n = |V (G)| ≥ 4. By contradiction, assume that

G is a counterexample with |V (G)| + |E(G)| is minimized. (4)

Suppose g(G) ≤ 2. Then G has a 2-cycle {e1, e2}. Since G is a counterexample, there is an integer l0 with 3 ≤ l0 ≤ m
uch that l0 ̸∈ spL(G). By (4), we have l0 ∈ spL(G− e1). By Theorem 2.4, G− e1 has an eulerian subgraph H ′ and ∂(G−e1)(H

′)
such that |E(H ′)| ≤ l0 ≤ |E(H ′)| + |∂(G−e1)(H

′)|. As H ′ is a subgraph of G and ∂G(H ′) = ∂(G−e1)(H
′) ∪ {e1}, l0 ∈ spL(G), a

ontradiction. So g(G) ≥ 3.
If G has a dominating eulerian subgraph T with t = |E(T )|, then t ≤ |E(T )| + |∂(T )| ≤ m. Thus for any integer

∈ {t, t + 1, . . . ,m}, l ∈ spL(G). For l < t , let T ′ be a section of T such that |E(T ′)| = l. By Lemma 3.2, l ∈ spL(G), contrary
o (4). So

G has no a dominating eulerian subgraph. (5)

herefore, G is not collapsible. Let G′ be the reduction of G. Then diam(G′) ≤ 2. By Theorem 3.1, G′
∈ {K1,t , K2,t , Ss,k, P(10)}.

f G′
= K1,t , then G is spanned by K1,n−1. By Lemma 2.6(i) we conclude that L(G) is pancyclic, contrary to (4). If

′
∈ {Ss,k, P(10)}, as diam(G) ≤ 2, we have G = G′. As G ̸∈ {C5, P(10)}, we have G = Ss,k, where s + k ≥ 3. Thus G

has a dominating eulerian subgraph, contrary to (5). If G′
= K2,t , then all vertices of degree 2 are trivial and at most one

vertex of degree t is nontrivial. Thus G has a dominating eulerian subgraph, contrary to (5). ■

4. Proof of Theorem 1.6

Let v1, v2 ∈ V (P(10)) such that v1v2 ̸∈ E(P(10)). Denote P+(10) = P(10) + v1v2. To prove Theorem 1.6, it suffices to
prove that if κ(L(G)) ≥ 3, then L(G) is 1-hamiltonian. If G is spanned by a K1,n−1, then Theorem 1.6 holds by Theorem 2.1
nd Lemma 2.6(ii). Thus we may assume that κ(G) ≥ 2. If G = P+(10), then, for any e ∈ E(P+(10)), P+(10) − e has a

dominating eulerian subgraph. Thus L(P+(10)) is 1-hamiltonian. In the next discussion, we will assume that G ̸= P+(10).
Define a (≥ 3)-DES of G to be a dominating eulerian subgraph of G that contains all vertices of degree at least 3. We will
prove Theorem 1.6 by showing a slightly stronger result as follow.
5
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Fig. 1. The graph G − e0 in Claim 1.

Theorem 4.1. If G ̸= P+(10) is a 2-connected graph with ess′(G) ≥ 3 and diam(G) ≤ 2, then for any edge e ∈ E(G), G − e
as a (≥ 3)-DES.

roof. By contradiction, we assume that

G is a counterexample with |V (G)| minimized. (6)

In particular,

there exists an edge e0 ∈ E(G) such that G − e0 has no (≥ 3) − DES. ■ (7)

laim 1. G − e0 is reduced.

