Catlin's reduced graphs with small orders

Hong-Jian Lai , Keke Wang , Xiaowei Xie \& Mingquan Zhan

To cite this article: Hong-Jian Lai , Keke Wang, Xiaowei Xie \& Mingquan Zhan (2020) Catlin's reduced graphs with small orders, AKCE International Journal of Graphs and Combinatorics, 17:2, 679-690, DOI: 10.1080/09728600.2020.1832875

To link to this article: https://doi.org/10.1080/09728600.2020.1832875

© 2020 The Author(s). Published with
license by Taylor \& Francis Group, LLC

Published online: 27 Oct 2020.

Submit your article to this journal

Article views: 10

View related articles

View Crossmark data \triangle

Catlin's reduced graphs with small orders

Hong-Jian Lai ${ }^{\text {a }}$ (D) , Keke Wang ${ }^{\text {b }}$, Xiaowei Xie ${ }^{\text {c }}$, and Mingquan Zhan ${ }^{\text {d }}$
${ }^{\text {a }}$ Department of Mathematics, West Virginia University, Morgantown, WV, USA; ${ }^{\text {b }}$ Department of Mathematics, Embry-Riddle Aeronautical University, Prescott, AZ, USA; 'Nanjing Institute of Railway Technology, Nanjing, China; ${ }^{\text {d Department of Mathematics, Millersville University }}$ of Pennsylvania, Millersville, PA, USA

Abstract

A graph is supereulerian if it has a spanning closed trail. Catlin in 1990 raised the problem of determining the reduced nonsupereulerian graphs with small orders, as such results are of particular importance in the study of Eulerian subgraphs and Hamiltonian line graphs. We determine all reduced graphs with order at most 14 and with few vertices of degree 2, extending former results of Chen and Chen in 2016. In 1985, Bauer proposed the problems of determining best possible sufficient conditions on minimum degree of a simple graph (or a simple bipartite graph, respectively) G to ensure that its line graph $L(G)$ is Hamiltonian. These problems have been settled by Catlin and Lai in 1988, respectively. As an application of our main results, we prove the following for a connected simple graph G on n vertices:

i. If $\delta(G) \geq \frac{n}{10}$, then for sufficiently large $n, L(G)$ is Hamilton-connected if and only if both $\kappa(G) \geq 3$ and G is not nontrivially contractible to the Wagner graph.
ii. If G is bipartite and $\delta(G)>\frac{n}{20}$, then for sufficiently large $n, L(G)$ is Hamilton-connected if and only if both $\kappa(G) \geq 3$ and G is not nontrivially contractible to the Wagner graph.

KEYWORDS

Eulerian graphs; collapsible graphs; reduced graphs

AMS SUBJECT

CLASSIFICATION 2010
05C45; 05C40

1. Introduction

We generally follow the notation and terminology of Bondy and Murty [3], except as otherwise stated. Graphs considered in this paper are finite and loopless, but multiple edges are allowed. A cycle on n vertices, denoted by C_{n}, is called an n-cycle. A graph G is Hamiltonian if it has a spanning cycle, and is Hamiltonian-connected if for any distinct vertices u and v, G contains a spanning (u, v)-path. As in [3], $\kappa(G)$ and $\kappa^{\prime}(G)$ denote connectivity and the edge-connectivity of a graph G, respectively. If G has a cycle, the girth of G, denoted by $\operatorname{girth}(G)$, is the length of a shortest cycle in G. For a connected graph G and $u, v \in V(G)$, $\operatorname{dist}(u, v)$ denotes the distance between u and v. For a vertex $v \in$ $V(G)$, define $N_{G}(v)=\{u \in V(G): v u \in E(G)\}, \quad E_{G}(v)=$ $\{e \in E(G): e$ is incident with v in $G\}$, and $d_{G}(v)=\left|E_{G}(v)\right|$. For an integer $i \geq 0$, define $D_{i}(G)=\left\{v \in V(G): d_{G}(v)=\right.$ $i\}$ and $d_{i}(G)=\left|D_{i}(G)\right|$. For any $v \in D_{1}(G)$, the edge $e \in$ $E_{G}(v)$ is called a pendant edge of G. Let $O(G)$ be the set of vertices of odd degree in G. A connected graph G is Eulerian if $O(G)=\emptyset$. An Eulerian subgraph H in G is a spanning Eulerian subgraph if $V(H)=V(G)$. A graph is supereulerian if it has a spanning Eulerian subgraph, which is equivalent to the statement that G has a spanning closed trail. Throughout this paper, \mathcal{S}_{n} denotes the family of all supereulerian graphs on n vertices, and $\mathcal{S}=\cup_{n \geq 1} \mathcal{S}_{n}$ is the
family of all supereulerian graphs. We use $P(10)$ for the Petersen graph and let $P^{-}(10), P(11), P^{1}(12), P^{2}(12), P^{3}(12)$, $P^{1}(13), P^{2}(13), P^{1}(14)$, and $P^{2}(14)$ be the graphs shown in Figure 1, respectively.

Let G be a graph and $X \subseteq E(G)$ be an edge subset. The contraction G / X is the graph obtained from G by identifying the two ends of each edge in X and then deleting the resulting loops. We define $G / \emptyset=G$. If $H \subseteq G$, then we write $G /$ H for $G / E(H)$. If H is a connected subgraph of G, and if v_{H} is the vertex in G / H onto which H is contracted, then H is the preimage of v_{H}, and is denoted by $\operatorname{PI}\left(v_{H}\right)$. As an edgeless graph is viewed as trivial, if G is contracted to a graph G^{\prime} in such a way that every vertex of G^{\prime} has nontrivial preimage in G, we say that G^{\prime} is a nontrivial contraction of G.

To study supereulerian graphs, Catlin [5] introduced collapsible graphs in his investigation on graphs H with the property that for any graph G containing H as a subgraph, G is supereulerian if and only if the contraction G / H is supereulerian. A graph G is collapsible if for any subset $R \subseteq$ $V(G)$ with $|R| \equiv 0(\bmod 2), G$ has a spanning connected subgraph G_{R} such that $O\left(G_{R}\right)=R$. Catlin indicated in [5] that for any graph G, every vertex of G lies in a unique maximal collapsible subgraph of G. The reduction of G, denoted by G^{\prime}, is obtained from G by contracting all maximal collapsible subgraphs of G. A graph is reduced if it is the reduction of some graph. Catlin [5] proved that a graph

[^0]

Figure 1. The graphs $P^{-}(10), P(11), P^{1}(12), P^{2}(12), P^{3}(12), P^{1}(13), P^{2}(13), P^{1}(14), P^{2}(14)$.
G is supereulerian if and only if the reduction of G is supereulerian, thereby developing a reduction method in [5] to study supereulerian graphs.

In order to apply Catlin's reduction method by contracting collapsible subgraphs, identifying small reduced graphs is of particular importance $[7,14,18]$. Catlin first raised the problem of determining all reduced graphs with small orders and proposed the following conjecture.
Conjecture 1.1. (Catlin [6]). Any 3-edge-connected simple graph of order at most 17 is either supereulerian or is contractible to the Petersen graph.

Conjecture 1.1 has several extended versions, as seen in $[6,8,21]$. The following theorem shows some progresses toward Conjecture 1.1. By Catlin's reduction method, it is common to reduce the generic study on eulerian subgraphs into the study of reduced graphs with small orders. Because of this, results on reduced graph with small orders play important roles in applications of Catlin's reduction method, and have been applied to study eulerian subgraphs and Hamiltonian line graphs by many authors, as seen in [5,6,9,10, 13,17,19-25,28-31], among others. Theorem 1.2 presents some of the frequently applied such results.
Theorem 1.2. Let G be a connected graph of order n and with G^{\prime} as defined above.
(i) (Chen and Lai [13]) If $n \leq 11$ and $\delta(G) \geq 3$, then $G^{\prime} \in\left\{K_{1}, K_{2}, P(10)\right\}$.
(ii) (Chen [11]) If $\kappa^{\prime}(G) \geq 3$ and $n \leq 11$, then $G^{\prime} \in\left\{K_{1}, P(10)\right\}$.
(iii) (Chen and Chen [12]) If $\kappa^{\prime}(G) \geq 3$ and $n \leq 13$, then either $G \in \mathcal{S}$ or $G^{\prime}=P(10)$.
(iv) (Chen and Chen [12]) If $\kappa^{\prime}(G) \geq 3$ and $n \leq 14$, then either $G \in \mathcal{S}$ or $G^{\prime} \in\left\{P(10), P^{1}(14)\right\}$.
Let $s_{1}, s_{2}, s_{3}, m, l, t$ be the nonnegative integers with $t \geq 2$ and $m, l \geq 1$. Let $M \cong K_{1,3}$ with center a and ends a_{1}, a_{2}, a_{3}. Define $K_{1,3}\left(s_{1}, s_{2}, s_{3}\right)$ to be the graph obtained from M by adding s_{i} vertices with neighbors $\left\{a_{i}, a_{i+1}\right\}$, where $i \equiv$ $1,2,3(\bmod 3)$. Let $K_{2, t}\left(u, u^{\prime}\right)$ be a $K_{2, t}$ with u, u^{\prime} being the nonadjacent vertices of degree t. Let $K_{2, t}^{\prime}\left(u, u^{\prime}, u^{\prime \prime}\right)$ be the graph obtained from a $K_{2, t}\left(u, u^{\prime}\right)$ by adding a new vertex $u^{\prime \prime}$ that joins to only u^{\prime}. Hence $u^{\prime \prime}$ has degree 1 and u has degree t in $K_{2, t}^{\prime}\left(u, u^{\prime}, u^{\prime \prime}\right)$. Let $K_{2, t}^{+}\left(u, u^{\prime}, u^{\prime \prime}\right)$ be the graph obtained from a $K_{2, t}\left(u, u^{\prime}\right)$ by adding a new vertex $u^{\prime \prime}$ that joins to a vertex of degree 2 of $K_{2, t}$. Hence $u^{\prime \prime}$ has degree 1 and both u and u^{\prime} have degree t in $K_{2, t^{\prime \prime}}\left(u, u^{\prime}, u^{\prime \prime}\right)$. We shall use $K_{2, t}^{\prime}$ and $K_{2, t}{ }^{\prime \prime}$ for a $K_{2, t}^{\prime}\left(u, u^{\prime}, u^{\prime \prime}\right)$ and a $K_{2, t^{\prime \prime}}^{\prime \prime}\left(u, u^{\prime}, u^{\prime \prime}\right)$, respectively. Let $S(m, l)$ be the graph obtained from a $K_{2, m}\left(u, u^{\prime}\right)$ and $K_{2, l}^{\prime}\left(w, w^{\prime}\right)$ by identifying u with w, and connecting $u^{\prime} w^{\prime}$; let $J(m, l)$ denote the graph obtained from a
$K_{2, m+1}$ and a $K_{2, l}^{\prime}\left(w, w^{\prime}, w^{\prime \prime}\right)$ by identifying $w, w^{\prime \prime}$ with the two ends of an edge in $K_{2, m+1}$, respectively; let $T(m, l)$ denote the graph obtained from a $K_{2, m+2}$ and a $K_{2, l}^{\prime}\left(w, w^{\prime}, w^{\prime \prime}\right)$ by identifying $w, w^{\prime \prime}$ with two vertices of degree 2 in $K_{2, m+2}$, respectively. See Figure 2 for examples of these graphs. Let
$\mathcal{E G}=\left\{K_{1}, K_{2}, K_{2, t}, K_{2, t}^{\prime}, K_{2, t}^{+}, K_{1.3}\left(s, s^{\prime}, s^{\prime \prime}\right), S(m, l), J(m, l), T(m, l), P\right\}$,
where $t, s, s^{\prime}, s^{\prime \prime}, m, l$ are nonnegative integers.
Theorem 1.3 (Chen and Chen [12]). Let G be a connected graph of order n and with G^{\prime} as defined above.
(i) Let $\delta(G) \geq 2$ and $d_{2}(G) \leq 2$. If $n \leq 6$, then $G^{\prime}=K_{1}$, and if $n \leq 7$, then $G^{\prime} \in\left\{K_{1}, K_{2}\right\}$.
(ii) If $G \neq K_{1}$ is reduced, $n \leq 7, \kappa^{\prime}(G) \geq 2$ and $d_{2}(G)=3$, then $G \in\left\{K_{2,3}, K_{1,3}(1,1,1), T(1,1)\right\}$.
(iii) If $n \leq 9, d_{1}(G)=0$ and $d_{2}(G) \leq 1$, then $G^{\prime} \in\left\{K_{1}\right.$, $\left.K_{2}, K_{1,2}\right\}$.
(iv) If $n \leq 9, \kappa^{\prime}(G) \geq 2$ and $d_{2}(G) \leq 2$, then $G^{\prime} \in\left\{K_{1}, K_{2,3}\right\}$. Furthermore, if G is K_{3}-free, $G^{\prime}=K_{1}$.
(v) If $n \leq 10, \kappa^{\prime}(G) \geq 2$, and $d_{2}(G) \leq 1$, then $G^{\prime} \in\left\{K_{1}\right.$, $P(10)\}$.

Theorem 1.4 (Li et al. [20]). Let G be a connected graph of order n and with G^{\prime} as defined above. If $n \leq 8, d_{1}(G)=0$ and $d_{2}(G) \leq 2$, then $G^{\prime} \in\left\{K_{1}, K_{2}, K_{2,3}\right\}$. Furthermore, if $G^{\prime}=K_{2,3}$ with $D_{2}\left(G^{\prime}\right)=\left\{v_{1}, v_{2}, v_{3}\right\}$ and $D_{3}\left(G^{\prime}\right)=\left\{u_{1}, u_{2}\right\}$, then $\operatorname{PI}\left(v_{1}\right)$ is either K_{4} or K_{4} minus an edge, and other vertices in G^{\prime} are trivial.

Following Catlin [5], let $F(G)$ be the minimum number of additional edges that must be added to a graph G to result in a graph with two edge-disjoint spanning trees.

Theorem 1.5 (Chen and Lai [13]). Let G be a connected reduced graph with $|V(G)| \leq 11$ and $F(G) \leq 3$. Then $G \in \mathcal{E G}$. In particular, if $d_{1}(G)=0$ and $d_{2}(G) \leq 2$, then $G \in\left\{K_{1}, P(10)\right\}$.

Theorem 1.6 (Chen [10,13]). Let G be a connected simple graph of order n. Let G^{\prime} be the reduction of G. If $n \leq 13$ and $\delta(G) \geq 3$, then either $G \in \mathcal{S}_{12}$, or $G^{\prime} \in\left\{K_{1}, K_{2}, K_{1,2}, K_{1,3}, P(10)\right\}$.

