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ABSTRACT

KEYWORDS

A graph is supereulerian if it has a spanning closed trail. Catlin in 1990 raised the problem of
determining the reduced nonsupereulerian graphs with small orders, as such results are of particu-
lar importance in the study of Eulerian subgraphs and Hamiltonian line graphs. We determine all
reduced graphs with order at most 14 and with few vertices of degree 2, extending former results
of Chen and Chen in 2016. In 1985, Bauer proposed the problems of determining best possible
sufficient conditions on minimum degree of a simple graph (or a simple bipartite graph, respect-
ively) G to ensure that its line graph L(G) is Hamiltonian. These problems have been settled by
Catlin and Lai in 1988, respectively. As an application of our main results, we prove the following

Eulerian graphs; collapsible
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for a connected simple graph G on n vertices:

i. If §(G) > %,
k(G) >3

then for sufficiently large n, L(G) is Hamilton-connected if and only if both
and G is not nontrivially contractible to the Wagner graph.

ii. If Gis bipartite and J(G) > 55, then for sufficiently large n, L(G) is Hamilton-connected if and
only if both x(G) > 3 and G is not nontrivially contractible to the Wagner graph.

1. Introduction

We generally follow the notation and terminology of Bondy
and Murty [3], except as otherwise stated. Graphs consid-
ered in this paper are finite and loopless, but multiple edges
are allowed. A cycle on n vertices, denoted by C,, is called
an n-cycle. A graph G is Hamiltonian if it has a spanning
cycle, and is Hamiltonian-connected if for any distinct ver-
tices u and v, G contains a spanning (u, v)-path. As in [3],
k(G) and «'(G) denote connectivity and the edge-connectiv-
ity of a graph G, respectively. If G has a cycle, the girth of
G, denoted by girth(G), is the length of a shortest cycle in
G. For a connected graph G and u,v € V(G), dist(u, v)
denotes the distance between u and v. For a vertex v €
V(G), define Ng(v) ={u€ V(G):vu € E(G)}, Eg(v)=
{e € E(G) : e is incident with v in G}, and dg(v) = |Eg(v)|.
For an integer i > 0, define D;(G) = {v € V(G) : dg(v) =
i} and d;(G) = |Di(G)|. For any v € D;(G), the edge e €
Eg(v) is called a pendant edge of G. Let O(G) be the set of
vertices of odd degree in G. A connected graph G is
Eulerian if O(G) = 0. An Eulerian subgraph H in G is a
spanning Eulerian subgraph if V(H) = V(G). A graph is
supereulerian if it has a spanning Eulerian subgraph, which
is equivalent to the statement that G has a spanning closed
trail. Throughout this paper, S, denotes the family of all
supereulerian graphs on n vertices, and § = U,>1S,, is the

family of all supereulerian graphs. We use P(10) for the
Petersen graph and let P~(10), P(11), P'(12), P*(12), P3(12),
P'(13),P*(13), P'(14), and P*(14) be the graphs shown in
Figure 1, respectively.

Let G be a graph and X C E(G) be an edge subset. The
contraction G/X is the graph obtained from G by identifying
the two ends of each edge in X and then deleting the result-
ing loops. We define G/l = G. If H C G, then we write G/
H for G/E(H). If H is a connected subgraph of G, and if vy
is the vertex in G/H onto which H is contracted, then H is
the preimage of vy, and is denoted by PI(vy). As an edge-
less graph is viewed as trivial, if G is contracted to a graph
G in such a way that every vertex of G' has nontrivial pre-
image in G, we say that G’ is a nontrivial contraction of G.

To study supereulerian graphs, Catlin [5] introduced col-
lapsible graphs in his investigation on graphs H with the
property that for any graph G containing H as a subgraph,
G is supereulerian if and only if the contraction G/H is
supereulerian. A graph G is collapsible if for any subset R C
V(G) with |R| =0 (mod 2), G has a spanning connected
subgraph Gy such that O(Gg) = R. Catlin indicated in [5]
that for any graph G, every vertex of G lies in a unique
maximal collapsible subgraph of G. The reduction of G,
denoted by G/, is obtained from G by contracting all max-
imal collapsible subgraphs of G. A graph is reduced if it is
the reduction of some graph. Catlin [5] proved that a graph
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Figure 1. The graphs P=(10),P(11),P'(12),P%(12),P3(12),P' (13), P*(13),P' (14), P*(14).

G is supereulerian if and only if the reduction of G is super-
eulerian, thereby developing a reduction method in [5] to
study supereulerian graphs.

In order to apply Catlin’s reduction method by contract-
ing collapsible subgraphs, identifying small reduced graphs
is of particular importance [7,14,18]. Catlin first raised the
problem of determining all reduced graphs with small orders
and proposed the following conjecture.

Conjecture 1.1. (Catlin [6]). Any 3-edge-connected simple
graph of order at most 17 is either supereulerian or is con-
tractible to the Petersen graph.

Conjecture 1.1 has several extended versions, as seen in
[6,8,21]. The following theorem shows some progresses
toward Conjecture 1.1. By Catlin’s reduction method, it is
common to reduce the generic study on eulerian subgraphs
into the study of reduced graphs with small orders. Because
of this, results on reduced graph with small orders play
important roles in applications of Catlin’s reduction method,
and have been applied to study eulerian subgraphs and
Hamiltonian line graphs by many authors, as seen in
[5,6,9,10,13,17,19-25,28-31], among others. Theorem 1.2
presents some of the frequently applied such results.

Theorem 1.2. Let G be a connected graph of order n and
with G’ as defined above.

(i) (Chen and Lai [13]) If n<11 and 6(G) >3,
then G, € {Kl,Kz,P(IO)}
(ii) (Chen [11]) If «'(G)>3 and n<1l, then

G € {K;,P(10)}.

(iii) (Chen and Chen [12]) If ¥'(G) >3 and n < 13, then
either G € S or G’ = P(10).

(iv) (Chen and Chen [12]) If ¥'(G) > 3 and n < 14, then
either G € S or G' € {P(10),P'(14)}.

Let s1,52,83,m,1,t be the nonnegative integers with ¢ > 2
and m,l > 1. Let M =2 K; 5 with center a and ends a;, a, g3.
Define Kj 3(s),52,53) to be the graph obtained from M by
adding s; vertices with neighbors {a; a;1,}, where i=
1,2,3(mod 3). Let K, ;(u, ') be a K, ; with u,u' being the
nonadjacent vertices of degree t. Let K} ,(u,u,u") be the
graph obtained from a K ;(u, 4') by adding a new vertex u”
that joins to only u'. Hence u” has degree 1 and u has
degree t in K} (u,u/,u"). Let K (u,u/,u") be the graph
obtained from a K, ;(u,u') by adding a new vertex u” that
joins to a vertex of degree 2 of K ;. Hence " has degree 1
and both u and v’ have degree ¢ in K, /" (u, v/, u"). We shall
use K} , and K, /" for a K} ,(u,u',u") and a Ky /" (u,u/,u"),
respectively. Let S(m, I) be the graph obtained from a
Ky, m(u, u') and K; ;(w, ') by identifying u with w, and con-
necting u'w'; let J(m, 1) denote the graph obtained from a

Ky me1 and a Kj (w,w',w") by identifying w,w" with the
two ends of an edge in K ,41, respectively; let T(m, I)
denote the graph obtained from a K4, and a
K (w,w,w") by identifying w,w” with two vertices of
degree 2 in Kj mi2, respectively. See Figure 2 for examples
of these graphs. Let

EG = {Ki, K3, Ky, 1, K; K (s Ky 3(s,5,8"), S(m, 1), ] (m, 1), T(m, 1), P},

where t,s,5',s", m, | are nonnegative integers.

Theorem 1.3 (Chen and Chen [12]). Let G be a connected
graph of order n and with G' as defined above.

(i) Let 6(G)>2 and dy)(G) <2. If n<6, then G =Kj,
and if n <7, then G' € {K1,K,}.

(ii) If G#K; is reduced, n <7,k'(G) > 2 and d)(G) =3,
then G € {Kz)g,K1)3(1, 1, 1), T(]., 1)}

(iii) If n<9,di(G) =0 and d)(G) <1, then G € {K,
K, Kial}.

(iv) If n < 9,k'(G) > 2 and d,(G) < 2, then G € {K|,K;3}.
Furthermore, if G is Ks-free, G = K;.

