On the line graph of a graph with diameter 2

Xiaoling Ma ${ }^{\text {a }}$, Lan Lei ${ }^{\text {b }}$, Hong-Jian Lai ${ }^{\text {c }}$, Mingquan Zhan ${ }^{\text {d }}$
${ }^{\text {a College of Mathematics and System Sciences, Xinjiang University, Urumqi, Xinjiang 830046, PR China }}$
${ }^{\mathrm{b}}$ College of Mathematics and Statistics, Chongqing Technology and Business University, Chongqing 400067, PR China
${ }^{\text {c }}$ Department of Mathematics, West Virginia University, Morgantown, WV 26506, USA
${ }^{\text {d }}$ Department of Mathematics, Millersville University of Pennsylvania, Millersville, PA 17551, USA

A R T I CLE INFO

Article history:

Received 25 October 2019
Received in revised form 13 June 2020
Accepted 28 September 2020
Available online xxxx

Keywords:

Diameter
Line graph
Pancyclic
1-hamiltonian

Abstract

A graph G is pancyclic if it contains cycles of all possible lengths. A graph G is 1-hamiltonian if the removal of at most 1 vertices from G results in a hamiltonian graph. In Veldman (1988) Veldman showed that the line graph $L(G)$ of a connected graph G with diameter at most 2 is hamiltonian. In this paper, we continue studying the line graph $L(G)$ of a connected graph G with $|E(G)| \geq 3$ and diameter at most 2 and prove the following:

(i) $L(G)$ is pancyclic if and only if G is not a cycle of length 4 or 5 , and G is not the Petersen graph.
(ii) $L(G)$ is 1-hamiltonian if and only if $\kappa(L(G)) \geq 3$.
© 2020 Elsevier B.V. All rights reserved.

1. Introduction

We consider finite graphs without loops but permitting multiple edges, and follow [2] for undefined terms and notation. Let $G=(V(G), E(G))$ be a undirected graph with vertex set $V(G)$ and edge set $E(G)$. For a graph $G, \kappa(G), \kappa^{\prime}(G)$ and $\delta(G)$ denote the connectivity, edge-connectivity and the minimum degree of G, respectively. We shall use $d(u, v)$ to denote the distance between a vertex u and a vertex v in G. For subgraphs H_{1} and H_{2} in a connected G, the distance $d\left(H_{1}, H_{2}\right)$ is defined to be $\min \left\{d\left(v_{1}, v_{2}\right): v_{1} \in V\left(H_{1}\right)\right.$ and $\left.v_{2} \in V\left(H_{2}\right)\right\}$. When H_{1} is a vertex u (or edge e), we denote $d\left(H_{1}, H_{2}\right)$ by $d\left(u, H_{2}\right)$ (or $d\left(e, H_{2}\right)$). The diameter and the edge diameter of G, denoted by $\operatorname{diam}(G)$ and $\operatorname{diam}_{e}(G)$, are defined as $\operatorname{diam}(G)=\max \{d(u, v): u, v \in V(G)\}$, and $\operatorname{diam}_{e}(G)=\max \left\{d\left(e_{1}, e_{2}\right): e_{1}, e_{2} \in E(G)\right\}$. The girth of a graph G, denoted by $g(G)$, is the length of a shortest cycle of G.

The line graph of a graph G, denoted by $L(G)$, is a simple graph with $E(G)$ as its vertex set, where two vertices in $L(G)$ are adjacent if and only if the corresponding edges in G are adjacent. Then $\operatorname{diam}_{e}(G)=\operatorname{diam}(L(G))$. In 1986 , Thomassen initiated one of the most fascinating conjectures on hamiltonian line graphs, as stated in Conjecture 1.1. In [19], Ryjáček uses an ingenious argument to show that Conjecture 1.1(i) is equivalent to a seeming stronger statement in Conjecture 1.1(ii). Later, Ryjáček and Vrána in [20] indicated that all four statements in Conjecture 1.1 are mutually equivalent.

Conjecture 1.1. (i) (Thomassen [21]) Every 4-connected line graph is hamiltonian.
(ii) (Matthews and Sumner [18]) Every 4-connected claw-free graph is hamiltonian.
(iii) (Kučzel and Xiong [14]) Every 4-connected line graph is Hamilton-connected.
(iv) (Ryjáček and Vrána [20]) Every 4-connected claw-free graph is Hamilton-connected.

[^0]Towards Conjecture 1.1, Zhan proved the first result in this direction. The best known result is given by Kaiser and Vrána, as shown below.

Theorem 1.2. Let G be a graph.
(i) (Zhan, Theorem 3 in [24]) If $\kappa(L(G)) \geq 7$, then $L(G)$ is Hamilton-connected.
(ii) (Kaiser and Vrána [13]) If $\kappa(L(G)) \geq 5$ and $\delta(L(G)) \geq 6$, then $L(G)$ is Hamilton-connected.

A graph G with vertex set $V(G)$ and edge set $E(G)$ is pancyclic if it contains cycles of all lengths $l, 3 \leq l \leq|V(G)|$. For an integer $s \geq 0$, a graph G of order $n \geq s+3$ is s-hamiltonian if for any $X \subseteq V(G)$ with $|X| \leq s, G-X$ is hamiltonian. Researchers also consider the necessary and sufficient condition version of Conjecture 1.1 by asking whether there exists an integer $s \geq 2$ such that every line graph $L(G)$ is s-hamiltonian if and only if $\kappa(L(G)) \geq s+2$, as seen in $[4,8,16,17]$, among others.

While every conjecture in Conjecture 1.1 is till open, whether it is hard to find a counterexample remains to be answered. In [1], Blass and Harary indicated that using the Erdös-Rényi model [9,10] with any positive constant probability on the occurrence of an edge in the random graph, almost every graph has diameter 2 . Thus a property possessed by the family of graphs of diameter 2 will have a higher probability to be a property for generic graphs. Gould and Veldman investigated the hamiltonian cycles in claw-free graphs of diameter 2 and the line graphs of a graph of diameter 2.

Theorem 1.3. Let G be a graph with diameter at most 2 .
(i) (Gould [11]) If G is 2-connected and $K_{1,3}-$ free, then G is hamiltonian.
(ii) (Veldman [22]) If $|E(G)| \geq 3$, then $L(G)$ is hamiltonian.

Let C_{n} be a cycle of length n and $P(10)$ denote the Petersen graph. In 1993, Xiong et al. [23] discussed the pancyclicity of the line graph and proved the following.

Theorem 1.4 ([23]). Let G be a graph of order n with at least a cycle. If $\operatorname{diam}(L(G)) \leq 2$ and $G \notin\left\{C_{4}, C_{5}\right\}$, then $L(G)$ is pancyclic.
In this paper we consider the pancyclicity and 1-hamiltonicity of the line graph $L(G)$ when the diameter of G is at most 2. The main purpose of this research is to prove the following.

Theorem 1.5. Let G be a graph with $|E(G)| \geq 3$ and $\operatorname{diam}(G) \leq 2$. Then $L(G)$ is pancyclic if and only if $G \notin\left\{C_{4}, C_{5}, P(10)\right\}$.
Theorem 1.6. Let G be a graph with $\operatorname{diam}(G) \leq 2$. Then $L(G)$ is 1 -hamiltonian if and only if $\kappa(L(G)) \geq 3$.
Let $P(10)^{\prime}$ be the graph from $P(10)$ by adding an edge joining two neighbors of a vertex to form a 3-cycle. Then $\operatorname{diam}\left(L\left(P(10)^{\prime}\right)\right)=3$ and $\operatorname{diam}\left(P(10)^{\prime}\right)=2$. Thus whether $L\left(P(10)^{\prime}\right)$ is pancyclic or not cannot be decided by Theorem 1.4. However, as $P(10)^{\prime}$ is not the Petersen graph, Theorem 1.5 can be applied to conclude that $L\left(P(10)^{\prime}\right)$ is pancyclic.

In Section 2, we introduce Catlin's reduction method and the related results. The proofs of the main results will be given in the last two sections.

2. Preliminaries

A graph G is eulerian if G is connected with $O(G)=\emptyset$, and is supereulerian if G has a spanning eulerian subgraph. A subgraph H of a graph G is dominating if $G-V(H)$ is edgeless. Harary and Nash-Williams proved a very useful connection between hamiltonian cycles in the line graph $L(G)$ and dominating eulerian subgraphs in G.

Theorem 2.1 (Harary and Nash-Williams [12]). For a connected graph G with $|E(G)| \geq 3, L(G)$ is hamiltonian if and only if G has a dominating eulerian subgraph.

An edge cut X of G is essential if $G-X$ has at least two nontrivial components. For an integer $k>0$, a graph G is essentially k-edge-connected if G does not have an essential edge cut X with $|X|<k$. In particular, the essential edge-connectivity of G, denote by $\operatorname{ess}^{\prime}(G)$, is the size of a minimum essential edge-cut, if one such cut exists; or infinity if no such cut exists. For any $v \in V(G)$ and an integer $i \geq 0$, define $D_{i}(G)=\left\{v \in V(G): d_{G}(v)=i\right\}$.

Let $X \subseteq E(G)$ be an edge subset of G. The contraction G / X is the graph obtained from G by identifying the two ends of each edge in X and then deleting the resulting loops. If H is a subgraph of G, we write G / H for $G / E(H)$. If v_{H} is the vertex in G / H onto which H is contracted, then H is called the preimage of v, and denoted by $\operatorname{PI}(v)$. Let $O(G)$ denote the set of odd degree vertices of G. A graph G is eulerian if $O(G)=\emptyset$ and G is connected. A graph G is supereulerian if G has a spanning eulerian subgraph. In [6] Catlin defined collapsible graphs. Given an even subset R of $V(G)$, a subgraph Γ of G is called an R-subgraph if $O(\Gamma)=R$ and $G-E(\Gamma)$ is connected. A graph G is collapsible if for any even subset R of $V(G), G$ has an R-subgraph. In particular, K_{1} is collapsible. Catlin [6] showed that for any graph G, one can obtain the reduction G^{\prime} of G by contracting all maximal collapsible subgraphs of G. A graph G^{\prime} is reduced if G^{\prime} has no nontrivial collapsible subgraphs. A vertex in G^{\prime} is nontrivial (or trivial) if $|V(P I(x))| \geq 2$ (or $|V(P I(x))|=1$). By definition, every collapsible graph is supereulerian.

For a graph G, let $F(G)$ be the minimum number of additional edges that must be added to G so that the resulting graph has two edge-disjoint spanning trees. The following theorem summarizes the useful results on collapsible graphs and reduced graphs needed in our arguments.

