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ABSTRACT
A graph is supereulerian if it has a spanning closed trail. Catlin in 1990 raised the problem of
determining the reduced nonsupereulerian graphs with small orders, as such results are of particu-
lar importance in the study of Eulerian subgraphs and Hamiltonian line graphs. We determine all
reduced graphs with order at most 14 and with few vertices of degree 2, extending former results
of Chen and Chen in 2016. In 1985, Bauer proposed the problems of determining best possible
sufficient conditions on minimum degree of a simple graph (or a simple bipartite graph, respect-
ively) G to ensure that its line graph L(G) is Hamiltonian. These problems have been settled by
Catlin and Lai in 1988, respectively. As an application of our main results, we prove the following
for a connected simple graph G on n vertices:

i. If dðGÞ � n
10 , then for sufficiently large n, L(G) is Hamilton-connected if and only if both

jðGÞ � 3 and G is not nontrivially contractible to the Wagner graph.
ii. If G is bipartite and dðGÞ > n

20 , then for sufficiently large n, L(G) is Hamilton-connected if and
only if both jðGÞ � 3 and G is not nontrivially contractible to the Wagner graph.

KEYWORDS
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graphs; reduced graphs
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1. Introduction

We generally follow the notation and terminology of Bondy
and Murty [3], except as otherwise stated. Graphs consid-
ered in this paper are finite and loopless, but multiple edges
are allowed. A cycle on n vertices, denoted by Cn, is called
an n-cycle. A graph G is Hamiltonian if it has a spanning
cycle, and is Hamiltonian-connected if for any distinct ver-
tices u and v, G contains a spanning (u, v)-path. As in [3],
jðGÞ and j0ðGÞ denote connectivity and the edge-connectiv-
ity of a graph G, respectively. If G has a cycle, the girth of
G, denoted by girth(G), is the length of a shortest cycle in
G. For a connected graph G and u, v 2 VðGÞ, dist(u, v)
denotes the distance between u and v. For a vertex v 2
VðGÞ, define NGðvÞ ¼ fu 2 VðGÞ : vu 2 EðGÞg, EGðvÞ ¼
fe 2 EðGÞ : e is incident with v in Gg, and dGðvÞ ¼ jEGðvÞj:
For an integer i � 0, define DiðGÞ ¼ fv 2 VðGÞ : dGðvÞ ¼
ig and diðGÞ ¼ jDiðGÞj: For any v 2 D1ðGÞ, the edge e 2
EGðvÞ is called a pendant edge of G. Let O(G) be the set of
vertices of odd degree in G. A connected graph G is
Eulerian if OðGÞ ¼ ;: An Eulerian subgraph H in G is a
spanning Eulerian subgraph if VðHÞ ¼ VðGÞ: A graph is
supereulerian if it has a spanning Eulerian subgraph, which
is equivalent to the statement that G has a spanning closed
trail. Throughout this paper, Sn denotes the family of all
supereulerian graphs on n vertices, and S ¼ [n�1Sn is the

family of all supereulerian graphs. We use P(10) for the
Petersen graph and let P�ð10Þ, Pð11Þ,P1ð12Þ,P2ð12Þ, P3ð12Þ,
P1ð13Þ, P2ð13Þ, P1ð14Þ, and P2ð14Þ be the graphs shown in
Figure 1, respectively.

Let G be a graph and X � EðGÞ be an edge subset. The
contraction G/X is the graph obtained from G by identifying
the two ends of each edge in X and then deleting the result-
ing loops. We define G=; ¼ G: If H � G, then we write G/
H for G=EðHÞ: If H is a connected subgraph of G, and if vH
is the vertex in G/H onto which H is contracted, then H is
the preimage of vH, and is denoted by PIðvHÞ: As an edge-
less graph is viewed as trivial, if G is contracted to a graph
G0 in such a way that every vertex of G0 has nontrivial pre-
image in G, we say that G0 is a nontrivial contraction of G.