W) If n<10,K/(G) >2, and dr(G) <1, then G € {K,
P(10)}.

Theorem 1.4 (Li et al. [20]). Let G be a connected graph of
order n and with G as defined above. If n < 8,d;(G) =0
and dy(G) <2, then G € {Ky,Ky,Ky3}. Furthermore, if
G = K2)3 with Dz(Gl) = {V],Vz,V3} and D3(G/) = {ul,uz},
then PI(vy) is either K4 or Ky minus an edge, and other verti-
ces in G are trivial.

Following Catlin [5], let F(G) be the minimum number
of additional edges that must be added to a graph G to
result in a graph with two edge-disjoint spanning trees.

Theorem 1.5 (Chen and Lai [13]). Let G be a connected
reduced graph with |V(G)| <11 and F(G) <3. Then
Ge &G In particular, if di(G)=0 and dy(G) <2,
then G € {K;,P(10)}.

Theorem 1.6 (Chen [10,13]). Let G be a connected simple graph
of order n. Let G’ be the reduction of G. If n < 13 and 6(G) > 3,
then either G € Sy, or G e {Kl,Kz,Kl)z,Kl)g,,P(lO)}.

To present our results in this paper, more graphs need to
be introduced. Let T (1,1),T,(1,1),Kj,,P*(11),P*(12),
and P°(12) be the graphs as shown in Figure 3. We use
K{5(1,1,1), Cf,(P(10))",(K3;)" to denote the graphs
obtained from Kj 3(1,1,1),Cy, P7(10),K3 5, respectively, by
attaching a pendant edge to a vertex of degree two, use
(P(10))" to denote the graph obtained from P(10) by add-
ing a pendant edge, and use K;; to denote the graph
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Figure 3. Some graphs used in Theorem 1.7.

obtained from Kj ; by adding a pendant edge to a vertex of
degree one. Denote K;'3 be the graph obtained from K; 3 by
adding two pendant edges to two vertices of degree two,
respectively. Define Fu ={K., K, K1 »,
K33, P(10), P(11)}, Fio = {K; 3}, Fis = {Ki3, P, K5 §, Ky 3
(1,1,1), P~(10), P'(13), P>(13)}, and Fi4 ={K{;, C],
(K35)'  Kis(LLD, T (L1), T (L), (P(10)7
(P(10))*, P'(14), P*(14)}. For application purposes, relaxa-
tions of the above Theorems are often needed. This moti-
vates our current research.

Theorem 1.7. Let G’ be the reduction of a connected simple
graph G of order n. If n <11,d;(G) =0 and d,(G) <2,
then G' € F1, U{Py,Co, K33, K2 3, K1,5(1,1,1), T(L,1), T(1,2),
P~(10), Ki5(1,1,1),T{(1,1),T; (1,1)}.
d,(G) <1, then G' € Fy;.

Furthermore,  if

Theorem 1.8. Let G' be the reduction of a connected simple
graph G of order n. Suppose that d\(G) =0 and d,(G) < 1.
Then the following statements hold:

(i) If n<12, then G €FUF,U{P'(12),P*(12),P*(12)}.
Therefore, either GES1; or G € F11UF .

(ii) If n<13, then either G€ S, US; or G € FpU
FrU Fis.

(iii) Ifi’l < 14, then either G € 81, U 813 U Sy, or G e Fnuu
FrU FizUFu.

The paper is organized as follows: In Section 2, we present
the needed tools to facilitate our proofs for the main results. In
Section 3, we will prove Theorems 1.7 and 1.8. Applications of
Theorems 1.7 and 1.8 will be given in Section 4.

2. Collapsible graphs

We will present basic properties of collapsible graphs in this
section. The next theorem summarizes some basic properties
needed in our arguments in the proofs.

23uu u’")
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Theorem 2.1. Let G be a connected graph, H a collapsible
subgraph of G, and G' the reduction graph of G. Then each
of the following holds:

(i) (Caltin [5]) G is collapsible if and only if G/H is collaps-
ible. In particular, G is collapsible if and only if the reduc-
tion G' =

(Caltin [5]) G is reduced if and only if G has no nontri-

vial collapsible subgraphs.

(Caltin [5]) G is simple, girth(G') > 4 and 6(G’) < 3.

(Caltin [5]) G is supereulerian if and only if G' is

supereulerian.

(Caltin [5]) K; is the smallest nontrivial collapsible sim-

ple graph and the nontrivial reduced graphs with at

most 5 vertices are either a tree, a 4-cycle, Ky 3, or Ky 3

minus an edge.

(ii)

(iii)
(iv)

)

(vi) (Caltin, Han, and Lai [9]) If G is connected and if
F(G) <2, then G € {Ky, Kb} U{Ky, : t > 1}.

(vii) (Caltin, Han, and Lai [9]) If G is reduced,
then F(G) =2|V(G)| — |E(G)| — 2 = %(3d1(G) +
ZdZ(G) +ds(G) — Zi24(i B 4)di(G)) -2

(viii) If G is a reduced connected graph with n <8 and

di(G) =0, then either '(G) > 2, or G is the graph
obtained from two 4-cycles C; and C, by adding an
edge xx', where x € V(Cy) and X' € V(C}).

Proof. We only present a proof of (viii) and refer the reader
to the references cited for others. Let e be a cut edge of G and
let H, and H, be the components of G — e. As d;(G) = 0, for
i=1, 2, H; can not be a tree. By Theorem 2.1(v), H,=H,=C,
Thus, G is the graph obtained from two 4-cycles C, and C) by
adding an edge xx’, where x € V(C,) and ¥’ € V(C)). O

Definition 2.2. Let H = C4 = v;v,v3v4V; be a 4-cycle, or let
H = I'g denote the graph obtained from a 8-cycle avdxbwcua
by adding two edges cd and ab. Consider a partition n =
(Vi, Va) = ({v1,v3}, {va,va}) of V(Cy), or a partition n =
(Vi,Va) = ({a, b, ¢, d}, {x,w,u,v}) of V(I's). Following [4], if
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H is a subgraph of a graph G, we define G/ to be the graph
obtained from G — E(H) by identifying all vertices of V; to
form a single vertex v/, by identifying all vertices of V, to form
a single vertex v/, and by adding an edge e, = vv".

Theorem 2.3 (Caltin [4]). Let H = C4 = viv,v3v4v; be a 4-
cycle in G, or let H=1I's be a subgraph of G obtained from
a 8-cycle avdxbwcua by adding two edges cd and ab. Let G/n
be defined as in Definition 2.2. Then the following hold:

(i) If G/7 is collapsible, then G is collapsible.

(ii) If G/ has a spanning eulerian subgraph, then G has a
spanning eulerian subgraph.

(iii) If G is a reduced graph with a 4-cycle C, then
F(G/n) < F(G) — 1.

Lemma 2.4. P*(11), P*(12), P5(12) are collapsible.

Proof. By definition, each of P?(11), P*(12), and P*(12) con-
tains a subgraph isomorphic to I's. Let G/n be the graph
defined as in Definition 2.2. Then G/n contains K; as a sub-
graph. As cycles of length at most 3 are collapsible, it is a
routine matter to verify that contracting all cycles of length
at most 3 in G/= results in a collapsible graph. By Theorem
2.3(i), P*(11), P*(12), P>(12) are collapsible. O

Lemma 2.5. Let G be a connected reduced graph with
n<l1l. If di(G)=0 and dr(G)<1, then Ge{K,,
P(10), P(11)}.

Proof. By Theorem 1.5, if F(G) < 3, then G € {K;,P(10)},
and so we assume that F(G) > 4. By Theorem 2.1(vii),
d;(G) > 10. As n < 11, we have n=11, d(G) = 1,d5(G) =
10, and V(G) = D,(G) U D3(G). Let D5(G) = {y}.

Assume that G has a cut edge e. Let H; and H, be the compo-
nents of G — e. As d1(G) =0 and d,(G) =1, by Theorem
2.1(v), we have |V(H;)| ¢ {1,2,3,4} for i=1, 2. Thus
|V(H;)| € {5,6}. Since d»(G) =1, we may assume that y €
V(H,). Then dy(H,) = 0 and d,(H;) < 1. By Theorem 1.3(iii),
H,e{K,, K, Ki,}, a contradiction. Hence, G must be
2-edge-connected.