Theorem 2.2 (Catlin, [6]). Let G be a connected graph. Then each of the following holds:
(i) G is reduced if and only if G has no nontrivial collapsible subgraphs.
(ii) For $n \neq 2$, the complete graph K_{n} and the 2-cycle C_{2} are collapsible.
(iii) If G is reduced, then G is simple, K_{3}-free, $g(G) \geq 4$ and $\delta(G) \leq 3$.
(iv) If H is a collapsible subgraph of G, then G is collapsible if and only if G / H is collapsible.
(v)If G is reduced, then $F(G)=2|V(G)|-|E(G)|-2$.
(vi) Let H be a collapsible graph of G and let v_{H} denote the vertex of G / H onto which H is contracted. If G / H has an eulerian subgraph L^{\prime} containing v_{H}, then G has a eulerian subgraph L with $E\left(L^{\prime}\right) \subseteq E(L)$ and $V(H) \subseteq V(L)$.

Theorem 2.3 (Catlin et al. Theorem 1.5 of [7]). Let G be a connected graph and let G^{\prime} be the reduction of G. If $F(G) \leq 2$, then $G^{\prime} \in\left\{K_{1}, K_{2}, K_{2, t}\right\}$ for some integer $t \geq 1$. Therefore, G is supereulerian if and only if $G^{\prime} \notin\left\{K_{2}, K_{2, t}\right\}$ for some odd integer t.

Let H is a subgraph of G, define

$$
\partial_{G}(H)=\{u v \in E(G): u \in V(H), v \in V(G)-V(H)\} .
$$

The subscript G in the notation above might be omitted if G is understood from the context. From Theorem 2.1 one easily proves a more general result.

Theorem 2.4 ([3]). The line graph $L(G)$ of a graph G contains a cycle of length $l \geq 3$ if and only if G has an eulerian subgraph H such that $|E(H)| \leq l \leq|E(H)|+\left|\partial_{G}(H)\right|$.

A useful tool is introduced to investigate the pancyclicity of line graphs. Define
$s p_{L}(G)=\left\{l:\right.$ there is an eulerian subgraph $H \subseteq G$ such that $\left.|E(H)| \leq l \leq|E(H)|+\left|\partial_{G}(H)\right|\right\}$.
Corollary 2.5. Let G be a graph with $|E(G)| \geq 3$. Then $L(G)$ is pancyclic if and only if for any integer l with $3 \leq l \leq m$, $l \in s p_{L}(G)$.

Lemma 2.6. Let G be spanned by a $K_{1, n-1}$ with $n \geq 2$ and $m=|E(G)| \geq 4$. Then the following statements hold.
(i) $L(G)$ is pancyclic.
(ii) If G is essentially 3-edge-connected, then for any $e_{0} \in E(G),\left(G-e_{0}\right)-D_{1}\left(G-e_{0}\right)$ is supereulerian.

Proof. By assumption, G has $K_{1, n-1}$ as a spanning subgraph. Let v_{0} be the vertex of degree $n-1$ in this $K_{1, n-1}$. If $n=2$, 3 or if $G=K_{1, n-1}$, then $L(G)$ is a complete graph and so both (i) and (ii) hold. Assume that $n \geq 4, m \geq n$.
(i) Since $m \geq n$, every edge of $G-D_{1}(G)$ lies in a cycle of length at most 3 that contains v_{0}. It follows that $G-D_{1}(G)$ has edge-disjoint subgraphs $S_{1}, S_{2}, \ldots, S_{t}$ each of which contains v_{0} such that $2 \leq\left|E\left(S_{i}\right)\right| \leq 3(1 \leq i \leq t)$, and $\cup_{i=1}^{t} S_{i}$ is a dominating eulerian subgraph of G. Let $s_{0}=\sum_{i=1}^{t}\left|E\left(S_{i}\right)\right|=\left|E\left(\cup_{i=1}^{t} S_{i}\right)\right|$. For any integer l with $3 \leq l \leq m$, if $l \geq s_{0}$, then as $\cup_{i=1}^{t} S_{i}$ is a dominating eulerian subgraph, $l \in s p_{L}(G)$. Thus we assume that $3 \leq l<s_{0}$. Then there exist $S_{1}, S_{2}, \ldots, S_{t^{\prime}}$ with $t^{\prime}<t$ and an integer r such that $l=\sum_{i=1}^{t^{\prime}}\left|E\left(S_{i}\right)\right|+r$ and $0 \leq r \leq 2$. Let $H=\cup_{i=1}^{t^{\prime}} S_{i}$. Then $|E(H)| \leq l \leq|E(H)|+\left|\partial_{G}(H)\right|$. So $l \in s p_{L}(G)$. This completes the proof of (i).
(ii) By contraction, we assume that G is a counterexample with $|V(G)|+|E(G)|$ smallest. Then there exists some $e_{0} \in E(G)$ such that $G^{\star}=\left(G-e_{0}\right)-D_{1}\left(G-e_{0}\right)$ is not supereulerian. If G^{\star} contains a nontrivial collapsible subgraph H, then we set $n^{\prime}=|V(G / H)|$. Since G is spanned by $K_{1, n-1}, G / H$ is spanned by $K_{1, n^{\prime}-1}$. By the minimality of $G,\left(G / H-e_{0}\right)-D_{1}\left(G / H-e_{0}\right)$ is supereulerian, and so by Theorem 2.2(vi), $\left(G-e_{0}\right)-D_{1}\left(G-e_{0}\right)$ is supereulerian. So we assume that $G-e_{0}$ is reduced. If $G-e_{0}=K_{1, n-1}$, then $\left(G-e_{0}\right)-D_{1}\left(G-e_{0}\right)=K_{1}$ is supereulerian. Therefore, e_{0} is incident to v_{0} and G contains either a 3 -cycle or a 4-cycle that contains e_{0}. Without loss of generality, we assume that $e_{0}=v_{0} v_{1}$. If G contains a triangle, then this triangle must be $C_{3}=v_{0} v_{1} v_{2} v_{0}$. Thus $\left\{v_{0} v_{1}, v_{0} v_{2}\right\}$ is an essential 2-edge-cut, a contradiction. If G contains a 4 -cycle, then this 4 -cycle must be $C_{4}=v_{0} v_{2} v_{1} v_{3} v_{0}$ for some vertices $v_{2}, v_{3} \in N_{G}\left(v_{1}\right)$. It follows that C_{4} is a spanning cycle of ($\left.G-e_{0}\right)-D_{1}\left(G-e_{0}\right)$, contrary to the assumption that G is a counterexample.

Definition 2.7. Let $C=x_{1} x_{2} y_{1} y_{2} x_{1}$ be a 4 -cycle in G with a partition $\pi(C)=\left\langle\left\{x_{1}, y_{1}\right\},\left\{x_{2}, y_{2}\right\}\right\rangle$. Following [5], we define $G / \pi(C)$ to be the graph obtained from $G-E(C)$ by identifying x_{1} and y_{1} to form a vertex v_{1}, by identifying x_{2} and y_{2} to form a vertex v_{2}, and by adding an edge $e_{\pi(C)}=v_{1} v_{2}$.

Theorem 2.8 (Catlin, [5]). Let G be a graph that contains a 4-cycle C and let $G / \pi(C)$ be defined as above. Each of the following holds.
(a) If $G / \pi(C)$ is collapsible, then G is collapsible.
(b) If $G / \pi(C)$ has a spanning eulerian subgraph, then G has a spanning eulerian subgraph.

Lemma 2.9. Let G be a connected graph on $n \geq 4$ vertices with $\operatorname{diam}(G) \leq 2$ and let $C=x_{1} x_{2} y_{1} y_{2} x_{1}$ be a 4-cycle of G. Using the notation in Definition 2.7, each of the following holds.
(i) $\operatorname{diam}(G / \pi(C)) \leq 2$.
(ii) Either $\kappa(G / \pi(C)) \geq 2$ or $G / \pi(C)$ is spanned by $K_{1, n-1}$.

Proof. (i) By contradiction, assume that $\operatorname{diam}(G / \pi(C)) \geq 3$. Then there are two vertices $x \in N_{G / \pi(C)}\left(v_{1}\right)-\left\{v_{2}\right\}, y \in$ $N_{G / \pi(C)}\left(v_{2}\right)-\left\{v_{1}\right\}$ such that $d_{G / \pi(C)}(x, y) \geq 3$. Without loss of generality, we assume that $x \in N_{G}\left(x_{1}\right)$ and $y \in N_{G}\left(x_{2}\right)$. Then $d_{G}(x, y) \geq 3$, a contradiction. So $\operatorname{diam}(G / \pi(C)) \leq 2$.
(ii) Assume that $\kappa(G / \pi(C))=1$. By $(\mathrm{i}), G / \pi(C)$ is spanned by $K_{1, n-1}$.

3. Proof of Theorem 1.5

Let s, k be two positive integers. Let $H_{1} \cong K_{2, s}$ and $H_{2} \cong K_{2, k}$ be two complete bipartite graphs. Let v_{1}, u_{1} be two nonadjacent vertices of degree s in H_{1}, and v_{2}, u_{2} be two nonadjacent vertices of degree k in H_{2}. Let $S_{s, k}$ denote the graph obtained from H_{1} and H_{2} by identifying v_{1} and v_{2} and connecting u_{1} and u_{2} with a new edge $u_{1} u_{2}$. Note that $S_{1,1}$ is the same as C_{5}, the 5 -cycle.

Theorem 3.1 (Lai [15]). Let G be a reduced graph. If diam $(G)=2$, then exactly one of the following holds:
(a) $G \cong K_{1, t}, t \geq 2$;
(b) $G \cong K_{2, t}, t \geq 2$;
(c) $G \cong S_{s, k}, s, k \geq 1$;
(d) G is $P(10)$, the Petersen graph.

Lemma 3.2. Let $G \notin\left\{C_{4}, C_{5}, P(10)\right\}$ be a graph with $m=|E(G)| \geq 3$ and $\operatorname{diam}(G) \leq 2$, and let $s \geq 3$ be an integer. If G has a trail T with $|E(T)| \leq s \leq|E(T)|+|\partial(T)|$, then G has an eulerian subgraph H such that $|E(H)| \leq s \leq|E(H)|+\left|\partial_{G}(H)\right|$.