roof of Claim 1. Let H = G − e0. For proving this claim by contradiction, we assume that K is a nontrivial maximal
ollapsible subgraph in H . By (6), H/K has a (≥ 3)-DEST ′. If vK ∈ V (T ′), by Theorem 2.2, H has a eulerian subgraph T with
(T ′) ⊆ E(T ) and V (K ) ⊆ V (T ). Thus T is a (≥ 3)-DES of H , contrary to (7). So vK ̸∈ V (T ′). Therefore, dH/K (vK ) = 2.
Let NH (V (H) − K ) ∩ V (K ) = {u, v}. As K is a maximal collapsible subgraph, NH (u) ∩ NH (v) ⊆ V (K ). As ess′(G) ≥ 3, e0 is

ncident to one of vertex in K . Assume that |V (K )| ≥ 3. As diam(G) ≤ 2, any vertex not in V (K ) is adjacent to either u or v.
s dH/K (vK ) = 2, |V (H) − V (K )| = 2. Let V (H)−V (K ) = {a, b} with au, bv ∈ E(G− e0). As G is 2-connected, ab ∈ E(G− e0).
hus H/K is a triangle abvKa, and so H has a spanning eulerian subgraph, contrary to (7). So K is a 2-cycle vuv. Thus
V (H) − V (K )| ≥ 2.

Let NG(v)−{u} = {v′
}, NG(u)−{v} = {u′

}, {v1, v2, . . . , vs} = NG(v′)−{v}, {u1, u2, . . . , ut} = NG(u′)−{u}. As diam(G) ≤ 2,
v1, v2, . . . , vs} = {u1, u2, . . . , ut}. Thus G−e0 is the graph depicted in Fig. 1, and so G−e0 must have a (≥ 3)-DES, contrary
o (7). Hence Claim 1 holds. ■

laim 2. G has no 4-cycles.

roof of Claim 2. By contradiction, we assume that G has a 4-cycle C4 = x1x2y1y2x1. Define G′
= G/π (C4) with a partition

(C4) = ⟨{x1, y1}, {x2, y2}⟩. Following the notation in Definition 2.7, eπ = eπ (C4) = v1v2 ∈ E(G′). By (6), G′
− e0 has a

≥ 3)-DES. If ess′(G′) = 1, then there are two vertices x, y ∈ V (G′) such that dG′ (x, y) ≥ 3. This contradicts to Lemma 2.9(i).
hus ess′(G′) ≥ 2. ■

laim 2.1. ess′(G′) ≥ 3.
By contradiction, we assume that ess′(G′) = 2. Then G′ has a 2-edge-cut X such that G′

− X has two nontrivial
omponents L1 and L2 with |V (L1)| ≤ |V (L2)|. As ess′(G) ≥ 3, eπ = v1v2 ∈ X . Let X = {v1v2, u1u2} such that
1, u1 ∈ V (L1) and v2, u2 ∈ V (L2). As diam(G) ≤ 2, we must have V (L1) = {u1, v1}. Let V (L2) = {v2, u2, w1, w2, . . . , wt}

nd W = {w1, . . . , wt}. Since X is an essential edge-cut of G′, NG(u1)∩{x1, y1} ̸= ∅. Without loss of generality, we assume
hat u1y1 ∈ E(G).

If t = 0, then NG(u2) ∩ {x2, y2} ̸= ∅. As ess′(G) ≥ 3, we have either |NG(u1) ∩ {x1, y1}| = 2 or |NG(u2) ∩ {x2, y2}| = 2.
ithout loss of generality, we assume that u2x2, u2y2 ∈ E(G). As F (G − e0) ≥ 3 and |V (G − e0)| = 6, by Theorem 2.2(v),
e have |E(G − e0)| ≤ 7. Thus u1x1 ̸∈ E(G). As u1u2y2x1x2y1u1 and u1u2x2x1y2y1u1 are hamiltonian cycles of G, e0 ̸∈

y1y2, y1x2, u2y2, u2x2}. Thus u2y2y1x2u2 is a (≥ 3)-DES in G − e0, a contradiction. So t ≥ 1.
As diam(G) ≤ 2 and diam(G′) ≤ 2, u2wi ∈ E(G) and v2wi ∈ E(G′) for i = 1, . . . , t . Thus NG(wi) ∩ {y2, x2} ̸= ∅. Let