Next, we claim that girth(G) > 5. Otherwise, let C; =
V1Vav3v4v; be a 4-cycle of G. Let w = ({v1,v3}, {v2,v4}) be a
partition of V(Cy). Form the graph G/n with the new edge
e, defined as in Definition 2.2. Then |V(G/n)| =11 -2 =
9. As di(G)=0 and dr(G)=1, we have |D,(G)N
{vi,vo,v3, 1} <1, di(G/m) =0, and d,(G/n) <1. By
Theorems 1.3(iii) and 2.3(i), G/7 is not 2-edge-connected.
As G is 2-edge-connected, e, is the cut edge of G/7, and so
{v1,v2,v3,v4} is a vertex-cut of G. Let L, and L, be the com-
ponents of G — {vi,v5,vs3,v4} with |V(L;)| <|V(Ly)| and
Ng(vi) N V(L) = Ng(vs) N V(L) =0 and  Ng(v) N
V(L;) = Ng(va) N V(L;) =0 (see Figure 4). As n=11,
[V(Ly)| € {1,2,3}. If |V(L1)| € {2,3}, then L, is either P,
or P5. As d,(G) =1, the number of edges between V(L;)
and {v;,vs} is at least 3. Thus, either dg(v;) >4 or
dg(vs) >4, contrary the fact that V(G) = D,(G) U D3(G).
Thus, V(L;)={y} and yvi,yvs € E(G). Let L;=

V3 (%]
Figure 4. An illustration for the proof of Lemma 2.5.

G — {y,v1,v2,v3,v4}. Then |V(L;)| = 6, and either d;(L;) =
1 and d3(L3) =5, or dz(Lg,) =2 and d3(L3) =4. Thus,
F(Ls3) < 2. As L; is reduced, by Theorem 2.1(vi), L; = K; 4,
a contradiction. Thus, girth(G) > 5.

As V(G) = Dy(G) UD;(G), there is a vertex w € D3(G)
such that the distance between y and w is 3. For an integer
i>0, define T; = {x € V(G) : dist(x,w) = i}. Then |T,| =
L|T1| =3,|T2] =6,|T3| =1 and y € T5. Let H be the sub-
graph in G induced by T,UTs;. Then H is a 7-cycle
aray - -aza;. Let Ty ={uj,up,uz}. Then for i=1, 2, 3,
INg(w;) N V(H)| = 2. As girth(G) > 5, without loss of gen-
erality, we assume that uay, u;a4 € E(G). By symmetry, we
assume that a; #y and ayu, € E(G). As girth(G) >
5,uya;3 € E(G). Thus, usa, € E(G) and |Ng(u3) N {as,a6}| =
1. Therefore, G = P(11).

O

Lemma 2.6. Let G be a connected simple graph with n < 13
and let G be the reduction of G. If 6(G) >3,
then G' € {Ki,K, Ky, Ky,3, P(10), P'(12), P2(12), P3(12)}.

Proof. Let w' =|V(G)|. As 6(G) >3, by Theorem 2.1(v),
we have 132 37,1, o) IPIY)|+ 3, [PIY)| > 4 (G')+
4d, (G). Thus, d;(G')+dr(G) <3.

Assume that G has a cut edge e, and L; and L, are the
components of G —e. As 6(G) >3, we have |V(L)| &
{1,2,3} for i=1, 2. Thus, |V(L;)| € {4,5,...,9}. As dy(L;) =
0 and d,(L;) < 1, by Theorem 1.3(iii), the reduction of L; is
in {Ki,Ky,Ky,»}. Thus, G € {K;, K Ky3}. Next we
assume that G is 2-edge-connected. Then d;(G') =0 and
d,(G) <3, and so #' <13 —3d,(G'). By Theorem 1.3(ii),
(iv), (v), we have d,(G') =0. Thus, 6(G) > 3. If n' # 12,
then, by Theorem 1.6, we have G = P(10). Next we assume
that n' = 12. Then G = G'.

Case 1. girth(G) > 5.

Assume that w € V(G) such that dg(w) = A(G) > 4. For
an integer i > 0, let T; = {x € V(G) : dist(x,w) = i}. Then
|To| = 1,|T)| = 4,|T,| > 8, and so n > 13, a contradiction.
So G is cubic. By Theorem 1.6, G is Hamiltonian. Let
Vov1 - - - V11 be a Hamiltonian cycle of G.

If girth(G) > 7, then Ng(vo) = {v1,v11,v6} and Ng(v;) =
{vo,v2,v;}. This results in a 4-cycle vov;v;v6vo, a contradic-
tion. If girth(G) = 6, then vyve € E(G) and so Ng(vo) N
{vs,v;} # 0. Without loss of generality, we assume that
vovs € E(G). Then Ng(vi1) = {vo,v2,vs}. Thus, Ng(v;) =
{v1,v3}, a contradiction, and so girth(G) = 5. Without loss
of generality, we assume that vovs € E(G). Then Ng(vs) C
{v4, Vs, v, v10}. Similarly, Ng(v11) C {vo, v10, V6 ¥7}-
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Figure 5. lllustrations for the proof of Lemma 2.6.

Case 1.1. Either vsviy € E(G) or vgv1; € E(G).

We assume that vsvyg € E(G). As Ng(vi1) C {vo, V10,
vs,v7} and girth(G) > 5, we have vy;v; € E(G). Then Ng
(v2) N {vs, v} =0 (otherwise, Ng(v3) = {v2, ¥4}, a contra-
diction). So v,vs € E(G). Therefore, we have either v,vo,v3vg
€ E(G), or vivs,v3v9 € E(G) (Graphs A and B in Figure 5).
In the former case, G=P'(12), and in the Ilatter
case, G = P*(12).

Case 1.2. vsvig, vsv11 € E(G).

Then wvsvo,v11v; € E(G). Thus, we have either wv,vs,
v3v10, Vive € E(G), or vyvig, v3vs, v1vs € E(G) (Graphs C and
D in Figure 5, respectively). In the former case, G = P*(12),
and in the latter case, G = P'(12).

Case 2. girth(G) = 4.

Let Cy = viv,v3v4v; be a 4-cycle in G. Let H = G/n be
defined as in Definition 2.2. Then 6(H) >3 and |V(H)| =
10. Assume that H is not 2-edge-connected. Then e, is a cut
edge of H. Thus, {vi,v2,v3,v4} is the vertex-cut of G. Let L,
and L, be the components of G — {vi,v,,v3,v4} such that
Ng(x) NV (L) =0 for x € {v;,v3}, and let Q;(i=1,2) be
the subgraph induced by V(L;) U {vi,v2,v3,v4}. As 6(G) >
3, by Theorem 1.4, |V(Q;)| > 9. Thus, |V(L;)| > 5 and so
|V(G)| > 5+ 544 = 14, a contradiction. Hence «'(H) > 2.
By Theorem 1.6, H = P(10). Thus, G = P*(12). O

Lemma 2.7. Let G be a 2-edge-connected reduced graph
with n=13. If d\(G)=0,d,(G) =1,d5(G) =12, and
girth(G) > 5, then G is supereulerian.

Proof.  Let D,(G) ={v}. As girth(G) >5 and V(G)=
D,(G) UD;(G), we have |{x € V(G) :dist(x,v) <2}| =7.
Thus, there exists a vertex w such that the distance between
w and v is at least three. For an integer i > 0, let T; = {x €
V(G) : dist(x,w) =i}. Then |To|=1,|Ti| =3,|T2| =6,
|T5UTy| =3, and v € T3 U Ty. Let Ty ={uy, up, u3} and let
H be the subgraph in G induced by T, U T;U T,. Then
|V(H)| =9 with d3(H) =2 and dy(H) =7. As girth(G) >
5, H is a 9-cycle Cy = v1v; - - - v9v; by adding a chord v;vs.
Thus, for i=1, 2, 3, [Ng(1;) N {v2, V3, V4> Ve, ..., Vo }| = 2.