Proof. By contradiction, we assume that
there is an integer $s \geq 3$ such that the conclusion of Lemma 3.2 is false.
As $m \geq 3, G \notin\left\{C_{4}, C_{5}\right\}$ and $\operatorname{diam}(G) \leq 2$, we have $\Delta(G) \geq 3$. By (1), $s \geq 4$. Let $T=v_{0} v_{1} v_{2} \cdots v_{t-1} v_{t}$. We will apply the following operations in order on T.
(Step 1). If $d_{T}\left(v_{0}\right)>1$, then delete the edge $v_{0} v_{1}$ from T to have the new trail $T_{1}=v_{1} v_{2} \cdots v_{t}$; if $d_{T}\left(v_{t}\right)>1$, then delete the edge $v_{t} v_{t-1}$ from T. Repeat this step until the two end vertices have degree one in the trail. After Step 1 is finished, we assume that $T_{l_{1}}=v_{0}^{1} v_{1}^{1} \cdots v_{t_{1}}^{1}$.
(Step 2). If $N_{G}\left(v_{0}^{1}\right)-V\left(T_{l_{1}}\right) \neq \emptyset$ and $\left|E\left(T_{l_{1}}\right)\right|<s$, then we assume that $y_{0}^{1} \in N_{G}\left(v_{0}^{1}\right)-V\left(T_{l_{1}}\right)$. Replace T by $T_{2}=y_{0}^{1} v_{0}^{1} v_{1}^{1} \cdots v_{t_{1}}^{1}$. Keep applying this operation on y_{0}^{1} if $N_{G}\left(y_{0}^{1}\right)-V\left(T_{2}\right) \neq \emptyset$ and $\left|E\left(T_{2}\right)\right|<s$, and $v_{t_{1}}^{1}$ if $N_{G}\left(v_{t_{1}}^{1}\right)-V\left(T_{2}\right) \neq \emptyset$ and $\left|E\left(T_{2}\right)\right|<s$. After Step 2 is finished, we assume that $T_{l_{2}}=v_{0}^{2} v_{1}^{2} \cdots v_{t_{2}}^{2}$.
(Step 3). If $d_{T_{l_{2}}}\left(v_{1}^{2}\right) \geq 4$, then replace $T_{l_{2}}$ by $T_{3}=v_{2}^{2} v_{3}^{2} \cdots v_{t_{2}}^{2}$.
Repeat Steps 1-3 until the degree of the second and last second vertices have degree 2 in the trail.
Claim 1. Assume that $T^{\prime}=x_{0} x_{1} \cdots x_{k}$ is the trail obtained from T by applying Steps $1-3$. Then we have the following.
(i) $\left|E\left(T^{\prime}\right)\right| \leq s \leq\left|E\left(T^{\prime}\right)\right|+\left|\partial\left(T^{\prime}\right)\right|$.
(ii) $d_{T^{\prime}}\left(x_{0}\right)=d_{T^{\prime}}\left(x_{k}\right)=1$.
(iii) If $\left|E\left(T^{\prime}\right)\right|<s$, then $N_{G}\left(x_{0}\right) \subseteq V\left(T^{\prime}\right)$ and $N_{G}\left(x_{k}\right) \subseteq V\left(T^{\prime}\right)$.
(iv) $d_{T^{\prime}}\left(x_{1}\right)=d_{T^{\prime}}\left(x_{k-1}\right)=2$.

Proof of Claim 1. If $d_{T}\left(v_{0}\right)>1$, then $v_{1} v_{2}$ is not a cut edge of T. Then $\left|E\left(T_{1}\right)\right|=|E(T)|-1$. As $d_{T}\left(v_{0}\right)>1$, $\left|E\left(T_{1}\right)\right|+\left|\partial\left(T_{1}\right)\right|=|E(T)|+|\partial(T)|$. Keep applying this operation on the end vertices of trail if their degrees are greater than 1 in the trail. Although the number of edges would be smaller, $|E(H)|+|\partial(T)|$ cannot be changed. After Step 1 is finished, we assume that $T_{l_{1}}=v_{0}^{1} v_{1}^{1} \cdots v_{t_{1}}^{1}$. Then $d_{T_{l_{1}}}\left(v_{0}^{1}\right)=d_{T_{l_{1}}}\left(v_{t_{1}}^{1}\right)=1$ and $\left|E\left(T_{l_{1}}\right)\right| \leq s \leq\left|E\left(T_{l_{1}}\right)\right|+\left|\partial\left(T_{l_{1}}\right)\right|$.

If $N_{G}\left(v_{0}^{1}\right)-V\left(T_{l_{1}}\right) \neq \emptyset$ and $\left|E\left(T_{l_{1}}\right)\right|<s$, then $\left|E\left(T_{2}\right)\right|=\left|E\left(T_{l_{1}}\right)\right|+1$ and $\left|E\left(T_{l_{1}}\right)\right|+\left|\partial\left(T_{l_{1}}\right)\right| \leq\left|E\left(T_{2}\right)\right|+\left|\partial\left(T_{2}\right)\right|$. As $\left|E\left(T_{l_{1}}\right)\right|<s$, $\left|E\left(T_{2}\right)\right| \leq s \leq\left|E\left(T_{2}\right)\right|+\left|\partial\left(T_{2}\right)\right|$. Keep applying this operation on y_{0}^{1} if $N_{G}\left(y_{0}^{1}\right)-V\left(T_{2}\right) \neq \emptyset$ and $\left|E\left(T_{2}\right)\right|<s$, and $v_{t_{1}}^{1}$ if $N_{G}\left(v_{t_{1}}^{1}\right)-V\left(T_{2}\right) \neq \emptyset$ and $\left|E\left(T_{2}\right)\right|<s$. After Step 2 is finished, we have $d_{T_{l_{2}}}\left(v_{0}^{2}\right)=d_{T_{l_{2}}}\left(v_{t_{2}}^{2}\right)=1,\left|E\left(T_{l_{2}}\right)\right| \leq s \leq\left|E\left(T_{l_{2}}\right)\right|+\left|\partial\left(T_{l_{2}}\right)\right|$, and $N_{G}\left(v_{0}^{2}\right) \subseteq V\left(T_{l_{2}}\right)$ and $N_{G}\left(v_{t_{2}}^{2}\right) \subseteq V\left(T_{l_{2}}\right)$ if $\left|E\left(T_{l_{2}}\right)\right|<s$.

If $d_{T_{l_{2}}}\left(v_{1}^{2}\right) \geq 4$, then, as $d_{T_{l_{2}}}\left(v_{0}^{2}\right)=1, v_{1}^{2} v_{2}^{2}$ is not a cut edge of $T_{l_{2}}$. If $\left|E\left(T_{l_{2}}\right)\right|<s$, as $N_{G}\left(v_{0}^{2}\right) \subseteq V\left(T_{l_{2}}\right)$, we have $\left|E\left(T_{3}\right)\right|+\left|\partial\left(T_{3}\right)\right|=|E(T)|+|\partial(T)|$. Thus $\left|E\left(T_{3}\right)\right| \leq s \leq\left|E\left(T_{3}\right)\right|+\left|\partial\left(T_{3}\right)\right|$. If $\left|E\left(T_{l_{2}}\right)\right|=s$, then, as $d_{T_{l_{2}}}\left(v_{1}^{2}\right) \geq$ 4, we have $v_{0}^{2} v_{1}^{2}, v_{1}^{2} v_{2}^{2} \in \partial\left(T_{3}\right)$. Thus $\left|E\left(T_{3}\right)\right|<s \leq\left|E\left(T_{3}\right)\right|+\left|\partial\left(T_{3}\right)\right|$. Repeat Steps $1-3$ on this new trail T_{3}. Once this procedure cannot be performed, (i)-(iv) are true. Claim 1 holds.

By (1), $x_{0} \neq x_{k}$. By Claim 1(iv), $x_{k} \neq x_{1}, x_{0} \neq x_{k-1}$, and $x_{1} \neq x_{k-1}$. By (1) and Claim 1(iii),
$x_{1} x_{k}, x_{0} x_{k-1} \notin E(G)$.
Claim 2. $s \geq 5$.
Proof of Claim 2. By contradiction, we assume that $s=4$. By (1), we have
$\Delta(G) \leq 3, G$ has no a 4-cycle, and if G has a cycle $C_{k}(k=2,3)$, then $\left|\partial\left(C_{k}\right)\right| \leq 3-k$.

If $\left|E\left(T^{\prime}\right)\right| \leq 3$, by Claim 1(iii), $N_{G}\left(x_{0}\right) \subseteq V\left(T^{\prime}\right)$ and $N_{G}\left(x_{k}\right) \subseteq V\left(T^{\prime}\right)$. If $\left|E\left(T^{\prime}\right)\right|=2$, then $d_{G}\left(x_{1}\right) \geq 4$ since $\left|E\left(T^{\prime}\right)\right|+\left|\partial\left(T^{\prime}\right)\right| \geq 4$, contrary to (3). If $\left|E\left(T^{\prime}\right)\right|=3$, by (3), $x_{0} x_{3}, x_{0} x_{2}, x_{1} x_{3} \notin E(G)$. Thus $d_{G}\left(x_{0}\right)=d_{G}\left(x_{3}\right)=1$. This implies that dist ${ }_{G}\left(x_{1}, x_{3}\right)=3$, a contradiction. So $\left|E\left(T^{\prime}\right)\right|=4$.

If $x_{2}=x_{4}$, then $H_{1}=x_{2} x_{3} x_{2}$ is an eulerian subgraph with $\left|E\left(H_{1}\right)\right|=2$ and $x_{1} x_{2} \in \partial\left(H_{1}\right)$. By (3), $\partial\left(H_{1}\right)=\left\{x_{1} x_{2}\right\}$. Thus $d_{G}\left(x_{3}\right)=2$ and $d_{G}\left(x_{2}\right)=3$. So $\operatorname{dist}_{G}\left(x_{0}, x_{3}\right)=3$, a contradiction. By symmetry, $x_{0}, x_{1}, \ldots, x_{4}$ are different vertices. Also we assume that $x_{0} x_{4} \in E(G)$ (Otherwise, if $x_{0} x_{4} \notin E(G)$, by (3), $x_{1} x_{4} \notin E(G)$. Thus there is a vertex $w_{1} \notin\left\{x_{0}, x_{1}, \ldots, x_{4}\right\}$ such that $w_{1} x_{1}, w_{1} x_{4} \in E(G)$, and so $x_{1} x_{2} x_{3} x_{4} w_{1} x_{1}$ is a 5-cycle. Thus we use the new eulerian trail $T^{\prime \prime}=x_{1} x_{2} x_{3} x_{4} w_{1}$ to discuss instead of T^{\prime}.)