1 = {x ∈ W |xy2 ∈ E(G)} and W2 = W − W1. Then for any x ∈ W2, xx2 ∈ E(G). Let E1 = {e ∈ E(G)|e = xy2, x ∈ W1} and
2 = {e ∈ E(G)|e = xx2, x ∈ W2}.
Assume that y2x2 ∈ E(G), or x1y1 ∈ E(G), or y2u2 ∈ E(G) with e0 = y2u2. By Claim 1, e0 = x2y2 if y2x2 ∈ E(G), and

0 = x1y1 if x1y1 ∈ E(G). If |W1| is odd and |W2| is even, then G[E1 ∪ E2 ∪ {u2w|w ∈ W } ∪ {u2u1, u1y1, y1x2, x2x1, x1y2}]
s a spanning eulerian subgraph of G − e0; if |W1| is even and |W2| is odd, then G[E1 ∪ E2 ∪ {u2w|w ∈ W } ∪

u2u1, u1y1, y1y2, y2x1, x1x2}] is a spanning eulerian subgraph of G − e0, contrary to (7). So either both |W1| and |W2| are
dd, or both |W1| and |W2| are even. Notice that if u1x1 ̸∈ E(G), then G[E1 ∪ E2 ∪ {u2w|w ∈ W } ∪ {x2x1, x1y2, y2y1, y1x2}]

is a (≥ 3)-DES of G − e0 if both |W1| and |W2| are even, and G[E1 ∪ E2 ∪ {u2w|w ∈ W } ∪ {x2y1, y1y2}] is a (≥ 3)-DES of
− e0 if both |W1| and |W2| are odd. By (7), u1x1 ∈ E(G). Since G[E1 ∪ E2 ∪ {u2w|w ∈ W } ∪ {x2x1, x1u1, u1y1, y1y2}] is a

panning eulerian subgraph of G − e0 if both |W1| and |W2| are odd, we have both |W1| and |W2| are even. As t ≥ 1, we

6
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Fig. 2. The graph G in Claim 2.1.

may assume that |W1| ≥ 2. Then G[E1 ∪ E2 ∪ {u2w|w ∈ W } ∪ {x2x1, x1u1, u1y1, y1x2}] is a spanning subgraph of G − e0,
ontrary to (7). So y2x2, y1x1 ̸∈ E(G), and if y2u2 ∈ E(G), then e0 ̸= y2u2. As dist(x1, u1) ≤ 2, we have u1x1 ∈ E(G).
Assume that y2u2 ∈ E(G) and W1 ̸= ∅. Without loss of generality, we assume that x2w1 ∈ E(G). Then e0 ∈ {x2w1, u2w1}.

Thus |W1| = 1. So |V (G)| = t + 6 and |E(G)| ≥ 8 + 2(t − 1) + dG(w1). By Theorem 2.2(v) and Claim 1, F (G − e0) =

2|V (G − e0)| − |E(G − e0)| − 2 ≤ 5 − dG(w1). By Theorem 2.3, F (G − e0) ≥ 3. Thus dG(w1) = 2. If t is even, then
[E1 ∪ E2 ∪ {u2w|w ∈ W − {w1}} ∪ {u2u1, u1y1, y1y2, y2x1, x1x2}] is a (≥ 3)-DES in G − e0, contrary to (7). So t is odd.
hus G[E1 ∪ E2 ∪ {u2w|w ∈ W − {w}} ∪ {u2u1, u1y1, y1x2, x2x1, x1y2, y2u2}] is a (≥ 3)-DES in G − e0, a contradiction. So, if
2u2 ∈ E(G), then W1 = ∅. Thus G is spanned by a graph L1 or L2 (see Fig. 2).
If y2u2 ̸∈ E(G), then |E(G − e0)| ≥ 6+3t . Thus F (G−e0) ≤ 2(t+6)− (6+3t)−2 = 4− t . By Theorem 2.3, F (G−e0) ≥ 3.