First, we claim that v € {v,,v3,v4}. Otherwise, we may
assume that u;vy,uyvs, uzvy € E(G). If usve € E(G), then
U3V Vg V7V Vs V1 Vo Wil V3Vaus is @ Hamiltonian cycle of G, a
contradiction. So usve € E(G). Similarly, u;vs € E(G). As
girth(G) > 5, usvs, 1v9 € E(G). Thus, Ng(uz) N{ve, vo} #
(). Without loss of generality, we assume that u,ve € E(G).
Then vou,vs vauswu;vav1vsveV;vsve is a Hamiltonian cycle, a
contradiction. So v € {v,, v3, V4 }.
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As girth(G) > 5, we may assume that wusvs, uyvy, ujvg €
E(G). As Ng(vo) N{uy, up, uz} # 0, usv9 € E(G). If ujvy €
E(G), then wvqu vgvouzwupv7vevsvivavavy is a Hamiltonian
cycle of G, a contradiction. So u;vy4 € E(G). Similarly, u,v, &
E(G). If v =wv;, then uvy, upvy € E(G). Thus, wu vyvsvy
Uy VyVg VeV Vsvesw is a Hamiltonian cycle of G, a contradic-
tion. So v € {vy,v4}. Without loss of generality, we assume
that v = v,. As vauy; & E(G), we have vqu, € E(G). Thus,
v3u; € E(G). SO viVaViVoVgVrlyVyVsVeusWiivy IS a
Hamiltonian cycle of G, a contradiction. 0

Lemma 2.8. Let G be a 2-edge-connected reduced graph with
n=14. If d\(G) =0,d,(G) = 1,d5(G) = 12,d4(G) = 1, and
girth(G) > 5, then G is supereulerian.

Proof. By contradiction, we assume that G is not supereu-
lerian. Let D,(G) = {v} and D4(G) = {w}. For an integer
i>0, define T;={x€ V(G):dist(x,w)=i}. Then |To|=1
and |T;| =4. Let Ty = {uy,uy,u3,us} and H be the subgraph
in G induced by V(G) — (ToUT}). Then |V(H)|=9.

Claim 1. vw € E(G).

Assume that vw & E(G). Then |T,|=38,|T5|=1,ve€
T, UTs, |Ng(u;) N V(H)| =2 for i=1,2,3,4, and |[Ng(x) N
T,| =1 for each x € T).

If veTs then dy(x)=2 for each x€ V(H). As
girth(G) > 5, H = C,. Assume that Cy =aa;---asa,
where a9 =v. As girth(G) > 5, we may assume that
u1ay, wpay, uzas € E(G). If ujay € E(G), then asuy,aguy €
E(G). Thus, wusasasa;agdea)a,uywizazdsuw is a spanning
eulerian subgraph of G, a contradiction. So u;as & E(G).
Therefore, ugas € E(G) and  wuya,a3uswisasasasasag
agaruyw is a spanning Eulerian subgraph of G, a contradic-
tion. So v € T5.

Then d;(H) = 1,dy(H) = 7,d;(H) = 1. As girth(G) > 5,
H is connected. Thus, H is a cycle Cy, = aya; - - - axa; by attach-
ing a path axaxi;---v9, where ag =v and ax € T5. As
girth(G) > 5,k € {5,6,7,8}. If k=38, as girth(G) > 5, we
assume that ujay, uya;, usa; € E(G). As G is not supereuler-
ian, Ng(us) N{az, a6} =0. Thus, Ng(us) C {w,as,a4,as}.
This implies that girth(G) < 4, a contradiction. If k=7, then
we assume that agug, agus € E(G). Thus, (Ng(a;) U Ng(as)) N
{ur,up} # 0. Without loss of generality, we assume that
ura, € E(G). As G is not supereulerian, u;a; ¢ E(G). Thus,
uras, uas € E(G). As girth(G) > 5, Ng(uz) N{as, as} # 0.
This would result in a spanning subgraph of G, a contradic-
tion. If k=6, by symmetry, we assume that u,ay, usas, usde €
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E(G). Thus, Ng(u1) N{ay,as} # 0. Without loss of generality,
we assume that ua; € E(G). Thus,
WU a1 20304050607 Uy Wiz dgdgliaWw is a spanning eulerian sub-
graph of G, a contradiction. So k=5. As girth(G) > 5, we
assume that ujay, uyay, usas € E(G). Then uyay € E(G) (other-
wise, Wu3d3dsds5a6a7a3d9Us Wil dad1 U1 W is @ spanning eulerian
subgraph of G, a contradiction). Thus, usa4 € E(G). Notice
that |Ng(ag) N {u1,uz,us}| = 1. If agus € E(G), then wuyasas
AU WU a1 asdedzdgdotisw is a spanning eulerian subgraph of
G; if agu, € E(G), then wuyasagasasasasusw uia;a,azusw is a
spanning eulerian subgraph of G; if agu; € E(G), then
Wlaasasuswily d,Aa1d506a;dgdety W is a spanning eulerian sub-
graph of G. We finish the proof of Claim 1.

By Claim 1, vw € E(G). Then |T;| =7 and |T3|=2.
Thus, dy(H) =7 and d;(H) =2. As girth(G) >5, H is
2-connected. Thus, H is the 9-cycle Cy = aja,---asa; by
adding the chord ajas. Since girth(G) > 5, we assume that
U1ay, Upas, usdy € E(G). Then Ng(uy) N {as, a0} = (. Thus,
Ng(ug) N{ay,as} # 0. Without loss of generality, we assume
that uya; € E(G). Then uy = v. Thus, wyas & E(G) (other-
wise, Wi,dedsa)dedsd; UsWUlidadsdsUsWw is @ spanning eulerian
subgraph of G, a contradiction), Similarly, u,as ¢ E(G) Thus,
upa9 € E(G). As girth(G) > 5,usag € E(G) and so ujae €
E(G). Hence wusaga;uswuagasasaszaadoti,w is a spanning
eulerian subgraph of G, a contradiction. O

Lemma 2.9. Let G be a 2-edge-connected reduced graph with
n=14. If d\(G)=0,d,(G)=1, A(G)=4, and girth(G)>5,
then G is supereulerian.

Proof. By Theorem 2.1(vi), F(G) > 3. By Theorem 2.1(vii),
2d,(G) + d3(G) > 10. Thus, d3(G) > 8. By Lemma 2.8, it
suffices to consider the cases when (d,(G),ds(G),ds(G)) €
{(1,8,5),(1,10,3)}. Let D,(G) = {v}.

Claim 1. If d,(G) = 1,d5(G) = 10 and d4(G) = 3, then G is
supereulerian.

By Lemma 2.8, Ds(G) is independant. As d4(G) =3,
there is a vertex w € Dy(G) such that v € Ng(w). Choose
such the vertex w such that the distance between w and v is
longest. Thus for any x € Ng(w),x € D3(G). For an integer
i>0, define T; = {x € V(G) : dist(x,w) = i}. Then |Ty| =
1,‘T1|:4,|T2|:8,|T3|:1, and VETzUTg. Let T1:
{ur,uz,u3,us}, T3 = {z} and let H be the subgraph in G
induced by T, U Ts. Then dg(2) € {2,3,4}.

If dg(z) =4, then v € T,. Thus, d;(H) = 1,d2(G) =6,
d;(H) =1 and dy(H) =1. As girth(G) > 5, H is formed
from the 8-cycle aja; - - - aga; by adding the chord a;as and
the pendant edge a;v € E(G), where a; = x € D4(G). As
Dy(G) is independant, Ng(as) N {uy,us, us,us} = 0. Since
the number of edges between {uy,u,, us, us} and {v,a,as,
a4,d6,a7,a3} is 8 and v € D,(G), there is a vertex y €
{ay, as, as, as, az,ag} such that |Ng(y) N {uy, ua, us, us}| > 2.
This results in a 4-cycle in G, a contradiction. If dg(z) = 2,
then dy(H) =7 and ds(H) =2. As girth(G) >5, H is a
9-cycle aja,---asa; by adding a chord, say ajas. As
girth(G) > 5, |Ng(y) N {u1,up,uz,us}| <1 for ye{a,a,...,
as}. As Dy(G)=3,a;,a5 € D4(G), contrary to the fact that

D4(G) is independant. Thus, dg(z)=3 and the distance
between w and v is 2.

Therefore, di(H) =1,d,(H) =5 and d;(H)=3. As
girth(G) > 5, H is formed from the 8-cycle aja,---aga; by
adding the chord a,as and the pendant edge va;, € E(G), where
ip & {1,5}. By symmetry, we assume that va;, € E(G), where
ip € {2,3}. As D4(G) is independant, a;, € D4s(G) and
[{a1,as} N D4(G)| = 1. Without loss of generality, we assume
that as € D4(G). Thus, a; = z, and the distance between a5 and
vis 3. This contradicts the choose of w. Hence Claim 1 follows.