As $G \neq C_{5}$, there is a vertex $u_{1} \notin\left\{x_{0}, x_{1}, \ldots, x_{4}\right\}$ such that $N_{G}\left(u_{1}\right) \cap\left\{x_{0}, \ldots, x_{4}\right\} \neq \emptyset$. Without loss of generality, we assume that $x_{1} u_{1} \in E(G)$. By (3), $u_{1} x_{3}, u_{1} x_{4} \notin E(G)$. As $\operatorname{dist}_{G}\left(u_{1}, x_{3}\right) \leq 2$ and $\operatorname{dist}_{G}\left(u_{1}, x_{4}\right) \leq 2$, there are vertices $u_{3}, u_{4} \notin$ $\left\{x_{0}, \ldots, x_{4}\right\}$ such that $x_{4} u_{4}, x_{3} u_{3}, u_{1} u_{3}, u_{1} u_{4} \in E(G)$. By (3), $u_{4} x_{2} \notin E(G)$. Thus there is a vertex $u_{2} \notin\left\{u_{1}, u_{3}, u_{4}, x_{0}, \ldots, x_{4}\right\}$ such that $u_{4} u_{2}, u_{2} x_{2} \in E(G)$. Similarly, there is a vertex $u_{0} \notin\left\{u_{1}, u_{2}, u_{3}, u_{4}, x_{0}, \ldots, x_{4}\right\}$ such that $u_{0} x_{0}, u_{0} u_{3} \in E(G)$. If $u_{0} u_{2} \notin E(G)$, there is a vertex $w_{2} \notin\left\{u_{0}, \ldots, u_{4}, x_{0}, \ldots, x_{4}\right\}$ such that $w_{2} u_{0}, w_{2} u_{2} \in E(G)$. As $\Delta(G) \leq 3, \operatorname{dist}_{G}\left(w_{2}, x_{4}\right) \geq 3$, a contradiction. So $u_{0} u_{2} \in E(G)$. Therefore, $G=P(10)$, a contradiction. Claim 2 holds.

Notice that $\left|E\left(T^{\prime}\right)\right|+\left|\partial\left(T^{\prime}\right)\right| \geq s$. If $\left|E\left(T^{\prime}\right)\right|=2$, then $d_{G}\left(x_{1}\right) \geq s$, contrary to (1). If $\left|E\left(T^{\prime}\right)\right|=3$, then $\left|\partial\left(T^{\prime}\right)\right| \geq s-3$. By (1) and Claim 1(iii), $x_{0} x_{2}, x_{1} x_{3} \notin E(G)$ and $x_{0} x_{3} \notin E(G)$. Thus $d_{G}\left(x_{0}\right)=d_{G}\left(x_{3}\right)=1$. This implies that $\operatorname{dist}_{G}\left(x_{0}, x_{3}\right)=3$, a contradiction. If $\left|E\left(T^{\prime}\right)\right|=4$, as $\left|E\left(T^{\prime}\right)\right|<s \leq\left|E\left(T^{\prime}\right)\right|+\left|\partial\left(T^{\prime}\right)\right|$ and Claim 1(iii), $x_{0} x_{4} \notin E(G)$ and $x_{0} x_{3}, x_{1} x_{4} \in E(G)$. As $\operatorname{dist}_{G}\left(x_{0}, x_{4}\right) \leq 2$, we have $x_{0} x_{2}, x_{2} x_{4} \in E(G)$. Therefore, the eulerian subgraph $H_{2}=x_{0} x_{1} x_{2} x_{0}$ satisfies that $\left|E\left(H_{2}\right)\right|<s \leq$ $\left|E\left(H_{2}\right)\right|+\left|\partial\left(H_{2}\right)\right|$ if $s=5$, or $H_{2}=x_{2} x_{0} x_{1} x_{2} x_{4} x_{3} x_{2}$ satisfies $\left|E\left(H_{2}\right)\right| \leq s \leq\left|E\left(H_{2}\right)\right|+\left|\partial\left(H_{2}\right)\right|=|E(T)|+|\partial(T)|$ if $s \geq 6$, contrary to (1). So $\left|E\left(T^{\prime}\right)\right| \geq 5$.

As $k=\left|E\left(T^{\prime}\right)\right| \geq 5$ and by Claim 1(iv), $x_{1} x_{k-1} \notin E(T)$. If $x_{1} x_{k-1} \in E(G)$, then the eulerian subgraph $H_{3}=x_{1} x_{2} \cdots x_{k-1} x_{1}$ satisfies $x_{0} x_{1}, x_{k-1} x_{k} \in \partial\left(H_{3}\right)$. By (1), $\left|E\left(T^{\prime}\right)\right|<s$. By Claim 1(iii), $\left|E\left(T^{\prime}\right)\right|+\left|\partial\left(T^{\prime}\right)\right|=\left|E\left(H_{3}\right)\right|+\left|\partial\left(H_{3}\right)\right|$ and so $\left|E\left(H_{3}\right)\right|<s \leq$ $\left|E\left(H_{3}\right)\right|+\left|\partial\left(H_{3}\right)\right|$, contrary to (1). So $x_{1} x_{k-1} \notin E(G)$. As dist $t_{G}\left(x_{1}, x_{k-1}\right) \leq 2$, there is a vertex w_{2} such that $w_{2} x_{1}, w_{2} x_{k-1} \in E(G)$. By (1) and Claim 1(iii), $w_{2} \in\left\{x_{0}, x_{2}, x_{k}, x_{k-2}\right\}$. By (2), $w_{2} \in\left\{x_{2}, x_{k-2}\right\}$. Without loss of generality, we assume that $w_{2}=x_{2}$. Thus $x_{2} x_{k-1} \in E(G)$. Let $H_{4}=x_{2} x_{3} \cdots x_{k-1} x_{2}$. Then $x_{1} x_{2}, x_{k-1} x_{k} \in \partial\left(H_{4}\right)$ and $\left|E\left(H_{4}\right)\right|=\left|E\left(T^{\prime}\right)\right|-2$. If $\left|E\left(T^{\prime}\right)\right|=s$, then H_{4} is an eulerian subgraph with $\left|E\left(H_{4}\right)\right|<s \leq\left|E\left(H_{4}\right)\right|+\left|\partial\left(H_{4}\right)\right|$, contrary to (1). So $\left|E\left(T^{\prime}\right)\right| \leq s-1$. Thus $x_{0} x_{k} \notin E(G)$, otherwise, the eulerian subgraph $H_{5}=x_{0} x_{1} \cdots x_{k} x_{0}$ satisfies $\left|E\left(H_{5}\right)\right|=\left|E\left(T^{\prime}\right)\right|+1 \leq s$ and $\left|E\left(H_{5}\right)\right|+\left|\partial\left(H_{5}\right)\right|=\left|E\left(T^{\prime}\right)\right|+\left|\partial\left(T^{\prime}\right)\right| \geq s$, contrary to (1).

Assume that $\left|E\left(T^{\prime}\right)\right|=s-1$. As $\left|E\left(H_{4}\right)\right|=\left|E\left(T^{\prime}\right)\right|-2=s-3$ and $x_{1} x_{2}, x_{k} x_{k-1} \in \partial\left(H_{4}\right),\left|E\left(H_{4}\right)\right|+\left|\partial\left(H_{4}\right)\right| \geq s-1$. By (1), $\left|E\left(H_{4}\right)\right|+\left|\partial\left(H_{4}\right)\right|=s-1$, and so $\partial\left(H_{4}\right)=\left\{x_{1} x_{2}, x_{k} x_{k-1}\right\}$. By Claim 1(iii), $d_{G}\left(x_{0}\right)=1$ and so dist $\left(x_{0}, x_{k-1}\right)=3$, a contradiction. So $\left|E\left(T^{\prime}\right)\right| \leq s-2$. As $\operatorname{dist}_{G}\left(x_{0}, x_{k}\right) \leq 2$, there is a vertex w_{3} such that $w_{3} x_{0}, w_{3} x_{k} \in E(G)$. By (2), $w_{3} \notin\left\{x_{1}, x_{k-1}\right\}$. By Claim 1(ii), $w_{3} x_{0}, w_{3} x_{k} \notin E\left(T^{\prime}\right)$. Thus the eulerian subgraph $H_{6}=x_{0} x_{1} \cdots x_{k} w_{3} x_{0}$ satisfies $\left|E\left(H_{6}\right)\right|=\left|E\left(T^{\prime}\right)\right|+2 \leq s \leq$ $\left|E\left(H_{6}\right)\right|+\left|\partial\left(H_{6}\right)\right|$, a contradiction.

Proof of Theorem 1.5. If $L(G)$ is pancyclic, then $L(G)$ contains C_{k} with $3 \leq k \leq|E(G)|$. But $L\left(C_{4}\right)$ has no 3-cycle, $L\left(C_{5}\right)$ has no 3 -cycle and 4 -cycle, $L(P(10))$ has no 4 -cycle. Thus $G \notin\left\{C_{4}, C_{5}, P(10)\right\}$. It remains to prove the sufficiency of Theorem 1.5. Let G be a connected graph with order n. By Lemma 2.6, we assume that $n=|V(G)| \geq 4$. By contradiction, assume that
G is a counterexample with $|V(G)|+|E(G)|$ is minimized.
Suppose $g(G) \leq 2$. Then G has a 2 -cycle $\left\{e_{1}, e_{2}\right\}$. Since G is a counterexample, there is an integer l_{0} with $3 \leq l_{0} \leq m$ such that $l_{0} \notin s p_{L}(G)$. By (4), we have $l_{0} \in s p_{L}\left(G-e_{1}\right)$. By Theorem 2.4, $G-e_{1}$ has an eulerian subgraph H^{\prime} and $\partial_{\left(G-e_{1}\right)}\left(H^{\prime}\right)$ such that $\left|E\left(H^{\prime}\right)\right| \leq l_{0} \leq\left|E\left(H^{\prime}\right)\right|+\left|\partial_{\left(G-e_{1}\right)}\left(H^{\prime}\right)\right|$. As H^{\prime} is a subgraph of G and $\partial_{G}\left(H^{\prime}\right)=\partial_{\left(G-e_{1}\right)}\left(H^{\prime}\right) \cup\left\{e_{1}\right\}, l_{0} \in s p_{L}(G)$, a contradiction. So $g(G) \geq 3$.

If G has a dominating eulerian subgraph T with $t=|E(T)|$, then $t \leq|E(T)|+|\partial(T)| \leq m$. Thus for any integer $l \in\{t, t+1, \ldots, m\}, l \in s p_{L}(G)$. For $l<t$, let T^{\prime} be a section of T such that $\left|E\left(T^{\prime}\right)\right|=l$. By Lemma $3.2, l \in s p_{L}(G)$, contrary to (4). So
G has no a dominating eulerian subgraph.
Therefore, G is not collapsible. Let G^{\prime} be the reduction of G. Then $\operatorname{diam}\left(G^{\prime}\right) \leq 2$. By Theorem 3.1, $G^{\prime} \in\left\{K_{1, t}, K_{2, t}, S_{s, k}, P(10)\right\}$. If $G^{\prime}=K_{1, t}$, then G is spanned by $K_{1, n-1}$. By Lemma $2.6(\mathrm{i})$ we conclude that $L(G)$ is pancyclic, contrary to (4). If $G^{\prime} \in\left\{S_{s, k}, P(10)\right\}$, as $\operatorname{diam}(G) \leq 2$, we have $G=G^{\prime}$. As $G \notin\left\{C_{5}, P(10)\right\}$, we have $G=S_{s, k}$, where $s+k \geq 3$. Thus G has a dominating eulerian subgraph, contrary to (5). If $G^{\prime}=K_{2, t}$, then all vertices of degree 2 are trivial and at most one vertex of degree t is nontrivial. Thus G has a dominating eulerian subgraph, contrary to (5).