hus t = 1. So G − e0 has a (≥ 3)-DES, contrary to (7). So y2u2 ∈ E(G), and G is spanned by L1. As |V (G − e0)| = t + 6,
E(G − e0)| ≥ 2t + 7, and F (G − e0) ≥ 3, we have dG(wi) = 2 for wi ∈ W . Let Ex2 = {e ∈ E(G)|e = x2w, w ∈ W } and
u2 = {e ∈ E(G)|e = u2w, w ∈ W }. Notice that for any w ∈ W , F (G − w) ≤ 2, implying that G − w is collapsible. By
laim 1, e0 ̸∈ Ex2 ∪ Eu2 . Since G[{w1x2, x2x1, x1u1, u1y1, y1y2, y2u2, u2w1}] and G[{w1x2, x2y1, y1y2, y2x1, x1u1, u1u2, u2w1}]

re (≥ 3)-DES of G, we have e0 ∈ {y1y2, u1x1}. So G[{x2y1, y1u1, u1u2, u2y2, y2x1, x1x2}] is a (≥ 3)-DES of G − e0, contrary
o (7). So Claim 2.1 holds.

If e0 ∈ E(C4), we use e0 to denote v1v2 in G′. By the minimality of G, we assume that Γ is a (≥ 3)-DES of G′
− e0. Let

= G[E(Γ ) − {eπ }].

laim 2.2. e0 ∈ E(C4).
Suppose that e0 ̸= eπ = v1v2. If eπ ∈ E(Γ ), then dH (x1) + dH (y1) is odd and dH (x2) + dH (y2) is odd. Without loss of

enerality, we assume that dH (x1) is odd. If dH (x2) is odd, then H1 = H +{x1y2, y2y1, y1x2} is a (≥ 3)-DES; if dH (y2) is odd,
hen H2 = H + {x1x2, x2y1, y1y2} is (≥ 3)-DES, a contradiction. So eπ /∈ E(Γ ).

Assume that v1 ∈ V (Γ ). If v2 ̸∈ V (Γ ), then dG′−e0 (v2) ≤ 2. Thus dG−e0 (x2)+dG−e0 (y2) ≤ 5. Without loss of generality, we
ssume that dG−e0 (y2) = 2 and dG−e0 (x2) ≤ 3. If both dH (x1) and dH (y1) are odd, then H3 = H +{x1x2, x2y1} is a (≥ 3)-DES;
f dH (x1) and dH (y1) are even, then H4 = H + {x1x2, x2y1, y1y2, y2x1} is a (≥ 3)-DES, a contradiction. So v2 ∈ V (Γ ). If dH (x)
s even for x ∈ {x1, x2, y1, y2}, then H5 = H + {x1x2, x2y1, y1y2, y2x1} is a (≥ 3)-DES, a contradiction; If dH (x) is odd for
∈ {x1, x2, y1, y2}, as Γ is connected, we may assume that x1, x2 are same component of H , and y1, y2 are also on same
omponent of H . Then H6 = H + {x1y2, y1x2} is a (≥ 3)-DES, a contradiction. So we may assume that dH (x1) and dH (y1)
re odd and dH (x2) and dH (y2) are even. Since Γ is connected, we assume that x1, y1, x2 are on the same component of
. Then H7 = H + {x1y2, y1y2} is a (≥ 3)-DES, a contradiction. So v1 ̸∈ V (Γ ). Similarly, v2 ̸∈ V (Γ ).
Therefore, dG′−e0 (v1) ≤ 2 and dG′−e0 (v2) ≤ 2. By Claim 2.1, dG′−e0 (v1) = 2 and dG′−e0 (v2) = 2. Let NG′−e0 (v1) = {v2, w1}

nd NG′−e0 (v2) = {v1, w2}. Without loss of generality, we assume that w1 is adjacent to y1 and w2 is adjacent to y2. Since
′(G) ≥ 3, e0 is incident to either x1 or x2. Without loss of generality, we assume that e0 is incident to x2. By Claim 1,
1x2, w1y2, x1y1 ̸∈ E(G). Thus dG(x1) = 2. So distG(x1, w1) = 3, a contradiction. Claim 2.2 holds.
By Claim 2.2, we have

girth(G − e0) ≥ 5. (8)

y (8), NG(x1) ∩ NG(y1) ⊆ {x2, y2} and NG(x2) ∩ NG(y2) ⊆ {x1, y1}. By Claim 2.1 and 2.2, v1v2 ̸∈ E(Γ ) and x1y1, x2y2 ̸∈ E(G).