By Claim 1, we assume that d,(G) =1,d3(G) =8 and
dy(G) = 5. By Claim 1, D4(G) is independant. As dy(G) = 5,
choose w € Dy4(G) such that v & Ng(w). Thus, for any x €
Ng(w),x € D3(G). For an integer i >0, define T; = {u €
V(G) : dist(u,w) =i}. Then |To|=1,|Ti|=4,|T>| =8,
T3] =1, and v € T, UT;. Let Ty = {u1, up, us,us}, and let
T, = {x1,%3,...x3} such that xp;_1,x € Ng(u;) for i=
1,2,3,4. Let T; = {x}.

We claim that x € D4(G). Otherwise, as girth(G) > 5, we
may assume that Ng(x) = {x1,x3,%5,x7}. Then |{x2,x4,
X6, Xs } N Dy(G)| = 3. Without loss of generality, we assume
that x4,x6,%3 € Ds(G). Thus, |[{x1,%} N Ng(xs)] =1 and
Xs,%7 € Ng(x4). It implies that xsxsxx;xs is a 4-cycle, a
contradiction. So x € D,(G)UD3(G). Thus, |T, ND4(G)| =4.

Assume that x; € D4(G) such that xx; & E(G). As
girth(G) > 5, we assume that Ng(x;) = {u1, x3, x5, x7}. Then
[{x2, %4, %6, %3} N D4(G)| =3 and Ng(xz) N {x1,%3,%5,%7} =
(0. Thus, Ng(x2) C {u1,%, x4, %6, X3 }. As Dg(G) is independ-
ant, x, & D4(G). Thus, x4,x %3 € D4(G). Therefore,
Ng(x4) C {x, us, %3, x5,%7}. Notice that x4xsx;x7x4 would be
a 4-cycle if x4xs,x4x7 € E(G). We have xx4,xx4 € E(G).
Similarly, xxe,x,% € E(G). This results in a 4-cycle
X2X4XXcX2, a contradiction. 0

;ewg:

Figure 6. An illustration for Claim 8 in the proof of Theorem 1.8.

Figure 7. An illustration for Claim 8 in the proof of Theorem 1.8.



Figure 8. An illustration for Claim 8 in the proof of Theorem 1.8.

3. Proof of Theorems 1.7 and 1.8

In this section, we will justify both Theorems 1.7 and 1.8. Some of
the parts (or graphs) in Figures 6-8 are adapted from [12].

Proof of Theorem 1.7. Let G' be the reduction of G. Assume that
the conclusion of Theorem 1.7 is false, and in particular, G # K.

(1)
By assumption, it is known that

n<11,d,(G) =0, and d,(G) < 2. 2)

By Theorem 2.1(v), we have
|UVED1(G')PIG(V)| Z 4d1(G,), and if dz(Gl) Z 2, then |UVED2(G’)
PIc(v)| > 4(dy(G) —2) + 2.

3)
By (2) and (3), we must have d,(G') <2 and d,(G) +
d,(G') < 4. In particular, if d;(G) + d,(G) =4, then ne
{10,11},|V(G)| =4 with dy(G) =2 and G € {Py,Cy},
contrary to (1). Therefore, we assume that d;(G)+
d,(G') < 3. Let m' = |[E(G)| and v’ = |[V(G')].
Claim 1. d,(G') = 0.

Otherwise, d,(G) € {1,2}. If d,(G') =2, then n’ < 11—
8+2=5 and dy(G') <3—-2=1. By Theorem 2.1(vii),
F(G') < 3. By Theorem 1.5, G’ € {K;,Kj,»}, contrary to (1).
If di(G)=1, then d)(G)<3—-1=2. Assume that
Di(G) ={a}. Let ayay---ax(k >2) be a path in G’ such
that dg(a;) =2(i=2,...,k—1) and dg(ax) >3 and H =
G —{ay,...ar1}. Then di(H)=0,d(H)<3 and
|V(H)| <11 — 4 =7, implying that x'(H) > 2. By Theorem
1.3(ii) and (iv), H € {K;,3,K},5(1,1,1),T(1,1)} and so G €
{Ky 5 K 5(L1,1), T (1,1), T (L)} If G e {K{5(1,1,1),
Ty (1,1), Ty (1,1)}, then n=11 and d,(G) = 2; and if G' =
K35, then d,(G) =2, contrary to (1) in either case. Hence,
Claim 1 must hold.

Claim 2. d,(G') =2, and D,(G') is independant.

Assume that d,(G') =3. Then n' <11 —-6+3=38. By
Claim 1 and Theorem 2.1(viii), G’ is 2-edge connected. If
n' <7, Theorem 1.3(ii)) G’ € {K33,K1,5(1,1,1),T(1,1)} and
when G’ € {K;,5(1,1,1), T(1,1)},d»(G) = 2, contrary to (1).
If o’ =8, then, by Theorem 2.1(vii), m’ > 11 and F(G') <
3. By Theorem 1.5, G' = T(1,2) and d,(G) = 2, contrary to
(1). Hence d,(G') < 2. By Lemma 2.5, d,(G') = 2.

Let Dy(G') = {a1,a2}. If aya, € E(G'), then setting Ly =
G — {aj,a,}, we have |V(Ly)| <9. As dr(G') =2, we have
di(Ly) =0 and d,(L4) < 2. By Theorem 1.4, |V(Ls)| = 9. By
Theorem 1.3(iv), Ly has a cut edge e. Assume that Y; and
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Y, are components of Ly —e with |V(Y,)| < |V(Y2)|. As
[V(Ly)| = 9,|V(Y1)| € {1,2,3,4}. Since G’ is reduced, Y; €
{K1,K2,K1,2, K13, Py, Cs}. For each of these four cases, we
have either d;(G') # 0 or d,(G') > 3, a contradiction occur-
ring in any case. Hence D,(G') must be independant. This
proves Claim 2.

Claim 3. G is 2-edge-connected.

If G’ has a cut edge e, then we assume that H; and H,
are components of G —e. Notice that G' is reduced.
For i=1, 2, by Theorem 2.1(v) and by Claims 1 and 2,
|V(Hl)| ¢ {1, 2,3, 4}, and if |V(H,)| =5, then H,' = K2’3. By
Claim 2, we assume that |V(H;)| =5 and |V(H;)| = 6. As
Hl = K2)3 and dz(Gl) = 2, we have d](Hz) = 0, dz(Hz) S 1.
By Theorem 1.3(iii), H, € {Ki, K, Kj,»}, contrary to Claim
1. This justifies Claim 3.

By Theorem 1.3(iv), n’ € {10,11}. Thus, G is reduced. By
Theorem 1.5, F(G') > 4. Thus, d;(G') =8 if n' =10, or
d;(G) =8 and dy(G') =1if n' =11.

Claim 4. girth(G') = 4.

Assume that girth(G') > 5. First of all, we assume that
n' = 11. Let Dy(G') = {w;}. For an integer i > 0, define
T;={ue V(G) : dist(u,w,) =i}. Then |To|=1,|Ti|=
4,|T;| =6, and D,(G') C T;. Let L, be the subgraph in G
induced by T,. Then L; is a 6-cycle ajay - --aga;. Let T =
{u1, Uy, us, ug}, where uy,uy € D,(G) and wuy,us3 € D3(G).
Then for i=2, 3, |Ng(u;)NT,| =2, and for i=1, 4,
INg (u;) N Tr| = 1. By symmetry and girth(G') > 5, we may
assume that wya;,uya4 € E(G'), and usa,, usas € E(G'). We
also assume that wu;as, usas € E(G'). So G' = P*(11). By
Lemma 2.4, G is collapsible, a contradiction. Next we
assume that n’ = 10 and so V(G') = D,(G') U D;5(G).

As d3(G') =8, there is a vertex w, € D;(G') such that
Ng (w2) ND,(G') =0. Define T;={u€ V(G):dist(u,w;)=i}.
Then |T0| = 1,|T1‘ :3,|T2| :6, and Dz(Gl) g T2. Let Tl =
{u1,uz,u3} and let L, be the subgraph in G’ induced by T.
Then L, is a 6-path a;a,asasasas. Notice that for i=1, 2, 3,
INg (u;)NT,|=2. As girth(G')>5, by symmetry, we may
assume  that  wjap,ujas € E(G),upa1,upa4 € E(G) and
uzas,uzde € E(G). Then G'=P~(10) and d,(G)=2, contrary
to (1). This proves Claim 4.