To present our results in this paper, more graphs need to be introduced. Let $T_{1}^{+}(1,1), T_{2}^{+}(1,1), K_{2,3}^{2}, P^{2}(11), P^{4}(12)$, and $P^{5}(12)$ be the graphs as shown in Figure 3. We use $K_{1,3}^{+}(1,1,1), C_{4}^{+},\left(P^{-}(10)\right)^{+},\left(K_{2,3}^{2}\right)^{+}$to denote the graphs obtained from $K_{1,3}(1,1,1), C_{4}, P^{-}(10), K_{2,3}^{2}$, respectively, by attaching a pendant edge to a vertex of degree two, use $(P(10))^{+}$to denote the graph obtained from $P(10)$ by adding a pendant edge, and use $K_{1,3}^{+}$to denote the graph

$K_{1,3}(1,2,3)$

$K_{2,3}^{\prime}\left(u, u^{\prime}, u^{\prime \prime}\right)$

$K_{2,3}^{+}\left(u, u^{\prime}, u^{\prime \prime}\right)$

$S(3,2)$

$J(2,2)$

$T(3,2)$

Figure 2. Some graphs in $\mathcal{E G}$ with small parameters.

Figure 3. Some graphs used in Theorem 1.7.
obtained from $K_{1,3}$ by adding a pendant edge to a vertex of degree one. Denote $K_{2,3}^{++}$be the graph obtained from $K_{2,3}$ by adding two pendant edges to two vertices of degree two, respectively. Define $\mathcal{F}_{11}=\left\{K_{1}, K_{2}, \quad K_{1,2}\right.$, $\left.K_{2,3}, P(10), P(11)\right\}, \mathcal{F}_{12}=\left\{K_{2,3}^{+}\right\}, \mathcal{F}_{13}=\left\{K_{1,3}, P_{4}, K_{2,3}^{++}, K_{1,3}\right.$ $\left.(1,1,1), P^{-}(10), P^{1}(13), P^{2}(13)\right\}, \quad$ and $\quad \mathcal{F}_{14}=\left\{K_{1,3}^{+}, C_{4}^{+}\right.$, $\left(K_{2,3}^{2}\right)^{+}, \quad K_{1,3}^{+}(1,1,1), T_{1}^{+} \quad(1,1), T_{2}^{+}(1,1), \quad\left(P^{-}(10)\right)^{+}$, $\left.(P(10))^{+}, P^{1}(14), P^{2}(14)\right\}$. For application purposes, relaxations of the above Theorems are often needed. This motivates our current research.

Theorem 1.7. Let G^{\prime} be the reduction of a connected simple graph G of order n. If $n \leq 11, d_{1}(G)=0$ and $d_{2}(G) \leq 2$, then $G^{\prime} \in \mathcal{F}_{11} \cup\left\{P_{4}, C_{4}, K_{2,3}^{+}, K_{2,3}^{2}, K_{1,3}(1,1,1), T(1,1), T(1,2)\right.$, $\left.P^{-}(10), \quad K_{1,3}^{+}(1,1,1), T_{1}^{+}(1,1), T_{2}^{+}(1,1)\right\}$. Furthermore, if $d_{2}(G) \leq 1$, then $G^{\prime} \in \mathcal{F}_{11}$.

Theorem 1.8. Let G^{\prime} be the reduction of a connected simple graph G of order n. Suppose that $d_{1}(G)=0$ and $d_{2}(G) \leq 1$. Then the following statements hold:
(i) If $n \leq 12$, then $G^{\prime} \in \mathcal{F}_{11} \cup \mathcal{F}_{12} \cup\left\{P^{1}(12), P^{2}(12), P^{3}(12)\right\}$. Therefore, either $G \in \mathcal{S}_{12}$ or $G^{\prime} \in \mathcal{F}_{11} \cup \mathcal{F}_{12}$.
(ii) If $n \leq 13$, then either $G \in \mathcal{S}_{12} \cup \mathcal{S}_{13}$, or $G^{\prime} \in \mathcal{F}_{11} \cup$ $\mathcal{F}_{12} \cup \mathcal{F}_{13}$.
(iii) If $n \leq 14$, then either $G \in \mathcal{S}_{12} \cup \mathcal{S}_{13} \cup \mathcal{S}_{14}$, or $G^{\prime} \in \mathcal{F}_{11} \cup$ $\mathcal{F}_{12} \cup \mathcal{F}_{13} \cup \mathcal{F}_{14}$.

The paper is organized as follows: In Section 2, we present the needed tools to facilitate our proofs for the main results. In Section 3, we will prove Theorems 1.7 and 1.8. Applications of Theorems 1.7 and 1.8 will be given in Section 4.

2. Collapsible graphs

We will present basic properties of collapsible graphs in this section. The next theorem summarizes some basic properties needed in our arguments in the proofs.

Theorem 2.1. Let G be a connected graph, H a collapsible subgraph of G, and G^{\prime} the reduction graph of G. Then each of the following holds:
(i) (Caltin [5]) G is collapsible if and only if G / H is collapsible. In particular, G is collapsible if and only if the reduction $G^{\prime}=K_{1}$.
(ii) (Caltin [5]) G is reduced if and only if G has no nontrivial collapsible subgraphs.
(iii) (Caltin [5]) G^{\prime} is simple, $\operatorname{girth}\left(G^{\prime}\right) \geq 4$ and $\delta\left(G^{\prime}\right) \leq 3$.
(iv) (Caltin [5]) G is supereulerian if and only if G^{\prime} is supereulerian.
(v) (Caltin [5]) K_{3} is the smallest nontrivial collapsible simple graph and the nontrivial reduced graphs with at most 5 vertices are either a tree, a 4 -cycle, $K_{2,3}$, or $K_{2,3}$ minus an edge.
(vi) (Caltin, Han, and Lai [9]) If G is connected and if $F(G) \leq 2$, then $G^{\prime} \in\left\{K_{1}, K_{2}\right\} \cup\left\{K_{2, t}: t \geq 1\right\}$.
(vii) (Caltin, Han, and Lai [9]) If G is reduced, then $\quad F(G)=2|V(G)|-|E(G)|-2=\frac{1}{2}\left(3 d_{1}(G)+\right.$ $\left.2 d_{2}(G)+d_{3}(G)-\sum_{i \geq 4}(i-4) d_{i}(G)\right)-2$.
(viii) If G is a reduced connected graph with $n \leq 8$ and $d_{1}(G)=0$, then either $\kappa^{\prime}(G) \geq 2$, or G is the graph obtained from two 4-cycles C_{4} and C_{4}^{\prime} by adding an edge $x x^{\prime}$, where $x \in V\left(C_{4}\right)$ and $x^{\prime} \in V\left(C_{4}^{\prime}\right)$.

Proof. We only present a proof of (viii) and refer the reader to the references cited for others. Let e be a cut edge of G and let H_{1} and H_{2} be the components of $G-e$. As $d_{1}(G)=0$, for $i=1,2, H_{i}$ can not be a tree. By Theorem 2.1(v), $H_{1}=H_{2}=C_{4}$ Thus, G is the graph obtained from two 4 -cycles C_{4} and C_{4}^{\prime} by adding an edge $x x^{\prime}$, where $x \in V\left(C_{4}\right)$ and $x^{\prime} \in V\left(C_{4}^{\prime}\right)$.

Definition 2.2. Let $H=C_{4}=v_{1} v_{2} v_{3} v_{4} v_{1}$ be a 4 -cycle, or let $H=\Gamma_{8}$ denote the graph obtained from a 8 -cycle avdxbwcua by adding two edges $c d$ and $a b$. Consider a partition $\pi=$ $\left(V_{1}, V_{2}\right)=\left(\left\{v_{1}, v_{3}\right\},\left\{v_{2}, v_{4}\right\}\right)$ of $V\left(C_{4}\right)$, or a partition $\pi=$ $\left(V_{1}, V_{2}\right)=(\{a, b, c, d\},\{x, w, u, v\})$ of $V\left(\Gamma_{8}\right)$. Following [4], if
H is a subgraph of a graph G, we define G / π to be the graph obtained from $G-E(H)$ by identifying all vertices of V_{1} to form a single vertex v^{\prime}, by identifying all vertices of V_{2} to form a single vertex $v^{\prime \prime}$, and by adding an edge $e_{\pi}=v^{\prime} v^{\prime \prime}$.

Theorem 2.3 (Caltin [4]). Let $H=C_{4}=v_{1} v_{2} v_{3} v_{4} v_{1}$ be a 4cycle in G, or let $H=\Gamma_{8}$ be a subgraph of G obtained from a 8 -cycle avdxbwcua by adding two edges $c d$ and $a b$. Let G / π be defined as in Definition 2.2. Then the following hold:
(i) If G / π is collapsible, then G is collapsible.
(ii) If G / π has a spanning eulerian subgraph, then G has a spanning eulerian subgraph.
(iii) If G is a reduced graph with a 4-cycle C_{4}, then $F(G / \pi) \leq F(G)-1$.

Lemma 2.4. $P^{2}(11), P^{4}(12), P^{5}(12)$ are collapsible.
Proof. By definition, each of $P^{2}(11), P^{4}(12)$, and $P^{5}(12)$ contains a subgraph isomorphic to Γ_{8}. Let G / π be the graph defined as in Definition 2.2. Then G / π contains K_{3} as a subgraph. As cycles of length at most 3 are collapsible, it is a routine matter to verify that contracting all cycles of length at most 3 in G / π results in a collapsible graph. By Theorem 2.3(i), $P^{2}(11), P^{4}(12), P^{5}(12)$ are collapsible.

Lemma 2.5. Let G be a connected reduced graph with $n \leq 11$. If $d_{1}(G)=0$ and $d_{2}(G) \leq 1$, then $G \in\left\{K_{1}\right.$, $P(10), P(11)\}$.

Proof. By Theorem 1.5, if $F(G) \leq 3$, then $G \in\left\{K_{1}, P(10)\right\}$, and so we assume that $F(G) \geq 4$. By Theorem 2.1 (vii), $d_{3}(G) \geq 10$. As $n \leq 11$, we have $n=11, d_{2}(G)=1, d_{3}(G)=$ 10 , and $V(G)=D_{2}(G) \cup D_{3}(G)$. Let $D_{2}(G)=\{y\}$.

Assume that G has a cut edge e. Let H_{1} and H_{2} be the components of $G-e$. As $d_{1}(G)=0$ and $d_{2}(G)=1$, by Theorem 2.1(v), we have $\left|V\left(H_{i}\right)\right| \notin\{1,2,3,4\}$ for $i=1,2$. Thus $\left|V\left(H_{i}\right)\right| \in\{5,6\}$. Since $d_{2}(G)=1$, we may assume that $y \in$ $V\left(H_{2}\right)$. Then $d_{1}\left(H_{1}\right)=0$ and $d_{2}\left(H_{1}\right) \leq 1$. By Theorem 1.3(iii), $H_{1} \in\left\{K_{1}, K_{2}, K_{1,2}\right\}$, a contradiction. Hence, G must be 2-edge-connected.

Next, we claim that $\operatorname{girth}(G) \geq 5$. Otherwise, let $C_{4}=$ $v_{1} v_{2} v_{3} v_{4} v_{1}$ be a 4 -cycle of G. Let $\pi=\left(\left\{v_{1}, v_{3}\right\},\left\{v_{2}, v_{4}\right\}\right)$ be a partition of $V\left(C_{4}\right)$. Form the graph G / π with the new edge e_{π} defined as in Definition 2.2. Then $|V(G / \pi)|=11-2=$ 9. As $d_{1}(G)=0$ and $d_{2}(G)=1$, we have $\mid D_{2}(G) \cap$ $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\} \mid \leq 1, \quad d_{1}(G / \pi)=0, \quad$ and $\quad d_{2}(G / \pi) \leq 1$. By Theorems 1.3(iii) and 2.3(i), G / π is not 2 -edge-connected. As G is 2-edge-connected, e_{π} is the cut edge of G / π, and so $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ is a vertex-cut of G. Let L_{1} and L_{2} be the components of $G-\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ with $\left|V\left(L_{1}\right)\right| \leq\left|V\left(L_{2}\right)\right|$ and $N_{G}\left(v_{1}\right) \cap V\left(L_{2}\right)=N_{G}\left(v_{3}\right) \cap V\left(L_{2}\right)=\emptyset \quad$ and $\quad N_{G}\left(v_{2}\right) \cap$ $V\left(L_{1}\right)=N_{G}\left(v_{4}\right) \cap V\left(L_{1}\right)=\emptyset \quad$ (see Figure 4). As $n=11$, $\left|V\left(L_{1}\right)\right| \in\{1,2,3\}$. If $\left|V\left(L_{1}\right)\right| \in\{2,3\}$, then L_{1} is either P_{2} or P_{3}. As $d_{2}(G)=1$, the number of edges between $V\left(L_{1}\right)$ and $\left\{v_{1}, v_{3}\right\}$ is at least 3 . Thus, either $d_{G}\left(v_{1}\right) \geq 4$ or $d_{G}\left(v_{3}\right) \geq 4$, contrary the fact that $V(G)=D_{2}(G) \cup D_{3}(G)$. Thus, $\quad V\left(L_{1}\right)=\{y\}$ and $y v_{1}, y v_{3} \in E(G)$. Let $L_{3}=$

Figure 4. An illustration for the proof of Lemma 2.5.
$G-\left\{y, v_{1}, v_{2}, v_{3}, v_{4}\right\}$. Then $\left|V\left(L_{3}\right)\right|=6$, and either $d_{1}\left(L_{3}\right)=$ 1 and $d_{3}\left(L_{3}\right)=5$, or $d_{2}\left(L_{3}\right)=2$ and $d_{3}\left(L_{3}\right)=4$. Thus, $F\left(L_{3}\right) \leq 2$. As L_{3} is reduced, by Theorem 2.1(vi), $L_{3}=K_{2,4}$, a contradiction. Thus, $\operatorname{girth}(G) \geq 5$.

As $V(G)=D_{2}(G) \cup D_{3}(G)$, there is a vertex $w \in D_{3}(G)$ such that the distance between y and w is 3. For an integer $i \geq 0$, define $T_{i}=\{x \in V(G): \operatorname{dist}(x, w)=i\}$. Then $\left|T_{0}\right|=$ $1,\left|T_{1}\right|=3,\left|T_{2}\right|=6,\left|T_{3}\right|=1$ and $y \in T_{3}$. Let H be the subgraph in G induced by $T_{2} \cup T_{3}$. Then H is a 7 -cycle $a_{1} a_{2} \cdots a_{7} a_{1}$. Let $T_{1}=\left\{u_{1}, u_{2}, u_{3}\right\}$. Then for $i=1,2,3$, $\left|N_{G}\left(u_{i}\right) \cap V(H)\right|=2$. As $\operatorname{girth}(G) \geq 5$, without loss of generality, we assume that $u_{1} a_{1}, u_{1} a_{4} \in E(G)$. By symmetry, we assume that $a_{7} \neq y$ and $a_{7} u_{2} \in E(G)$. As $\operatorname{girth}(G) \geq$ $5, u_{2} a_{3} \in E(G)$. Thus, $u_{3} a_{2} \in E(G)$ and $\left|N_{G}\left(u_{3}\right) \cap\left\{a_{5}, a_{6}\right\}\right|=$ 1. Therefore, $G=P(11)$.

