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a b s t r a c t

For integers s1, s2, s3 > 0, let Ns1,s2,s3 denote the graph obtained by identifying each
vertex of a K3 with an end vertex of three disjoint paths Ps1+1, Ps2+1, Ps3+1 of length
s1, s2 and s3, respectively. We prove the following results.

(i) Let N 1 = {Ns1,s2,s3 : s1 > 0, s1 ≥ s2 ≥ s3 ≥ 0 and s1 + s2 + s3 ≤ 6}. Then for any
N ∈ N1, every N-free line graph L(G) with |V (L(G))| ≥ s+ 3 is s-hamiltonian if and only
if κ(L(G)) ≥ s + 2.

(ii) Let N2 = {Ns1,s2,s3 : s1 > 0, s1 ≥ s2 ≥ s3 ≥ 0 and s1 + s2 + s3 ≤ 4}. Then for any
N ∈ N2, every N-free line graph L(G) with |V (L(G))| ≥ s + 3 is s-Hamilton-connected if
and only if κ(L(G)) ≥ s + 3.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

We consider finite graphs without loops but permitting multiple edges, and follow [1] for undefined terms and
otations. In particular, for a graph G, κ(G), κ ′(G), δ(G) and ∆(G) denote the connectivity, edge-connectivity, the minimum
egree and the maximum degree of G, respectively. We use c(G) and g(G) to denote the circumference and the girth of
, which are the length of a longest cycle in G and the length of a shortest cycle of G, respectively. A graph is trivial if it

has no edges. We write H ⊆ G to mean that H is a subgraph of G. If X ⊆ E(G), then G[X] is the subgraph of G induced
by X . If H and K are subgraphs of a graph G, then we define H ∪ K = G[E(H) ∪ E(K )]. Throughout this paper, we use Pk
o denote a path of order k. For integers s1, s2, s3 ≥ 0, let Ns1,s2,s3 denote the graph formed by identifying each vertex
f a K3 with an end vertex of three disjoint paths Ps1+1, Ps2+1, Ps3+1 of length s1, s2, and s3, respectively. A graph G is
H1,H2, . . . ,Hs}-free if G contains no induced subgraph isomorphic to any copy of Hi for any i. If s = 1, then an {H1}-free
raph is simply called an H1-free graph. A claw-free graph is just a K1,3-free graph. As in [1], a graph is hamiltonian if it
as a spanning cycle and is Hamilton-connected if every pair of distinct vertices is joined by a spanning path.
The line graph of a graph G, denoted by L(G), is a simple graph with vertex set E(G), where two vertices in L(G)

re adjacent if and only if the corresponding edges in G are adjacent. A few most fascinating problems in this area
re presented below. By an ingenious argument of Z. Ryjác̆ek [32], Conjecture 1.1(i) is equivalent to a seeming stronger
onjecture of Conjecture 1.1(ii). In [33], it is shown that all conjectures stated in Conjecture 1.1 are equivalent to each
ther.
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onjecture 1.1. (i) (Thomassen [35]) Every 4-connected line graph is hamiltonian.
ii) (Matthews and Sumner [30]) Every 4-connected claw-free graph is hamiltonian.
iii) (Kučel and Xiong [19]) Every 4-connected line graph is Hamilton-connected.
iv) (Ryjáček and Vrána [33]) Every 4-connected claw-free graph is Hamilton-connected.

Towards Conjecture 1.1, Zhan gave a first result in this direction, and the best known result is given by Kaiser and
rána, as shown below.

heorem 1.2. Let G be a graph.
i) (Zhan, Theorem 3 in [37]) If κ(L(G)) ≥ 7, then L(G) is Hamilton-connected.
ii) (Kaiser and Vrána [18]) Every 5-connected claw-free graph with minimum degree at least 6 is hamiltonian.
iii) (Kaiser, Ryjáček and Vrána [17]) Every 5-connected claw-free graph with minimum degree at least 6 is 1-Hamilton-
onnected.

There have been many researches on hamiltonian properties in 3-connected claw-free graphs forbidding a Nk,0,0, as
een in the surveys in [2,11,13,14], among others. The following have been proved.

heorem 1.3. Let Q ∗ be the graph obtained from the Petersen graph by adding one pendant edge to each vertex. Let G be a
-connected simple claw-free graph.
i) (Brousek, Ryjáček and Favaron, [4]) If G is N4,0,0-free, then G is hamiltonian.
ii) [24] If G is N8,0,0-free, then G is hamiltonian. Moreover, the graph Q ∗ indicates the sharpness of this result.
iii) (Fujisawa, [12], see also Ma et al. [29]) If G is N9,0,0-free graph, then G is hamiltonian unless G is the line graph of Q ∗.

It is natural to seek necessary and sufficient conditions for hamiltonicity of line graphs. For an integer s ≥ 0, a graph
of order n ≥ s + 3 is s-hamiltonian (s-Hamilton-connected, respectively), if for any X ⊆ V (G) with |X | ≤ s, G − X

s hamiltonian (G − X is Hamilton-connected, respectively). It is well known that if a graph G is s-hamiltonian, then G is
s + 2)-connected, and if G is s-Hamilton-connected, then G is (s + 3)-connected. Broersma and Veldman in [3] initiated
he problem of investigating graphs whose line graph is s-hamiltonian if and only if the connectivity of the line graph is
t least s + 2. They define, for an integer k ≥ 0, a graph G to be k-triangular if every edge of G lies in at least k triangles
f G. The following is obtained.

heorem 1.4 (Broersma and Veldman, [3]). Let k ≥ s ≥ 0 be integers and let G be a k-triangular simple graph. Then L(G) is
-hamiltonian if and only L(G) is (s + 2)-connected.

Broersma and Veldman in [3] proposed an open problem of determining the range of an integer s such that within
riangular graphs, L(G) is s-hamiltonian if and only L(G) is (s+ 2)-connected. This problem was first settled by Chen et al.
n [10].

heorem 1.5. Each of the following holds.
i) (Chen et al. [10]) Let k and s be positive integers such that 0 ≤ s ≤ max{2k, 6k − 16}, and let G be a k-triangular simple
raph. Then L(G) is s-hamiltonian if and only L(G) is (s + 2)-connected.
ii) [21] Let G be a connected graph and let s ≥ 5 be an integer. Then L(G) is s-hamiltonian if and only if L(G) is (s+2)-connected.

An hourglass is a graph isomorphic to K5 − E(C4), where C4 is a cycle of length 4 in K5. The following are proved
ecently.

heorem 1.6. Each of the following holds.
i) (Kaiser, Ryjáček and Vrána [17]) Every 4-connected claw-free hourglass-free graph is 1-Hamilton-connected.
ii) [25] For an integer s ≥ 2, the line graph L(G) of a claw-free graph G is s-hamiltonian if and only if L(G) is (s+2)-connected.
iii) [25] The line graph L(G) of a claw-free graph G is 1-Hamilton-connected if and only if L(G) is 4-connected.
iv) (Hu and Zhang [16]) Every 3-connected {K1,3,N1,2,3}-free graph is Hamiltonian-connected.

In view of Conjecture 1.1 and motivated by Theorems 1.2, 1.3, 1.5 and 1.6, it is conjectured [21] that for any integer
≥ 2, L(G) is s-hamiltonian if and only if κ(L(G)) ≥ s + 2. The main goal of this research is to investigate if N8,0,0 in
heorem 1.3(ii) can be replaced by other Ns1,s2,s3 and if further evidences to support the conjecture in [21] can be found.
he following results are obtained.

heorem 1.7. Let s be an integer.
i) Let N1 = {Ns1,s2,s3 : s1 > 0, s1 ≥ s2 ≥ s3 ≥ 0 and s1 + s2 + s3 ≤ 6}. Then for any N ∈ N1, every N-free line graph L(G)
ith |V (L(G))| ≥ s + 3 is s-hamiltonian if and only if κ(L(G)) ≥ s + 2 for s > 0.
ii) Let N2 = {Ns1,s2,s3 : s1 > 0, s1 ≥ s2 ≥ s3 ≥ 0 and s1 + s2 + s3 ≤ 4}. Then for any N ∈ N1, every N-free line graph L(G)
ith |V (L(G))| ≥ s + 3 is s-Hamilton-connected if and only if κ(L(G)) ≥ s + 3 for s ≥ 0.
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Theorem 1.7 extends Theorem 1.3(i) in the context of line graph and furthers the main results in [36]. Let O(G) be the
et of odd degree vertices of a graph G. Following [1], a graph G is eulerian if G is connected with O(G) = ∅. A graph
is supereulerian if G contains a spanning eulerian subgraph. To prove Theorem 1.7, we prove an auxiliary theorem

Theorem 3.2 in Section 4), which leads to the following extension of Theorem 4 in [24].

heorem 1.8. Let G be a 2-edge-connected graph. Each of the following holds.
i) Let Γ be a graph with κ ′(Γ ) ≥ 3 and e ∈ E(Γ ). If G = Γ − e and c(G) ≤ 8, then G is supereulerian.
ii) If c(G) ≤ 8 and G has at most two edge-cuts of size 2, then G is supereulerian.

Preliminaries and tools will be presented in the next section. In Sections 3 and 4, we assume the validity of a auxiliary
heorem (Theorem 3.2 in Section 4) to prove Theorems 1.8 and 1.7, respectively. Theorem 3.2 will be proved in the last
ection.

. Preliminaries

In [6] Catlin introduced collapsible graphs. It is shown in Proposition 1 of [22]) that a graph G is collapsible if for every
ubset R ⊆ V (G) with |R| = 0 (mod 2), G has a spanning connected subgraph Γ such that O(Γ ) = R. See Catlin’s survey [7]
nd it supplements [8,22] for further literature in this area. We use the notation that for a graph G and an integer i ≥ 0,
efine Di(G) = {v ∈ V (G) : dG(v) = i}.
For a graph G and X ⊆ E(G), the contraction G/X is the graph formed from G by contracting edges in X with resulting

oops removed. We define G/∅ = G and use G/e for G/{e}. When H is a subgraph of G, then we often use G/H for G/E(H).
f H is connected, then the vertex in G/H onto which H is contracted is denoted by vH , and H is the pre-image of vH in
. If H1, H2, . . ., Hk are all the maximal collapsible subgraphs of G, then G′

= G/(∪k
i=1Hi) is the reduction of G. A graph is

reduced if it is the reduction of some graph. Let C++

6 denote the graph obtained from C6 with V (C6) = {v1, v2, . . . , v6} by
adding edges v2v5 and v3v6 and let K−

3,3 = K3,3 − e for any edge e ∈ E(K3,3). The next theorem briefs some of the useful
results related to the reduction method of Catlin that would be used in this research.