4. Proof of Theorem 1.6

Let $v_{1}, v_{2} \in V(P(10))$ such that $v_{1} v_{2} \notin E(P(10))$. Denote $P^{+}(10)=P(10)+v_{1} v_{2}$. To prove Theorem 1.6 , it suffices to prove that if $\kappa(L(G)) \geq 3$, then $L(G)$ is 1 -hamiltonian. If G is spanned by a $K_{1, n-1}$, then Theorem 1.6 holds by Theorem 2.1 and Lemma 2.6(ii). Thus we may assume that $\kappa(G) \geq 2$. If $G=P^{+}(10)$, then, for any $e \in E\left(P^{+}(10)\right), P^{+}(10)-e$ has a dominating eulerian subgraph. Thus $L\left(P^{+}(10)\right)$ is 1 -hamiltonian. In the next discussion, we will assume that $G \neq P^{+}(10)$. Define a ($\geq \mathbf{3}$)-DES of G to be a dominating eulerian subgraph of G that contains all vertices of degree at least 3 . We will prove Theorem 1.6 by showing a slightly stronger result as follow.

Fig. 1. The graph $G-e_{0}$ in Claim 1.

Theorem 4.1. If $G \neq P^{+}(10)$ is a 2-connected graph with $\operatorname{ess}^{\prime}(G) \geq 3$ and diam $(G) \leq 2$, then for any edge $e \in E(G), G-e$ has $a(\geq 3)-D E S$.

Proof. By contradiction, we assume that
G is a counterexample with $|V(G)|$ minimized.
In particular,
there exists an edge $e_{0} \in E(G)$ such that $G-e_{0}$ has no $(\geq 3)-D E S$.
Claim 1. $G-e_{0}$ is reduced.
Proof of Claim 1. Let $H=G-e_{0}$. For proving this claim by contradiction, we assume that K is a nontrivial maximal collapsible subgraph in H. By (6), H / K has a (≥ 3)-DEST'. If $v_{K} \in V\left(T^{\prime}\right)$, by Theorem $2.2, H$ has a eulerian subgraph T with $E\left(T^{\prime}\right) \subseteq E(T)$ and $V(K) \subseteq V(T)$. Thus T is a (≥ 3)-DES of H, contrary to (7). So $v_{K} \notin V\left(T^{\prime}\right)$. Therefore, $d_{H / K}\left(v_{K}\right)=2$.

Let $N_{H}(V(H)-K) \cap V(K)=\{u, v\}$. As K is a maximal collapsible subgraph, $N_{H}(u) \cap N_{H}(v) \subseteq V(K)$. As ess $(G) \geq 3$, e_{0} is incident to one of vertex in K. Assume that $|V(K)| \geq 3$. As $\operatorname{diam}(G) \leq 2$, any vertex not in $V(K)$ is adjacent to either u or v. As $d_{H / K}\left(v_{K}\right)=2,|V(H)-V(K)|=2$. Let $V(H)-V(K)=\{a, b\}$ with $a u, b v \in E\left(G-e_{0}\right)$. As G is 2-connected, $a b \in E\left(G-e_{0}\right)$. Thus H / K is a triangle $a b v_{K} a$, and so H has a spanning eulerian subgraph, contrary to (7). So K is a 2 -cycle vuv. Thus $|V(H)-V(K)| \geq 2$.

Let $N_{G}(v)-\{u\}=\left\{v^{\prime}\right\}, N_{G}(u)-\{v\}=\left\{u^{\prime}\right\},\left\{v_{1}, v_{2}, \ldots, v_{s}\right\}=N_{G}\left(v^{\prime}\right)-\{v\},\left\{u_{1}, u_{2}, \ldots, u_{t}\right\}=N_{G}\left(u^{\prime}\right)-\{u\}$. As diam $(G) \leq 2$, $\left\{v_{1}, v_{2}, \ldots, v_{s}\right\}=\left\{u_{1}, u_{2}, \ldots, u_{t}\right\}$. Thus $G-e_{0}$ is the graph depicted in Fig. 1 , and so $G-e_{0}$ must have a (≥ 3)-DES, contrary to (7). Hence Claim 1 holds.

Claim 2. G has no 4-cycles.
Proof of Claim 2. By contradiction, we assume that G has a 4-cycle $C_{4}=x_{1} x_{2} y_{1} y_{2} x_{1}$. Define $G^{\prime}=G / \pi\left(C_{4}\right)$ with a partition $\pi\left(C_{4}\right)=\left\langle\left\{x_{1}, y_{1}\right\},\left\{x_{2}, y_{2}\right\}\right\rangle$. Following the notation in Definition 2.7, $e_{\pi}=e_{\pi\left(C_{4}\right)}=v_{1} v_{2} \in E\left(G^{\prime}\right) . \mathrm{By}(6), G^{\prime}-e_{0}$ has a (≥ 3)-DES. If $\operatorname{ess}^{\prime}\left(G^{\prime}\right)=1$, then there are two vertices $x, y \in V\left(G^{\prime}\right)$ such that $d_{G^{\prime}}(x, y) \geq 3$. This contradicts to Lemma 2.9(i). Thus $\operatorname{ess}^{\prime}\left(G^{\prime}\right) \geq 2$.

Claim 2.1. ess $^{\prime}\left(G^{\prime}\right) \geq 3$.
By contradiction, we assume that ess' $\left(G^{\prime}\right)=2$. Then G^{\prime} has a 2-edge-cut X such that $G^{\prime}-X$ has two nontrivial components L_{1} and L_{2} with $\left|V\left(L_{1}\right)\right| \leq\left|V\left(L_{2}\right)\right|$. As $\operatorname{ess}^{\prime}(G) \geq 3, e_{\pi}=v_{1} v_{2} \in X$. Let $X=\left\{v_{1} v_{2}, u_{1} u_{2}\right\}$ such that $v_{1}, u_{1} \in V\left(L_{1}\right)$ and $v_{2}, u_{2} \in V\left(L_{2}\right)$. As $\operatorname{diam}(G) \leq 2$, we must have $V\left(L_{1}\right)=\left\{u_{1}, v_{1}\right\}$. Let $V\left(L_{2}\right)=\left\{v_{2}, u_{2}, w_{1}, w_{2}, \ldots, w_{t}\right\}$ and $W=\left\{w_{1}, \ldots, w_{t}\right\}$. Since X is an essential edge-cut of $G^{\prime}, N_{G}\left(u_{1}\right) \cap\left\{x_{1}, y_{1}\right\} \neq \emptyset$. Without loss of generality, we assume that $u_{1} y_{1} \in E(G)$.

If $t=0$, then $N_{G}\left(u_{2}\right) \cap\left\{x_{2}, y_{2}\right\} \neq \emptyset$. As ess $^{\prime}(G) \geq 3$, we have either $\left|N_{G}\left(u_{1}\right) \cap\left\{x_{1}, y_{1}\right\}\right|=2$ or $\left|N_{G}\left(u_{2}\right) \cap\left\{x_{2}, y_{2}\right\}\right|=2$. Without loss of generality, we assume that $u_{2} x_{2}, u_{2} y_{2} \in E(G)$. As $F\left(G-e_{0}\right) \geq 3$ and $\left|V\left(G-e_{0}\right)\right|=6$, by Theorem 2.2(v), we have $\left|E\left(G-e_{0}\right)\right| \leq 7$. Thus $u_{1} x_{1} \notin E(G)$. As $u_{1} u_{2} y_{2} x_{1} x_{2} y_{1} u_{1}$ and $u_{1} u_{2} x_{2} x_{1} y_{2} y_{1} u_{1}$ are hamiltonian cycles of $G, e_{0} \notin$ $\left\{y_{1} y_{2}, y_{1} x_{2}, u_{2} y_{2}, u_{2} x_{2}\right\}$. Thus $u_{2} y_{2} y_{1} x_{2} u_{2}$ is a (≥ 3)-DES in $G-e_{0}$, a contradiction. So $t \geq 1$.

As $\operatorname{diam}(G) \leq 2$ and $\operatorname{diam}\left(G^{\prime}\right) \leq 2, u_{2} w_{i} \in E(G)$ and $v_{2} w_{i} \in E\left(G^{\prime}\right)$ for $i=1, \ldots, t$. Thus $N_{G}\left(w_{i}\right) \cap\left\{y_{2}, x_{2}\right\} \neq \emptyset$. Let $W_{1}=\left\{x \in W \mid x y_{2} \in E(G)\right\}$ and $W_{2}=W-W_{1}$. Then for any $x \in W_{2}, x x_{2} \in E(G)$. Let $E_{1}=\left\{e \in E(G) \mid e=x y_{2}, x \in W_{1}\right\}$ and $E_{2}=\left\{e \in E(G) \mid e=x x_{2}, x \in W_{2}\right\}$.

Assume that $y_{2} x_{2} \in E(G)$, or $x_{1} y_{1} \in E(G)$, or $y_{2} u_{2} \in E(G)$ with $e_{0}=y_{2} u_{2}$. By Claim 1, $e_{0}=x_{2} y_{2}$ if $y_{2} x_{2} \in E(G)$, and $e_{0}=x_{1} y_{1}$ if $x_{1} y_{1} \in E(G)$. If $\left|W_{1}\right|$ is odd and $\left|W_{2}\right|$ is even, then $G\left[E_{1} \cup E_{2} \cup\left\{u_{2} w \mid w \in W\right\} \cup\left\{u_{2} u_{1}, u_{1} y_{1}, y_{1} x_{2}, x_{2} x_{1}, x_{1} y_{2}\right\}\right]$ is a spanning eulerian subgraph of $G-e_{0}$; if $\left|W_{1}\right|$ is even and $\left|W_{2}\right|$ is odd, then $G\left[E_{1} \cup E_{2} \cup\left\{u_{2} w \mid w \in W\right\} \cup\right.$ $\left.\left\{u_{2} u_{1}, u_{1} y_{1}, y_{1} y_{2}, y_{2} x_{1}, x_{1} x_{2}\right\}\right]$ is a spanning eulerian subgraph of $G-e_{0}$, contrary to (7). So either both $\left|W_{1}\right|$ and $\left|W_{2}\right|$ are odd, or both $\left|W_{1}\right|$ and $\left|W_{2}\right|$ are even. Notice that if $u_{1} x_{1} \notin E(G)$, then $G\left[E_{1} \cup E_{2} \cup\left\{u_{2} w \mid w \in W\right\} \cup\left\{x_{2} x_{1}, x_{1} y_{2}, y_{2} y_{1}, y_{1} x_{2}\right\}\right]$ is a (≥ 3)-DES of $G-e_{0}$ if both $\left|W_{1}\right|$ and $\left|W_{2}\right|$ are even, and $G\left[E_{1} \cup E_{2} \cup\left\{u_{2} w \mid w \in W\right\} \cup\left\{x_{2} y_{1}, y_{1} y_{2}\right\}\right]$ is a (≥ 3)-DES of $G-e_{0}$ if both $\left|W_{1}\right|$ and $\left|W_{2}\right|$ are odd. By (7), $u_{1} x_{1} \in E(G)$. Since $G\left[E_{1} \cup E_{2} \cup\left\{u_{2} w \mid w \in W\right\} \cup\left\{x_{2} x_{1}, x_{1} u_{1}, u_{1} y_{1}, y_{1} y_{2}\right\}\right]$ is a spanning eulerian subgraph of $G-e_{0}$ if both $\left|W_{1}\right|$ and $\left|W_{2}\right|$ are odd, we have both $\left|W_{1}\right|$ and $\left|W_{2}\right|$ are even. As $t \geq 1$, we