Lemma 2.6. Let G be a connected simple graph with $n \leq 13$ and let G^{\prime} be the reduction of G. If $\delta(G) \geq 3$, then $G^{\prime} \in\left\{K_{1}, K_{2}, K_{1,2}, K_{1,3}, P(10), P^{1}(12), P^{2}(12), P^{3}(12)\right\}$.

Proof. Let $n^{\prime}=\left|V\left(G^{\prime}\right)\right|$. As $\delta(G) \geq 3$, by Theorem 2.1(v), we have $13 \geq \sum_{v \in D_{1}\left(G^{\prime}\right)}|P I(v)|+\sum_{v \in D_{2}\left(G^{\prime}\right)}|P I(v)| \geq 4 d_{1}\left(G^{\prime}\right)+$ $4 d_{2}\left(G^{\prime}\right)$. Thus, $d_{1}\left(G^{\prime}\right)+d_{2}\left(G^{\prime}\right) \leq 3$.

Assume that G has a cut edge e, and L_{1} and L_{2} are the components of $G-e$. As $\delta(G) \geq 3$, we have $\left|V\left(L_{i}\right)\right| \notin$ $\{1,2,3\}$ for $i=1,2$. Thus, $\left|V\left(L_{i}\right)\right| \in\{4,5, \ldots, 9\}$. As $d_{1}\left(L_{i}\right)=$ 0 and $d_{2}\left(L_{i}\right) \leq 1$, by Theorem 1.3(iii), the reduction of L_{i} is in $\left\{K_{1}, K_{2}, K_{1,2}\right\}$. Thus, $G^{\prime} \in\left\{K_{2}, K_{1,2}, K_{1,3}\right\}$. Next we assume that G is 2-edge-connected. Then $d_{1}\left(G^{\prime}\right)=0$ and $d_{2}\left(G^{\prime}\right) \leq 3$, and so $n^{\prime} \leq 13-3 d_{2}\left(G^{\prime}\right)$. By Theorem 1.3(ii), (iv), (v), we have $d_{2}\left(G^{\prime}\right)=0$. Thus, $\delta\left(G^{\prime}\right) \geq 3$. If $n^{\prime} \neq 12$, then, by Theorem 1.6, we have $G=P(10)$. Next we assume that $n^{\prime}=12$. Then $G=G^{\prime}$.
Case 1. $\operatorname{girth}(G) \geq 5$.
Assume that $w \in V(G)$ such that $d_{G}(w)=\Delta(G) \geq 4$. For an integer $i \geq 0$, let $T_{i}=\{x \in V(G): \operatorname{dist}(x, w)=i\}$. Then $\left|T_{0}\right|=1,\left|T_{1}\right|=4,\left|T_{2}\right| \geq 8$, and so $n \geq 13$, a contradiction. So G is cubic. By Theorem 1.6, G is Hamiltonian. Let $v_{0} v_{1} \cdots v_{11} v_{0}$ be a Hamiltonian cycle of G.

If $\operatorname{girth}(G) \geq 7$, then $N_{G}\left(v_{0}\right)=\left\{v_{1}, v_{11}, v_{6}\right\}$ and $N_{G}\left(v_{1}\right)=$ $\left\{v_{0}, v_{2}, v_{7}\right\}$. This results in a 4-cycle $v_{0} v_{1} v_{7} v_{6} v_{0}$, a contradiction. If $\operatorname{girth}(G)=6$, then $v_{0} v_{6} \notin E(G)$ and so $N_{G}\left(v_{0}\right) \cap$ $\left\{v_{5}, v_{7}\right\} \neq \emptyset$. Without loss of generality, we assume that $v_{0} v_{5} \in E(G)$. Then $N_{G}\left(v_{1}\right)=\left\{v_{0}, v_{2}, v_{8}\right\}$. Thus, $N_{G}\left(v_{2}\right)=$ $\left\{v_{1}, v_{3}\right\}$, a contradiction, and so $\operatorname{girth}(G)=5$. Without loss of generality, we assume that $v_{0} v_{4} \in E(G)$. Then $N_{G}\left(v_{5}\right) \subseteq$ $\left\{v_{4}, v_{6}, v_{9}, v_{10}\right\}$. Similarly, $N_{G}\left(v_{11}\right) \subseteq\left\{v_{0}, v_{10}, v_{6}, v_{7}\right\}$.

(C)

(D)

Figure 5. Illustrations for the proof of Lemma 2.6.

Case 1.1. Either $v_{5} v_{10} \in E(G)$ or $v_{6} v_{11} \in E(G)$.
We assume that $v_{5} v_{10} \in E(G)$. As $N_{G}\left(v_{11}\right) \subseteq\left\{v_{0}, v_{10}\right.$, $\left.v_{6}, v_{7}\right\}$ and $\operatorname{girth}(G) \geq 5$, we have $v_{11} v_{7} \in E(G)$. Then N_{G} $\left(v_{2}\right) \cap\left\{v_{8}, v_{9}\right\}=\emptyset$ (otherwise, $N_{G}\left(v_{3}\right)=\left\{v_{2}, v_{4}\right\}$, a contradiction). So $v_{2} v_{6} \in E(G)$. Therefore, we have either $v_{1} v_{9}, v_{3} v_{8}$ $\in E(G)$, or $v_{1} v_{8}, v_{3} v_{9} \in E(G)$ (Graphs A and B in Figure 5). In the former case, $G=P^{1}(12)$, and in the latter case, $G=P^{2}(12)$.
Case 1.2. $v_{5} v_{10}, v_{6} v_{11} \notin E(G)$.
Then $v_{5} v_{9}, v_{11} v_{7} \in E(G)$. Thus, we have either $v_{2} v_{8}$, $v_{3} v_{10}, v_{1} v_{6} \in E(G)$, or $v_{2} v_{10}, v_{3} v_{8}, v_{1} v_{6} \in E(G)$ (Graphs C and D in Figure 5, respectively). In the former case, $G=P^{2}(12)$, and in the latter case, $G=P^{1}(12)$.
Case 2. $\operatorname{girth}(G)=4$.
Let $C_{4}=v_{1} v_{2} v_{3} v_{4} v_{1}$ be a 4 -cycle in G. Let $H=G / \pi$ be defined as in Definition 2.2. Then $\delta(H) \geq 3$ and $|V(H)|=$ 10. Assume that H is not 2 -edge-connected. Then e_{π} is a cut edge of H. Thus, $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ is the vertex-cut of G. Let L_{1} and L_{2} be the components of $G-\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ such that $N_{G}(x) \cap V\left(L_{2}\right)=\emptyset$ for $x \in\left\{v_{1}, v_{3}\right\}$, and let $Q_{i}(i=1,2)$ be the subgraph induced by $V\left(L_{i}\right) \cup\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$. As $\delta(G) \geq$ 3, by Theorem 1.4, $\left|V\left(Q_{i}\right)\right| \geq 9$. Thus, $\left|V\left(L_{i}\right)\right| \geq 5$ and so $|V(G)| \geq 5+5+4=14$, a contradiction. Hence $\kappa^{\prime}(H) \geq 2$. By Theorem 1.6, $H=P(10)$. Thus, $G=P^{3}(12)$.
Lemma 2.7. Let G be a 2 -edge-connected reduced graph with $n=13$. If $d_{1}(G)=0, d_{2}(G)=1, d_{3}(G)=12$, and $\operatorname{girth}(G) \geq 5$, then G is supereulerian.

Proof. Let $D_{2}(G)=\{v\}$. As $\operatorname{girth}(G) \geq 5$ and $V(G)=$ $D_{2}(G) \cup D_{3}(G)$, we have $|\{x \in V(G): \operatorname{dist}(x, v) \leq 2\}|=7$. Thus, there exists a vertex w such that the distance between w and v is at least three. For an integer $i \geq 0$, let $T_{i}=\{x \in$ $V(G): \operatorname{dist}(x, w)=i\}$. Then $\quad\left|T_{0}\right|=1,\left|T_{1}\right|=3,\left|T_{2}\right|=6$, $\left|T_{3} \cup T_{4}\right|=3$, and $v \in T_{3} \cup T_{4}$. Let $T_{1}=\left\{u_{1}, u_{2}, u_{3}\right\}$ and let H be the subgraph in G induced by $T_{2} \cup T_{3} \cup T_{4}$. Then $|V(H)|=9$ with $d_{3}(H)=2$ and $d_{2}(H)=7$. As $\operatorname{girth}(G) \geq$ $5, H$ is a 9 -cycle $C_{9}=v_{1} v_{2} \cdots v_{9} v_{1}$ by adding a chord $v_{1} v_{5}$. Thus, for $i=1,2,3,\left|N_{G}\left(u_{i}\right) \cap\left\{v_{2}, v_{3}, v_{4}, v_{6}, \ldots, v_{9}\right\}\right|=2$.

First, we claim that $v \in\left\{v_{2}, v_{3}, v_{4}\right\}$. Otherwise, we may assume that $u_{1} v_{2}, u_{2} v_{3}, u_{3} v_{4} \in E(G)$. If $u_{3} v_{9} \in E(G)$, then $u_{3} v_{9} v_{8} v_{7} v_{6} v_{5} v_{1} v_{2} u_{1} w u_{2} v_{3} v_{4} u_{3}$ is a Hamiltonian cycle of G, a contradiction. So $u_{3} v_{9} \notin E(G)$. Similarly, $u_{1} v_{6} \notin E(G)$. As $\operatorname{girth}(G) \geq 5, \quad u_{3} v_{6}, u_{1} v_{9} \notin E(G)$. Thus, $N_{G}\left(u_{2}\right) \cap\left\{v_{6}, v_{9}\right\} \neq$ \emptyset. Without loss of generality, we assume that $u_{2} v_{9} \in E(G)$. Then $v_{9} u_{2} v_{3} v_{4} u_{3} w u_{1} v_{2} v_{1} v_{5} v_{6} v_{7} v_{8} v_{9}$ is a Hamiltonian cycle, a contradiction. So $v \in\left\{v_{2}, v_{3}, v_{4}\right\}$.

As $\operatorname{girth}(G) \geq 5$, we may assume that $u_{3} v_{6}, u_{2} v_{7}, u_{1} v_{8} \in$ $E(G)$. As $N_{G}\left(v_{9}\right) \cap\left\{u_{1}, u_{2}, u_{3}\right\} \neq \emptyset, u_{3} v_{9} \in E(G)$. If $u_{1} v_{4} \in$ $E(G)$, then $v_{4} u_{1} v_{8} v_{9} u_{3} w u_{2} v_{7} v_{6} v_{5} v_{1} v_{2} v_{3} v_{4}$ is a Hamiltonian cycle of G, a contradiction. So $u_{1} v_{4} \notin E(G)$. Similarly, $u_{2} v_{2} \notin$ $E(G)$. If $v=v_{3}$, then $u_{1} v_{2}, u_{2} v_{4} \in E(G)$. Thus, $w u_{1} v_{2} v_{3} v_{4}$ $u_{2} v_{7} v_{8} v_{9} v_{1} v_{5} v_{6} u_{3} w$ is a Hamiltonian cycle of G, a contradiction. So $v \in\left\{v_{2}, v_{4}\right\}$. Without loss of generality, we assume that $v=v_{2}$. As $v_{4} u_{1} \notin E(G)$, we have $v_{4} u_{2} \in E(G)$. Thus, $v_{3} u_{1} \in E(G)$. So $v_{3} v_{2} v_{1} v_{9} v_{8} v_{7} u_{2} v_{4} v_{5} v_{6} u_{3} w u_{1} v_{3} \quad$ is a Hamiltonian cycle of G, a contradiction.

Lemma 2.8. Let G be a 2-edge-connected reduced graph with $n=14$. If $d_{1}(G)=0, d_{2}(G)=1, d_{3}(G)=12, d_{4}(G)=1$, and $\operatorname{girth}(G) \geq 5$, then G is supereulerian.

Proof. By contradiction, we assume that G is not supereulerian. Let $D_{2}(G)=\{v\}$ and $D_{4}(G)=\{w\}$. For an integer $i \geq 0$, define $T_{i}=\{x \in V(G): \operatorname{dist}(x, w)=i\}$. Then $\left|T_{0}\right|=1$ and $\left|T_{1}\right|=4$. Let $T_{1}=\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$ and H be the subgraph in G induced by $V(G)-\left(T_{0} \cup T_{1}\right)$. Then $|V(H)|=9$.
Claim 1. $v w \in E(G)$.
Assume that $v w \notin E(G)$. Then $\left|T_{2}\right|=8,\left|T_{3}\right|=1, v \in$ $T_{2} \cup T_{3},\left|N_{G}\left(u_{i}\right) \cap V(H)\right|=2$ for $i=1,2,3,4$, and $\mid N_{G}(x) \cap$ $T_{1} \mid=1$ for each $x \in T_{2}$.

If $v \in T_{3}$, then $d_{H}(x)=2$ for each $x \in V(H)$. As $\operatorname{girth}(G) \geq 5, \quad H=C_{9} . \quad$ Assume that $C_{9}=a_{1} a_{2} \cdots a_{9} a_{1}$, where $a_{9}=v$. As $\operatorname{girth}(G) \geq 5$, we may assume that $u_{1} a_{1}, u_{2} a_{2}, u_{3} a_{3} \in E(G)$. If $u_{1} a_{4} \in E(G)$, then $a_{5} u_{4}, a_{8} u_{4} \in$ $E(G)$. Thus, $w u_{4} a_{5} a_{6} a_{7} a_{8} a_{9} a_{1} a_{2} u_{2} w u_{3} a_{3} a_{4} u_{1} w$ is a spanning eulerian subgraph of G, a contradiction. So $u_{1} a_{4} \notin E(G)$. Therefore, $\quad u_{4} a_{4} \in E(G)$ and $w u_{2} a_{2} a_{3} u_{3} w u_{4} a_{4} a_{5} a_{6} a_{7} a_{8}$ $a_{9} a_{1} u_{1} w$ is a spanning Eulerian subgraph of G, a contradiction. So $v \in T_{2}$.