Theorem 2.1. Let G be a connected graph. Each of the following holds.
(i) (Catlin, Theorem 8 of in [6]) If a connected graph G is reduced and not in {K1, K2}, then |E(G)| ≤ 2|V (G)| − 4, δ(G) ≤ 3 and
(G) ≥ 4.
ii) (Catlin, Theorem 5 in [6]) G is reduced if and only if G has no nontrivial collapsible subgraphs. In particular, reduced graphs
re simple graphs.
iii) (Catlin, Corollary of Theorem 3 in [6]) Let H be a collapsible subgraph of G. Then G is supereulerian (collapsible, respectively)
f and only if G/H is supereulerian (collapsible, respectively).
iv) (Lemma 2.1 of [26]) Let G be a connected simple graph with n ≤ 8 vertices and with |D1(G)| = 0 and |D2(G)| ≤ 2, then
he reduction of G is in {K1, K2, K2,3}. Consequently, K−

3,3 and C++

6 are collapsible.
v) (Li et al. Lemma 2.2 of [26]) If G is collapsible, then for any u, v ∈ V (G), G has a spanning (u, v)-trail.

A subgraph H of a graph G is dominating if G − V (H) is edgeless. The following is well-known.

heorem 2.2 (Harary and Nash-Williams [15]). For a connected graph G with |E(G)| ≥ 3, L(G) is hamiltonian if and only if G
as a dominating eulerian subgraph.

For a graph G and an integer k > 0, a k-edge-cut Y of G is an essential k-edge-cut of G if each component of G − Y
as an edge. If a connected graph G does not have an essential k′-edge-cut for any k′ < k, then G is essentially k-edge-
onnected. The largest integer k such that a connected graph G is essentially k-edge-connected is denoted by ess′(G). It
s observed [34] that for a graph G, κ(L(G)) ≥ k if and only if either L(G) is a complete graph of order at least k + 1 or
ss′(G) ≥ k.

efinition 2.3. Let X1(G) = {e ∈ E(G) : e is incident with a vertex in D1(G)}. For each vertex v ∈ D2(G), let EG(v) = {ev, e′
v}

e the set of edges incident with v. The core of G is the graph G0 defined below.

X2(G) = {ev : v ∈ D2(G)}, X ′

2(G) = {e′

v : v ∈ D2(G)}, (1)
G0 = G/(X1(G) ∪ X ′

2(G)).

Following [1], for u, v ∈ V (G), a uv-trail is a trail of G from u to v. For e, e′
∈ E(G), an (e, e′)-trail is a trail of G starting

rom e and ending at e′. An (e, e′)-trail T is dominating if each edge of G is incident with at least one internal vertex of
, and T is spanning if T is a dominating trail with V (T ) = V (G). A graph G is spanning trailable if for each pair of edges
1 and e2, G has a spanning (e1, e2)-trail.
Suppose that e = u1v1 and e′

= u2v2 are two edges of G. If e ̸= e′, then the graph G(e, e′) is obtained from G by
eplacing e = u1v1 with a path u1vev1 and by replacing e′

= u2v2 with a path u2ve′v2, where ve, ve′ are two new vertices
ot in V (G). If e = e′, then G(e, e′), also denoted by G(e), is obtained from G by replacing e = u v with a path u v v . As
1 1 1 e 1

3
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efined in [28], a graph G is strongly spanning trailable (SST in short) if for any e, e′
∈ E(G), G(e, e′) has a (ve, ve′ )-trail

T with V (G) = V (T ) − {ve, ve′}. Since e = e′ is possible, SST graphs are both spanning trailable and supereulerian. The
following former tools are useful.

Lemma 2.4 (Shao, Lemma 1.4.1 and Proposition 1.4.2 of [34]). Let G be a connected nontrivial graph such that κ(L(G)) ≥ 3
and G0 be the core of G. Then G0 is uniquely determined by G with δ(G0) ≥ κ ′(G0) ≥ 3. Furthermore, each of the following
holds.
(i) L(G) is hamiltonian if and only G0 has a dominating eulerian subgraph containing the contraction preimages of the edges in
X1(G) ∪ X ′

2(G). In particular, if G0 is supereulerian, then L(G) is hamiltonian.
(ii) (see also Lemma 2.9 of [23]) If G0 is strongly spanning trailable, then L(G) is Hamilton-connected.
(iii) (see also Proposition 2.2 of [23]) L(G) is Hamilton-connected if and only if for any pair of edges e, e′

∈ E(G), G has a
dominating (e, e′)-trail.

Let X ⊆ E(G), which is also viewed as a vertex set in the line graph L(G). Imitating the arguments in [15,34] and in
Theorem 2.7 of [21], and by (1), we have the following observation.

Proposition 2.5. Let s ≥ 0 be an integer, G be a connected graph with |E(G)| ≥ s+ 3 and ess′(G) ≥ 3, and G0 be the core of
G.
(i) (Theorem 2.7 of [21]) The line graph L(G) is s-hamiltonian if and only if for any X ⊆ E(G) with |X | ≤ s, G − X has a
dominating eulerian subgraph.
. . . (ii) If for any X ⊆ E(G0) with |X | ≤ s, G0 − X is supereulerian, then L(G) is s-hamiltonian.

3. Auxiliary theorem and the proof of Theorem 1.8

We first present an auxiliary theorem, stated as Theorem 3.2. For notational convenience, we define c(K1) = 0. We
ill assume the validity of Theorem 3.2 to prove Theorem 1.8. The justification of Theorem 3.2 will be postponed to the

ast section. We start with a lemma.

emma 3.1. Let G be a connected graph with a 2-edge-cut X and let G1 and G2 be the two components of G−X. If both G/G1
and G/G2 are supereulerian, then G is also supereulerian.

Proof. For i ∈ {1, 2}, let vi denote the vertex in G/Gi onto which Gi is contracted. Then in G/Gi, the set of edges incident
with vi is X . Let Li be a spanning eulerian subgraph of G/Gi. As |X | = 2 and as vi ∈ V (Li), it follows that X ⊆ E(Li), and so
G[E(L1) ∪ E(L2)] is a spanning eulerian subgraph of G. ■

Theorem 3.2. Let G be a reduced graph. If κ ′(G) ≥ 2, c(G) ≤ 8, |D2(G)| ≤ 2 and ess′(G) ≥ 3, then G is collapsible.

Thus Theorem 3.2 indicates that the only reduced graph satisfying the hypotheses of Theorem 3.2 is K1 only.

roof of Theorem 1.8. We argue by contradiction to prove Theorem 1.8(i), and assume that there exists a 3-edge-
onnected graph Γ , an edge e = u1u2 ∈ E(Γ ) such that c(Γ − e) ≤ 8 and G := Γ − e is not supereulerian with |V (Γ )|
inimized.
As κ ′(Γ ) ≥ 3, we have |D2(G)| ≤ 2 and κ ′(G) ≥ 2. If |V (G)| ≤ 8, then by Theorem 2.1(iv), G is supereulerian. Hence we

ssume that |V (G)| ≥ 9. Suppose that G has an essential edge cut X with |X | = 2. Let G1,G2 be the two components of
− X = Γ − (X ∪ e) with min{|E(G1)|, |E(G2)|} ≥ 1. By the minimality of |V (Γ )|, G/Gi is supereulerian. By Lemma 3.1, G

s supereulerian, contrary to the choice of G. Hence ess′(G) ≥ 3.
If G is reduced, then by Theorem 3.2, G must be collapsible, and so supereulerian. Hence we assume that G contains
nontrivial collapsible subgraph H . Since ess′(G) ≥ 3, we conclude that |D2(G/H)| ≤ 2. As c(G/H) ≤ c(G) ≤ 8 and
/H = (Γ − e)/H = Γ /H − e, it follows by the minimality of |V (Γ )| that G/H has a spanning eulerian subgraph, and so
y Theorem 2.1(iii), G is supereulerian, contrary to the assumption that G is a counterexample. This proves Theorem 1.8(i).
We again argue by contradiction to prove Theorem 1.8(ii) and assume that G is a counterexample to Theorem 1.8(ii)

ith |V (G)| minimized. By the minimality of G and by Theorem 2.1(iii), we may assume that G is reduced. By the
inimality of G and by Lemma 3.1, we may assume that G does not have any essential edge cut of size 2. If follows

hat there exist vertices u1 and u2 in V (G) such that every 2-edge-cut of G must be the set of edges incident with u1 or
2. This implies that we can choose an edge e = u1u2 not in G such that adding e to G joining u1 and u2 will result in a
raph Γ with κ ′(Γ ) ≥ 3. As G is reduced, it follows by Theorem 1.8(i) that G is collapsible, and so supereulerian, contrary
o the assumption that G is a counterexample. This completes the proof of the theorem. ■
4
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Fig. 1. Graphs in Definitions 4.2 and 4.3.

4. Proof of Theorem 1.7

In this section, we assume the validity of Theorem 3.2 to prove Theorem 1.7. For an integer m > 0, we use Zm to
denote the cyclic group of order m. For integers s1 ≥ s2 ≥ s3 ≥ 1, let Ys1,s2,s3 be the graph obtained from disjoint paths
Ps1+2, Ps2+2 and Ps3+2 by identifying an end vertex of each of these three paths. (See Fig. 1 in [36] for an example.) By
definition, Ns1,s2,s3 = L(Ys1,s2,s3 ). Define

Y1 = {Ys1,s2,s3 : s1 > 0, s1 ≥ s2 ≥ s3 ≥ 0, s1 + s2 + s3 ≤ 6}. (2)
Y2 = {Ys1,s2,s3 : s1 > 0, s1 ≥ s2 ≥ s3 ≥ 0, s1 + s2 + s3 ≤ 4}.

By definition of line graphs, a line graph L(G) is Ns1,s2,s3-free if and only if G does not have a Ys1,s2,s3 as a subgraph. To
complete the proof for Theorem 1.7, the following additional lemmas for a generic graph G will be needed.

Let F (G) be the minimum number of additional edges that must be added to G to result in a graph with two edge-
disjoint spanning trees. Catlin (Theorem 7 of [5], see also Corollary 2.13 of [27]) indicated that if G is connected, reduced
and G /∈ {K1, K2}, then

F (G) = 2|V (G)| − |E(G)| − 2. (3)

Lemma 4.1 (Theorem 2.4 of [9]). If G is a reduced graph with κ ′(G) ≥ 2, |V (G)| ≤ 11, F (G) ≤ 3 and |D2(G)| ≤ 2, then G is
collapsible.