Let Cy=vvvsvqv; be a 4-cycle in G'. Let n=
(V1, V2) = ({v1,v3},{v2,v4}) be a partition of V(C4). Form
the graph G’/ with the new edge e, as in Definition 2.2.
Then |V(G'/7)| € {8,9}.

Claim 5. G'/7 is not 2-edge-connected.

Assume that G'/n is 2-edge-connected. As d;(G') =0

and d,(G') =2, we have d,(G'/n) < 2. If G'/n is Ks-free,
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then by Theorem 1.3(iv), the reduction of G'/x is Kj, Thus,
G =K, contrary to (1). Hence G'/n must contains a K.
Let uvxu be a K; in G'/n. As G is reduced, either x €
{vi,vs} or x €& {v,vs}. Without loss of generality, we
assume that x € {v;,v3}, and uv;,vv; € E(G’). By Claim 2,
either dg (1) > 3 or dg(v) > 3. Without loss of generality,
we assume that dg(u) > 3. Let H be the graph obtained
from G'/n by contracting uvxu and let z be the vertex on
which uvxu is contracted. Then |V(H)| € {6,7} and H is 2-
edge-connected. If d,(H) < 2, then by Theorem 1.3(i), H is
collapsible, forcing that G’ is collapsible, a contradiction.
Thus, dy(H) > 3. As dy(G'/n) < 2,dy(z) =2. It implies
that dg /z(v) = 2, and so d,(G'/m) = 3, contrary to the fact
that d,(G'/n) < 2. Claim 5 follows.

Claim 6. dg (v;) + dg(v3) > 5 and dg (v2) + de(v4) > 5.

Assume that dg (v1) + dg(v3) < 4. Then vy, vs € D) (G).
Thus, dg(v2) > 3 and dg/(v4) > 3. If dg(v2) =4, then we
set Q1 = G — {v1,v3,v4}. Thus, Q, is connected, |V(Q)| €
{7,8},d1(Q1) =0 and d,(Q;) <2. By Theorem 1.4, Q, €
{K1,K3, K53}, a contradiction. So dg (v2) = dg(v4) = 3. Let
Q=G —{v1,v3,v2,v4}. Then Q, is connected, |V(Q,)| €
{6,7}, d1(Q2) =0 and d,(Q,) < 2. By Theorem 14, Q, €
{K1,K3, K53}, a contradiction. Claim 6 is justified.

As G' is 2-edge-connected, by Claims 5 and 6, {vi,
v2,V3,V4} is a vertex-cut of G'. Let L, and L, be the compo-
nents of G' — {vi,v2,vs,v4} such that Ng(v;) N V(L) =
Ng(v3) N V(L) =0 and  Ng(v2) N V(L)) = Ng(vs) N
V(L;) = (0. Also we assume that |V(L;)| < |V(L,)|. As #' €
{10,11},|V(Ly)| € {1,2,3}. By Claims 2 and 3, |V(L;)| # 3.
If |V(L;)] =2, as G’ has no triangles, we have D,(G') =
V(L,), contrary to Claim 2. So |V(L;)| = 1.

Let V(L) = {v} Then wv,vvs € E(G). If dg(v2) =4,
then we set Q3 = G' — {v,v1,v3,v4}. Thus, Qs is connected,
[V(Qs] € {6,7},d1(Q3) =0 and d,(Qs;) <2. By Theorem
14, Qs € {K|,K3,Ky3}, a contradiction. Hence dg(v2) =
do(vs) =3. Let Q=G —{v,vi,v3,v5,v4}. Then Q, is
connected, |V(Q4)| € {5,6},d1(Qq) = 0 and d,(Q4) < 2. By
Theorem 1.4, Q4 = K; 3. Therefore, n’ = 10 and G = K? 23 @
contradiction. 0

Proof of Theorem 1.8. Let G' be the reduction of G. By
Theorem 1.7, if n <11, then G’ € F;,. Hence we assume
that »n € {12,13,14}. Arguing by contradiction to prove
Theorem 1.8, we assume that

G' # K;,and none of (i), (ii), and(iii)holds. (4)
By assumption, it is known that
di(G) =0, and 4,(G) < 1. (5)
By Theorem 2.1(v), we have
|Uvep, (@)Plg(v)| > 4d,(G'), and if dy(G') > 1, then |Uyep, g
PIg(v)| > 4(d2(G') — 1) + 1.
(6)

By (5) and (6), we must have d,(G') <3 and d,(G) +
d(G) < 5. Let ' = |V(G)].
Claim 1. d,(G') + d»(G') < 3.

Otherwise, d;(G') + d»(G') = 4. Thus, (d;(G),dr(G)) €
{(3,1),(2,2),(1,3),(0,4)}. If d1(G)=3 and &h(G)=1,
then n' =5, and so G' = K5 and n=14; if d;(G') =2 and
d,(G') =2, then n' =4,ne{13,14}, and G =Py if
d(G)=1 and d)(G)=3, then n'=5G =C; and
n=14; if d,(G') =0 and d,(G') =4, then n € {13,14} and
G = C4, and so G € 813 U Sy, contrary to (4).

Claim 2. 4,(G") = 0.

Otherwise, d;(G') € {1,2,3}. Assume that d;(G') = 3. By
Claim 1, d»(G) =0. Thus, ' =4,n € {13,14} and G =
K3, contrary to (4).

Assume that d,(G) =2 and D;(G) = {a;, b1} with
N(;/(al) =ay and NG/(bl) = bz. By Claim 1, dz(G,) <1. If
a, = b, and dg(a,) =2, then G =K;, and n<14; if

a,=b, and dg(ay) >3, then |V(G)—{ab} <
14—8:6,d1(G’—{a1,b1}) S 1 and dl(G’—{al,bl})—l—
d,(G' — {a1,b1}) < 2. By Theorem 1.7, d,(G' — {a1,b,}) =

1. As the number of odd degree vertices in a graph is even,
by Theorem 2.1(vii), F(G —{a;,b;}) <2. Thus, G —
{a1,b:} € {Ks,Ky,:},t € {1,2,3,4}, contrary to Claim 1 and
the hypothesis that d;(G') =2. So a, #b, and either
de(ay) >3 or dg(by) >3. Hence, |V(G)—{ab}| <
14—8=6. If dg(az) >3 and dg(b;) >3, then d,(G —
{a1,b1}) =0 and d)(G] —{a1,b1}) <3. By Theorem
2.1(vii), F(G' —{a;,b1}) <2, and so —{a, b} =
Ky3,G =K;7 and ne{13,14}. If dg(a;) =2 and
de(b,) >3, then by Claim 1, d,(G'—{a;,b;}) =1 and
(G} —{a1,b1}) =1. By Theorem 2.1(vii), F(G —
{a1,b:}) <2, and so G’ — {a;,b1} = K;, a contradiction.
Assume that d;(G)=1 with D|(G)={a1}. Let
aiay - - -ar(k > 2) be a path in G’ such that dg(a;) = 2(i =
2,...k—1) and dg(ax) >3 and H=G —{ay,....,a_1}.
Then d;(H) =0, and d,(H) <3 and |V(H)| < 14 — 4 = 10.
If dy(H) <2, by Theorem 1.7, H € {Kj,,P~(10),P(10)}.

So n=14, and G €{(K3;)",(P~(10))",(P(10))*}. If
d,(H) =3, then |V(H)|<14—4—-3=7. By Theorem
21(V11), F(H) <3. By Theorem 1.5, He {K2’3,K1’3

(1,1,1),T(1,1)}.  Thus, G €{K;;K{5(1,1,1),T{(1,1),
Ty (1,1)}, and if G =K, then n e {12,13,14}, and if

G e{T{(1,1), T, (1,1),K{5(1,1,1)}, then n=14. Claim
2 holds.
Claim 3. d,(G') = 1.