Then $d_{1}(H)=1, d_{2}(H)=7, d_{3}(H)=1$. As $\operatorname{girth}(G) \geq 5$, H is connected. Thus, H is a cycle $C_{k}=a_{1} a_{2} \cdots a_{k} a_{1}$ by attaching a path $a_{k} a_{k+1} \cdots v_{9}$, where $a_{9}=v$ and $a_{k} \in T_{3}$. As $\operatorname{girth}(G) \geq 5, k \in\{5,6,7,8\}$. If $k=8$, as $\operatorname{girth}(G) \geq 5$, we assume that $u_{1} a_{9}, u_{2} a_{1}, u_{3} a_{7} \in E(G)$. As G is not supereulerian, $N_{G}\left(u_{4}\right) \cap\left\{a_{2}, a_{6}\right\}=\emptyset$. Thus, $N_{G}\left(u_{4}\right) \subseteq\left\{w, a_{3}, a_{4}, a_{5}\right\}$. This implies that $\operatorname{girth}(G) \leq 4$, a contradiction. If $k=7$, then we assume that $a_{9} u_{4}, a_{8} u_{3} \in E(G)$. Thus, $\left(N_{G}\left(a_{1}\right) \cup N_{G}\left(a_{6}\right)\right) \cap$ $\left\{u_{1}, u_{2}\right\} \neq \emptyset$. Without loss of generality, we assume that $u_{1} a_{2} \notin E(G)$. As G is not supereulerian, $u_{1} a_{2} \notin E(G)$. Thus, $u_{1} a_{3}, u_{1} a_{6} \in E(G)$. As $\operatorname{girth}(G) \geq 5, N_{G}\left(u_{2}\right) \cap\left\{a_{4}, a_{5}\right\} \neq \emptyset$. This would result in a spanning subgraph of G, a contradiction. If $k=6$, by symmetry, we assume that $u_{2} a_{7}, u_{3} a_{8}, u_{4} a_{9} \in$
$E(G)$. Thus, $N_{G}\left(u_{1}\right) \cap\left\{a_{1}, a_{5}\right\} \neq \emptyset$. Without loss of generality, we assume that $u_{1} a_{1} \in E(G)$. Thus, $w u_{1} a_{1} a_{2} a_{3} a_{4} a_{5} a_{6} a_{7} u_{2} w u_{3} a_{8} a_{9} u_{4} w$ is a spanning eulerian subgraph of G, a contradiction. So $k=5$. As $\operatorname{girth}(G) \geq 5$, we assume that $u_{1} a_{1}, u_{2} a_{2}, u_{3} a_{3} \in E(G)$. Then $u_{4} a_{9} \notin E(G)$ (otherwise, $w u_{3} a_{3} a_{4} a_{5} a_{6} a_{7} a_{8} a_{9} u_{4} w u_{2} a_{2} a_{1} u_{1} w$ is a spanning eulerian subgraph of G, a contradiction). Thus, $u_{4} a_{4} \in E(G)$. Notice that $\left|N_{G}\left(a_{9}\right) \cap\left\{u_{1}, u_{2}, u_{3}\right\}\right|=1$. If $a_{9} u_{3} \in E(G)$, then $w u_{4} a_{4} a_{3}$ $a_{2} u_{2} w u_{1} a_{1} a_{5} a_{6} a_{7} a_{8} a_{9} u_{3} w$ is a spanning eulerian subgraph of G; if $a_{9} u_{2} \in E(G)$, then $w u_{2} a_{9} a_{8} a_{7} a_{6} a_{5} a_{4} u_{4} w u_{1} a_{1} a_{2} a_{3} u_{3} w$ is a spanning eulerian subgraph of G; if $a_{9} u_{1} \in E(G)$, then $w u_{4} a_{4} a_{3} u_{3} w u_{2} a_{2} a_{1} a_{5} a_{6} a_{7} a_{8} a_{9} u_{1} w$ is a spanning eulerian subgraph of G. We finish the proof of Claim 1 .

By Claim 1, $v w \in E(G)$. Then $\left|T_{2}\right|=7$ and $\left|T_{3}\right|=2$. Thus, $d_{2}(H)=7$ and $d_{3}(H)=2$. As $\operatorname{girth}(G) \geq 5, H$ is 2 -connected. Thus, H is the 9 -cycle $C_{9}=a_{1} a_{2} \cdots a_{9} a_{1}$ by adding the chord $a_{1} a_{5}$. Since $\operatorname{girth}(G) \geq 5$, we assume that $u_{1} a_{2}, u_{2} a_{3}, u_{3} a_{4} \in E(G)$. Then $N_{G}\left(u_{4}\right) \cap\left\{a_{6}, a_{9}\right\}=\emptyset$. Thus, $N_{G}\left(u_{4}\right) \cap\left\{a_{7}, a_{8}\right\} \neq \emptyset$. Without loss of generality, we assume that $u_{4} a_{7} \in E(G)$. Then $u_{4}=v$. Thus, $u_{2} a_{6} \notin E(G)$ (otherwise, $w u_{2} a_{6} a_{5} a_{1} a_{9} a_{8} a_{7} u_{4} w u_{1} a_{2} a_{3} a_{4} u_{3} w$ is a spanning eulerian subgraph of G, a contradiction), Similarly, $u_{2} a_{8} \notin E(G)$ Thus, $u_{2} a_{9} \in E(G)$. As $\operatorname{girth}(G) \geq 5, u_{3} a_{8} \in E(G)$ and so $u_{1} a_{6} \in$ $E(G)$. Hence $w u_{3} a_{8} a_{7} u_{4} w u_{1} a_{6} a_{5} a_{4} a_{3} a_{2} a_{1} a_{9} u_{2} w$ is a spanning eulerian subgraph of G, a contradiction.

Lemma 2.9. Let G be a 2-edge-connected reduced graph with $n=14$. If $d_{1}(G)=0, d_{2}(G)=1, \Delta(G)=4$, and $\operatorname{girth}(G) \geq 5$, then G is supereulerian.

Proof. By Theorem 2.1(vi), $F(G) \geq 3$. By Theorem 2.1(vii), $2 d_{2}(G)+d_{3}(G) \geq 10$. Thus, $d_{3}(G) \geq 8$. By Lemma 2.8, it suffices to consider the cases when $\left(d_{2}(G), d_{3}(G), d_{4}(G)\right) \in$ $\{(1,8,5),(1,10,3)\}$. Let $D_{2}(G)=\{v\}$.
Claim 1. If $d_{2}(G)=1, d_{3}(G)=10$ and $d_{4}(G)=3$, then G is supereulerian.

By Lemma 2.8, $D_{4}(G)$ is independant. As $d_{4}(G)=3$, there is a vertex $w \in D_{4}(G)$ such that $v \notin N_{G}(w)$. Choose such the vertex w such that the distance between w and v is longest. Thus for any $x \in N_{G}(w), x \in D_{3}(G)$. For an integer $i \geq 0$, define $T_{i}=\{x \in V(G): \operatorname{dist}(x, w)=i\}$. Then $\left|T_{0}\right|=$ $1,\left|T_{1}\right|=4,\left|T_{2}\right|=8,\left|T_{3}\right|=1$, and $v \in T_{2} \cup T_{3}$. Let $T_{1}=$ $\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}, T_{3}=\{z\}$ and let H be the subgraph in G induced by $T_{2} \cup T_{3}$. Then $d_{G}(z) \in\{2,3,4\}$.

If $d_{G}(z)=4$, then $v \in T_{2}$. Thus, $d_{1}(H)=1, d_{2}(G)=6$, $d_{3}(H)=1$ and $d_{4}(H)=1$. As $\operatorname{girth}(G) \geq 5, H$ is formed from the 8 -cycle $a_{1} a_{2} \cdots a_{8} a_{1}$ by adding the chord $a_{1} a_{5}$ and the pendant edge $a_{1} v \in E(G)$, where $a_{1}=x \in D_{4}(G)$. As $D_{4}(G)$ is independant, $N_{G}\left(a_{5}\right) \cap\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}=\emptyset$. Since the number of edges between $\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$ and $\left\{v, a_{2}, a_{3}\right.$, $\left.a_{4}, a_{6}, a_{7}, a_{8}\right\}$ is 8 and $v \in D_{2}(G)$, there is a vertex $y \in$ $\left\{a_{2}, a_{3}, a_{4}, a_{6}, a_{7}, a_{8}\right\}$ such that $\left|N_{G}(y) \cap\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}\right| \geq 2$. This results in a 4 -cycle in G, a contradiction. If $d_{G}(z)=2$, then $d_{2}(H)=7$ and $d_{3}(H)=2$. As $\operatorname{girth}(G) \geq 5, H$ is a 9 -cycle $a_{1} a_{2} \cdots a_{9} a_{1}$ by adding a chord, say $a_{1} a_{5}$. As $\operatorname{girth}(G) \geq 5, \quad\left|N_{G}(y) \cap\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}\right| \leq 1$ for $y \in\left\{a_{1}, a_{2}, \ldots\right.$, $\left.a_{9}\right\}$. As $D_{4}(G)=3, a_{1}, a_{5} \in D_{4}(G)$, contrary to the fact that
$D_{4}(G)$ is independant. Thus, $d_{G}(z)=3$ and the distance between w and v is 2 .

Therefore, $\quad d_{1}(H)=1, d_{2}(H)=5 \quad$ and $\quad d_{3}(H)=3$. As $\operatorname{girth}(G) \geq 5, H$ is formed from the 8 -cycle $a_{1} a_{2} \cdots a_{8} a_{1}$ by adding the chord $a_{1} a_{5}$ and the pendant edge $v a_{i_{0}} \in E(G)$, where $i_{0} \notin\{1,5\}$. By symmetry, we assume that $v a_{i_{0}} \in E(G)$, where $i_{0} \in\{2,3\}$. As $D_{4}(G)$ is independant, $a_{i_{0}} \in D_{4}(G)$ and $\left|\left\{a_{1}, a_{5}\right\} \cap D_{4}(G)\right|=1$. Without loss of generality, we assume that $a_{5} \in D_{4}(G)$. Thus, $a_{1}=z$, and the distance between a_{5} and v is 3 . This contradicts the choose of w. Hence Claim 1 follows.

By Claim 1, we assume that $d_{2}(G)=1, d_{3}(G)=8$ and $d_{4}(G)=5$. By Claim 1, $D_{4}(G)$ is independant. As $d_{4}(G)=5$, choose $w \in D_{4}(G)$ such that $v \notin N_{G}(w)$. Thus, for any $x \in$ $N_{G}(w), x \in D_{3}(G)$. For an integer $i \geq 0$, define $T_{i}=\{u \in$ $V(G): \operatorname{dist}(u, w)=i\}$. Then $\quad\left|T_{0}\right|=1,\left|T_{1}\right|=4,\left|T_{2}\right|=8$, $\left|T_{3}\right|=1$, and $v \in T_{2} \cup T_{3}$. Let $T_{1}=\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$, and let $T_{2}=\left\{x_{1}, x_{2}, \ldots, x_{8}\right\}$ such that $x_{2 i-1}, x_{2 i} \in N_{G}\left(u_{i}\right)$ for $i=$ $1,2,3,4$. Let $T_{3}=\{x\}$.

We claim that $x \notin D_{4}(G)$. Otherwise, as $\operatorname{girth}(G) \geq 5$, we may assume that $N_{G}(x)=\left\{x_{1}, x_{3}, x_{5}, x_{7}\right\}$. Then $\mid\left\{x_{2}, x_{4}\right.$, $\left.x_{6}, x_{8}\right\} \cap D_{4}(G) \mid=3$. Without loss of generality, we assume that $x_{4}, x_{6}, x_{8} \in D_{4}(G)$. Thus, $\left|\left\{x_{1}, x_{2}\right\} \cap N_{G}\left(x_{4}\right)\right|=1$ and $x_{5}, x_{7} \in N_{G}\left(x_{4}\right)$. It implies that $x_{4} x_{5} x x_{7} x_{4}$ is a 4-cycle, a contradiction. So $x \in D_{2}(G) \cup D_{3}(G)$. Thus, $\left|T_{2} \cap D_{4}(G)\right|=4$.

Assume that $x_{1} \in D_{4}(G)$ such that $x x_{1} \notin E(G)$. As $\operatorname{girth}(G) \geq 5$, we assume that $N_{G}\left(x_{1}\right)=\left\{u_{1}, x_{3}, x_{5}, x_{7}\right\}$. Then $\left|\left\{x_{2}, x_{4}, x_{6}, x_{8}\right\} \cap D_{4}(G)\right|=3$ and $N_{G}\left(x_{2}\right) \cap\left\{x_{1}, x_{3}, x_{5}, x_{7}\right\}=$ \emptyset. Thus, $N_{G}\left(x_{2}\right) \subseteq\left\{u_{1}, x, x_{4}, x_{6}, x_{8}\right\}$. As $D_{4}(G)$ is independant, $\quad x_{2} \notin D_{4}(G)$. Thus, $x_{4}, x_{6}, x_{8} \in D_{4}(G)$. Therefore, $N_{G}\left(x_{4}\right) \subseteq\left\{x, u_{2}, x_{2}, x_{5}, x_{7}\right\}$. Notice that $x_{4} x_{5} x_{1} x_{7} x_{4}$ would be a 4 -cycle if $x_{4} x_{5}, x_{4} x_{7} \in E(G)$. We have $x x_{4}, x_{2} x_{4} \in E(G)$. Similarly, $x x_{6}, x_{2} x_{6} \in E(G)$. This results in a 4 -cycle $x_{2} x_{4} x x_{6} x_{2}$, a contradiction.

Figure 6. An illustration for Claim 8 in the proof of Theorem 1.8.

Figure 7. An illustration for Claim 8 in the proof of Theorem 1.8.

Figure 8. An illustration for Claim 8 in the proof of Theorem 1.8.

3. Proof of Theorems 1.7 and 1.8

In this section, we will justify both Theorems 1.7 and 1.8. Some of the parts (or graphs) in Figures 6-8 are adapted from [12].
Proof of Theorem 1.7. Let G^{\prime} be the reduction of G. Assume that the conclusion of Theorem 1.7 is false, and in particular, $\mathrm{G}^{\prime} \neq \mathrm{K}_{1}$.

By assumption, it is known that

$$
\begin{equation*}
n \leq 11, d_{1}(G)=0, \text { and } d_{2}(G) \leq 2 \tag{2}
\end{equation*}
$$

By Theorem 2.1(v), we have
$\left|\cup_{v \in D_{1}\left(G^{\prime}\right)} P I_{G}(v)\right| \geq 4 d_{1}\left(G^{\prime}\right)$, and if $d_{2}\left(G^{\prime}\right) \geq 2$, then $\mid \cup_{v \in D_{2}\left(G^{\prime}\right)}$ $P I_{G}(v) \mid \geq 4\left(d_{2}\left(G^{\prime}\right)-2\right)+2$.