Definition 4.2. Let P(10) denote the Petersen graph and P(10)− = P(10) − e for an edge e ∈ E(P(10)), and let K ∼= K1,3
with D3(K ) = {a} (the center of K ) and D1(K ) = {a1, a2, a3}. For integers s1, s2, s3, ℓ,m, t with ℓ ≥ 1 and m, t ≥ 2, we
make the following definitions.
(i) Define K1,3(s1, s2, s3) to be the graph obtained from K by adding si vertices with neighbors {ai, ai+1}, where i ≡ 1, 2, 3
(mod 3).
(ii) Define C6(s1, s2, s3) = K1,3(s1, s2, s3) − a, where s2 ≥ s1 ≥ 1 and s3 ≥ 2. Furthermore, denote

NC6(s1,s2,s3)(a1) ∩ NC6(s1,s2,s3)(a2) = {v1, v2, . . . , vs1}, (4)
NC6(s1,s2,s3)(a2) ∩ NC6(s1,s2,s3)(a3) = {w1, w2, . . . , ws2},

NC6(s1,s2,s3)(a1) ∩ NC6(s1,s2,s3)(a3) = {u1, u2, . . . , us3}.

(iii) Let K2,t (u, u′) be a K2,t with u, u′ being the nonadjacent vertices of degree t . Let Sm,ℓ be the graph obtained from a
K2,m(u, u′) and a K2,ℓ(w, w′) by identifying u with w, and joining u′ and w′ by an new edge u′w′.

Definition 4.3. Let t ≥ 2, r1 ≥ r2 ≥ · · · ≥ rt ≥ 0 be integers such that r2 > 0, K be a graph isomorphic to K2,t with
{z1, z2} and {v1, v2, . . . , vt} being the bipartition of K . For each i with 1 ≤ i ≤ t ,

(i) denote EK2,t (vi) = {ei, e′

i};
(ii) if ri > 0, define K2,ri (xi, yi) to be the bipartite graphs with xi and yi being the two nonadjacent vertices of degree

ri;
(iii) if ri = 0, define K2,0(xi, yi) = K2(xi, yi), which consists of an edge with end vertices xi and yi.
(K1) Define K ′

2,t (r1, r2, . . . , rt ) to be a graph formed by, for each i ∈ {1, 2, . . . , t}, replacing exactly one of ei, e′

i by a
K2,ri (xi, yi) by identifying xi and vi and by identifying yi with exactly one of z1 or z2. (See the fourth graph in Fig. 1 for an
example). Let K′

2,t denote the family of all such defined K ′

2,t (r1, r2, . . . , rt )’s. For notational convenience, when there is no
confusion arises, we often use K ′

2,t to denote an arbitrary member in K′

2,t .
(K2) Let Bt = {K ′

2,t (r1, r2, . . . , rt ) + z1z2 : K ′

2,t (r1, r2, . . . , rt ) ∈ K′

2,t}.

By definition, the 6-cycle C6 = K ′

2,2(1, 1) is a member in K′

2,2. Following [1], for a given graph K ′

2,t , a (z1, z2)-component
of this K ′

2,t is a subgraph of the form K ′

2,t [{z1, z2, vi} ∪ NK ′
2,t
(vi)] for some i with 1 ≤ i ≤ t . Throughout the rest of the

paper, we define

G = {K2,t : t ≥ 1} ∪ {Sm,ℓ : ℓ ≥ m ≥ 1} ∪ {K1,3(s1, s2, s3) : s1 ≥ s2 > 0 and s3 ≥ 0} (5)
6 ′
∪{K1} ∪ {C (s1, s2, s3) : s1 ≥ s2 ≥ 1, s3 ≥ 2} ∪ (∪t≥2(Bt ∪ K2,t )).
5
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emma 4.4. Let G be a noncollapsible reduced graph with κ(G) ≥ 2. Then each of the following holds.
i) c(G) ≤ 6 if and only if G ∈ G.
ii) If c(G) ≤ 6, then |D2(G)| ≥ 3. Furthermore |D2(G)| = 3 if and only if G ∈ {K2,3, K1,3(1, 1, 1)}.

The proof of Lemma 4.4 will be postponed in the last section.

.1. Proof of Theorem 1.7(i)

emma 4.5. For any Y ∈ Y1. Let G be a connected graph with κ ′(G) ≥ 3 and |E(G)| ≥ 4. If G does not contain Y as a
ubgraph, then for any e ∈ E(G), G − e is supereulerian.

roof. The lemma holds trivially if n = |V (G)| ≤ 3 and |E(G)| ≥ 4. We argue by contradiction and assume that

G is a counterexample graph with |V (G)| minimized. (6)

laim 1. There exists an edge e0 ∈ E(G) such that
i) G − e0 is not supereulerian.
ii) G − e0 is reduced, g(G − e0) ≥ 4 and c(G − e0) ≥ 9.

Claim 1(i) follows from (6). If G − e0 has a nontrivial collapsible subgraph H , then |V (G/H)| < |V (G)| and so by (6),
G − e0)/H = G/H − e0 is supereulerian, By Theorem 2.1(iii), G − e0 is supereulerian, contrary to (6). Hence G − e0 must
e reduced. By Theorem 2.1(i), g(G − e0) ≥ 4. By Theorem 1.8(i), c(G − e0) ≥ 9. This proves the claim.
Let C = v1v2...vcv1 with c = |E(C)| ≥ c(G − e0) ≥ 9 be a longest cycle of G − e0. Since C is not spanning G, we

assume that there exists a vertex u1 ∈ V (G) − V (C) such that u1v1 ∈ E(G − e0). By definition, we observe that, as c ≥ 9,
he subgraph G[E(C) ∪ {u1v1}] contains every member in {Ys1,s2,0 : s1 ≥ s2 ≥ 0, 1 ≤ s1 + s2 ≤ 6} with v1 being the
nique vertex of degree 3 in these subgraphs. In the following, we shall show that either G has a longer cycle than C , or
contains every member in Y1 as defined in (2). These contradictions will then justify the lemma.
If there exists a u2 ∈ NG(u1) − V (C), then as c ≥ 9, the subgraph G[E(C) ∪ {u1v1, u1u2}] contains every member in

1 with 1 ∈ {s1, s2, s3} and with v1 being the unique vertex of degree 3 in these subgraphs. It remains to show that G
lso contains a Y2,2,2. If NG(u2) − V (C) has at least two vertices, then there exists a u3 ∈ NG(u2) − (V (C) ∪ {u1}), and so
[E(C) ∪ {u1v1, u1u2, u2u3}] contains a Y2,2,2 as a subgraph. Hence NG(u2) − {u1} ⊆ V (C). By κ ′(G) ≥ 3, g(G − e0) ≥ 4 and
he choice of C , we assume that vj1 , vj2 ∈ NG(u2) ∩ V (C) with 5 ≤ j1 + 1 < j2 ≤ c − 2. Then C1

= v1u1u2vj1vj1+1 · · · vcv1
s a cycle of length c − (j1 − 1) + 3 = (c − j2) + (j2 − j1) + 4 ≥ 2 + 2 + 4 = 8. If j1 ≥ 5, G[E(C1) ∪ {v1v2, v2v3, v3v4}]

ontains every member in Y1 with v1 being the unique vertex of degree 3 in these subgraphs. By symmetry, we assume
hat j1 = 4 and j2 = c − 2. Thus G[(E(C) − {v1v2, vj1vj1+1, vj2vj2+1}) ∪ {v1u1, u1u2, u2vj1 , u2vj2}] = Y2,2,2. Thus in any case,
contains every member in Y1. This contradiction shows that

for any u ∈ V (G) − V (C), NG(u) ⊆ V (C). (7)

et v1, vi, vj ∈ NG0 (u1) with 1 < i < j. By g(G− e0) ≥ 4, we have 3 < i+ 1 < j ≤ c − 1. Let k = max{i− 1, j− i, c − j+ 1}.
Assume that k ≥ 4. Without loss of generality, we assume that i−1 ≥ 4. Then C4

= G[E(C−{v2, . . . , vi−1})∪{v1u1, u1vi}]

s a cycle of length at least 6. If the length of C4 is at least 8, then G[(E(C) − {vi−1vi, vivi+1, u1vj}) ∪ {v1u1, u1vi}] contains
4,1,1 and Y3,2,1, while G[(E(C) − {vi−1vi , vj−1vj, u1vj}) ∪ {v1u1, u1vi}] contains Y2,2,2. If the length of C4 is 7, without loss
f generality, we assume that j = i+2 and c − j = 2. Then G[(E(C)−{vivi−1, vjvj−1})∪{v1u1, u1vi}] contains the subgraph
2,2,2, G[(E(C) − {vivi−1, vivi+1}) ∪ {v1u1, u1vi}] contains the subgraph Y3,2,1, and G[(E(C) − {vivi−1, v1vc}) ∪ {v1u1, u1vj}]

ontains the subgraph Y4,1,1. If the length of C4 is 6, then c = j+1, j = i+2 and i ≥ 6. Thus G[(E(C)−{vjvj−1, v1vc, vivi−1})∪
u1v1, u1vi, u1vj}] contains the subgraph Y4,1,1, G[(E(C)−{vivi+1, vi−1vi−2})∪{v1u1, u1vi}] contains the subgraph Y2,2,2, and
[(E(C) − {vivi+1, vivi−1}) ∪ {v1u1, u1vi}] contains the subgraph Y3,2,1. Therefore, k ≤ 3. As c ≥ 9, we have i = 4, j = 7
nd c = 9. Then G[(E(C)− {v3v4})∪ {u1v1, v1vi}] contains every member in Y1 with 1 ∈ {s1, s2, s3} and with v1 being the
nique vertex of degree 3 in these subgraphs, and G[(E(C) − {v1v2, vivi+1, vjvj+1}) ∪ {u1v1, u1vi, u1vj}] ∼= Y2,2,2. All these
ontradictions indicate the truth of the lemma. ■

roof of Theorem 1.7(i). By the definition of line graph, a graph Γ has a subgraph in Y1 if and only if L(G) has a member
s an induced subgraph in L(G). Therefore, to prove Theorem 1.7(i), it suffices to show that, for any fixed Y ∈ Y1 and for
n integer s ≥ 1, if G does not have Y as a subgraph, then

κ(L(G)) ≥ s + 2 implies that L(G) is s-hamiltonian. (8)

e argue by induction on s to prove (8), and assume that s = 1. Let G be a graph with κ(L(G)) ≥ 3, and let G0 be the core
f G. Since G does not have Y as a subgraph, G0 also contains no subgraph isomorphic to Y . By Lemma 2.4, κ ′(G0) ≥ 3
nd so by Lemma 4.5, for any e0 ∈ E(G0), G − e0 is supereulerian. By Proposition 2.5(ii), (8) holds for s = 1.
Assume that s ≥ 2 and (8) holds for smaller values of s. For any edge subset X ⊆ E(G) with |X | = s. Pick e0 ∈ X . Define