Otherwise, d»(G') € {0,2,3}. If d)(G') =3, then n' <
14 —8+2=8. By Theorem 2.1(vii), F(G)<3. By
Theorem 1.5, G € {K;3(1,1,1),K»3 T(1,1)}. If G =
Ky,5(1,1,1), then n € {13,14}, and if G =T(1,1), then
G € §135US8yy, contrary to (4). If dy(G) =2, then n' <

14 —44+1=11. By Theorem 1.7 and Claim 2, G €
{K3,,P~(10),P*(11)}. If G =Kj 5, then G € 813U Syy; if
G =P*(11), then G € Syy; if G =P (10), then ne€
{13,14}, contrary to (4).

Next we assume that d)(G') =0. Then 6(G') > 3. By
Theorem 1.6 and Lemma 2.5, n' € {12,14}. If n' =12, by
Lemma 2.6, G’ € {P'(12), P2(12), P3(12)}, contrary to (4). If

= 14, then G = G. If G has an edge-cut X with |X| <2,
then we set Z, and Z, are the components of G — X with



|Z1| <1Z3|. Thus, |Zi| € {6,7} and F(Z;) < 2. Therefore,
Zy =Ky +(t =4,5), a contradiction. So G is 3-edge-con-
nected. By Theorem 1.2(iv), either G € Sy4 or G = P!(14),
contrary to (4). Claim 3 holds.

By Claim 3, we denote D,(G') = {v}.

Claim 4. G is 2-edge-connected.

Let e be an edge-cut of G’ and let H, and H, be the com-
ponents of G’ — e such that V(H;) N D,(G') = 0. By Claims
2 and 3 and by Theorem 2.1(v), |V(H;)| > 6(i = 1,2). Thus,
|V(H;)| € {6,7,8}. Since d;(H;) =0 and dr(H;) <1 and
since H; is reduced, by Theorem 1.4, H, = K, 3, a contra-
diction. Claim 4 holds.

Claim 5. n' € {13,14}. Therefore, G' =G and Theorem
1.8(i) holds.

Otherwise, by Lemma 2.5, n’ =12, Let H=G —v and
Ng(v) = {u;,up}. As H is reduced and |V(H)| =11, by
Theorem 1.2(i), either u; € D3(G') or u, € D3(G'). Thus,
d,(H) € {1,2}. By Theorem 1.7, H = P(11). Thus, G' =
P°(12). By Lemma 2.4, G is collapsible, a contradiction. So
Claim 5 holds.

Claim 6. (i) If n' =13, then d)(G)=1,d5(G)¢€
{8,9,10,11,12}, and A(G') < 7. Furthermore, if A(G') = 3,
then d3(G') = 12 and girth(G') = 4.

(ii) If n' = 14, then d,(G') =1 and d3(G) € {8,9,...,12}
and A(G) €{4,5,..,8}. Furthermore, if A(G) >S5,
then girth(G') = 4.

(i) Assume that n' = 13. Then F(G') > 3. By Claims 2
and 3, we have d;(G') > 8 and A(G) <7. If A(G) =3,
then d;(G') = 12. By Lemma 2.7, girth(G') = 4.

(ii) Assume that n'=14. As F(G) >3, we have
d;(G') > 8 and A(G') < 8. Assume that v € V(G') such that
do(v) = A(G') > 5 and girth(G') > 5. Let T; = {x € V(G) :
diste'(x,v) = i}. Then |To| = 1,|Ty| =5 and |T>| > 9. Thus,
n>1+4+5+9>15 a contradiction. So, if A(G)>5,
then girth(G') = 4.

Claim 7. girth(G') = 4.

Assume that girth(G') > 5. If n' =14, by Claim 5(ii),
A(G) = 4. By Lemma 2.9, G is supereulerian, contrary to
(4). Next we assume that n' = 13. Notice that G = G'. As
girth(G) > 5,A(G) = 4. So we have (d,(G),ds5(G),ds(G)) €
{(1,8,4),(1,10,2)}. If |[Ng(v) N Dy(G)| >1, then |V(G—
v)| =12,d,(G—v) =0 and d(G—v) <1. By Theorem
1.8(1), G — v € {P'(12), P*(12), P?(12)}. Thus, G € S)3, con-
trary to (4). So |Ng(v) N D4(G)| =0. Choose w € D4(G).
For an integer i > 0, define T; = {u € V(G)|dist(u,w) = i}
Then |To| =1,|T1|=4,|T2| >8 and veT,. As n=13,

(G/m) = P(10)

Figure 9. An illustration for Claim 8 in the proof of Theorem 1.8.
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|T,] =8. Thus, for any x¢& T1,x € D5(G). Let
{u1, Uz, u3,us}. As v € T,, we assume that vu; € E(G).

Consider H = G — {uy,v}. Then |V(H)| =11,d,(H) =0
and d,(H) < 2. By Claim 4, H is connected. By Theorem
1.7, H=P(11). Let D,(H) = {z}. Then either vz € E(G)
or ujz € E(G). If zv € E(G), then Ng(v) ={z,u}. As
INg(u1) N V(H)| =2, G must have a 4-cycle, a contradic-
tion. So w1z € E(G). Therefore, [Ng(u) N (V(H) — {z})| =1
and Ng(v) N (V(H) —{z})| = 1. As girth(G) > 5, the sub-
graph induced by V(H) U {u;} is P°(12). By Lemma 2.4, G
is collapsible, a contradiction. So Claim 7 holds.

By Claim 7, we assume that G has a 4-cycle C; =
vivavavgvy. Let m= (V1, V3) = ({v1,v3}, {v2, v4}) be a parti-
tion of V(Cy). Form the graph G/n with the new edge e, as
in Definition 2.2.

Claim 8. ¥'(G' /=) > 2.

By Claim 4, «¥'(G') > 2. If G'/n has a cut edge, then it
must be e;. Thus, {v;,v,,v3,v4} is a vertex-cut of G'. Let H;
and H, be the components of G' — {v;,v2,v3,v4} such that
|V(H))| < |V(H,)|. Also we assume that Ng/(v;) N V(H,) =
NG/(V3) N V(Hz) = @ and NG/(Vz) N V(H]) = NG/(V4) n
V(H) =0. As #' €{13,14},|V(H,)| € {1,2,3,4,5}. For
i=1, 2, let L; induced by V(H;) U {v1,v2,v3,v4}. By Claims
2, 3, and 4, ¥'(L;) > 2 and dy(L;) < 3. If |[V(H;)| <3, by
Theorem 1.3(ii) and (iv), we have |V(L;)|=7 and L, €
{K1,5(1,1,1), T(1,1)}. It contradicts the fact that Ny (v,) =
N (v). So [V(H)| € {45} and [V(L))| € {8,9}. By
Theorem 1.3(iv), dy(L;) =3. As d(G) =1, we have
dy(L,) = 2. By Theorem 1.3(iv), |V(L;)| = 10. By Theorem
1.7, L, = P~(10). It contradicts the hypothesis that L, con-
tains the 4-cycle v;v,v3v4v;. Claim 8 holds.

Consider the reduction (G/n)" of G/n. Let x € V(G/n)'.
with dg/ny(x) =2, either x € D,(G) or PI(x) contains
either u; or u,. So dy((G/m)') <3. In particular, if
d,((Gr)') =3 with x,y € D,((G/n)") such that u; € PI(x)
and u, € PI(y), then xy € E((G/n)'). Next we will use
(G/n)" to find the graph G. Figures 6-8 are originally
from [12].

Assume that n' = 13. Then |V(G/=n)| =11,d,(G/n) =0
and d,(G/n) < 1. By Claim 8 and Theorem 1.7, (G/n)' €
{P(10), P(11)}. If (G/m)" = P(10), then G/m contains the
parallel edges. Thus, G = P*(13) as shown in Figure 9.

If (G/n) = Py1, then G/m = P(11). If e, is incident to
the degree two vertex in G/=, then G = P'(13) as shown in
Figure 10. If e, is not incident to the degree two vertex,
then G = P*(12)(e) meaning subdividing an edge e in

T, =
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P3(12) as shown in Figure 1, where e € E(P*(12)) — E(Cy).
Thus, G € S13. So Theorem 1.8(ii) holds.

Next we assume that #n' =14. Then |V(G/n)| =12,
di(G/n) =0 and dy(G/mn) <1. By Theorem 1.8(ii) and
Claim 8, (G/n)" € {P(10),P(11),P'(12), P*(12),P3(12)}. If
(G/n)" € {P'(12),P*(12),P*(12)}, then
Thus, G € S4.