By (2) and (3), we must have $d_{1}\left(G^{\prime}\right) \leq 2$ and $d_{1}\left(G^{\prime}\right)+$ $d_{2}\left(G^{\prime}\right) \leq 4$. In particular, if $d_{1}\left(G^{\prime}\right)+d_{2}\left(G^{\prime}\right)=4$, then $n \in$ $\{10,11\},\left|V\left(G^{\prime}\right)\right|=4$ with $d_{2}(G)=2 \quad$ and $\quad G^{\prime} \in\left\{P_{4}, C_{4}\right\}$, contrary to (1). Therefore, we assume that $d_{1}\left(G^{\prime}\right)+$ $d_{2}\left(G^{\prime}\right) \leq 3$. Let $m^{\prime}=\left|E\left(G^{\prime}\right)\right|$ and $n^{\prime}=\left|V\left(G^{\prime}\right)\right|$.
Claim 1. $d_{1}\left(G^{\prime}\right)=0$.
Otherwise, $d_{1}\left(G^{\prime}\right) \in\{1,2\}$. If $d_{1}\left(G^{\prime}\right)=2$, then $n^{\prime} \leq 11-$ $8+2=5$ and $d_{2}\left(G^{\prime}\right) \leq 3-2=1$. By Theorem 2.1(vii), $F\left(G^{\prime}\right) \leq 3$. By Theorem $1.5, G^{\prime} \in\left\{K_{2}, K_{1,2}\right\}$, contrary to (1). If $d_{1}\left(G^{\prime}\right)=1$, then $d_{2}\left(G^{\prime}\right) \leq 3-1=2$. Assume that $D_{1}\left(G^{\prime}\right)=\left\{a_{1}\right\}$. Let $a_{1} a_{2} \cdots a_{k}(k \geq 2)$ be a path in G^{\prime} such that $d_{G^{\prime}}\left(a_{i}\right)=2(i=2, \ldots, k-1)$ and $d_{G^{\prime}}\left(a_{k}\right) \geq 3$ and $H=$ $G^{\prime}-\left\{a_{1}, \ldots, a_{k-1}\right\}$. Then $\quad d_{1}(H)=0, d_{2}(H) \leq 3 \quad$ and $|V(H)| \leq 11-4=7$, implying that $\kappa^{\prime}(H) \geq 2$. By Theorem 1.3(ii) and (iv), $H \in\left\{K_{2,3}, K_{1,3}(1,1,1), T(1,1)\right\}$ and so $G^{\prime} \in$ $\left\{K_{2,3}^{+}, K_{1,3}^{+}(1,1,1), T_{1}^{+}(1,1), T_{2}^{+}(1,1)\right\}$. If $G^{\prime} \in\left\{K_{1,3}^{+}(1,1,1)\right.$, $\left.T_{1}^{+}(1,1), T_{2}^{+}(1,1)\right\}$, then $n=11$ and $d_{2}(G)=2$; and if $G^{\prime}=$ $K_{2,3}^{+}$, then $d_{2}(G)=2$, contrary to (1) in either case. Hence, Claim 1 must hold.
Claim 2. $d_{2}\left(G^{\prime}\right)=2$, and $D_{2}\left(G^{\prime}\right)$ is independant.
Assume that $d_{2}\left(G^{\prime}\right)=3$. Then $n^{\prime} \leq 11-6+3=8$. By Claim 1 and Theorem 2.1 (viii), G^{\prime} is 2 -edge connected. If $n^{\prime} \leq 7$, Theorem 1.3(ii) $G^{\prime} \in\left\{K_{2,3}, K_{1,3}(1,1,1), T(1,1)\right\}$ and when $G^{\prime} \in\left\{K_{1,3}(1,1,1), T(1,1)\right\}, d_{2}(G)=2$, contrary to (1). If $n^{\prime}=8$, then, by Theorem $2.1(\mathrm{vii}), m^{\prime} \geq 11$ and $F\left(G^{\prime}\right) \leq$ 3. By Theorem $1.5, G^{\prime}=T(1,2)$ and $d_{2}(G)=2$, contrary to (1). Hence $d_{2}\left(G^{\prime}\right) \leq 2$. By Lemma $2.5, d_{2}\left(G^{\prime}\right)=2$.

Let $D_{2}\left(G^{\prime}\right)=\left\{a_{1}, a_{2}\right\}$. If $a_{1} a_{2} \in E\left(G^{\prime}\right)$, then setting $L_{4}=$ $G^{\prime}-\left\{a_{1}, a_{2}\right\}$, we have $\left|V\left(L_{4}\right)\right| \leq 9$. As $d_{2}\left(G^{\prime}\right)=2$, we have $d_{1}\left(L_{4}\right)=0$ and $d_{2}\left(L_{4}\right) \leq 2$. By Theorem 1.4, $\left|V\left(L_{4}\right)\right|=9$. By Theorem 1.3(iv), L_{4} has a cut edge e. Assume that Y_{1} and
Y_{2} are components of $L_{4}-e$ with $\left|V\left(Y_{1}\right)\right| \leq\left|V\left(Y_{2}\right)\right|$. As $\left|V\left(L_{4}\right)\right|=9,\left|V\left(Y_{1}\right)\right| \in\{1,2,3,4\}$. Since G^{\prime} is reduced, $Y_{1} \in$ $\left\{K_{1}, K_{2}, K_{1,2}, K_{1,3}, P_{4}, C_{4}\right\}$. For each of these four cases, we have either $d_{1}\left(G^{\prime}\right) \neq 0$ or $d_{2}\left(G^{\prime}\right) \geq 3$, a contradiction occurring in any case. Hence $D_{2}\left(G^{\prime}\right)$ must be independant. This proves Claim 2.
Claim 3. G^{\prime} is 2-edge-connected.
If G^{\prime} has a cut edge e, then we assume that H_{1} and H_{2} are components of $G^{\prime}-e$. Notice that G^{\prime} is reduced. For $i=1,2$, by Theorem $2.1(\mathrm{v})$ and by Claims 1 and 2, $\left|V\left(H_{i}\right)\right| \notin\{1,2,3,4\}$, and if $\left|V\left(H_{i}\right)\right|=5$, then $H_{i}=K_{2,3}$. By Claim 2, we assume that $\left|V\left(H_{1}\right)\right|=5$ and $\left|V\left(H_{2}\right)\right|=6$. As $H_{1}=K_{2,3}$ and $d_{2}\left(G^{\prime}\right)=2$, we have $d_{1}\left(H_{2}\right)=0, d_{2}\left(H_{2}\right) \leq 1$. By Theorem 1.3(iii), $H_{2} \in\left\{K_{1}, K_{2}, K_{1,2}\right\}$, contrary to Claim 1. This justifies Claim 3.

By Theorem 1.3(iv), $n^{\prime} \in\{10,11\}$. Thus, G is reduced. By Theorem 1.5, $F\left(G^{\prime}\right) \geq 4$. Thus, $d_{3}\left(G^{\prime}\right)=8$ if $n^{\prime}=10$, or $d_{3}\left(G^{\prime}\right)=8$ and $d_{4}\left(G^{\prime}\right)=1$ if $n^{\prime}=11$.
Claim 4. $\operatorname{girth}\left(G^{\prime}\right)=4$.
Assume that $\operatorname{girth}\left(G^{\prime}\right) \geq 5$. First of all, we assume that $n^{\prime}=11$. Let $D_{4}\left(G^{\prime}\right)=\left\{w_{1}\right\}$. For an integer $i \geq 0$, define $T_{i}=\left\{u \in V\left(G^{\prime}\right): \operatorname{dist}\left(u, w_{1}\right)=i\right\}$. Then $\quad\left|T_{0}\right|=1,\left|T_{1}\right|=$ $4,\left|T_{2}\right|=6$, and $D_{2}\left(G^{\prime}\right) \subseteq T_{1}$. Let L_{1} be the subgraph in G^{\prime} induced by T_{2}. Then L_{1} is a 6 -cycle $a_{1} a_{2} \cdots a_{6} a_{1}$. Let $T_{1}=$ $\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$, where $u_{1}, u_{4} \in D_{2}\left(G^{\prime}\right)$ and $u_{2}, u_{3} \in D_{3}\left(G^{\prime}\right)$. Then for $i=2,3,\left|N_{G^{\prime}}\left(u_{i}\right) \cap T_{2}\right|=2$, and for $i=1,4$, $\left|N_{G^{\prime}}\left(u_{i}\right) \cap T_{2}\right|=1$. By symmetry and $\operatorname{girth}\left(G^{\prime}\right) \geq 5$, we may assume that $u_{2} a_{1}, u_{2} a_{4} \in E\left(G^{\prime}\right)$, and $u_{3} a_{2}, u_{3} a_{5} \in E\left(G^{\prime}\right)$. We also assume that $u_{1} a_{3}, u_{4} a_{6} \in E\left(G^{\prime}\right)$. So $G^{\prime}=P^{2}(11)$. By Lemma 2.4, G^{\prime} is collapsible, a contradiction. Next we assume that $n^{\prime}=10$ and so $V\left(G^{\prime}\right)=D_{2}\left(G^{\prime}\right) \cup D_{3}\left(G^{\prime}\right)$.

As $d_{3}\left(G^{\prime}\right)=8$, there is a vertex $w_{2} \in D_{3}\left(G^{\prime}\right)$ such that $N_{G^{\prime}}\left(w_{2}\right) \cap D_{2}\left(G^{\prime}\right)=\emptyset$. Define $T_{i}=\left\{u \in V(G): \operatorname{dist}\left(u, w_{2}\right)=i\right\}$. Then $\left|T_{0}\right|=1,\left|T_{1}\right|=3,\left|T_{2}\right|=6$, and $D_{2}\left(G^{\prime}\right) \subseteq T_{2}$. Let $T_{1}=$ $\left\{u_{1}, u_{2}, u_{3}\right\}$ and let L_{2} be the subgraph in G^{\prime} induced by T_{2}. Then L_{2} is a 6-path $a_{1} a_{2} a_{3} a_{4} a_{5} a_{6}$. Notice that for $i=1,2,3$, $\left|N_{G^{\prime}}\left(u_{i}\right) \cap T_{2}\right|=2$. As $\operatorname{girth}\left(G^{\prime}\right) \geq 5$, by symmetry, we may assume that $u_{1} a_{2}, u_{1} a_{5} \in E(G), u_{2} a_{1}, u_{2} a_{4} \in E(G) \quad$ and $u_{3} a_{3}, u_{3} a_{6} \in E(G)$. Then $G^{\prime}=P^{-}(10)$ and $d_{2}(G)=2$, contrary to (1). This proves Claim 4.

Let $C_{4}=v_{1} v_{2} v_{3} v_{4} v_{1}$ be a 4-cycle in G^{\prime}. Let $\pi=$ $\left(V_{1}, V_{2}\right)=\left(\left\{v_{1}, v_{3}\right\},\left\{v_{2}, v_{4}\right\}\right)$ be a partition of $V\left(C_{4}\right)$. Form the graph G^{\prime} / π with the new edge e_{π} as in Definition 2.2. Then $\left|V\left(G^{\prime} / \pi\right)\right| \in\{8,9\}$.
Claim 5. G^{\prime} / π is not 2 -edge-connected.
Assume that G^{\prime} / π is 2-edge-connected. As $d_{1}\left(G^{\prime}\right)=0$ and $d_{2}\left(G^{\prime}\right)=2$, we have $d_{2}\left(G^{\prime} / \pi\right) \leq 2$. If G^{\prime} / π is K_{3}-free,
then by Theorem 1.3(iv), the reduction of G^{\prime} / π is K_{1}, Thus, $G^{\prime}=K_{1}$, contrary to (1). Hence G^{\prime} / π must contains a K_{3}. Let $u v x u$ be a K_{3} in G^{\prime} / π. As G^{\prime} is reduced, either $x \in$ $\left\{v_{1}, v_{3}\right\}$ or $x \in\left\{v_{2}, v_{4}\right\}$. Without loss of generality, we assume that $x \in\left\{v_{1}, v_{3}\right\}$, and $u v_{1}, v v_{3} \in E\left(G^{\prime}\right)$. By Claim 2, either $d_{G^{\prime}}(u) \geq 3$ or $d_{G^{\prime}}(v) \geq 3$. Without loss of generality, we assume that $d_{G^{\prime}}(u) \geq 3$. Let H be the graph obtained from G^{\prime} / π by contracting $u v x u$ and let z be the vertex on which $u v x u$ is contracted. Then $|V(H)| \in\{6,7\}$ and H is 2-edge-connected. If $d_{2}(H) \leq 2$, then by Theorem $1.3(\mathrm{i}), H$ is collapsible, forcing that G^{\prime} is collapsible, a contradiction. Thus, $d_{2}(H) \geq 3$. As $d_{2}\left(G^{\prime} / \pi\right) \leq 2, d_{H}(z)=2$. It implies that $d_{G^{\prime} / \pi}(v)=2$, and so $d_{2}\left(G^{\prime} / \pi\right)=3$, contrary to the fact that $d_{2}\left(G^{\prime} / \pi\right) \leq 2$. Claim 5 follows.
Claim 6. $d_{G^{\prime}}\left(v_{1}\right)+d_{G^{\prime}}\left(v_{3}\right) \geq 5$ and $d_{G^{\prime}}\left(v_{2}\right)+d_{G^{\prime}}\left(v_{4}\right) \geq 5$.
Assume that $d_{G^{\prime}}\left(v_{1}\right)+d_{G^{\prime}}\left(v_{3}\right) \leq 4$. Then $v_{1}, v_{3} \in D_{2}\left(G^{\prime}\right)$. Thus, $d_{G^{\prime}}\left(v_{2}\right) \geq 3$ and $d_{G^{\prime}}\left(v_{4}\right) \geq 3$. If $d_{G^{\prime}}\left(v_{2}\right)=4$, then we set $Q_{1}=G^{\prime}-\left\{v_{1}, v_{3}, v_{4}\right\}$. Thus, Q_{1} is connected, $\left|V\left(Q_{1}\right)\right| \in$ $\{7,8\}, d_{1}\left(Q_{1}\right)=0$ and $d_{2}\left(Q_{1}\right) \leq 2$. By Theorem 1.4, $Q_{2} \in$ $\left\{K_{1}, K_{2}, K_{2,3}\right\}$, a contradiction. So $d_{G^{\prime}}\left(v_{2}\right)=d_{G^{\prime}}\left(v_{4}\right)=3$. Let $Q_{2}=G^{\prime}-\left\{v_{1}, v_{3}, v_{2}, v_{4}\right\}$. Then Q_{2} is connected, $\left|V\left(Q_{2}\right)\right| \in$ $\{6,7\}, d_{1}\left(Q_{2}\right)=0$ and $d_{2}\left(Q_{2}\right) \leq 2$. By Theorem 1.4, $Q_{2} \in$ $\left\{K_{1}, K_{2}, K_{2,3}\right\}$, a contradiction. Claim 6 is justified.