G1 = G − e0 and X1 = X − {e0}. As G does not have Y as a subgraph, G1 also contains no subgraph isomorphic to Y , with
κ(L(G1)) = κ(G − e0) ≥ (s + 2) − 1 = (s − 1) + 2. By induction, G1 is (s − 1)-hamiltonian, and so L(G) − X = L(G1) − X1 is
hamiltonian. Thus (8) holds for all integer s ≥ 1, and so Theorem 1.7(i) is justified. ■
6
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.2. Proof of Theorem 1.7(ii)

Throughout the rest of this paper, suppose that P = v1v2...vn denotes a v1vn-path and 1 ≤ i < j ≤ n. We define
P[vi, vj] = vivi+1...vj and P−1

[vi, vj] = vjvj−1...vi. Thus P = P[v1, vn]. Similarly, suppose that C = v1v2...vnv1 denotes
a cycle and 1 ≤ i < j ≤ n. Define C[vi, vj] = vivi+1...vj and C−1

[vi, vj] = vjvj+1...vnv1...vi to be the subpaths of
C . Let Zn be the additive group of integers modulo n. Define H8 to be the graph with V (H8) = {vi : i ∈ Z8} and
E(H8) = {vivi+1, vivi+4 : i ∈ Z8}. The graph H8 is known as the Wagner graph [31] in the literature. It is routine to
verify that

for any Y ∈ Y2, H8 contains Y as a subgraph. (9)

Lemma 4.6. Let Y ∈ Y2 and G be a graph with κ ′(G) ≥ 3 such that

G does not contain Y as a subgraph. (10)

hen each of the following holds.
i) For any e′, e′′

∈ E(G), G(e′, e′′) is collapsible.
ii) G is strongly spanning trailable.

roof. By Theorem 2.1, (i) implies (ii) and so it suffices to prove (i). We argue by contradiction and assume that

G is a counterexample to Lemma 4.6(i) with |V (G)| minimized. (11)

hen there must be edges e1, e2 ∈ E(G) such that G(e1, e2) is not collapsible. Let J = G(e1, e2). By (11), we may assume J
s reduced. Since G(e1, e2) is not collapsible, J ̸= K1.

Suppose that c(J) ≤ 8. By Theorem 3.2, J must have an essential edge-cut X with X = {f1, f2}. For each i ∈ {1, 2}, if
fi is incident with vej , for some j ∈ {1, 2}, then define f ′

i = ej, otherwise set f ′

i = fi. By definition, f ′

1, f
′

2 ∈ E(G) and so
f ′

1, f
′

2} would be an essential 2-edge-cut of G, contrary to κ ′(G) ≥ 3. Hence we must have |c(J)| ≥ 9. Let C ′ be a longest
ycle of J . We lift C ′ to a cycle C ′′ in G(e1, e2) and convert C ′′ to a cycle C of G by undoing the subdivisions on e1 and e2
f {ve1 , ve2} ∩ V (C ′) ̸= ∅. As ve1 , ve2 might be in V (C ′), we have |E(C)| ≥ 7.

Assume first that V (G) − V (C) ̸= ∅. Since G is connected, there must be a vertex v ∈ V (G) − V (C) with uv ∈ E(G) for
ome u ∈ V (C). Since |E(C)| ≥ 7, G[E(C) ∪ {uv}] contains Y4,0,0, Y3,1,0 and Y2,2,0 as subgraphs, in each of which u is the
only degree 3 vertex. We are to show that G also contains Y2,1,1 as a subgraph to find a contradiction to (10). Suppose
there exists w ∈ NG(v) − V (C). Then G[E(C) ∪ {uv, vw}] contains Y2,1,1 as a subgraph that takes u as the only degree 3
vertex. Hence we have NG(v) ⊆ V (C). Since κ ′(G) ≥ 3, we may assume {v1, v2, v3} ⊆ NG(v). As C is the longest cycle of G,
we have 2 ≤ dC (vi, vj) ≤ 3 for 1 ≤ i < j ≤ 3. Then G[E(C) ∪ {vv1, vv2, vv3}] contains Y2,1,1 as a subgraph that takes v as
the only degree 3 vertex, a contradiction. Hence we must have V (G) = V (C). Let n = |V (G)|. Denote V (C) = {vi : i ∈ Zn}

with E(C) = {vivi+1 : i ∈ Zn}. If n = 7, then by (3), J satisfies the hypotheses of Lemma 4.1, and so J is collapsible, a
contradiction. Therefore we must have n ≥ 8.

Claim 2. If n = 8, then (10) is violated.

We assume that n = 8 to justify the claim. By (3), if ∆(G) ≥ 4, then F (J) ≤ 3, and so by Lemma 4.1, J must be
ollapsible, a contradiction. Thus G must be a 3-regular graph with C being a Hamilton cycle of G. For any t ∈ Z8, there
exists an i(t) ∈ Z8 − {t} such that vtvi(t) ∈ E(G) − E(C). Since κ ′(G) ≥ 3 and G is 3-regular, G cannot have parallel edges,
nd so i(t) /∈ {t − 1, t + 1} in Z8.
If there is a t ∈ Z8 with i(t) = t + 2 in Z8, then by symmetry, we may assume that i(1) = 3. If, in addition, i(2) = 4,

then as G is 3-regular, {v8v1, v4v5} is a 2-edge-cut of G, contrary to κ ′(G) ≥ 3. Thus in Z8, by symmetry i(2) ̸∈ {4, 8}, and
so i(2) ∈ {5, 6, 7}. Suppose i(2) = 5. Then as Y2 = {Y4,0,0, Y3,1,0, Y2,2,0, Y2,1,1}, for each Y ∈ Y2, G[E(C) ∪ {v1v3, v2v5}]

contains a Y as a subgraph with v1 being the only vertex of degree 3, contrary to (10). Hence by symmetry, i(2) /∈ {5, 7},
forcing i(2) = 6. It follows that for any Y ∈ {Y4,0,0, Y3,1,0, Y2,2,0}, G[E(C) ∪ {v1v3, v2v6}] contains Y as a subgraph with v1
being the only vertex of degree 3. Furthermore, G[E(C)∪{v1v3, v2v6}] contains Y2,1,1 as a subgraph with v6 being the only
degree 3 vertex, and so (10) is violated. We conclude that by symmetry, for any t ∈ Z8, i(t) /∈ {t − 2, t − 1, t, t + 1, t + 2},
or equivalently,

for any t ∈ Z8, i(t) ∈ {t + 3, t + 4, t + 5} in Z8. (12)

If there is a t ∈ Z8 with i(t) = t + 3 in Z8, then by symmetry, we may assume that i(1) = 4. If i(2) = 5, then by
(12) and as G is 3-regular, we must have i(3) = 7, forcing i(6) = 8 violating (12). Thus by symmetry, in Z8, we must
have i(2) /∈ {5, 7}, and so i(2) = 6. It follows that for any Y ∈ {Y4,0,0, Y3,1,0, Y2,2,0}, G[E(C) ∪ {v1v4, v2v6}] contains Y as a
subgraph with v1 being the only vertex of degree 3. As G[E(C) ∪ {v1v4, v2v6}] also contains Y2,1,1 as a subgraph with v6
being the only degree 3 vertex, (10) is violated. We now conclude that by symmetry, we must have i(t) = t + 4 for any
t ∈ Z , and so G ∼ H . By (9), (10) is violated. This completes the proof for the claim.
8 = 8

7
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By Claim 2, we must have n ≥ 9. We first prove that

G always contains Y4,0,0 as a subgraph. (13)

ince κ ′(G) ≥ 3, we may assume that v1vj ∈ E(G) for some j with 1 < j ≤ n/2 + 1. If n ≥ 11, then G[E(C[vj−1, vj+5]) ∪

{v1vj}] ∼= Y4,0,0. Assume that n = 10. If there exists an t ∈ Z10, and a t ′ ∈ Z10 − {t − 1, t, t + 1} with vtvt ′ ∈ E(G) − E(C),
such that vt and vt ′ are of distance at most 4 on C , then as G[E(C) ∪ {vtvt ′}] contains a cycle of length at least 7
other than C , Y4,0,0 is a subgraph of G[E(C) ∪ {vtvt ′}]. It follows that we must have t ′ = t + 5 in Z10, whence
G[(E(C − {v8, v9, v10}) − {v3v4}) ∪ {v2v7, v4v9}] ∼= Y4,0,0. Now assume that n = 9. We observe that to avoid a Y4,0,0,
any chord of C must have the form vivi+4, and so G[(E(C − {v8}) − {v2v3, v5v6}) ∪ {v1v5, v3v7}] ∼= Y4,0,0. Hence (13) must
hold.

By (13), it suffices to show that any Y ∈ {Y3,1,0, Y2,2,0, Y2,1,1} is a subgraph of G. Let e ∈ E(G)−E(C) be an edge. Since C
is a Hamilton cycle of G, e is a chord of C . Let g(C + e) be the length of a shortest cycle of G[E(C)∪{e}]. Since J = G(e1, e2)
is reduced, and since cycles of length at most 3 is collapsible, it follows that every cycle of length at most 3 contains either
e1 or e2, and a cycle of length 2 in G must be induced by {e1, e2}. Since n ≥ 9 and κ ′(G) ≥ 3, C has at least ⌈

n
2⌉ = 5 chords.

It follows that there must be a chord e ∈ E(G) − E(C) such that g(C + e) ≥ 4. By symmetry, assume that e = v1vj with
≤ j ≤ 7. Then for any Y ∈ {Y3,1,0, Y2,2,0, Y2,1,1}, G[E(C) ∪ {v1vj}] contains Y as a subgraph with v1 being the only vertex
f degree 3 in Y . This, together with (13), implies that (10) is violated. This completes the proof of the Lemma. ■
The following corollary can be partially proved by Theorem 1.6(iv). For the sake of completeness, we present a formal

roof.

orollary 4.7. Every 3-connected Ns1,s2,s3-free line graph L(G) with s1 + s2 + s3 ≤ 4 is hamiltonian-connected where
1 > 0, s1 ≥ s2 ≥ s3 ≥ 0.

roof. Let G be a graph with κ(L(G)) ≥ 3, and let G0 be the core of G. By Lemma 2.4(ii), it suffices to show that G0 is
trongly spanning trailable. By Lemma 2.4(i), κ ′(G0) ≥ 3. By (10), G0 also does not contain any Y ∈ Y2 as a subgraph. It
follows by Lemma 4.6 that G0 is strongly spanning trailable. Hence the corollary holds. ■

Proof of Theorem 1.7(ii). It suffices to prove that for s ≥ 0,

if (10) and κ(L(G)) ≥ s + 3, then L(G) is s-Hamilton-connected. (14)

We argue by induction on s to prove (14), and assume that s = 0. By Corollary 4.7, (14) holds for s = 0.
Assume that s > 0 and (14) holds for smaller values of s. For any edge subset X ⊆ E(G) with 0 < |X | ≤ s.