Fig. 2. The graph G in Claim 2.1.
may assume that $\left|W_{1}\right| \geq 2$. Then $G\left[E_{1} \cup E_{2} \cup\left\{u_{2} w \mid w \in W\right\} \cup\left\{x_{2} x_{1}, x_{1} u_{1}, u_{1} y_{1}, y_{1} x_{2}\right\}\right]$ is a spanning subgraph of $G-e_{0}$, contrary to (7). So $y_{2} x_{2}, y_{1} x_{1} \notin E(G)$, and if $y_{2} u_{2} \in E(G)$, then $e_{0} \neq y_{2} u_{2}$. As $\operatorname{dist}\left(x_{1}, u_{1}\right) \leq 2$, we have $u_{1} x_{1} \in E(G)$.

Assume that $y_{2} u_{2} \in E(G)$ and $W_{1} \neq \emptyset$. Without loss of generality, we assume that $x_{2} w_{1} \in E(G)$. Then $e_{0} \in\left\{x_{2} w_{1}, u_{2} w_{1}\right\}$. Thus $\left|W_{1}\right|=1$. So $|V(G)|=t+6$ and $|E(G)| \geq 8+2(t-1)+d_{G}\left(w_{1}\right)$. By Theorem 2.2(v) and Claim 1, $F\left(G-e_{0}\right)=$ $2\left|V\left(G-e_{0}\right)\right|-\left|E\left(G-e_{0}\right)\right|-2 \leq 5-d_{G}\left(w_{1}\right)$. By Theorem 2.3, $F\left(G-e_{0}\right) \geq 3$. Thus $d_{G}\left(w_{1}\right)=2$. If t is even, then $G\left[E_{1} \cup E_{2} \cup\left\{u_{2} w \mid w \in W-\left\{w_{1}\right\}\right\} \cup\left\{u_{2} u_{1}, u_{1} y_{1}, y_{1} y_{2}, y_{2} x_{1}, x_{1} x_{2}\right\}\right]$ is a (≥ 3)-DES in $G-e_{0}$, contrary to (7). So t is odd. Thus $G\left[E_{1} \cup E_{2} \cup\left\{u_{2} w \mid w \in W-\{w\}\right\} \cup\left\{u_{2} u_{1}, u_{1} y_{1}, y_{1} x_{2}, x_{2} x_{1}, x_{1} y_{2}, y_{2} u_{2}\right\}\right]$ is a (≥ 3)-DES in $G-e_{0}$, a contradiction. So, if $y_{2} u_{2} \in E(G)$, then $W_{1}=\emptyset$. Thus G is spanned by a graph \mathcal{L}_{1} or \mathcal{L}_{2} (see Fig. 2).

If $y_{2} u_{2} \notin E(G)$, then $\left|E\left(G-e_{0}\right)\right| \geq 6+3 t$. Thus $F\left(G-e_{0}\right) \leq 2(t+6)-(6+3 t)-2=4-t$. By Theorem $2.3, F\left(G-e_{0}\right) \geq 3$. Thus $t=1$. So $G-e_{0}$ has a (≥ 3)-DES, contrary to (7). So $y_{2} u_{2} \in E(G)$, and G is spanned by \mathcal{L}_{1}. As $\left|V\left(G-e_{0}\right)\right|=t+6$, $\left|E\left(G-e_{0}\right)\right| \geq 2 t+7$, and $F\left(G-e_{0}\right) \geq 3$, we have $d_{G}\left(w_{i}\right)=2$ for $w_{i} \in W$. Let $E_{x_{2}}=\left\{e \in E(G) \mid e=x_{2} w, w \in W\right\}$ and $E_{u_{2}}=\left\{e \in E(G) \mid e=u_{2} w, w \in W\right\}$. Notice that for any $w \in W, F(G-w) \leq 2$, implying that $G-w$ is collapsible. By Claim 1, $e_{0} \notin E_{x_{2}} \cup E_{u_{2}}$. Since $G\left[\left\{w_{1} x_{2}, x_{2} x_{1}, x_{1} u_{1}, u_{1} y_{1}, y_{1} y_{2}, y_{2} u_{2}, u_{2} w_{1}\right\}\right]$ and $G\left[\left\{w_{1} x_{2}, x_{2} y_{1}, y_{1} y_{2}, y_{2} x_{1}, x_{1} u_{1}, u_{1} u_{2}, u_{2} w_{1}\right\}\right]$ are (≥ 3)-DES of G, we have $e_{0} \in\left\{y_{1} y_{2}, u_{1} x_{1}\right\}$. So $G\left[\left\{x_{2} y_{1}, y_{1} u_{1}, u_{1} u_{2}, u_{2} y_{2}, y_{2} x_{1}, x_{1} x_{2}\right\}\right]$ is a (≥ 3)-DES of $G-e_{0}$, contrary to (7). So Claim 2.1 holds.

If $e_{0} \in E\left(C_{4}\right)$, we use e_{0} to denote $v_{1} v_{2}$ in G^{\prime}. By the minimality of G, we assume that Γ is a (≥ 3)-DES of $G^{\prime}-e_{0}$. Let $H=G\left[E(\Gamma)-\left\{e_{\pi}\right\}\right]$.

Claim 2.2. $e_{0} \in E\left(C_{4}\right)$.
Suppose that $e_{0} \neq e_{\pi}=v_{1} v_{2}$. If $e_{\pi} \in E(\Gamma)$, then $d_{H}\left(x_{1}\right)+d_{H}\left(y_{1}\right)$ is odd and $d_{H}\left(x_{2}\right)+d_{H}\left(y_{2}\right)$ is odd. Without loss of generality, we assume that $d_{H}\left(x_{1}\right)$ is odd. If $d_{H}\left(x_{2}\right)$ is odd, then $H_{1}=H+\left\{x_{1} y_{2}, y_{2} y_{1}, y_{1} x_{2}\right\}$ is a (≥ 3)-DES; if $d_{H}\left(y_{2}\right)$ is odd, then $H_{2}=H+\left\{x_{1} x_{2}, x_{2} y_{1}, y_{1} y_{2}\right\}$ is (≥ 3)-DES, a contradiction. So $e_{\pi} \notin E(\Gamma)$.

Assume that $v_{1} \in V(\Gamma)$. If $v_{2} \notin V(\Gamma)$, then $d_{G^{\prime}-e_{0}}\left(v_{2}\right) \leq 2$. Thus $d_{G-e_{0}}\left(x_{2}\right)+d_{G-e_{0}}\left(y_{2}\right) \leq 5$. Without loss of generality, we assume that $d_{G-e_{0}}\left(y_{2}\right)=2$ and $d_{G-e_{0}}\left(x_{2}\right) \leq 3$. If both $d_{H}\left(x_{1}\right)$ and $d_{H}\left(y_{1}\right)$ are odd, then $H_{3}=H+\left\{x_{1} x_{2}, x_{2} y_{1}\right\}$ is a ($\left.\geq 3\right)$-DES; if $d_{H}\left(x_{1}\right)$ and $d_{H}\left(y_{1}\right)$ are even, then $H_{4}=H+\left\{x_{1} x_{2}, x_{2} y_{1}, y_{1} y_{2}, y_{2} x_{1}\right\}$ is a $(\geq 3)-D E S$, a contradiction. So $v_{2} \in V(\Gamma)$. If $d_{H}(x)$ is even for $x \in\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}$, then $H_{5}=H+\left\{x_{1} x_{2}, x_{2} y_{1}, y_{1} y_{2}, y_{2} x_{1}\right\}$ is a (≥ 3)-DES, a contradiction; If $d_{H}(x)$ is odd for $x \in\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}$, as Γ is connected, we may assume that x_{1}, x_{2} are same component of H, and y_{1}, y_{2} are also on same component of H. Then $H_{6}=H+\left\{x_{1} y_{2}, y_{1} x_{2}\right\}$ is a ($\left.\geq 3\right)$-DES, a contradiction. So we may assume that $d_{H}\left(x_{1}\right)$ and $d_{H}\left(y_{1}\right)$ are odd and $d_{H}\left(x_{2}\right)$ and $d_{H}\left(y_{2}\right)$ are even. Since Γ is connected, we assume that x_{1}, y_{1}, x_{2} are on the same component of H. Then $H_{7}=H+\left\{x_{1} y_{2}, y_{1} y_{2}\right\}$ is a (≥ 3)-DES, a contradiction. So $v_{1} \notin V(\Gamma)$. Similarly, $v_{2} \notin V(\Gamma)$.

Therefore, $d_{G^{\prime}-e_{0}}\left(v_{1}\right) \leq 2$ and $d_{G^{\prime}-e_{0}}\left(v_{2}\right) \leq 2$. By Claim 2.1, $d_{G^{\prime}-e_{0}}\left(v_{1}\right)=2$ and $d_{G^{\prime}-e_{0}}\left(v_{2}\right)=2$. Let $N_{G^{\prime}-e_{0}}\left(v_{1}\right)=\left\{v_{2}, w_{1}\right\}$ and $N_{G^{\prime}-e_{0}}\left(v_{2}\right)=\left\{v_{1}, w_{2}\right\}$. Without loss of generality, we assume that w_{1} is adjacent to y_{1} and w_{2} is adjacent to y_{2}. Since $\kappa^{\prime}(G) \geq 3, e_{0}$ is incident to either x_{1} or x_{2}. Without loss of generality, we assume that e_{0} is incident to x_{2}. By Claim 1 , $w_{1} x_{2}, w_{1} y_{2}, x_{1} y_{1} \notin E(G)$. Thus $d_{G}\left(x_{1}\right)=2$. So $\operatorname{dist}_{G}\left(x_{1}, w_{1}\right)=3$, a contradiction. Claim 2.2 holds.