Assume that (G/n)’ = P(10). Then G/r either contains a
K; or two C, such that (G/n)/K; = Py or (G/zn)/(CyU
C,) = P(10). Assume that (G/n)/Ks = P(10). If e, € E(K3),
since G is Kj-free, G is the a graph with the structure as
shown in Figure 6. Thus, G contains a collapsible subgraph
K;, contrary to the fact that G= G is reduced. If e, &
E(K;5), then G/m and G are graphs as shown in Figure 7.
Thus, G € Sy4, contrary to (4).

Assume that (G/n)/(C, U C;) = P(10). Then two C, cycles
must be incident with the edge e, in G/n. Thus, G/ and G
are shown in Figure 8. Let 7’ = ({x1, %3}, {x2,%4}) be a parti-
tion of a 4-cycle in G as shown in Figure 8. Then G/7’ contains
two C,. Let ] = (G/n')/(C, U Cy). Then |V(J)| = 10, 6(J) >
3 and «/(J) > 3. By Theorem 1.2(i), J is collapsible. By
Theorem 2.3(i), G is collapsible, a contradiction.

Next, we assume that (G/z)' = P(11). As d»(G) = 1,G/n
and G are the graphs as shown in Figure 11. So Theorem
1.8(iii) holds. The proof of Theorem 1.8 is now complete.

is supereulerian.

4, Applications

Spanning trailable graphs are a special class of supereulerian
graphs. Let e,¢ € E(G). A trail from e to ¢ is called an
(e,€)-trail. A graph is spanning trailable if for any pair of
edges e,¢ € E(G), G has a spanning (e, ¢')-trail. As e = ¢ is
possible, spanning trailable graphs are supereulerian. Luo
et al. [23] first studied spanning trailable graphs (called
Eulerian-connected graphs in [23]). They showed that every

G/m=Pn P(13)

Figure 10. An illustration for Claim 8 in the proof of Theorem 1.8.

(G/7) = P(11)

Figure 11. An illustration for Claim 8 in the proof of Theorem 1.8.

4-edge-connected graph is spanning trailable, improving the
former result of Caltin [5] and Jaeger [16] that every 4-
edge-connected graph is supereulerian. Thus it is natural to
study which 3-edge-connected graphs are spanning trailable.

Suppose that e = u;vy, € = upv; € E(G) denote two edges
of G. If e # ¢, then the graph G(e,€') is obtained from G
by replacing e = u;v; by a path u;v.v; and by replacing ¢ =
uv, by a path u,vyv,, where v,, vy are two new vertices not
in V(G). If e = ¢, then G(e,¢') is also denoted by G(e) and
is obtained from G by replacing e = uyv; by a path u;vev;.
Let u,v € V(G), a (u, v)-trail is a trail from u to v. A graph
G is strongly spanning trailable if for any e, ¢ € E(G), G(e, )
has a spanning (v,, vy )-trail. By definition,

every strongly spanning trailable graphis also spanning trailable.

(7)

Let Zg denote the set of integers modulo 8, and Vy denote

the Wagner graph, which has vertex set .V(Vs) = {v; : i € Zg}

and edge set E(Vg) = {vivi1 11 € Zg} U{v1vs,v2v6,V3V7, Vavs}.

As the Wagner graph Vy is spanning trailable but not strongly

spanning trailable [27], strongly spanning trailable graphs and
spanning trailable graphs are not equivalent.

Theorem 4.1. Let G be a 3-edge-connected non-strongly
spanning spanning trailable simple graph. If |V(G)| <11,
then G € {V3,P(10)}.

Proof. Let G be a non-strongly spanning trailable graph with
k'(G) > 3. Then there exist edges e, ¢ € E(G) such that
G(e, €') does not have a spanning (v,, vy )-trail. Let H be the
graph obtained from G(¢,¢”) by adding a new vertex z, and
new edges zoVe,2zoVer. Then H is not supereulerian. As
|[V(G)| <11, we have |V(H)| < 14. Let H' be the reduction
of H. As G is 3-edge-connected, H # K; is 2-edge-con-
nected, and d,(H') < 1. In addition, if d,(H') =0, then
[V(H)| <11 —4=7, and if d,(H') =1, then D,(H') =
{z0}. By Theorem 1.8(iii), H’' € {P(11),P'(13), P*(13),
P2(14)}. Since G is a simple graph, H' ¢ {P*(13), P>(14)}. If
H' =P(11), then G = Vg. If H' =P!(13), then G=P(10). O

Harary and Nash-Williams showed that there is a close
relationship between a graph and its line graph concerning
Hamilton cycles.

Theorem 4.2 (Harary and Nash-Williams [15]). Let G be a
graph with |E(G)| > 3. Then L(G) is hamiltonian if and only
if G has an eulerian subgraph H with E(G — V(H)) = ().




Let G be a graph such that x(L(G)) > 3 and G # Ky, 1.
The core of this graph G, denoted by Gy, is obtained from
G — D;(G) by contracting exactly one edge xy or yz for each
path xyz in G with dg(y) = 2.

Lemma 4.3 (Shao [26]). Let G be a connected nontrivial graph
such that k(L(G)) > 3, and let G, denote the core of G.

(i) Gy is uniquely determined by G with k'(Gy) > 3.

(ii) (see also Lemma 2.9 of [19]) If for any e €
E(Gy), Go(e,€) has a spanning (v, ve)-trail, then L(G)
is Hamilton-connected.

In [1] and [2], Bauer proposed the problems of determin-
ing best possible sufficient conditions on the vertex degrees
of a simple graph (or a simple bipartite graph, or a simple
triangle-free graph, respectively) G to ensure that its line
graph L(G) is Hamiltonian. These problems have been set-
tled by Catlin [5] and Lai [17], respectively. Similar prob-
lems are considered in this paper. We seek best possible
sufficient degree conditions of a simple graph G to assure
that L(G) is Hamilton-connected. In [22], Liu et al. proved
several results which imply that for a simple graph G with
sufficiently large n = |V(G)|, if either 6(G) > §—1, or G is
bipartite and §(G) > {¢z — 1, then L(G) is Hamilton-con-
nected if and only if k(G) > 3 and Vg is not a nontrivial
contraction of G. As an application of our main result, we
prove the following.

Theorem 4.4. Let G be a connected simple graph on n verti-
ces. Each of the following holds:

(i) If 6(G) >, then for sufficiently large n, L(G) is
Hamilton-connected if and only if both k(G) >3 and G
are not nontrivially contractible to V.

(i) If G is bipartite and 6(G) > 5, then for sufficiently large n,

L(G) is Hamilton-connected if and only if both k(G) > 3

and G are not nontrivially contractible to Vs

Proof. As the proof for (ii) is similar to that for (i), we only
present the proof for (ii). Let G be a graph satisfying the
hypotheses of Theorem with k(L(G)) >3 and n > 141.
Then 6(G) > 8, and so D;(G) =0 for i € {1,2,...,7}. As G
is essentially 3-edge-connected, G is 3-edge-connected. Thus,
G = Gy. Let e,e; € E(G) and G be the reduction of
G(ey,e2). Then Dy (G') C {ve,, Ve, }- Let v € V(G') — {ve,, Ve, }
such that dg(v) < 7. Then PI(v) is nontivial and there is a
vertex x € V(PI(v)) such that Ng(x) C V(PI(v)). As G is
bipartite, PI(v) is also bipartite. Assume that the vertex par-
tition of PI(v) is (A, B) and x € A. Then Ng(x) C B. Thus,
|B| > dg(x) > 8. As dg(v) <7, there is a vertex y € B such
that Ng(y) C V(PI(v)). Thus, |V(PI(v))| > dg(x) + dg(y) >
& So d3(G') +---+dy(G) <9. As F(G') <2, we have
2d,(G) 4+ d3(G) > 10+ .. (i —4)di(G). As dr(G) <2,
we have d;(G') = 0 for i > 8. So

V(G| = dr(G) +d5(G) + - +d(G) <2+9 =11

In addition, if |V(G')| = 11, then d>(G') = 2. By Theorem
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1.7, G € {K3,,P~(10)}. If G =Kj ,,
ning (ve,,ve,)-trail. Thus, L(G) is Hamilton-connected. If
G = P (10), then D,(P (10)) = {v,v.,} and G is con-
tractible to V. 0

then G’ has a span-
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