Pick e0 ∈ X . Define G1 = G − e0 and X1 = X − {e0}. By (10), G1 does not have any Y ∈ Y2 as a subgraph, with
(L(G1)) = κ(G−e0) ≥ (s+3)−1 = (s−1)+3. By induction, G1 is (s−1)-Hamilton-connected, and so L(G)−X = L(G1)−X1
s Hamilton-connected. This completes the proof of Theorem 1.7(ii).

. Proofs of Lemma 4.4 and Theorem 3.2

The arguments in this section do not depend on any result in Sections 3 and 4, it develops the needed tools to prove
emma 4.4 and Theorem 3.2. We shall use the notation in Definition 4.2 and develop some more tools. For sets X and Y ,
he symmetric difference of X and Y is X∆Y = (X ∪ Y ) − (X ∩ Y ). If an edge e = uv ̸∈ E(G) but u, v ∈ V (G), then let
+ e be the graph containing G as a spanning subgraph with edge set E(G) ∪ {e}. For v ∈ V (G) and e ∈ E(G), we first

tudy reduced graphs with circumferences at most 6.

.1. Nontrivial 2-connected reduced graph with circumference at most 6

We have the following observations and facts. The first two are from the definition of G in (5).

bservation 5.1. Let G be a nontrivial connected graph.
i) If |D2(G)| ≤ 2 or |D2(G)| = 3 and G contains two adjacent degree 2 vertices, we have G ̸∈ G.
ii) If |D2(G)| = 3, then G ∈ G if and only if G ∈ {K2,3, K1,3(1, 1, 1)}.
iii) (Theorem 3 of [20]) If G is reduced with diameter 2, then G ∈ {K1,t , K2,t , Sm,l, P(10)} where t ≥ 2.

Lemma 5.2. Suppose G ∈ K′

2,t . Let x, y ∈ V (G) such that dG(x, y) ≥ 2 and {x, y} ∩ {z1, z2} = ∅. Then there exists a cycle C
of G such that |E(C)| ≥ 5 and |V (C) ∩ {x, y}| = 1 unless, up to isomorphism, G ∈ K ′

2,2 and {x, y} = {v1, v2}.

Proof. Suppose first that x, y are in the same (z1, z2)-component of G, then by Definition 4.3, G − x is also in K′

2,t , and
so a cycle C of length at least 5 containing y exists in G − x. If t ≥ 3 and x and y are in different (z1, z2)-component of
G, then by Definition 4.3, the graph G′ formed by deleting the component of G − {z1, z2} containing x is also in K′

2,t , and
′
so a cycle C of length at least 5 containing y exists in G . Therefore, we may assume that t = 2, G ̸= C6, and x and y

8
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re in different (z1, z2)-component of G. By symmetry, we may further assume that dG(v1) ≥ 3, x and v1 are in the same
z1, z2)-component and y and v2 are in the same (z1, z2)-component. If x ̸= v1, then G− x is also in K′

2,t and so a cycle of
length at least 5 containing y but not x exists. Hence x = v1. Similarly, y = v2. ■

We have the following observation.

Observation 5.3. Let C = v1v2...vnv1 be a cycle of G, P1 be a vivk-path of G satisfying V (P1) ∩ V (C) = {vi, vk}, and P2
be a vjvℓ-path of G satisfying V (P2) ∩ V (C) = {vj, vℓ}. Suppose that 1 ≤ i < j < k < ℓ < n. If |E(P1)| + |E(P2)| >
|E(C[vk, vℓ])| + |E(C[vi, vj])|, then C is not a longest cycle of G.

Proof of Lemma 4.4. As (ii) follows immediately from (i) and Observation 5.1, it suffices to justify (i). It is routine to
verify that graphs in G are reduced and if G ∈ G, then c(G) ≤ 6. If c(G) ≤ 5, then the diameter of G is at most 2 and so by
Observation 5.1(iii), G ∈ G. Hence we assume that c(G) = 6.

Claim 3. The graph G is spanned by H where H ∈ {C6(s1, s2, s3) : s1 ≥ s2 ≥ 1, s3 ≥ 2} ∪ (∪t≥2K′

2,t ).

Since a cycle of order 6 is in K′

2,2 and c(G) = 6, we conclude that G contains a member in K′

2,t as a subgraph. Choose
an H ∈ {C6(s1, s2, s3) : s1 ≥ s2 ≥ 1, s3 ≥ 2} ∪ (∪t≥2K′

2,t ) such that

H is a subgraph of G with |V (H)| + |E(H)| maximized. (15)

If V (G) = V (H), then done. Therefore there must be a vertex u ∈ V (G) − V (H). As κ(G) ≥ 2, G has a uv-path P1 and a
uw-path P2 with V (P1)∩ V (P2) = {u}, V (P1)∩ V (H) = {v}, V (P2)∩ V (H) = {w} for distinct vertices v and w. If vw ∈ E(H),
then since each edge of H lies in a cycle with length at least 5, H ∪ P1 ∪ P2 contains a cycle with length greater than 6,
ontrary to c(G) = 6. Hence dH (v, w) ≥ 2. In the arguments below, we will use the notations in Fig. 1.
Assume first that H ∈ {C6(s1, s2, s3) : s1 ≥ s2 ≥ 1, s3 ≥ 2}. By (15) and Observation 5.3, we have {v, w} ∈ {{up, uq},

{vp, vq}, {wp, wq} : p ̸= q}. If {v, w} = {up, uq}, then G[{upa1, a1v1, v1a2, a2w1, w1a3, a3uq} ∪E(P1)∪E(P2)] contains a cycle of
length longer than 6, contrary to c(G) = 6. Hence {v, w} ̸= {up, uq}. By symmetry, we also conclude that {v, w} ̸= {wp, wq}

and {v, w} ̸= {vp, vq}.
Therefore, we may assume that H ∈ K′

2,t . If {v, w} = {z1, z2}, then G[H + u] ∈ K′

2,t+1, violating (15). Hence we must
have {v, w} ̸= {z1, z2}.

Suppose that {v, w} ∩ {z1, z2} = ∅. By Lemma 5.2, either t = 2 and {v, w} = {v1, v2}, whence G[H + u] ∈ K ′

2,3
r G[H + u] ∼= C6(s1, s2, s3), contrary to (15); or there exists a cycle C with |V (C)| ≥ 5 such that (by symmetry)
(C) ∩ {v, w} = {w}. As such a cycle C must contain both z1 and z2, we may assume that wz1 ∈ E(H). Let P be the
hortest vz1-path in H . Then C ′

= P[v, z1]z1wP−1
2 [w, u] is a cycle of length at least 4 and |E(C ∩ C ′)| = 1. Thus C△C ′ is a

ycle of length greater than 6, contrary to c(G) = 6. These contradictions indicate that we must have |{v, w} ∩ {z1, z2}| = 1.
By symmetry, we assume w = z1. Since G is reduced and c(G) = 6, both uw, uv ∈ E(G). If v = vi for some

i ∈ {1, 2, . . . , t}, then G[H+u] ∈ K ′

2,t , violating (15). Hence we have v ∈ V (H)−{v1, . . . , vt , z1, z2}, whence NH (v) = {z2, vi}

or some 1 ≤ i ≤ t . If dH (vi) = 2, then G[H + u] ∈ K ′

2,t , again violating (15). Therefore we have dH (vi) ≥ 3, and so by
bservation 5.3, G[H + u] contains cycle with length greater than 6. This justifies Claim 3.
By Claim 3, G is spanned by an H where H ∈ {C6(s1, s2, s3) : s1 ≥ s2 ≥ 1, s3 ≥ 2} ∪ K ′

2,t . Suppose xy ∈ E(G) − E(H).
hen since G is reduced, we have dH (x, y) ≥ 3.
Assume first that H ∈ {C6(s1, s2, s3) : s1 ≥ s2 ≥ 1, s3 ≥ 2}. Since dH (x, y) ≥ 3, we have {x, y} ∈ {{a2, up},

a1, wp}, {a3, vp} : p ≥ 1}. But any such case implies that G[H +xy] ∼= K1,3(s′1, s
′

2, s
′

3) where s1 + s2 + s3 = s′1 + s′2 + s′3 +2. If
= G[H + xy], then G ∈ G and we are done. Assume that there exists an edge e′

∈ E(G)− E(G[H + xy]). By the definition
f K1,3(s′1, s

′

2, s
′

3), the graph K1,3(s′1, s
′

2, s
′

3)+ e′ must create a cycle of length at most 3 or an C++

6 . By Theorem 2.1(iv), G is
ot reduced, contrary to the assumption that G is reduced.
Thus we must have H ∈ K ′

2,t . Recall that xy ∈ E(G)−E(H) is an edge not in H . By Definition 4.3, any z ′
∈ V (G)−{z1, z2}

as distance at most two to z1 and z2. Thus if x ∈ {z1, z2} and y /∈ {z1, z2}, then H + xy contains a cycle of length at most
, contrary to the assumption that G is reduced. Thus either {x, y} = {z1, z2} or {x, y} ∩ {z1, z2} = ∅.
If {x, y} = {z1, z2}, then since G is reduced, by (15) and by Theorem 2.1(iv), we have G[E(H) ∪ xy] ∈ B. Assume that

x, y} ∩ {z1, z2} = ∅. If H ∈ K′

2,2 with {x, y} = {v1, v2}, then G[E(H) ∪ xy] ∈ B. As any additional edge added to a graph in
will result in a cycle of length at most 3, contrary to the assumption that G is reduced.
Hence we must have that {x, y} ∩ {z1, z2} = ∅ and if H ∈ K′

2,2, then {x, y} ̸= {v1, v2}. By Lemma 5.2, there exists a
ycle C of H such that |V (C)| ≥ 5 and |V (C) ∩ {x, y}| = 1. Assume first that t ≥ 3. Then we may assume that for some i,
i /∈ V (C) and V (C) ∩ {x, y} = {y}. By the definition of K ′

2,t , as |V (C)| ≥ 5 and as any cycle of a K ′

2,t with length at least 5
ust contain both z1 and z2, it follows that {z1, z2} ⊆ V (C). Since dH (y, z1)+ dH (y, z2) ≤ 3, we may assume dH (y, z1) = 1,
nd so yz1 ∈ E(H). Let Q be the shortest xz1-path in H . As G is reduced, |V (Q )| ≥ 3 and so C ′′

= Q [x, z1]z1yx is a cycle
ith length at least 4 with |E(C ∩ C ′′)| = 1. It follows that C△C ′′ is a cycle with length at least 7, contrary to assumption
f c(G) = 6.
Hence we must have t = 2 but y /∈ {v1, v2}. Again by Definition 4.3 and by |V (C)| ≥ 5, we have {z1, z2} ⊆ V (C) and

e by symmetry may assume that v y, z y ∈ E(H) with N (z ) ∩ N (v ) − {y} ̸= ∅. Since G is reduced, we may assume
2 2 G 2 G 2

9
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hat either x = v1 or NG(z1) ∩ NG(v1) = {x}, whence G contains a K1,3(1, s2, s3), violating (15); or there exist distinct
x, x′

∈ NG(z1)∩NG(v1), whence for any y′
∈ NG(z2)∩NG(v2)− {y}, the cycle y′v2yxz1x′v1v2y′ has length at least 7, contrary

o the assumption. This completes the proof of the lemma. ■

efinition 5.4. Let C = x1x2y1y2x1 be a 4-cycle in G with a partition π (C) = ⟨{x1, y1}, {x2, y2}⟩.
(i) (Catlin [5]) Let G/π (C), the π (C)-reduction of G, be the graph obtained from G− E(C) by identifying x1 and y1 to form
a vertex v1, by identifying x2 and y2 to form a vertex v2, and by adding an edge eπ (C) = v1v2.
(ii) The 4-cycle C is a reducible 4-cycle of G if G/π (C) has a cycle containing the edge eπ (C) = v1v2. (In other words, eπ (C)
is not a cut edge of G/π (C).)