As G^{\prime} is 2-edge-connected, by Claims 5 and $6,\left\{v_{1}\right.$, $\left.v_{2}, v_{3}, v_{4}\right\}$ is a vertex-cut of G^{\prime}. Let L_{1} and L_{2} be the components of $G^{\prime}-\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ such that $N_{G^{\prime}}\left(v_{1}\right) \cap V\left(L_{2}\right)=$ $N_{G^{\prime}}\left(v_{3}\right) \cap V\left(L_{2}\right)=\emptyset \quad$ and $\quad N_{G^{\prime}}\left(v_{2}\right) \cap V\left(L_{1}\right)=N_{G^{\prime}}\left(v_{4}\right) \cap$ $V\left(L_{1}\right)=\emptyset$. Also we assume that $\left|V\left(L_{1}\right)\right| \leq\left|V\left(L_{2}\right)\right|$. As $n^{\prime} \in$ $\{10,11\},\left|V\left(L_{1}\right)\right| \in\{1,2,3\}$. By Claims 2 and $3,\left|V\left(L_{1}\right)\right| \neq 3$. If $\left|V\left(L_{1}\right)\right|=2$, as G^{\prime} has no triangles, we have $D_{2}\left(G^{\prime}\right)=$ $V\left(L_{2}\right)$, contrary to Claim 2 . So $\left|V\left(L_{1}\right)\right|=1$.

Let $V\left(L_{1}\right)=\{v\}$. Then $v v_{1}, v v_{3} \in E\left(G^{\prime}\right)$. If $d_{G^{\prime}}\left(v_{2}\right)=4$, then we set $Q_{3}=G^{\prime}-\left\{v, v_{1}, v_{3}, v_{4}\right\}$. Thus, Q_{3} is connected, $\mid V\left(Q_{3} \mid \in\{6,7\}, d_{1}\left(Q_{3}\right)=0\right.$ and $d_{2}\left(Q_{3}\right) \leq 2$. By Theorem 1.4, $Q_{3} \in\left\{K_{1}, K_{2}, K_{2,3}\right\}$, a contradiction. Hence $d_{G^{\prime}}\left(v_{2}\right)=$ $d_{G^{\prime}}\left(v_{4}\right)=3$. Let $Q_{4}=G^{\prime}-\left\{v, v_{1}, v_{3}, v_{2}, v_{4}\right\}$. Then Q_{4} is connected, $\left|V\left(Q_{4}\right)\right| \in\{5,6\}, d_{1}\left(Q_{4}\right)=0$ and $d_{2}\left(Q_{4}\right) \leq 2$. By Theorem 1.4, $Q_{4}=K_{2,3}$. Therefore, $n^{\prime}=10$ and $G=K_{2,3}^{2}$, a contradiction.

Proof of Theorem 1.8. Let G^{\prime} be the reduction of G. By Theorem 1.7, if $n \leq 11$, then $G^{\prime} \in \mathcal{F}_{11}$. Hence we assume that $n \in\{12,13,14\}$. Arguing by contradiction to prove Theorem 1.8, we assume that

$$
\begin{equation*}
G^{\prime} \neq K_{1}, \text { and none of }(\mathrm{i}),(\mathrm{ii}), \text { and(iii)holds. } \tag{4}
\end{equation*}
$$

By assumption, it is known that

$$
\begin{equation*}
d_{1}(G)=0, \text { and } d_{2}(G) \leq 1 \tag{5}
\end{equation*}
$$

By Theorem 2.1(v), we have
$\left|\cup_{v \in D_{1}\left(G^{\prime}\right)} P I_{G}(v)\right| \geq 4 d_{1}\left(G^{\prime}\right)$, and if $d_{2}\left(G^{\prime}\right) \geq 1$, then $\mid \cup_{v \in D_{2}\left(G^{\prime}\right)}$ $P I_{G}(v) \mid \geq 4\left(d_{2}\left(G^{\prime}\right)-1\right)+1$.

By (5) and (6), we must have $d_{1}\left(G^{\prime}\right) \leq 3$ and $d_{1}\left(G^{\prime}\right)+$ $d_{2}\left(G^{\prime}\right) \leq 5$. Let $n^{\prime}=\left|V\left(G^{\prime}\right)\right|$.
Claim 1. $d_{1}\left(G^{\prime}\right)+d_{2}\left(G^{\prime}\right) \leq 3$.

Otherwise, $d_{1}\left(G^{\prime}\right)+d_{2}\left(G^{\prime}\right)=4$. Thus, $\left(d_{1}\left(G^{\prime}\right), d_{2}\left(G^{\prime}\right)\right) \in$ $\{(3,1),(2,2),(1,3),(0,4)\}$. If $d_{1}\left(G^{\prime}\right)=3$ and $d_{2}\left(G^{\prime}\right)=1$, then $n^{\prime}=5$, and so $G^{\prime}=K_{1,3}^{+}$and $n=14$; if $d_{1}\left(G^{\prime}\right)=2$ and $d_{2}\left(G^{\prime}\right)=2$, then $n^{\prime}=4, n \in\{13,14\}$, and $\quad G^{\prime}=P_{4} ; \quad$ if $d_{1}\left(G^{\prime}\right)=1 \quad$ and $d_{2}\left(G^{\prime}\right)=3$, then $n^{\prime}=5, G^{\prime}=C_{4}^{+} \quad$ and $n=14$; if $d_{1}\left(G^{\prime}\right)=0$ and $d_{2}\left(G^{\prime}\right)=4$, then $n \in\{13,14\}$ and $G^{\prime}=C_{4}$, and so $G \in \mathcal{S}_{13} \cup \mathcal{S}_{14}$, contrary to (4).
Claim 2. $d_{1}\left(G^{\prime}\right)=0$.
Otherwise, $d_{1}\left(G^{\prime}\right) \in\{1,2,3\}$. Assume that $d_{1}\left(G^{\prime}\right)=3$. By Claim 1, $d_{2}\left(G^{\prime}\right)=0$. Thus, $n^{\prime}=4, n \in\{13,14\}$ and $G^{\prime}=$ $K_{1,3}$, contrary to (4).

Assume that $d_{1}\left(G^{\prime}\right)=2$ and $D_{1}\left(G^{\prime}\right)=\left\{a_{1}, b_{1}\right\}$ with $N_{G^{\prime}}\left(a_{1}\right)=a_{2}$ and $N_{G^{\prime}}\left(b_{1}\right)=b_{2}$. By Claim 1, $d_{2}\left(G^{\prime}\right) \leq 1$. If $a_{2}=b_{2}$ and $d_{G^{\prime}}\left(a_{2}\right)=2$, then $G^{\prime}=K_{1,2}$ and $n \leq 14$; if $a_{2}=b_{2} \quad$ and $\quad d_{G^{\prime}}\left(a_{2}\right) \geq 3$, then $\left|V\left(G^{\prime}\right)-\left\{a_{1}, b_{1}\right\}\right| \leq$ $14-8=6, d_{1}\left(G^{\prime}-\left\{a_{1}, b_{1}\right\}\right) \leq 1 \quad$ and $\quad d_{1}\left(G^{\prime}-\left\{a_{1}, b_{1}\right\}\right)+$ $d_{2}\left(G^{\prime}-\left\{a_{1}, b_{1}\right\}\right) \leq 2$. By Theorem 1.7, $d_{1}\left(G^{\prime}-\left\{a_{1}, b_{1}\right\}\right)=$ 1. As the number of odd degree vertices in a graph is even, by Theorem $2.1($ vii $), \quad F\left(G^{\prime}-\left\{a_{1}, b_{1}\right\}\right) \leq 2$. Thus, $G^{\prime}-$ $\left\{a_{1}, b_{1}\right\} \in\left\{K_{2}, K_{2, t}\right\}, t \in\{1,2,3,4\}$, contrary to Claim 1 and the hypothesis that $d_{1}\left(G^{\prime}\right)=2$. So $a_{2} \neq b_{2}$ and either $d_{G^{\prime}}\left(a_{2}\right) \geq 3$ or $d_{G^{\prime}}\left(b_{2}\right) \geq 3$. Hence, $\left|V\left(G^{\prime}\right)-\left\{a_{1}, b_{1}\right\}\right| \leq$ $14-8=6$. If $d_{G^{\prime}}\left(a_{2}\right) \geq 3$ and $d_{G^{\prime}}\left(b_{2}\right) \geq 3$, then $d_{1}\left(G^{\prime}-\right.$ $\left.\left\{a_{1}, b_{1}\right\}\right)=0 \quad$ and $\quad d_{2}\left(G_{1}^{\prime}-\left\{a_{1}, b_{1}\right\}\right) \leq 3$. By Theorem 2.1(vii), $\quad F\left(G^{\prime}-\left\{a_{1}, b_{1}\right\}\right) \leq 2, \quad$ and \quad so $\quad G^{\prime}-\left\{a_{1}, b_{1}\right\}=$ $K_{2,3}, G^{\prime}=K_{2,3}^{++} \quad$ and $n \in\{13,14\}$. If $d_{G^{\prime}}\left(a_{2}\right)=2$ and $d_{G^{\prime}}\left(b_{2}\right) \geq 3$, then by Claim 1, $d_{1}\left(G^{\prime}-\left\{a_{1}, b_{1}\right\}\right)=1$ and $d_{2}\left(G_{1}^{\prime}-\left\{a_{1}, b_{1}\right\}\right)=1 . \quad$ By \quad Theorem 2.1 (vii), $\quad F\left(G^{\prime}-\right.$ $\left.\left\{a_{1}, b_{1}\right\}\right) \leq 2$, and so $G^{\prime}-\left\{a_{1}, b_{1}\right\}=K_{2}$, a contradiction.

Assume that $d_{1}\left(G^{\prime}\right)=1$ with $D_{1}\left(G^{\prime}\right)=\left\{a_{1}\right\}$. Let $a_{1} a_{2} \cdots a_{k}(k \geq 2)$ be a path in G^{\prime} such that $d_{G^{\prime}}\left(a_{i}\right)=2(i=$ $2, \ldots, k-1)$ and $d_{G^{\prime}}\left(a_{k}\right) \geq 3$ and $H=G^{\prime}-\left\{a_{1}, \ldots, a_{k-1}\right\}$. Then $d_{1}(H)=0$, and $d_{2}(H) \leq 3$ and $|V(H)| \leq 14-4=10$. If $d_{2}(H) \leq 2$, by Theorem 1.7, $H \in\left\{K_{2,3}^{2}, P^{-}(10), P(10)\right\}$. So $\quad n=14$, and $G^{\prime} \in\left\{\left(K_{2,3}^{2}\right)^{+},\left(P^{-}(10)\right)^{+},(P(10))^{+}\right\}$. If $d_{2}(H)=3$, then $|V(H)| \leq 14-4-3=7$. By Theorem $2.1(\mathrm{vii}), \quad F(H) \leq 3 . \quad$ By \quad Theorem $\quad 1.5, \quad H \in\left\{K_{2,3}, K_{1,3}\right.$ $(1,1,1), T(1,1)\}$. Thus, $\quad G^{\prime} \in\left\{K_{2,3}^{+}, K_{1,3}^{+}(1,1,1), T_{1}^{+}(1,1)\right.$, $\left.T_{2}^{+}(1,1)\right\}$, and if $G^{\prime}=K_{2,3}^{+}$, then $n \in\{12,13,14\}$, and if $G^{\prime} \in\left\{T_{1}^{+}(1,1), T_{2}^{+}(1,1), K_{1,3}^{+}(1,1,1)\right\}$, then $n=14$. Claim 2 holds.
Claim 3. $d_{2}\left(G^{\prime}\right)=1$.
Otherwise, $d_{2}\left(G^{\prime}\right) \in\{0,2,3\}$. If $d_{2}\left(G^{\prime}\right)=3$, then $n^{\prime} \leq$ $14-8+2=8$. By Theorem 2.1 (vii), $F\left(G^{\prime}\right) \leq 3$. By Theorem 1.5, $G^{\prime} \in\left\{K_{1,3}(1,1,1), K_{2,3}, T(1,1)\right\}$. If $\quad G^{\prime}=$ $K_{1,3}(1,1,1)$, then $n \in\{13,14\}$, and if $G^{\prime}=T(1,1)$, then $G \in \mathcal{S}_{13} \cup \mathcal{S}_{14}$, contrary to (4). If $d_{2}\left(G^{\prime}\right)=2$, then $n^{\prime} \leq$ $14-4+1=11$. By Theorem 1.7 and Claim 2, $G^{\prime} \in$ $\left\{K_{2,3}^{2}, P^{-}(10), P^{2}(11)\right\}$. If $G^{\prime}=K_{2,3}^{2}$, then $G^{\prime} \in \mathcal{S}_{13} \cup \mathcal{S}_{14}$; if $G^{\prime}=P^{2}(11)$, then $G^{\prime} \in \mathcal{S}_{14} ;$ if $G^{\prime}=P^{-}(10)$, then $n \in$ $\{13,14\}$, contrary to (4).

Next we assume that $d_{2}\left(G^{\prime}\right)=0$. Then $\delta\left(G^{\prime}\right) \geq 3$. By Theorem 1.6 and Lemma $2.5, n^{\prime} \in\{12,14\}$. If $n^{\prime}=12$, by Lemma 2.6, $G^{\prime} \in\left\{P^{1}(12), P^{2}(12), P^{3}(12)\right\}$, contrary to (4). If $n^{\prime}=14$, then $G=G^{\prime}$. If G has an edge-cut X with $|X| \leq 2$, then we set Z_{1} and Z_{2} are the components of $G-X$ with
$\left|Z_{1}\right| \leq\left|Z_{2}\right|$. Thus, $\left|Z_{1}\right| \in\{6,7\}$ and $F\left(Z_{1}\right) \leq 2$. Therefore, $Z_{1}=K_{2, t}(t=4,5)$, a contradiction. So G is 3-edge-connected. By Theorem 1.2(iv), either $G \in \mathcal{S}_{14}$ or $G=P^{1}(14)$, contrary to (4). Claim 3 holds.