By Claim 2.2, we have

$$
\begin{equation*}
\operatorname{girth}\left(G-e_{0}\right) \geq 5 \tag{8}
\end{equation*}
$$

By (8), $N_{G}\left(x_{1}\right) \cap N_{G}\left(y_{1}\right) \subseteq\left\{x_{2}, y_{2}\right\}$ and $N_{G}\left(x_{2}\right) \cap N_{G}\left(y_{2}\right) \subseteq\left\{x_{1}, y_{1}\right\}$. By Claim 2.1 and 2.2, $v_{1} v_{2} \notin E(\Gamma)$ and $x_{1} y_{1}, x_{2} y_{2} \notin E(G)$.
Claim 2.3. $d_{G}(x) \geq 3$ for $x \in\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}$.
Assume that $d_{G}\left(y_{1}\right)=2$. If $d_{G}\left(x_{1}\right)=2$, without loss of generality, we assume that $e_{0}=x_{1} x_{2}$. By Claim $1, G-x_{1}$ is reduced. As $\operatorname{diam}(G) \leq 2$ and $y_{1} x_{2}, y_{1} y_{2} \in E(G)$, we have $\operatorname{diam}\left(G-x_{1}\right) \leq 2$. Notice that $d_{G-x_{1}}\left(y_{1}\right)=2$ and $\operatorname{ess}^{\prime}(G) \geq 3$. By Theorem 3.1, $G-x_{1} \in\left\{K_{2, n-3}, S_{t_{1}, t_{2}}\right\}$, where $n=|V(G)|$ and $t_{1}+t_{2}=n-4$. Thus $G \in\left\{K_{2, n-2}, S_{t_{1}+1, t_{2}}, S_{t_{1}, t_{2}+1}\right\}$. So $G-e_{0}$ has a (≥ 3)-DES, contrary to (7). So $d_{G}\left(x_{1}\right) \geq 3$. Let $N_{G}\left(x_{1}\right)=\left\{x_{2}, y_{2}, a_{1}, \ldots, a_{s}\right\}(s \geq 1)$. For $i=1$, \ldots, s, as $\operatorname{dist}_{G}\left(a_{i}, y_{1}\right) \leq 2$ and as $d_{G}\left(y_{1}\right)=2$ and $x_{1} y_{1} \notin E(G), N_{G}\left(a_{i}\right) \cap\left\{x_{2}, y_{2}\right\} \neq \emptyset$. Without loss of generality, we assume that $a_{1} x_{2} \in E(G)$. Then $e_{0}=x_{1} x_{2}, a_{i} x_{2} \in E(G)$ and $a_{i} y_{2} \notin E(G)$. By (8), $s=1$. As $e_{0}=v_{1} v_{2}, v_{1} \notin V(\Gamma)$. Thus $a_{1} \in V(\Gamma)$ and $d_{\Gamma}\left(v_{2}\right)$ is even. Therefore, both $d_{H}\left(x_{2}\right)$ and $d_{H}\left(y_{2}\right)$ are either even or odd. If $d_{H}\left(x_{2}\right)$ and $d_{H}\left(y_{2}\right)$ are even,
then $H_{1}=\left\{\begin{array}{ll}H+\left\{a_{1} x_{1}, x_{1} y_{2}, y_{2} y_{1}, y_{1} x_{2}, x_{2} a_{1}\right\}, & \text { if } a_{1} x_{2} \notin E(H) \\ H-a_{1} x_{2}+\left\{a_{1} x_{1}, x_{1} y_{2}, y_{2} y_{1}, y_{1} x_{2}\right\}, & \text { if } a_{1} x_{2} \in E(H)\end{array}\right.$ is a $(\geq 3)-D E S$ of $G-e_{0}$; if $d_{H}\left(x_{2}\right)$ and $d_{H}\left(y_{2}\right)$ are odd, then $H_{2}=H+\left\{x_{2} y_{1}, y_{1} y_{2}\right\}$ is a $(\geq 3)-D E S$ of $G-e_{0}$, a contradiction. So Claim 2.3 holds.

By Claim 2.2, we may assume that $e_{0}=x_{1} x_{2}$. By (8), we have $N_{G}\left(y_{1}\right) \cap N_{G}\left(y_{2}\right)=\emptyset$ and $\left|N_{G}\left(x_{1}\right) \cap N_{G}\left(x_{2}\right)\right| \leq 1$. Let $A=N_{G}\left(x_{1}\right) \cap N_{G}\left(x_{2}\right)($ probably $A=\emptyset)$. Let $A_{1}=N_{G}\left(x_{1}\right)-\left(\left\{x_{2}, y_{2}\right\} \cup A\right), B_{1}=N_{G}\left(y_{1}\right)-\left\{x_{2}, y_{2}\right\}, A_{2}=N_{G}\left(x_{2}\right)-\left(\left\{x_{1}, y_{1}\right\} \cup A\right)$ and $B_{2}=N_{G}\left(y_{2}\right)-\left\{x_{1}, y_{1}\right\}$. Then any two of $A, A_{1}, A_{2}, B_{1}, B_{2}$ are disjoint. Let $S=A \cup A_{1} \cup B_{1} \cup A_{1} \cup B_{2} \cup\left\{x_{1}, y_{1}, x_{2}, y_{2}\right\}$. By (8), $A_{1} \cup A, A_{2} \cup A, B_{1}, B_{2}$ are independent, and for any $x, x^{\prime} \in A_{1}, N_{G}(x) \cap N_{G}\left(x^{\prime}\right)=\left\{x_{1}\right\}$. By (8), if $z \in A$, then $N_{G}(z) \cap S=\left\{x_{1}, x_{2}\right\}$. Thus $|A| \leq 1$.

Let $x \in A_{1}$. Since $\operatorname{dist}_{G}\left(x, y_{1}\right) \leq 2$, there is a vertex $y \in B_{1}$ such that $x y \in E(G)$. By (8), such the vertex y is unique. Thus $\left|A_{1}\right| \leq\left|B_{1}\right|$. Similarly, $\left|B_{1}\right| \leq\left|A_{1}\right|$. So $\left|A_{1}\right|=\left|B_{1}\right|$. Similarly, $\left|A_{2}\right|=\left|B_{2}\right|$. As $e_{0}=x_{1} x_{2}$, by (8), $E\left(G\left[B_{1} \cup B_{2}\right]\right)=\emptyset$. Let $A_{1}=\left\{a_{11}, \ldots, a_{1 s}\right\}$ and $B_{1}=\left\{b_{11}, \ldots, b_{1 s}\right\}$, and let $A_{2}=\left\{a_{21}, \ldots, a_{2 t}\right\}$ and $B_{1}=\left\{b_{21}, \ldots, b_{2 t}\right\}$. Then $E\left(G\left[A_{1} \cup B_{1}\right]\right)$ and $E\left(G\left[A_{2} \cup B_{2}\right]\right)$ consist of matchings of size s and t, respectively. Without loss of generality, we assume that $E\left(G\left[A_{1} \cup B_{1}\right]\right)=$ $\left\{a_{11} b_{11}, \ldots, a_{1 s} b_{1 s}\right\}$ and $E\left(G\left[A_{2} \cup B_{2}\right]\right)=\left\{a_{21} b_{21}, \ldots, a_{2 t} b_{2 t}\right\}$.

Consider $b_{1 i}$ and $b_{2 j}$, where $i \in\{1, \ldots, s\}$ and $j \in\{1, \ldots, t\}$. As $\operatorname{dist}_{G}\left(b_{1 i}, b_{2 j}\right) \leq 2$, there is a vertex $w_{i j}$ such that $b_{1 i} w_{i j}, w_{i j} b_{2 j} \in E(G)$. By (8), $w_{i j}$ are different vertices and $w_{i j} \notin S$. Let $i \in\{1, \ldots, s\}$. For $j=1, \ldots, t$, as dist $t_{G}\left(x_{1}, w_{i j}\right) \leq 2$, there exists a vertex $p_{1} \in A_{1} \cup A-\left\{a_{1 i}\right\}$ such that $p_{1} w_{i j} \in E(G)$. By (8), $\left|N_{G}\left(p_{1}\right) \cap\left\{w_{i 1}, w_{i 2}, \ldots, w_{i t}\right\}\right|=1$. Thus $s \geq t$. Similarly, let $j \in\{1, \ldots, t\}$. Then for $i=1, \ldots, s$, there exists a vertex $p_{2} \in A_{2} \cup A-\left\{a_{2 j}\right\}$ such that $p_{2} w_{i j} \in E(G)$, $\left|N_{G}\left(p_{2}\right) \cap\left\{w_{1 j}, w_{2 j}, \ldots, w_{s j}\right\}\right|=1$, and $t \leq s$. So $s=t$ and $A \neq \emptyset$. Therefore, $|A|=1$. Assume that $A=\{z\}$. Let $Q=\left\{w_{i j} \mid i=1, \ldots, t, j=1, \ldots, t\right\}$ and let Y_{1} be the subgraph of G induced by $S \cup Q$ and $Y=Y_{1}-e_{0}$. Then $|V(Y)|=t^{2}+4 t+5$ and $|E(Y)| \geq 4 t^{2}+6 t+5$, and so $F(Y) \leq 2\left(t^{2}+4 t+5\right)-\left(4 t^{2}+6 t+5\right)-2=-2 t^{2}+2 t+3$. As $F(Y) \geq 3, t=1$ and $z w_{11} \in E(G)$.

Assume that $a_{11} a_{21} \notin E(G)$. As $\operatorname{dist}_{G}\left(a_{11}, a_{21}\right) \leq 2$, there is a vertex w_{2} such that $w_{2} a_{11}, w_{2} a_{21} \in E(G)$. By (8), $w_{2} \notin S \cup\left\{w_{11}\right\}$ and $N_{G}\left(w_{2}\right) \cap\left\{x_{2}, y_{2}, b_{11}, y_{1}\right\}=\emptyset$. So $\operatorname{dist}_{G}\left(w_{2}, y_{1}\right)=3$, a contradiction. So $a_{11} a_{21} \in E(G)$.

Let $w_{3} \in V(G)-\left(S \cup\left\{w_{11}\right\}\right)$. Then $N_{G}\left(w_{3}\right) \cap\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}=\emptyset$. As $\operatorname{dist}_{G}\left(w_{2}, x_{1}\right) \leq 2, N_{G}\left(w_{3}\right) \cap\left\{a_{11}, z\right\} \neq \emptyset$. As $\operatorname{dist}_{G}\left(w_{3}, y_{1}\right) \leq 2, w_{3} b_{11} \in E(G)$. This would result in a 4-cycle in $G-e_{0}$, a contradiction. So $V(G)=S \cup\left\{w_{11}\right\}, G-e_{0}=P(10)$ and $G=P^{+}(10)$, a contradiction. So Claim 2 holds.