Theorem 5.5. Let G be a graph containing a 4-cycle C and let G/π (C) be defined as above. Each of the following holds.
i) (Catlin, Corollary 1 of [5]) If G/π (C) is collapsible, then G is collapsible.
ii) (Catlin, Corollary 2 of [5]) If G/π (C) is supereulerian, then G is supereulerian.
(iii) c(G/π (C)) ≤ c(G).

Proof. We adopt the notation in Definition 5.4 to justify (iii). Let C ′ be a longest cycle of G/π (C). If eπ (C) = v1v2 is not an
dge of C ′, then C ′ is a cycle of G and so c(G/π (C)) ≤ c(G). Assume that eπ (C) is an edge of C ′. Then by the definition of
π (C) = v1v2, C ′ can be modified into a cycle of G of length at least |E(C ′)| by adding a path joining a vertex in {x1, y1} to
vertex in {x2, y2} to C ′

− v1v2. Again we have c(G/π (C)) ≤ c(G), and so (iii) must hold. ■

.2. Proof of Theorem 3.2

By contradiction, we assume that

G be a counterexample to Theorem 3.2 with |V (G)| minimized. (16)

e shall make a number of claims in our proofs.

laim 4. Each of the following holds.
i) G is simple, κ(G) ≥ 2, c(G) ≤ 8, |D2(G)| ≤ 2, g(G) ≥ 4, and G does not have essential 2-edge-cuts.
ii) |V (G)| ≥ c(G) ≥ 7.
iii) G does not contain a reducible 4-cycle.

As Claim 4(i) and (ii) follow from assumption of Theorem 3.2, Theorem 2.1 and Lemma 4.4, it remains to prove
laim 4(iii). By contradiction, assume that G has a reducible 4-cycle C ′

= x1x2y1y2x1. In the arguments below, let
π = G/π (C ′), G′

π be the reduction of Gπ and we adopt the notation in Definition 5.4 with eπ (C ′) = v1v2, and view
(Gπ ) = (E(G)−E(C ′))∪{v1v2} and V (Gπ ) = (V (G)−V (C ′))∪{v1, v2}. Then for each i ∈ {1, 2}, dGπ (vi) = dG(xi)+dG(yi)−3.
s C ′ is a reducible 4-cycle, dGπ (vi) ≥ 2, where equality holds if and only if exactly one of dG(xi) and dG(yi) equals 2 and
he other equals 3. We have the following subclaims.

2A) |D2(Gπ )| ≤ |D2(G)|.
If dGπ (vi) > 2, then D2(Gπ ) ⊆ D2(G), and so (2A) holds. Assume that dGπ (vi) = 2. By symmetry, we may assume that

= 2 and dG(x2) = 2 and dG(y2) = 3. Then D2(Gπ ) = (D2(G) − {x2}) ∪ {v2}, and so (2A) follows.
By Theorems 2.1, 5.5 and Claim 4(i), we have the following observation (2B).

2B) Each of the following holds.
i) The edge eπ cannot be contained in any collapsible subgraph of Gπ and G′

π is nontrivial.
ii) Any essential 2-edge-cut of G′

π must contain eπ .
Thus eπ = v′

1v
′

2 ∈ E(G′
π ), where v′

i denotes the vertex of the contraction image in Gπ that contains vi. If ess′(G′
π ) ≥ 3,

hen G′
π satisfies the hypotheses of Theorem 3.2, and so by (16), G′

π is collapsible. By Theorems 2.1(iii) and 5.5(i), G is
collapsible, contrary to (16). Hence

G′
π has an essential edge cut X with |X | = 2. (17)

By Claim 4(i), we may assume that X = {v′

1v
′

2, w1w2} for some vertices w1, w2 ∈ V (Gπ ). Let L1, L2 be the two
components of G − (E(C ′) ∪ {w1w2}) and we assume that for i ∈ {1, 2}, wi, xi, yi ∈ V (Li). Thus |V (Li)| ≥ 2 where equality
holds if and only if wi ∈ {xi, yi}. By symmetry, assume that |E(L1 − {w1, x1, y1})| ≥ |E(L2 − {w2, x2, y2})|. Throughout the
rest of the proof, B′ denotes the block of G′

π with eπ ∈ E(B′).

(2C) Each of the following holds.
(i) Any vertex v ∈ D2(B′) − D2(G) must be adjacent to eπ , and |D2(B′)| ≤ 4.

′ ′ ′
(ii) |{v1, v2} ∩ D2(B )| ≤ 1.

10
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E

As (2C)(i) follows from |D2(G)| ≤ 2, it suffices to show (2C)(ii). Suppose dB′ (v′

1) = dB′ (v′

2) = 2. Let EB′ (v′

1) = {ev′
1
, eπ },

B′ (v′

2) = {ev′
2
, eπ }. By (2B)(i), {ev′

1
, ev′

2
} cannot be an essential 2-edge-cut of B′, and so G[{v′

1v
′

2, ev′
1
, ev′

2
}] is a 3-cycle,

contrary to (2B)(i).

(2D) Each of the following holds.
(i) |E(L1 − {w1, x1, y1})| ̸= 0.
(ii) |E(L2 − {w2, x2, y2})| = 0.
(iii) xi, yi, wi are mutually distinct.

Suppose |E(L2 − {w2, x2, y2})| = |E(L1 − {w1, x1, y1})| = 0. Since G is reduced, it cannot contain K−

3,3 as a sub-
graph, and so we must have V (L2) − {w2, x2, y2} ⊆ D2(G). Furthermore, |V (L2) − {w2, x2, y2}| = |D2(G)| = 2 by
|D2(G)| ≤ 2. Then V (L1) − {w1, x1, y1} ⊆ D3(G) and |V (L1) − {w1, x1, y1}| ≥ 2. Let {u, v} ⊆ V (L1) − {w1, x1, y1}. Then
G[{x1x2, x2y1, ux1, uy1, vx1, vy1, uw1, vw1}] is a K−

3,3, a contradiction. This proves (2D)(i).
Hence L1 − {w1, x1, y1} must contain an edge e1 = z ′

1z
′

2. To prove (2D)(ii), assume that L2 − {w2, x2, y2} has an
edge e2 = z ′′

1 z
′′

2 . As κ(G) ≥ 2, G has a cycle C1 containing e1 and e2. By the choice of e1 and e2, |E(C1)| ≥ 8.
Moreover, if |E(C1) ∩ E(C ′)| = 1, then C1△C ′ is a cycle of length |E(C1)| + 2 > 8. Since c(G) ≤ 8, we may assume
that C1 = z ′

1z
′

2y1y2z
′′

2 z
′′

1 x2x1z
′

1 is a cycle of length 8. Again by κ(G) ≥ 2, G has a cycle C ′

1 containing z ′

1z
′

2 and w1w2. We
may assume by symmetry that C ′

1 has a w1z ′

2-path Q1 not containing z ′

1 and a w2z ′′

2 -path Q2 not containing z ′′

1 . But then
G contains a cycle containing e1 and e2, and intersecting C ′ at only one edge, implying the existence of a cycle of length
at least 9 in G, contrary to c(G) ≤ 8. This proves (2D)(ii).

As x2 ̸= y2, we first assume that w2 ∈ {x2, y2} (say w2 = y2). Since G is reduced and since E(L2) ̸= ∅, there must
be a vertex w ∈ V (L2) − {x2, y2} satisfying wx2, wy2 ∈ E(G). Then w ∈ D2(G), and Gπ [{v′

2, w}] contains a 2-cycle,
and so dG′

π
(v′

2) = 2. By (2B)(ii), ess′(G′
π ) ≥ 3, contrary to (17). This proves that |{w2, x2, y2}| = 3. Next, as x1 ̸= y1,

we assume that w1 ∈ {x1, y1} (say w1 = y1). If there exists u ∈ V (L2) − {x2, y2, w2} such that dG(u) = 3, then
Gπ [u, v′

1, v
′

2] is a 3-cycle, a collapsible subgraph containing eπ , contrary to (B)(i). Hence V (L2) − {x2, y2, w2} ⊆ D2(G),
and so |V (L2) − {x2, y2, w2}| ≤ |D2(G)| ≤ 2. This implies that D2 ⊆ V (L2). As every vertex in V (L2) − {x2, y2, w2}

must be adjacent to two vertices in {x2, y2, w2}, that |V (L2) − {x2, y2, w2}| = 1 would imply that |D2(G)| > 2. Hence
|V (L2) − {x2, y2, w2}| = |D2(G)| = 2. Let {u, v} = V (L2)−{x2, y2, w2} = D2(G). We may assume {ux2, uw2, vy2, vw2} ∈ E(G).
Let G1 = G[V (G) − {u, v, w2}]. Then G1 satisfies the hypotheses of Theorem 3.2, and so by (16), G1 is collapsible. By
Theorem 2.1, G is also collapsible, contrary to (16). This completes the proof of (2D).

By (2D)(i), in the rest of the arguments, we assume that z ′

1, z
′

2 ∈ V (L1 − {w1, x1, y1}) such that z ′

1z
′

2 ∈ E(L1).