By Claim 3, we denote $D_{2}\left(G^{\prime}\right)=\{v\}$.
Claim 4. G^{\prime} is 2-edge-connected.
Let e be an edge-cut of G^{\prime} and let H_{1} and H_{2} be the components of $G^{\prime}-e$ such that $V\left(H_{1}\right) \cap D_{2}\left(G^{\prime}\right)=\emptyset$. By Claims 2 and 3 and by Theorem $2.1(\mathrm{v}),\left|V\left(H_{i}\right)\right| \geq 6(i=1,2)$. Thus, $\left|V\left(H_{1}\right)\right| \in\{6,7,8\}$. Since $d_{1}\left(H_{1}\right)=0$ and $d_{2}\left(H_{1}\right) \leq 1$ and since H_{1} is reduced, by Theorem 1.4, $H_{1}=K_{2,3}$, a contradiction. Claim 4 holds.

Claim 5. $n^{\prime} \in\{13,14\}$. Therefore, $G^{\prime}=G$ and Theorem 1.8(i) holds.

Otherwise, by Lemma 2.5, $n^{\prime}=12$, Let $H=G^{\prime}-v$ and $N_{G^{\prime}}(v)=\left\{u_{1}, u_{2}\right\}$. As H is reduced and $|V(H)|=11$, by Theorem 1.2(i), either $u_{1} \in D_{3}\left(G^{\prime}\right)$ or $u_{2} \in D_{3}\left(G^{\prime}\right)$. Thus, $d_{2}(H) \in\{1,2\}$. By Theorem 1.7, $H=P(11)$. Thus, $G^{\prime}=$ $P^{5}(12)$. By Lemma 2.4, G^{\prime} is collapsible, a contradiction. So Claim 5 holds.
Claim 6. (i) If $n^{\prime}=13$, then $d_{2}\left(G^{\prime}\right)=1, d_{3}\left(G^{\prime}\right) \in$ $\{8,9,10,11,12\}$, and $\Delta\left(G^{\prime}\right) \leq 7$. Furthermore, if $\Delta\left(G^{\prime}\right)=3$, then $d_{3}\left(G^{\prime}\right)=12$ and $\operatorname{girth}\left(G^{\prime}\right)=4$.
(ii) If $n^{\prime}=14$, then $d_{2}\left(G^{\prime}\right)=1$ and $d_{3}\left(G^{\prime}\right) \in\{8,9, \ldots, 12\}$ and $\Delta\left(G^{\prime}\right) \in\{4,5, \ldots, 8\}$. Furthermore, if $\Delta\left(G^{\prime}\right) \geq 5$, then $\operatorname{girth}\left(G^{\prime}\right)=4$.
(i) Assume that $n^{\prime}=13$. Then $F\left(G^{\prime}\right) \geq 3$. By Claims 2 and 3 , we have $d_{3}\left(G^{\prime}\right) \geq 8$ and $\Delta\left(G^{\prime}\right) \leq 7$. If $\Delta\left(G^{\prime}\right)=3$, then $d_{3}\left(G^{\prime}\right)=12$. By Lemma 2.7, $\operatorname{girth}\left(G^{\prime}\right)=4$.
(ii) Assume that $n^{\prime}=14$. As $F\left(G^{\prime}\right) \geq 3$, we have $d_{3}\left(G^{\prime}\right) \geq 8$ and $\Delta\left(G^{\prime}\right) \leq 8$. Assume that $v \in V\left(G^{\prime}\right)$ such that $d_{G^{\prime}}(v)=\Delta\left(G^{\prime}\right) \geq 5$ and $\operatorname{girth}\left(G^{\prime}\right) \geq 5$. Let $T_{i}=\left\{x \in V\left(G^{\prime}\right):\right.$ $\left.\operatorname{dist}_{G^{\prime}}(x, v)=i\right\}$. Then $\left|T_{0}\right|=1,\left|T_{1}\right|=5$ and $\left|T_{2}\right| \geq 9$. Thus, $n^{\prime} \geq 1+5+9 \geq 15, \quad$ a contradiction. So, if $\Delta\left(G^{\prime}\right) \geq 5$, then $\operatorname{girth}\left(G^{\prime}\right)=4$.
Claim 7. $\operatorname{girth}\left(G^{\prime}\right)=4$.
Assume that $\operatorname{girth}\left(G^{\prime}\right) \geq 5$. If $n^{\prime}=14$, by Claim 5(ii), $\Delta(G)=4$. By Lemma $2.9, G$ is supereulerian, contrary to (4). Next we assume that $n^{\prime}=13$. Notice that $G=G^{\prime}$. As $\operatorname{girth}(G) \geq 5, \Delta(G)=4$. So we have $\left(d_{2}(G), d_{3}(G), d_{4}(G)\right) \in$ $\{(1,8,4),(1,10,2)\}$. If $\left|N_{G}(v) \cap D_{4}(G)\right| \geq 1$, then $\mid V(G-$ $v) \mid=12, d_{1}(G-v)=0$ and $d_{2}(G-v) \leq 1$. By Theorem 1.8(i), $G-v \in\left\{P^{1}(12), P^{2}(12), P^{3}(12)\right\}$. Thus, $G \in \mathcal{S}_{13}$, contrary to (4). So $\left|N_{G}(v) \cap D_{4}(G)\right|=0$. Choose $w \in D_{4}(G)$. For an integer $i \geq 0$, define $T_{i}=\{u \in V(G) \mid \operatorname{dist}(u, w)=i\}$ Then $\left|T_{0}\right|=1,\left|T_{1}\right|=4,\left|T_{2}\right| \geq 8$ and $v \in T_{2}$. As $n=13$,
$\left|T_{2}\right|=8$. Thus, for any $x \in T_{1}, x \in D_{3}(G)$. Let $T_{1}=$ $\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$. As $v \in T_{2}$, we assume that $v u_{1} \in E(G)$.

Consider $H=G-\left\{u_{1}, v\right\}$. Then $|V(H)|=11, d_{1}(H)=0$ and $d_{2}(H) \leq 2$. By Claim 4, H is connected. By Theorem 1.7, $H=P(11)$. Let $D_{2}(H)=\{z\}$. Then either $v z \in E(G)$ or $u_{1} z \in E(G)$. If $z v \in E(G)$, then $N_{G}(v)=\left\{z, u_{1}\right\}$. As $\left|N_{G}\left(u_{1}\right) \cap V(H)\right|=2, G$ must have a 4-cycle, a contradiction. So $u_{1} z \in E(G)$. Therefore, $\left|N_{G}(u) \cap(V(H)-\{z\})\right|=1$ and $N_{G}(v) \cap(V(H)-\{z\}) \mid=1$. As $\operatorname{girth}(G) \geq 5$, the subgraph induced by $V(H) \cup\left\{u_{1}\right\}$ is $P^{5}(12)$. By Lemma $2.4, G$ is collapsible, a contradiction. So Claim 7 holds.

By Claim 7, we assume that G has a 4 -cycle $C_{4}=$ $v_{1} v_{2} v_{3} v_{4} v_{1}$. Let $\pi=\left(V_{1}, V_{2}\right)=\left(\left\{v_{1}, v_{3}\right\},\left\{v_{2}, v_{4}\right\}\right)$ be a partition of $V\left(C_{4}\right)$. Form the graph G / π with the new edge e_{π} as in Definition 2.2.
Claim 8. $\kappa^{\prime}\left(G^{\prime} / \pi\right) \geq 2$.
By Claim 4, $\kappa^{\prime}\left(G^{\prime}\right) \geq 2$. If G^{\prime} / π has a cut edge, then it must be e_{π}. Thus, $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ is a vertex-cut of G^{\prime}. Let H_{1} and H_{2} be the components of $G^{\prime}-\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ such that $\left|V\left(H_{1}\right)\right| \leq\left|V\left(H_{2}\right)\right|$. Also we assume that $N_{G^{\prime}}\left(v_{1}\right) \cap V\left(H_{2}\right)=$ $N_{G^{\prime}}\left(v_{3}\right) \cap V\left(H_{2}\right)=\emptyset \quad$ and $\quad N_{G^{\prime}}\left(v_{2}\right) \cap V\left(H_{1}\right)=N_{G^{\prime}}\left(v_{4}\right) \cap$ $V\left(H_{1}\right)=\emptyset$. As $n^{\prime} \in\{13,14\},\left|V\left(H_{1}\right)\right| \in\{1,2,3,4,5\}$. For $i=1,2$, let L_{i} induced by $V\left(H_{i}\right) \cup\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$. By Claims 2,3 , and $4, \kappa^{\prime}\left(L_{i}\right) \geq 2$ and $d_{2}\left(L_{i}\right) \leq 3$. If $\left|V\left(H_{1}\right)\right| \leq 3$, by Theorem 1.3(ii) and (iv), we have $\left|V\left(L_{1}\right)\right|=7$ and $L_{1} \in$ $\left\{K_{1,3}(1,1,1), T(1,1)\right\}$. It contradicts the fact that $N_{L_{1}}\left(v_{2}\right)=$ $N_{L_{1}}\left(v_{4}\right)$. So $\left|V\left(H_{1}\right)\right| \in\{4,5\}$ and $\left|V\left(L_{1}\right)\right| \in\{8,9\}$. By Theorem 1.3(iv), $d_{2}\left(L_{1}\right)=3$. As $d_{2}(G)=1$, we have $d_{2}\left(L_{2}\right)=2$. By Theorem 1.3(iv), $\left|V\left(L_{2}\right)\right|=10$. By Theorem 1.7, $L_{2}=P^{-}(10)$. It contradicts the hypothesis that L_{2} contains the 4 -cycle $v_{1} v_{2} v_{3} v_{4} v_{1}$. Claim 8 holds.

Consider the reduction $(G / \pi)^{\prime}$ of G / π. Let $x \in V(G / \pi)^{\prime}$. with $d_{(G / \pi)^{\prime}}(x)=2$, either $x \in D_{2}(G)$ or $\operatorname{PI}(x)$ contains either u_{1} or u_{2}. So $d_{2}\left((G / \pi)^{\prime}\right) \leq 3$. In particular, if $d_{2}\left((G \pi)^{\prime}\right)=3$ with $x, y \in D_{2}\left((G / \pi)^{\prime}\right)$ such that $u_{1} \in \operatorname{PI}(x)$ and $u_{2} \in \operatorname{PI}(y)$, then $x y \in E\left((G / \pi)^{\prime}\right)$. Next we will use $(G / \pi)^{\prime}$ to find the graph G. Figures 6-8 are originally from [12].

Assume that $n^{\prime}=13$. Then $|V(G / \pi)|=11, d_{1}(G / \pi)=0$ and $d_{2}(G / \pi) \leq 1$. By Claim 8 and Theorem 1.7, $(G / \pi)^{\prime} \in$ $\{P(10), P(11)\}$. If $(G / \pi)^{\prime}=P(10)$, then G / π contains the parallel edges. Thus, $G=P^{2}(13)$ as shown in Figure 9.

If $(G / \pi)^{\prime}=P_{11}$, then $G / \pi=P(11)$. If e_{π} is incident to the degree two vertex in G / π, then $G=P^{1}(13)$ as shown in Figure 10. If e_{π} is not incident to the degree two vertex, then $G=P^{3}(12)(e)$ meaning subdividing an edge e in

Figure 9. An illustration for Claim 8 in the proof of Theorem 1.8.
$P^{3}(12)$ as shown in Figure 1, where $e \in E\left(P^{3}(12)\right)-E\left(C_{4}\right)$. Thus, $G \in \mathcal{S}_{13}$. So Theorem 1.8(ii) holds.

Next we assume that $n^{\prime}=14$. Then $|V(G / \pi)|=12$, $d_{1}(G / \pi)=0$ and $d_{2}(G / \pi) \leq 1$. By Theorem $1.8(\mathrm{ii})$ and Claim 8, $(G / \pi)^{\prime} \in\left\{P(10), P(11), P^{1}(12), P^{2}(12), P^{3}(12)\right\}$. If $(G / \pi)^{\prime} \in\left\{P^{1}(12), P^{2}(12), P^{3}(12)\right\}$, then is supereulerian. Thus, $G \in \mathcal{S}_{14}$.

Assume that $(G / \pi)^{\prime}=P(10)$. Then G / π either contains a K_{3} or two C_{2} such that $(G / \pi) / K_{3}=P_{10}$ or $(G / \pi) /\left(C_{2} \cup\right.$ $\left.C_{2}\right)=P(10)$. Assume that $(G / \pi) / K_{3}=P(10)$. If $e_{\pi} \in E\left(K_{3}\right)$, since G is K_{3}-free, G is the a graph with the structure as shown in Figure 6. Thus, G contains a collapsible subgraph K_{3}, contrary to the fact that $G=G^{\prime}$ is reduced. If $e_{\pi} \notin$ $E\left(K_{3}\right)$, then G / π and G are graphs as shown in Figure 7. Thus, $G \in \mathcal{S}_{14}$, contrary to (4).

Assume that $(G / \pi) /\left(C_{2} \cup C_{2}\right)=P(10)$. Then two C_{2} cycles must be incident with the edge e_{π} in G / π. Thus, G / π and G are shown in Figure 8. Let $\pi^{\prime}=\left(\left\{x_{1}, x_{3}\right\},\left\{x_{2}, x_{4}\right\}\right)$ be a partition of a 4-cycle in G as shown in Figure 8. Then G / π^{\prime} contains two C_{2}. Let $J=\left(G / \pi^{\prime}\right) /\left(C_{2} \cup C_{2}\right)$. Then $|V(J)|=10, \delta(J) \geq$ 3 and $\kappa^{\prime}(J) \geq 3$. By Theorem $1.2(\mathrm{i}), J$ is collapsible. By Theorem 2.3(i), G is collapsible, a contradiction.

Next, we assume that $(G / \pi)^{\prime}=P(11)$. As $d_{2}(G)=1, G / \pi$ and G are the graphs as shown in Figure 11. So Theorem 1.8(iii) holds. The proof of Theorem 1.8 is now complete.

4. Applications

Spanning trailable graphs are a special class of supereulerian graphs. Let $e, e^{\prime} \in E(G)$. A trail from e to e^{\prime} is called an $\left(e, e^{\prime}\right)$-trail. A graph is spanning trailable if for any pair of edges $e, e^{\prime} \in E(G), G$ has a spanning $\left(e, e^{\prime}\right)$-trail. As $e=e^{\prime}$ is possible, spanning trailable graphs are supereulerian. Luo et al. [23] first studied spanning trailable graphs (called Eulerian-connected graphs in [23]). They showed that every

4-edge-connected graph is spanning trailable, improving the former result of Caltin [5] and Jaeger [16] that every 4-edge-connected graph is supereulerian. Thus it is natural to study which 3-edge-connected graphs are spanning trailable.