laim 2.3. dG(x) ≥ 3 for x ∈ {x1, x2, y1, y2}.
Assume that dG(y1) = 2. If dG(x1) = 2, without loss of generality, we assume that e0 = x1x2. By Claim 1, G − x1 is

educed. As diam(G) ≤ 2 and y1x2, y1y2 ∈ E(G), we have diam(G − x1) ≤ 2. Notice that dG−x1 (y1) = 2 and ess′(G) ≥ 3.
y Theorem 3.1, G − x1 ∈ {K2,n−3, St1,t2}, where n = |V (G)| and t1 + t2 = n − 4. Thus G ∈ {K2,n−2, St1+1,t2 , St1,t2+1}.
o G − e0 has a (≥ 3)-DES, contrary to (7). So dG(x1) ≥ 3. Let NG(x1) = {x2, y2, a1, . . . , as}(s ≥ 1). For i = 1, . . . , s,
s distG(ai, y1) ≤ 2 and as dG(y1) = 2 and x1y1 ̸∈ E(G), NG(ai) ∩ {x2, y2} ̸= ∅. Without loss of generality, we assume
hat a1x2 ∈ E(G). Then e0 = x1x2, aix2 ∈ E(G) and aiy2 ̸∈ E(G). By (8), s = 1. As e0 = v1v2, v1 ̸∈ V (Γ ). Thus

∈ V (Γ ) and d (v ) is even. Therefore, both d (x ) and d (y ) are either even or odd. If d (x ) and d (y ) are even,
1 Γ 2 H 2 H 2 H 2 H 2

7
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hen H1 =

{
H + {a1x1, x1y2, y2y1, y1x2, x2a1}, if a1x2 ̸∈ E(H)
H − a1x2 + {a1x1, x1y2, y2y1, y1x2}, if a1x2 ∈ E(H) is a (≥ 3)-DES of G− e0; if dH (x2) and dH (y2) are odd,

hen H2 = H + {x2y1, y1y2} is a (≥ 3)-DES of G − e0, a contradiction. So Claim 2.3 holds.
By Claim 2.2, we may assume that e0 = x1x2. By (8), we have NG(y1) ∩ NG(y2) = ∅ and |NG(x1) ∩ NG(x2)| ≤ 1. Let

= NG(x1) ∩ NG(x2) (probably A = ∅). Let A1 = NG(x1) − ({x2, y2} ∪ A), B1 = NG(y1) − {x2, y2}, A2 = NG(x2) − ({x1, y1} ∪ A)
nd B2 = NG(y2)−{x1, y1}. Then any two of A, A1, A2, B1, B2 are disjoint. Let S = A∪A1∪B1∪A1∪B2∪{x1, y1, x2, y2}. By (8),
1∪A, A2∪A, B1, B2 are independent, and for any x, x′

∈ A1, NG(x)∩NG(x′) = {x1}. By (8), if z ∈ A, then NG(z)∩S = {x1, x2}.
Thus |A| ≤ 1.