(2E) c(B′) ≤ 6.
Let H be the block of Gπ with eπ ∈ E(H). Choose a longest cycle C in H such that |{eπ } ∩ E(C)| is maximized. By

contradiction, assume that |E(C)| ≥ 7. If eπ ∈ E(C), then we may assume that G[E(C − eπ )] is an x1x2-path in G. It follows
that G[E(C − eπ ) ∪ {x1y2, y2y1, y1x2}] is a cycle of G with length at least 9, contrary to c(G) ≤ 8. Hence eπ is not on any
longest cycle of H , and so |{v1, v2} ∩ V (C)| ≤ 1.

Suppose |{v1, v2} ∩ V (C)| = 0. As κ(H) ≥ 2, for j ∈ {1, 2}, H contains disjoint viuij-path P ′

j such that ui1 , ui2 are distinct
vertices of C and V (P ′

j ) ∩ V (C) = uij . By symmetry, we may assume G[E(P ′

j )] is an xjuij-path Pj. Since |E(C)| ≥ 7, C
contains an ui1ui2-path P3 such that |E(P3)| ≥ 4. Therefore ui1P3[ui1 , ui2 ]ui2P

−1
2 [x2, ui2 ]x2y1y2x1P1[x1, ui1 ]ui1 is a cycle of G

with length at least 9, contrary to c(G) ≤ 8. Hence |{v1, v2} ∩ V (C)| = 1. By (2D)(ii), we have {v1, v2} ∩ V (C) = {v1}. By
κ(H) ≥ 2, H − v1 contains a v2uk-path P4 such that V (P4) ∩ V (C − v1) = {uk}. By definition of L1, uk ∈ V (L1). By (2D)(iii),
|V (P4)| ≥ 3. As eπ is not on any longest cycle of H , replacing edges in a v1uk-path on C by E(P4) ∪ {eπ } will not result in
a longest cycle of H , and so |E(C)| = 8. If x1, y1 ∈ V (G[E(C)]), then G[E(C) ∪ {x1x2, x2y1}] is a cycle of length at least 9, a
contradiction. Hence we may assume that V (C ′) ∩ V (G[E(C)]) = {x1}. By symmetry, we assume that P4 is a y2uk-path in
G. Let P5 be a longest x1uk-path on C with |E(P5)| ≥ 4. It follows that x1x2y1y2P4[y2, uk]ukP−1

5 [x1, uk]x1 is a cycle of G with
length at least 9. This proves (2E).

(2F) |V (L2) − {x2, y2, w2}| ≤ 1.
Suppose V (L2) − {x2, y2, w2} contains two vertices a1, a2 with dG(a1) ≥ dG(v) for any v ∈ V (L2) − {x2, y2, w2}. If

V (L2)−{x2, y2, w2} ⊆ D2(G), then V (L2)−{x2, y2, w2} = {a1, a2} and {a1, a2} ⊆ NG(w2). Assume a1x2 ∈ E(G) by symmetry.
Suppose first that {x1, y1} is a vertex-cut of G and let S ′ be the (x1, y1)-component contained in L1. Then G[E(S ′) ∪ E(C ′)]
satisfies each hypotheses of Theorem 3.2, whence by (16), G[E(S ′) ∪ E(C ′)] is collapsible, contrary to the assumption that
G is reduced. Hence {x1, y1} is not a vertex-cut of G, and so G − y1 has two internally disjoint z ′

1a1-paths. Thus L1 − {y1}
contains internally disjoint z ′

1x1-path Q and z ′

2w1-path Q ′. It follows that z ′

1z
′

2Q
′
[z ′

2, w1]w1w2a1x2y1y2x1Q−1
[z ′

1, x1]z
′

1 is a
cycle of length at least 9, contrary to c(G) ≤ 8.

Hence dG(a1) ≥ 3 and {a1x2, a1y2, a1w2} ⊆ E(G). Since κ(G) ≥ 2, G contains a cycle C ′′ with z ′

1z
′

2, a1w2 ∈ E(C ′′). As
{z ′

1, z
′

2} ∩ {x1, y1, w1} = ∅, C ′′ must use at least 3 edges in E(L1) and two edges incident with a1, and so |E(C ′′)| ≥ 7.
By c(G) ≤ 8, it follows that |V (C ′′) ∩ V (C ′)| = 2 and |E(C ′′) ∩ E(C ′)| = 1. Hence C ′′

△C ′ is a cycle of length at least 9, a
contradiction to the assumption c(G) ≤ 8. This proves (2F).

By (2F), we use ā to denote the possible vertex in V (L2) − {x2, y2, w2}. By (2D), (2F) and by |D2(G)| ≤ 2, we conclude
that L must contain one of the following graphs H , (1 ≤ i ≤ 5), depicted in Fig. 2, as a subgraph.
2 i
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Fig. 2. The possible subgraphs in L2 .

Fig. 3. The two possible structures of G.

(2G) None of H1,H2,H4 can be a subgraph of L2.
By contradiction, suppose that L2 contains H ′

∈ {H1,H2,H4} as a subgraph. Then we have |D2(B′)| ≤ 3 and dB′ (v′

2) = 2.
By (2E), c(B′) ≤ 6. If |D2(B′)| ≤ 2, then by Lemma 4.4 and Observation 5.1(i), B′ is collapsible, contrary to (B)(i). Hence we
may assume |D2(G′

π )| = 3 and H ′
̸= H2, and so by (2C)(i) dB′ (v′

1) = dB′ (v′

2) = 2, contrary to (2C) (ii).
By (2G), either H3 or H5 is a subgraph of L2. If |D2(B′)| = 4, then by (2C)(i), dB′ (v′

1) = dB′ (v′

2) = 2, violating
(2C)(ii). This implies that |D2(B′)| = 3, dB′ (v′

2) = 2 and dB′ (v′

1) ≥ 3. Let G1 be a graph contains H3 as a subgraph, and
G2 = G1 − ā+ x2w2 + y2w2. Then G2 is obtained from G1 by replacing H3 by H5 and so c(G1) ≥ c(G2). It is suffice to show
c(G2) ≥ 9 to complete the proof of Claim 4. Hence we may assume that G contains H5 as a subgraph.

(2H) B′
= G′

π .
Assume that G′

π − v′

2 has a block B′′
̸= B′. Then by (2D), V (B′) ∩ V (B′′) = {v′

1}. If follows that H ′′
= G[E(B′′) ∪ E(C ′)] is

also a 2-edge-connected subgraph of G. As |D2(B′)| = 3, D2(G) ∩ V (H ′′) = ∅, and so D2(H ′′) = {x2, y2}. Furthermore, any
dge-cut of B′′ not intersecting E(C ′) is also an edge-cut of G, and any edge-cut of B′′ intersecting C must be either the
wo edges incident with x2 or y2, or of size at least 3. Hence ess′(B′′) ≥ 3. Since c(H ′′) ≤ c(G) ≤ 8, it follows by (16) that
′′ is collapsible, contrary to the assumption that G is reduced. This proves (2H).
By (2E) and (2H), c(G′

π ) = c(B′) ≤ 6. It follows by Lemma 4.4, Observation 5.1 and |D2(B′)| ≤ 3 that G′
π ∈

K2,3, K1,3(1, 1, 1)}.
By |D2(G)| ≤ 2, (2C) and the structures of K2,3 and K1,3(1, 1, 1), Gπ contains only one maximal nontrivial collapsible

ubgraph S1 with v1 ∈ V (S1) in each of these two cases. Hence G must have one of the following structures.
In the following, we adopt the notation in Fig. 3, and so S denotes the preimage of S1, D2(G) = {q1, q2} and b3 ∈ NL1 (x1),

b4 ∈ NL1 (y1) in both of F1, F2, NG(q1) = {b1, w1} in F1 and NL1 (q1) = {b1, b6} in F2, NL1 (w1) = {q1, q2} in F1 and
NL1 (w1) = {q2, b5} in F2.

Suppose that G has structure F2. By symmetry we may assume that dG(b1, x1) ≤ dG(b1, y1). Let P8 be a shortest b1x1-path
in S. Then x1x2y1y2w2w1b5b6q1b1P8[b1, x1]x1 is a cycle of G with length at least 10, contrary to c(G) ≤ 8. Hence G must
have structure F1.

(2I) b3 ̸= b4 and {b1, b2} ∩ {x1, y1} = ∅.
If b3 = b4, then G[{b3x1, b3y1, w2x2, w2y2} ∪ E(C ′)] ∼= K−

3,3 is collapsible, contrary to the assumption that G is reduced.
Thus b3 ̸= b4.

Assume that {b1, b2} ∩ {x1, y1} ̸= ∅. Then by symmetry we assume that b1 = x1. Let C1 = y1x2w2y2y1. Using the
notation in Definition 5.4, we let e′

π be the new edge in Gπ (C1), the π (C1)-reduction of G, and B′′ be the block of G′

π (C1)
containing e′

π . As |D2(G)| ≤ 2 and by applying (2C) and (2E) to Gπ (C1) with B′′ replacing B′, we observe that |D2(B′′)| ≤ 3
and c(B′′) ≤ 6.

Let G′

π (C1)
be the reduction of Gπ (C1), v0 be the vertex onto which the collapsible subgraph of Gπ (C1) containing x1 is

contracted. If d ′ (v) = 2, then q v ∈ E(G′ ) with d ′ (q ) = d ′ (v) = 2. As c(B′′) ≤ 6, by Lemma 4.4 and
G
π (C1)

1 π (C1) G
π (C1)

1 G
π (C1)
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C

V

Fig. 4. Proof of Claim 7.

Observation 5.1, B′′ is collapsible, and so is G′

π (C1)
. Hence by Theorems 2.1(iii) and 5.5(i), G is collapsible, contrary to (16).

Hence dG′
π (C1)

(v) ≥ 3, and so by (2C), |D2(B′′)| ≤ 2. As c(B′′) ≤ 6, by Lemma 4.4 and Observation 5.1(i), B′′ is collapsible,

which implies that G is collapsible, contrary to (16). This proves that {b1, b2} ∩ {x1, y1} = ∅ and so (2I) is justified.
Let P9 be a longest b1v1-path contained in S1. By (2I), {b1, b2} ∩ {x1, y1} = ∅, and so |E(P9)| ≥ 1. Suppose |E(P9)| = 1.

Let B1 be the block of S1 which contains P9 and ea, eb be two edges incident with b1 in B1. Since any longest b1v1-path in
S1 has length 1, by g(G) ≥ 4, we may assume that ea = b1x1 and eb = b1y1 in G. Then G[{b1, x1, y1, x2y2, w2}] ∼= K−

3,3 is
collapsible, contrary to the assumption that G is reduced. Hence |E(P9)| ≥ 2. By symmetry, we may assume G[E(P9)] is a
b1, x1-path P ′

9. Thus x1x2y1y2w2w1 q1b1P ′

9[b1, x1]x1 is a cycle of G of length at least 9, contrary to c(G) ≤ 8. This completes
the proof of Claim 4.