Suppose that $e=u_{1} v_{1}, e^{\prime}=u_{2} v_{2} \in E(G)$ denote two edges of G. If $e \neq e^{\prime}$, then the graph $G\left(e, e^{\prime}\right)$ is obtained from G by replacing $e=u_{1} v_{1}$ by a path $u_{1} v_{e} v_{1}$ and by replacing $e^{\prime}=$ $u_{2} v_{2}$ by a path $u_{2} v_{e^{\prime}} v_{2}$, where $v_{e}, v_{e^{\prime}}$ are two new vertices not in $V(G)$. If $e=e^{\prime}$, then $G\left(e, e^{\prime}\right)$ is also denoted by $G(e)$ and is obtained from G by replacing $e=u_{1} v_{1}$ by a path $u_{1} v_{e} v_{1}$. Let $u, v \in V(G)$, a (u, v)-trail is a trail from u to v. A graph G is strongly spanning trailable if for any $e, e^{\prime} \in E(G), G\left(e, e^{\prime}\right)$ has a spanning $\left(v_{e}, v_{e^{\prime}}\right)$-trail. By definition,
every strongly spanning trailable graphis also spanning trailable.

Let \mathbb{Z}_{8} denote the set of integers modulo 8, and V_{8} denote the Wagner graph, which has vertex set. $V\left(V_{8}\right)=\left\{v_{i}: i \in \mathbb{Z}_{8}\right\}$ and edge set $E\left(V_{8}\right)=\left\{v_{i} v_{i+1}: i \in \mathbb{Z}_{8}\right\} \cup\left\{v_{1} v_{5}, v_{2} v_{6}, v_{3} v_{7}, v_{4} v_{8}\right\}$. As the Wagner graph V_{8} is spanning trailable but not strongly spanning trailable [27], strongly spanning trailable graphs and spanning trailable graphs are not equivalent.
Theorem 4.1. Let G be a 3-edge-connected non-strongly spanning spanning trailable simple graph. If $|V(G)| \leq 11$, then $G \in\left\{V_{8}, P(10)\right\}$.
Proof. Let G be a non-strongly spanning trailable graph with $\kappa^{\prime}(G) \geq 3$. Then there exist edges $e, e^{\prime} \in E(G)$ such that $G\left(e, e^{\prime}\right)$ does not have a spanning $\left(v_{e}, v_{e^{\prime}}\right)$-trail. Let H be the graph obtained from $G\left(e^{\prime}, e^{\prime \prime}\right)$ by adding a new vertex z_{0} and new edges $z_{0} v_{e^{\prime}}, z_{0} v_{e^{\prime \prime}}$. Then H is not supereulerian. As $|V(G)| \leq 11$, we have $|V(H)| \leq 14$. Let H^{\prime} be the reduction of H. As G is 3-edge-connected, $H^{\prime} \neq K_{1}$ is 2-edge-connected, and $d_{2}\left(H^{\prime}\right) \leq 1$. In addition, if $d_{2}\left(H^{\prime}\right)=0$, then $\left|V\left(H^{\prime}\right)\right| \leq 11-4=7$, and if $d_{2}\left(H^{\prime}\right)=1$, then $D_{2}\left(H^{\prime}\right)=$ $\left\{z_{0}\right\}$. By Theorem 1.8(iii), $H^{\prime} \in\left\{P(11), P^{1}(13), P^{2}(13)\right.$, $\left.P^{2}(14)\right\}$. Since G is a simple graph, $H^{\prime} \notin\left\{P^{2}(13), P^{2}(14)\right\}$. If $H^{\prime}=P(11)$, then $G=V_{8}$. If $H^{\prime}=P^{1}(13)$, then $G=P(10)$.

Harary and Nash-Williams showed that there is a close relationship between a graph and its line graph concerning Hamilton cycles.
Theorem 4.2 (Harary and Nash-Williams [15]). Let G be a graph with $|E(G)| \geq 3$. Then $L(G)$ is hamiltonian if and only if G has an eulerian subgraph H with $E(G-V(H))=\emptyset$.

Figure 10. An illustration for Claim 8 in the proof of Theorem 1.8.

Figure 11. An illustration for Claim 8 in the proof of Theorem 1.8.

Let G be a graph such that $\kappa(L(G)) \geq 3$ and $G \neq K_{1, n-1}$. The core of this graph G, denoted by G_{0}, is obtained from $G-D_{1}(G)$ by contracting exactly one edge $x y$ or $y z$ for each path $x y z$ in G with $d_{G}(y)=2$.

Lemma 4.3 (Shao [26]). Let G be a connected nontrivial graph such that $\kappa(L(G)) \geq 3$, and let G_{0} denote the core of G.
(i) G_{0} is uniquely determined by G with $\kappa^{\prime}\left(G_{0}\right) \geq 3$.
(ii) (see also Lemma 2.9 of [19]) If for any $e, e^{\prime} \in$ $E\left(G_{0}\right), G_{0}\left(e, e^{\prime}\right)$ has a spanning $\left(v_{e}, v_{e^{\prime}}\right)$-trail, then $L(G)$ is Hamilton-connected.
In [1] and [2], Bauer proposed the problems of determining best possible sufficient conditions on the vertex degrees of a simple graph (or a simple bipartite graph, or a simple triangle-free graph, respectively) G to ensure that its line graph $L(G)$ is Hamiltonian. These problems have been settled by Catlin [5] and Lai [17], respectively. Similar problems are considered in this paper. We seek best possible sufficient degree conditions of a simple graph G to assure that $L(G)$ is Hamilton-connected. In [22], Liu et al. proved several results which imply that for a simple graph G with sufficiently large $n=|V(G)|$, if either $\delta(G) \geq \frac{n}{8}-1$, or G is bipartite and $\delta(G) \geq \frac{n}{16}-1$, then $L(G)$ is Hamilton-connected if and only if $\kappa(G) \geq 3$ and V_{8} is not a nontrivial contraction of G. As an application of our main result, we prove the following.

Theorem 4.4. Let G be a connected simple graph on n vertices. Each of the following holds:
(i) If $\delta(G) \geq \frac{n}{10}$, then for sufficiently large $n, L(G)$ is Hamilton-connected if and only if both $\kappa(G) \geq 3$ and G are not nontrivially contractible to V_{8}.
(ii) If G is bipartite and $\delta(G)>\frac{n}{20}$, then for sufficiently large n, $L(G)$ is Hamilton-connected if and only if both $\kappa(G) \geq 3$ and G are not nontrivially contractible to V_{8}.

Proof. As the proof for (ii) is similar to that for (i), we only present the proof for (ii). Let G be a graph satisfying the hypotheses of Theorem with $\kappa(L(G)) \geq 3$ and $n \geq 141$. Then $\delta(G) \geq 8$, and so $D_{i}(G)=\emptyset$ for $i \in\{1,2, \ldots, 7\}$. As G is essentially 3-edge-connected, G is 3-edge-connected. Thus, $G=G_{0}$. Let $e_{1}, e_{2} \in E(G)$ and G^{\prime} be the reduction of $G\left(e_{1}, e_{2}\right)$. Then $D_{2}\left(G^{\prime}\right) \subseteq\left\{v_{e_{1}}, v_{e_{2}}\right\}$. Let $v \in V\left(G^{\prime}\right)-\left\{v_{e_{1}}, v_{e_{2}}\right\}$ such that $d_{G^{\prime}}(v) \leq 7$. Then $\operatorname{PI}(v)$ is nontivial and there is a vertex $x \in V(P I(v))$ such that $N_{G}(x) \subseteq V(P I(v))$. As G is bipartite, $\operatorname{PI}(v)$ is also bipartite. Assume that the vertex partition of $P I(v)$ is (A, B) and $x \in A$. Then $N_{G}(x) \subseteq B$. Thus, $|B| \geq d_{G}(x) \geq 8$. As $d_{G^{\prime}}(v) \leq 7$, there is a vertex $y \in B$ such that $N_{G}(y) \subseteq V(P I(v))$. Thus, $|V(P I(v))| \geq d_{G}(x)+d_{G}(y)>$ $\frac{n}{10}$. So $d_{3}\left(G^{\prime}\right)+\cdots+d_{7}\left(G^{\prime}\right) \leq 9$. As $F\left(G^{\prime}\right) \leq 2$, we have $2 d_{2}\left(G^{\prime}\right)+d_{3}\left(G^{\prime}\right) \geq 10+\sum_{i \geq 5}(i-4) d_{i}\left(G^{\prime}\right)$. As $d_{2}\left(G^{\prime}\right) \leq 2$, we have $d_{i}\left(G^{\prime}\right)=0$ for $i \geq 8$. So

$$
\left|V\left(G^{\prime}\right)\right|=d_{2}\left(G^{\prime}\right)+d_{3}\left(G^{\prime}\right)+\cdots+d_{7}\left(G^{\prime}\right) \leq 2+9=11
$$

In addition, if $\left|V\left(G^{\prime}\right)\right|=11$, then $d_{2}\left(G^{\prime}\right)=2$. By Theorem
1.7, $G^{\prime} \in\left\{K_{2,3}^{2}, P^{-}(10)\right\}$. If $G^{\prime}=K_{2,3}^{2}$, then G^{\prime} has a spanning $\left(v_{e_{1}}, v_{e_{2}}\right)$-trail. Thus, $L(G)$ is Hamilton-connected. If $G^{\prime}=P^{-}(10)$, then $D_{2}\left(P^{-}(10)\right)=\left\{v_{e_{1}}, v_{e_{2}}\right\}$ and G is contractible to V_{8}.

Disclosure statement

No potential conflict of interest was reported by the authors.

ORCID

Hong-Jian Lai (D) http://orcid.org/0000-0001-7698-2125

References

[1] Bauer, D. (1985). A note on degree conditions for Hamiltonian cycles in line graphs. Congres. Numer. 49: 11-18.
[2] Bauer, D. (1985). On Hamiltonian cycles in line graphs. Stevens Research Report PAM No. 8501. Hoboken, NJ: Stevens Institute of Technology.
[3] Bondy, J. A, Murty, U. S. R. (2008). Graph Theory. New York: Springer.
[4] Catlin, P. A. (1987). Supereulerian graph, collapsible graphs and 4-cycles. Congr. Numer. 56: 223-246.
[5] Catlin, P. A. (1988). A reduction methods to find spanning eulerian subgraphs. J. Graph Theory 12(1): 29-44.
[6] Catlin, P. A. (1990). Double cycle covers and the Petersen graph. Boca Raton II (1990): Proceedings 21st Southeastern Conference. Congr. Numer. 76, 173-181.
[7] Catlin, P. A. (1992). Super-Eulerian graphs, a survey. J. Graph Theory 16(2): 177-196.
[8] Catlin, P. A, Lai, H.-J. (1996). On supereulerian graphs and the Petersen graph. J. Comb. Theory, Ser. B 66(1): 123-139.
[9] Catlin, P. A., Han, Z, Lai, H.-J. (1996). Graphs without spanning closed trails. Discrete Math. 160(1-3): 81-91.
[10] Chen, Z.-H. (1991). Reduction of graphs and spanning Eulerian subgraphs. PhD dissertation. Wayne State University.
[11] Chen, Z.-H. (1991). Supereulerian graphs and the Petersen graph. J. Comb. Math. Comb. Comput. 9: 79-89.
[12] Chen, W. G, Chen, Z. H. (2016). Spanning eulerian subgraphs and Catlins reduced graphs. J. Comb. Math. Comb. Comp. 96: 41-63.
[13] Chen, Z. H, Lai, H.-J. (1998). Supereulerian graphs and the Petersen graph. ARS Comb. II 48: 271-282.
[14] Chen, Z. H, Lai, H.-J. (1995). Reduction Techniques for SuperEulerian Graphs and Related Topics-A Survey. Combinatorics and Graph Theory '95, Vol. 1 (Hefei). River Edge, NJ: World Sci. Publishing, pp. 53-69.
[15] Harary, F., St, C, Nash-Williams, J. A. (1965). On eulerian and Hamiltonian graphs and line graphs. Can. Math. Bull. 8(6): 701-709.
[16] Jaeger, F. (1979). A note on subeulerian graphs. J. Graph Theory 3(1): 91-93.
[17] Lai, H.-J. (1988). Contractions and Hamiltonian line graphs. J. Graph Theory 12(1): 11-15.
[18] Lai, H.-J., Shao, Y, Yan, H. (2013). An update on supereulerian graphs. WSEAS Trans. Math. 12: 926-940.
[19] Lai, H.-J., Shao, Y., Yu, G, Zhan, M. (2009). Hamiltonian connectedness in 3-connected line graphs. Discrete Appl. Math. 157(5): 982-990.
[20] Li, D., Lai, H.-J, Zhan, M. (2005). Eulerian subgraphs and Hamilton-connected line graphs. Discrete Appl. Math. 145(3): 422-428.
[21] Li, X., Li, D, Lai, H.-J. (2010). On 3-edge-connected supereulerian graphs in graph family $C(l, k)$. Discrete Math. 310(17-18): 2455-2459.
[22] Liu, J., Yu, A., Wang, K, Lai, H.-J. (2018). Degree sum and Hamiltonian-connected line graphs. Discrete Math. 341(5): 1363-1379.
[23] Luo, W., Chen, Z.-H, Chen, W.-G. (2006). Spanning trails containing given edges. Discrete Math. 306(1): 87-98.
[24] Niu, Z, Xiong, L. (2010). Supereulerianity of k-edge-connected graphs with a restriction on small bonds. Discrete Appl. Math. 158(1): 37-43.
[25] Niu, Z., Lai, H.-J, Xiong, L. (2012). Spanning subgraph with Eulerian components. Discrete Math. 312(5): 1013-1018.
[26] Shao, Y. (2005). Claw-free graphs and line graphs. PhD dissertation. West Virginia University.
[27] Wang, K. (2015). Supereulerian properties in graphs and Hamiltonian properties in line graphs. PhD dissertation. West Virginia University.
[28] Xiong, L. (2001). Circuits in graphs and the Hamiltonian index. PhD thesis. University of Twente, Enschede, The Netherlands.
[29] Xiong, L, Liu, L. (2002). Hamiltonian iterated line graphs. Discrete Math. 256(1-2): 407-422.
[30] Xiong, L., Lu, M, Han, L. (2009). The structure of even factors in claw-free graphs. Discrete Math. 309(8): 2417-2423.
[31] Yang, W., Lai, H.-J., Li, H, Guo, X. (2012). Collapsible graphs and Hamiltonian connectedness of line graphs. Discrete Appl. Math. 160(12): 1837-1844.

[^0]: CONTACT Hong-Jian Lai hjlai@math.wvu.edu - Department of Mathematics, West Virginia University, Morgantown, WV 26506, USA.
 In honor of Lowell Beineke's 80th birthday.
 © 2020 The Author(s). Published with license by Taylor \& Francis Group, LLC
 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