Let x ∈ A1. Since distG(x, y1) ≤ 2, there is a vertex y ∈ B1 such that xy ∈ E(G). By (8), such the vertex y is unique.
Thus |A1| ≤ |B1|. Similarly, |B1| ≤ |A1|. So |A1| = |B1|. Similarly, |A2| = |B2|. As e0 = x1x2, by (8), E(G[B1 ∪ B2]) = ∅. Let
A1 = {a11, . . . , a1s} and B1 = {b11, . . . , b1s}, and let A2 = {a21, . . . , a2t} and B1 = {b21, . . . , b2t}. Then E(G[A1 ∪ B1]) and
E(G[A2 ∪B2]) consist of matchings of size s and t , respectively. Without loss of generality, we assume that E(G[A1 ∪B1]) =

{a11b11, . . . , a1sb1s} and E(G[A2 ∪ B2]) = {a21b21, . . . , a2tb2t}.
Consider b1i and b2j, where i ∈ {1, . . . , s} and j ∈ {1, . . . , t}. As distG(b1i, b2j) ≤ 2, there is a vertex wij such that

b1iwij, wijb2j ∈ E(G). By (8), wij are different vertices and wij ̸∈ S. Let i ∈ {1, . . . , s}. For j = 1, . . . , t , as distG(x1, wij) ≤ 2,
there exists a vertex p1 ∈ A1 ∪ A − {a1i} such that p1wij ∈ E(G). By (8), |NG(p1) ∩ {wi1, wi2, . . . , wit}| = 1. Thus s ≥ t .
Similarly, let j ∈ {1, . . . , t}. Then for i = 1, . . . , s, there exists a vertex p2 ∈ A2 ∪ A − {a2j} such that p2wij ∈ E(G),
|NG(p2) ∩ {w1j, w2j, . . . , wsj}| = 1, and t ≤ s. So s = t and A ̸= ∅. Therefore, |A| = 1. Assume that A = {z}. Let
Q = {wij|i = 1, . . . , t, j = 1, . . . , t} and let Y1 be the subgraph of G induced by S ∪ Q and Y = Y1 − e0. Then
|V (Y )| = t2 + 4t + 5 and |E(Y )| ≥ 4t2 + 6t + 5, and so F (Y ) ≤ 2(t2 + 4t + 5) − (4t2 + 6t + 5) − 2 = −2t2 + 2t + 3. As
F (Y ) ≥ 3, t = 1 and zw11 ∈ E(G).

Assume that a11a21 ̸∈ E(G). As distG(a11, a21) ≤ 2, there is a vertex w2 such that w2a11, w2a21 ∈ E(G). By (8),
w2 ̸∈ S ∪ {w11} and NG(w2) ∩ {x2, y2, b11, y1} = ∅. So distG(w2, y1) = 3, a contradiction. So a11a21 ∈ E(G).

Let w3 ∈ V (G) − (S ∪ {w11}). Then NG(w3) ∩ {x1, x2, y1, y2} = ∅. As distG(w2, x1) ≤ 2, NG(w3) ∩ {a11, z} ̸= ∅. As
distG(w3, y1) ≤ 2, w3b11 ∈ E(G). This would result in a 4-cycle in G−e0, a contradiction. So V (G) = S∪{w11}, G−e0 = P(10)
and G = P+(10), a contradiction. So Claim 2 holds. ■

Let e0 = u0v0. Also we assume that dG(u0) ≥ dG(v0). Since G is essentially 3-edge-connected, we have dG(u0) ≥ 3. Let
dG(u0) = d and NG(u0) = {v0, v1, . . . , vd−1}. If G contains a triangle, we assume that this triangle is u0v0v1u0. By Claim 2,
G has no 4-cycle. Therefore, we have the following observation.

Observation 4.2. For each i = 0, 1, . . . , d − 1, let Ni = NG(vi) − {u0} and denote Ni = {z i1, z
i
2, . . . , z

i
ti}. Since diam(G) ≤ 2

and G has no 4-cycle, the graph G has the following properties.