Let c = c(G) and C = z1z2...zcz1 be a longest cycle of G. As C is longest, for zi, zj ∈ V (C) with 1 ≤ i < j ≤ c , we have:

any (zi, zj)-path in G internally disjoint from V (C) has length at most dC (zi, zj). (18)

laim 5. |E(G[V (C)]) − E(C)| ≤ 2 and V (G) − V (C) ̸= ∅.

Suppose there exist three edges e1, e2, e3 ∈ E(G[V (C)]) − E(C). If c(G) = 7, then as g(G) ≥ 4, G[E(C) ∪ {e1}]
contains a reducible 4-cycle, contrary to Claim 4(iii). Hence c(G) = 8. By Claim 4(iii), we must have {e1, e2, e3} ⊂

{z1z5, z2z6, z3z7, z4Z8}. This forces that E(C)∪{e1, e2, e3} contains a reducible 4-cycle, which is also contrary to Claim 4(iii).
Hence E(G[V (C)]) − E(C)|≤ 2. Since |D2(G)| ≤ 2, we must have V (G) − V (C) ̸= ∅. This proves Claim 5.

Claim 6. There exists v ∈ V (G) − V (C) such that dG(v) ≥ 3.

Suppose dG(v) = 2 for any v ∈ V (G) − V (C). Then |V (G) − V (C)| ≤ |D2(G)| ≤ 2, and so there exists zizj ∈

E[G(V (C))] − E(C) where 1 ≤ i < j ≤ c. As |V (C)| = 7 would imply that G[E(C) ∪ {zizj}] contains a reducible 4-cycle,
violating Claim 4(iii), we must have c = 8, and so by |D2(G)| ≤ 2 and Claim 5, |E(G[V (C)]) − E(C)| = 2. It follows by
(G)−V (C) ⊆ D2(G) that |V (G) − V (C)| = 2. Suppose that E[G(V (C))]−E(C) = {zi1zi2 , zi3zi4}, V (G)−V (C) = D2(G) = {u, v}

and uzi5 , uzi6 , vzi7 , vzi8 ∈ E(G). Since G is reduced and by Claim 4(iii), each pair of vertices in {zi1 , zi2 , zi3 , zi4} must
have distance 2 on C , and so we may assume i1 = 1, i3 = 3, i2 = 5, i4 = 7. Then by Claim 4 (iii), we must have
{{i5, i6}, {i7, i8}} = {{2, 6}, {4, 8}}. It follows that G = P(10)−. This implies that c(G) = 9, contrary to c(G) = 8, and so
Claim 6 follows (see Fig. 4).

Claim 7. There exists a vertex v ∈ V (G)− V (C) such that there are three internally disjoint vzij-path Pj where zij ∈ V (C) and
V (Pj) ∩ V (C) = {zij} for j ∈ {1, 2, 3}.

By Claim 6, there exists a vertex u ∈ V (G)−V (C) with dG(u) ≥ 3. As κ(G) ≥ 2, G contains a uzi1-path Q1 and a uzi2-path
Q2 with zi1 ̸= zi2 , V (Q1)∩V (Q2) = {u} and for j ∈ {1, 2}, V (Qj)∩V (C) = {zij}. Let fj be the edge in Qj incident with zij . Since
dG(u) ≥ 3, there exists an edge uw ∈ E(G)− E(Q1)∪ E(Q2). If w ∈ V (C), then done. Assume that w /∈ V (C). As ess′(G) ≥ 3,
G − {f1, f2} has a uzt-path Q3 with V (Q3) ∩ V (C) = {zt}. We may assume that V (Q3) ∩ V (Q1) ∪ V (Q2) − (V (C) ∪ {u}) ̸= ∅,
as otherwise the claim holds. Let v ∈ V (Q3) ∩ V (Q1) ∪ V (Q2) − (V (C) ∪ {u}) such that for j ∈ {1, 2}, if v ∈ V (Qj), then
V (Qj[v, zij ]) ∩ V (Q3) ⊆ V (C) ∪ {v}. Assume that v ∈ V (Q1). Let P1 = Q1[v, zi1 ], P2 = Q−1

1 [v, u]Q2[u, zi2 ] and P3 = Q3[v, zt ].
Then P1, P2, P3 are the paths satisfying the claim. This justifies Claim 7.

Let v ∈ V (G) − V (C) and Pj be vzij-path where zij ∈ V (G) and V (Pj) ∩ V (C) = {zij} for j ∈ {1, 2, 3}. By Claim 7, there
exists a vertex v ∈ V (G)− V (C) and three internally disjoint vzij-paths Pj, j ∈ {1, 2, 3}, with V (Pj)∩ V (C) = {zij}. We label
the Pi’s so that |E(P1)| ≤ |E(P2)| ≤ |E(P3)|.

Claim 8. Each of the following holds.
(i) |{zi1 , zi2 , zi3}| < 3, |E(P2)| ≥ 2 and |E(P3)| ≤ 3.
(ii) If |E(P1)| ≥ 2, then |E(P1)| = |E(P2)| = |E(P3)| = 2.
(iii) If |E(P1)| = 1, then zi2 = zi3 .

Assume by contradiction that |{zi1 , zi2 , zi3}| = 3. If |E(P2)| ≥ 2, then by (18), we have 8 ≥ c(G) ≥ dC (zi3 , zi1 ) +

d (z , z )+ d (z , z ) = 3+ 4+ 3 = 10, a contradiction. Thus we may assume that |E(P )| = 1. Then no matter whether
C i3 i2 C i1 i2 2
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E(P3)| ≥ 2 or |E(P3)| = 1, as G is reduced and c(G) ≤ 8 and by (18), either P1 or P2 is always in a reducible 4-cycle of G,
contrary to Claim 4(iii). Hence |{zi1 , zi2 , zi3}| < 3. Next we assume that |E(P2)| = |E(P1)| = 1. As g(G) ≥ 4, we cannot have
zi1 = zi2 , and so by the symmetry between P1 and P2, we may assume that zi1 = zi3 . By g(G) ≥ 4, we have |E(P3)| ≥ 3.
If E(P3)|= 3, then E(P1) ∪ E(P3) induces a reducible 4-cycle of G, contrary to Claim 4(iii). Hence |E(P3)| ≥ 4. But then
E(P3) ∪ E(P2) induces a path of length at least 5 with both ends on V (C), contrary to (18). This proves that |E(P2)| ≥ 2. If
E(P3)| ≥ 4, then for some j ∈ {1, 2}, E(P3) ∪ E(Pj) induces a path of length at least 5 with end vertices on V (C), contrary
o (18), and so (i) is justified.

Now assume that |E(P1)| ≥ 2. Then for j ∈ {2, 3}, E(P1)∪ E(Pj) is either a cycle or a path. If E(P1)∪ E(Pj) is a path, then
oth ends of this path are on V (C). As c(G) ≤ 8, 4 ≤ 2|E(P1)| ≤ |E(P1) ∪ E(Pj)| ≤ 4, implying |E(P1)| = |E(Pj)| = 2, and so
e may assume that j = 2 and E(P1) ∪ E(Pj) is a cycle. But then, E(P2) ∪ E(P3) is a path with both ends of it on V (C). As
(G) ≤ 8, we also have |E(P2)| = |E(P3)| = 2, and so (ii) follows.
Assume that |E(P1)| = 1. If zi1 = zij for some j ∈ {2, 3}. Then as g(G) ≥ 4, we have |E(P3)| ≥ |E(Pj)| ≥ 3. It follows by

laim 8(i) that E(P3) ∪ E(P2) induces a path of length at least 5 with both ends on V (C), contrary to (18). Hence we must
ave zi2 = zi3 . This completes the proof of the claim.
By Claim 8, we may assume zi2 = zi3 , and there exist vertices u2

∈ V (P3) − {v, zi2} and u3
∈ V (P2) − {v, zi3} such that

vu2, vu3
} ⊆ E(G). By (18), |V (P1)| ≤ 3. Let p be the possible vertex of P1 such that p ̸∈ {v, zi1}.

laim 9. Each of the following holds.
i) For j ∈ {2, 3}, if |E(Pj)| = 2, then uj

∈ D2(G).
ii) D2(G) = {u2, u3

}.

Let j ∈ {j, j′} = {2, 3} and dG(uj) ≥ 3. By κ(G) ≥ 2, uj is adjacent to a vertex q ∈ V (G) − V (Pj) such that ujq is on a
jz-path P4 with V (P4 − uj) ∩ (V (C) ∪ V (P1) ∪ V (P2) ∪ V (P3)) = {z}. By Claim 8 with v being replaced by uj, we conclude
hat z ∈ V (P1) ∪ V (P2) ∪ V (P3).

Assume that |E(Pj)| = 2. As g(G) ≥ 4 and c(G) ≤ 8, either z = zi1 , |E(P4)| = 1 and |E(P1)| = 2, whence vpzujv is a
educible 4-cycle of G, contrary to Claim 4(iii); or z = zi1 , |E(P4)| ≥ 2, whence Pj′ [zi2 , v]vujP4[uj, z] is a path of length at
east 5 with end vertices on V (C), contrary to (18); or z = zi2 and |E(P4)| ≥ 3 whence P4[zi2 , u

j
]ujvP1[v, zi1 ] is a path of

ength at least 5 with end vertices on V (C), contrary to (18). This proves (i).
If |E(P3)| = 2, then by Claim 8, |E(P2)| = |E(P3)| = 2, and so Claim 9(i) implies (ii). Thus we assume that |E(P3)| = 3

o show that u3
∈ D2(G). By (18), |E(P1)| = 1. If z = zi1 , then by g(G) ≥ 4 and by Claim 4(iii), |E(P4)| ≥ 3. It follows that

3[zi2 , u
3
]P4[u3, zi1 ] is a path of length at least 5 with end vertices on V (C), contrary to (18). This proves (ii), as well as

laim 9.
We now complete the proof of Theorem 3.2 by finding a contradiction. If there exists a vertex v′

∈ V (G) − V (C) ∪

v, u, w}, then by Claim 9, dG(v′) ≥ 3. Applying Claims 6–9 to the case when v is replaced by v′, we are led to the
onclusion that v′ must be adjacent to both vertices in D2(G). It follows that for j ∈ {2, 3}, the vertex uj must be
djacent to distinct vertices v, v′ and a vertex in V (Pj) − {v}, contrary to the fact that uj

∈ D2(G). Hence we must have
(G) = V (C)∪{v, u2, u3

}. As D2(G) = {u2, u3
}, we must have |E(G[V (C)]) − E(C)| ≥ 3, contrary to Claim 5. This completes

he proof of the theorem. ■
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