Let $e_{0}=u_{0} v_{0}$. Also we assume that $d_{G}\left(u_{0}\right) \geq d_{G}\left(v_{0}\right)$. Since G is essentially 3-edge-connected, we have $d_{G}\left(u_{0}\right) \geq 3$. Let $d_{G}\left(u_{0}\right)=d$ and $N_{G}\left(u_{0}\right)=\left\{v_{0}, v_{1}, \ldots, v_{d-1}\right\}$. If G contains a triangle, we assume that this triangle is $u_{0} v_{0} v_{1} u_{0}$. By Claim 2, G has no 4 -cycle. Therefore, we have the following observation.

Observation 4.2. For each $i=0,1, \ldots, d-1$, let $N_{i}=N_{G}\left(v_{i}\right)-\left\{u_{0}\right\}$ and denote $N_{i}=\left\{z_{1}^{i}, z_{2}^{i}, \ldots, z_{t_{i}}^{i}\right\}$. Since diam($\left.G\right) \leq 2$ and G has no 4 -cycle, the graph G has the following properties.
(a) If $i \neq i^{\prime}$, then $N_{i} \cap N_{i^{\prime}}=\emptyset$.
(b) Suppose that $i \neq d-1$. Since the distance between any vertex in N_{i} and v_{d-1} is at most 2 , and since G has no 4-cycle, we conclude that $t_{i}=t_{d-1}=t$ is a constant. Thus $d \geq t+1$.
(c) Suppose that $\left(i, i^{\prime}\right) \neq(0,1)$ when $v_{0} v_{1} \in E(G)$. Since the distance between any vertex in N_{i} and $v_{i^{\prime}}$ is at most 2 , and since G has no 4-cycle, we conclude that there must be a permutation $\pi_{i, i^{\prime}}$ on $\{1,2,3, \ldots, t\}$, such that for every $j \in\{1,2, \ldots, t\}, z_{j}^{i} z_{k}^{i^{\prime}} \in E(G)$, where $k=\pi_{i, i^{\prime}}(j)$. Thus, for $x \in N_{2} \cup \cdots \cup N_{d-1}, d_{G}(x) \geq d$. In addition, for $x \in N_{0} \cup N_{1}$, we have $d_{G}(x) \geq$ dif $v_{0} v_{1} \notin E(G)$ and $d_{G}(x) \geq d-1$ if $v_{0} v_{1} \in E(G)$.
(d) Assume that $t=1$. If $d \geq 4$, by Observation 4.2(c), we have $z_{1}^{2} z_{1}^{0}, z_{1}^{2} z_{1}^{1}, z_{1}^{d-1} z_{1}^{0}, z_{1}^{d-1} z_{1}^{1} \in E(G)$. This would result in a 4 -cycle, a contradiction. So d $=3$. By Observation 4.2(c), $z_{1}^{2} z_{1}^{0}, z_{1}^{2} z_{1}^{1} \in E(G)$. By Claim 1, $z_{1}^{0} z_{1}^{1} \notin E(G)$. As dist $t_{G}\left(z_{1}^{0}, v_{1}\right) \leq 2$, we have $v_{0} v_{1} \in E(G)$. Thus $u_{0} v_{2} z_{1}^{2} z_{1}^{0} v_{0} v_{1} u_{0}$ is a spanning eulerian subgraph of $G-e_{0}$, a contradiction. So $t \geq 2$ and $d \geq 3$.
(e) Assume that $t=2$. If $d=3$, by Observation 4.2(c), we assume that $z_{1}^{2} z_{1}^{0}, z_{1}^{2} z_{1}^{1}, z_{2}^{2} z_{2}^{0}, z_{2}^{2} z_{2}^{1} \in E(G)$. Since dist $\left(z_{2}^{0}, z_{1}^{1}\right) \leq 2$, $z_{2}^{0} z_{1}^{1} \in E(G)$. Similarly, $z_{1}^{0} z_{2}^{1} \in E(G)$. By Claim 2, $v_{0} v_{1} \notin E(G)$. Thus G is the Petersen graph. So $G-e_{0}$ has $a(\geq 3)-D E S$, a contradiction. So if $t=2$, then $d \geq 4$.

Claim 3. $v_{0} v_{1} \in E(G)$.
Proof of Claim 3. Assume that $v_{0} v_{1} \notin E(G)$. By Observation $4.2(\mathrm{c}), 2\left|E\left(G-e_{0}\right)\right| \geq t d^{2}+d(t+2)-2$. As $\left|V\left(G-e_{0}\right)\right|=$ $1+d+t d$, we have

$$
\begin{equation*}
2 F\left(G-e_{0}\right) \leq 4 t d+4 d+4-\left(t d^{2}+d(t+2)-2\right)-4=3 d t+2 d-t d^{2}+2 \tag{9}
\end{equation*}
$$

Since $G-e_{0}$ is reduced, $\delta\left(G-e_{0}\right) \leq 3$. Thus $t \in\{2,3\}$. If $t=2$, by $(9), F\left(G-e_{0}\right) \leq 4 d-d^{2}+1 \leq 1$ since $d \geq 4$. So $G-e_{0}$ is collapsible, contrary to Claim 1. If $t=3$, then $d \geq t+1 \geq 4$. By (9), $F\left(G-e_{0}\right) \leq \frac{1}{2}\left(11 d-3 d^{2}+2\right) \leq 1$. So $G-e_{0}$ is collapsible, contrary to Claim 1 again. So Claim 3 holds.

By Claim 3, $v_{0} v_{1} \in E(G)$. As G has no 4-cycles, $E\left(G\left[N_{0} \cup N_{1}\right]\right)=\emptyset$. By Observation 4.2(c), $2\left|E\left(G-e_{0}\right)\right| \geq d+(t+1) d+$ $(d-2) t d+2 t(d-1)=d t+d^{2} t+2 d-2 t$. As $\left|V\left(G-e_{0}\right)\right|=1+d+t d$, we have

$$
\begin{equation*}
2 F\left(G-e_{0}\right) \leq 4+4 d+4 d t-\left(d t+d^{2} t+2 d-2 t\right)-4=2 d+3 d t-d^{2} t+2 t \tag{10}
\end{equation*}
$$

As $\delta\left(G-e_{0}\right) \leq 3, t \in\{2,3\}$. If $t=2$, then $F\left(G-e_{0}\right) \leq 4 d-d^{2}+2 \leq 2$ since $d \geq 4$. Thus $G-e_{0}$ is collapsible, a contradiction. If $t=3$, then $d \geq t+1 \geq 4$. By (10), $F\left(G-e_{0}\right) \leq \frac{1}{2}\left(11 d-3 d^{2}+6\right) \leq 1$. So $G-e_{0}$ is collapsible, contrary to Claim 1.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgment

The research of Xiaoling Ma is supported by the Natural Science Foundation of China (grant number 11701490).

References

[1] A. Blass, F. Harary, Properties of almost all graphs and complexes, J. Graph Theory 3 (1979) 225-240.
[2] J.A. Bondy, U.S.R. Murty, Graph Theory, Springer, New York, 2008.
[3] H.J. Broersma, Subgraph conditions for dominating circuits in graphs and pancyclicity of line graphs, Ars Combin. 23 (1987) 5-12.
[4] H.J. Broersma, H.J. Veldman, 3-connected line graphs of triangular graphs are panconnected and 1-hamiltonian, J. Graph Theory 11 (1987) 399-407.
[5] P.A. Catlin, Super-Eulerian graphs, collapsible graphs, and four-cycles, Congr. Numer. 58 (1987) 233-246.
[6] P.A. Catlin, A reduction method to find spanning eulerian subgraph, J. Graph Theory 12 (1988) 29-45.
[7] P.A. Catlin, Z.Y. Han, H.-J. Lai, Graphs without spanning closed trails, Discrete Math. 160 (1996) 81-91.
[8] Z.H. Chen, H.-J. Lai, D.Y. Li, W. Shiu, An s-Hamiltonian line graph problem, Graphs Combin. 23 (2007) 241-248.
[9] P. Erdös, A. Rényi, On random graphs I, Publ. Math. Debrecen 6 (1959) 290-297.
[10] P. Erdös, A. Rényi, On the evolution of random graphs, Magyar Tud. Akad. Mat. Kutato Int. Közl. 5 (1960) 17-61.
[11] R.J. Gould, Traceability in Graphs (Doctoral thesis), Western Michigan University, 1979.
[12] F. Harary, C.St.J.A. Nash-Williams, On eulerian and hamiltonian graphs and line graphs, Canad. Math. Bull. 8 (1965) $701-709$.
[13] T. Kaiser, P. Vrána, Hamilton cycles in 5-connected line graphs, European J. Combin. 33 (2012) 924-947.
[14] R. Kučzel, L. Xiong, Every 4-connected line graph is Hamiltonian if and only if it is Hamiltonian connected, in: R. Kučzel (Ed.), Hamiltonian Properties of Graphs (Ph.D. Thesis), U.W.B. Pilsen, 2004.
[15] H.-J. Lai, Reduced graphs of diameter of two, J. Graph Theory 14 (1990) 77-87.
[16] H.-J. Lai, Y. Liang, Y. Shao, On s-hamiltonian-connected line graphs, Discrete Math. 308 (2008) 4293-4297.
[17] H.-J. Lai, Y. Shao, On s-hamiltonian line graphs, J. Graph Theory 74 (2013) 344-358.
[18] M.M. Matthews, D.P. Sumner, Hamiltonian results in $K_{1,3}$-free graphs, J. Graph Theory 8 (1984) 139-146.
[19] Z. Ryjáček, On a closure concept in claw-free graphs, J. Combin. Theory Ser. B 70 (1997) 217-224.
[20] Z. Ryjáček, P. Vrána, Line graphs of multigraphs and Hamilton-connectedness of claw-free graphs, J. Graph Theory 66 (2011) 152-173.
[21] C. Thomassen, Reflections on graph theory, J. Graph Theory 10 (1986) 309-324.
[22] H.J. Veldman, A result on hamiltonian line graphs involving restrictions on induced subgraphs, J. Graph Theory 12 (1988) 413-420.
[23] L. Xiong, J. Wang, Z. Li, M. Li, Pancyclic line graphs, in: Combinatorics, Graph Theory, Algorithms and Applications, Beijing, 1993 , World Sci. Publ, River Edge, NJ, 1994, pp. 399-403.
[24] S.M. Zhan, On hamiltonian line graphs and connectivity, Discrete Math. 89 (1991) 89-95.

[^0]: E-mail address: Mingquan.Zhan@millersville.edu (M. Zhan).