(a) If i ̸= i′, then Ni ∩ Ni′ = ∅.
(b) Suppose that i ̸= d − 1. Since the distance between any vertex in Ni and vd−1 is at most 2, and since G has no 4-cycle,

we conclude that ti = td−1 = t is a constant. Thus d ≥ t + 1.
(c) Suppose that (i, i′) ̸= (0, 1) when v0v1 ∈ E(G). Since the distance between any vertex in Ni and vi′ is at most 2,

and since G has no 4-cycle, we conclude that there must be a permutation πi,i′ on {1, 2, 3, . . . , t}, such that for every
j ∈ {1, 2, . . . , t}, z ijz

i′
k ∈ E(G), where k = πi,i′ (j). Thus, for x ∈ N2 ∪ · · · ∪ Nd−1, dG(x) ≥ d. In addition, for x ∈ N0 ∪ N1,

we have dG(x) ≥ d if v0v1 ̸∈ E(G) and dG(x) ≥ d − 1 if v0v1 ∈ E(G).
(d) Assume that t = 1. If d ≥ 4, by Observation 4.2(c), we have z21z

0
1 , z

2
1z

1
1 , z

d−1
1 z01 , z

d−1
1 z11 ∈ E(G). This would result in a

4-cycle, a contradiction. So d = 3. By Observation 4.2(c), z21z
0
1 , z

2
1z

1
1 ∈ E(G). By Claim 1, z01z

1
1 ̸∈ E(G). As distG(z01 , v1) ≤ 2,

we have v0v1 ∈ E(G). Thus u0v2z21z
0
1v0v1u0 is a spanning eulerian subgraph of G − e0, a contradiction. So t ≥ 2 and

d ≥ 3.
(e) Assume that t = 2. If d = 3, by Observation 4.2(c), we assume that z21z

0
1 , z

2
1z

1
1 , z

2
2z

0
2 , z

2
2z

1
2 ∈ E(G). Since distG(z02 , z

1
1 ) ≤ 2,

z02z
1
1 ∈ E(G). Similarly, z01z

1
2 ∈ E(G). By Claim 2, v0v1 ̸∈ E(G). Thus G is the Petersen graph. So G − e0 has a (≥ 3)-DES,

a contradiction. So if t = 2, then d ≥ 4.

Claim 3. v0v1 ∈ E(G).

Proof of Claim 3. Assume that v0v1 ̸∈ E(G). By Observation 4.2(c), 2|E(G − e0)| ≥ td2 + d(t + 2) − 2. As |V (G − e0)| =

1 + d + td, we have

2F (G − e0) ≤ 4td + 4d + 4 − (td2 + d(t + 2) − 2) − 4 = 3dt + 2d − td2 + 2. (9)

Since G− e0 is reduced, δ(G− e0) ≤ 3. Thus t ∈ {2, 3}. If t = 2, by (9), F (G− e0) ≤ 4d− d2 + 1 ≤ 1 since d ≥ 4. So G− e0
is collapsible, contrary to Claim 1. If t = 3, then d ≥ t + 1 ≥ 4. By (9), F (G − e0) ≤

1
2 (11d − 3d2 + 2) ≤ 1. So G − e0 is

collapsible, contrary to Claim 1 again. So Claim 3 holds. ■
By Claim 3, v0v1 ∈ E(G). As G has no 4-cycles, E(G[N0 ∪ N1]) = ∅. By Observation 4.2(c), 2|E(G − e0)| ≥ d + (t + 1)d +

(d − 2)td + 2t(d − 1) = dt + d2t + 2d − 2t . As |V (G − e0)| = 1 + d + td, we have

2F (G − e0) ≤ 4 + 4d + 4dt − (dt + d2t + 2d − 2t) − 4 = 2d + 3dt − d2t + 2t (10)

s δ(G − e0) ≤ 3, t ∈ {2, 3}. If t = 2, then F (G − e0) ≤ 4d − d2 + 2 ≤ 2 since d ≥ 4. Thus G − e0 is collapsible, a
ontradiction. If t = 3, then d ≥ t + 1 ≥ 4. By (10), F (G − e0) ≤

1
2 (11d − 3d2 + 6) ≤ 1. So G − e0 is collapsible, contrary

to Claim 1. ■
8
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