To study supereulerian graphs, Catlin [5] introduced col-
lapsible graphs in his investigation on graphs H with the
property that for any graph G containing H as a subgraph,
G is supereulerian if and only if the contraction G/H is
supereulerian. A graph G is collapsible if for any subset R �
VðGÞ with jRj � 0 (mod 2), G has a spanning connected
subgraph GR such that OðGRÞ ¼ R: Catlin indicated in [5]
that for any graph G, every vertex of G lies in a unique
maximal collapsible subgraph of G. The reduction of G,
denoted by G0, is obtained from G by contracting all max-
imal collapsible subgraphs of G. A graph is reduced if it is
the reduction of some graph. Catlin [5] proved that a graph
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G is supereulerian if and only if the reduction of G is super-
eulerian, thereby developing a reduction method in [5] to
study supereulerian graphs.

In order to apply Catlin’s reduction method by contract-
ing collapsible subgraphs, identifying small reduced graphs
is of particular importance [7,14,18]. Catlin first raised the
problem of determining all reduced graphs with small orders
and proposed the following conjecture.

Conjecture 1.1. (Catlin [6]). Any 3-edge-connected simple
graph of order at most 17 is either supereulerian or is con-
tractible to the Petersen graph.

Conjecture 1.1 has several extended versions, as seen in
[6,8,21]. The following theorem shows some progresses
toward Conjecture 1.1. By Catlin’s reduction method, it is
common to reduce the generic study on eulerian subgraphs
into the study of reduced graphs with small orders. Because
of this, results on reduced graph with small orders play
important roles in applications of Catlin’s reduction method,
and have been applied to study eulerian subgraphs and
Hamiltonian line graphs by many authors, as seen in
[5,6,9,10,13,17,19–25,28–31], among others. Theorem 1.2
presents some of the frequently applied such results.

Theorem 1.2. Let G be a connected graph of order n and
with G0 as defined above.

(i) (Chen and Lai [13]) If n � 11 and dðGÞ � 3,
then G0 2 fK1,K2, Pð10Þg:

(ii) (Chen [11]) If j0ðGÞ � 3 and n � 11, then
G0 2 fK1,Pð10Þg:

(iii) (Chen and Chen [12]) If j0ðGÞ � 3 and n � 13, then
either G 2 S or G0 ¼ Pð10Þ:

(iv) (Chen and Chen [12]) If j0ðGÞ � 3 and n � 14, then
either G 2 S or G0 2 fPð10Þ,P1ð14Þg:

Let s1, s2, s3,m, l, t be the nonnegative integers with t � 2
and m, l � 1: Let M ffi K1, 3 with center a and ends a1, a2, a3:
Define K1, 3ðs1, s2, s3Þ to be the graph obtained from M by
adding si vertices with neighbors fai, aiþ1g, where i �
1, 2, 3ðmod 3Þ: Let K2, tðu, u0Þ be a K2, t with u, u0 being the
nonadjacent vertices of degree t. Let K 0

2, tðu, u0, u00Þ be the
graph obtained from a K2, tðu, u0Þ by adding a new vertex u00

that joins to only u0: Hence u00 has degree 1 and u has
degree t in K0

2, tðu, u0, u00Þ: Let Kþ
2, tðu, u0, u00Þ be the graph

obtained from a K2, tðu, u0Þ by adding a new vertex u00 that
joins to a vertex of degree 2 of K2, t: Hence u00 has degree 1
and both u and u0 have degree t in K2, t

00ðu, u0, u00Þ: We shall
use K0

2, t and K2, t
00 for a K0

2, tðu, u0, u00Þ and a K2, t
00ðu, u0, u00Þ,

respectively. Let S(m, l) be the graph obtained from a
K2,mðu, u0Þ and K0

2, lðw,w0Þ by identifying u with w, and con-
necting u0w0; let J(m, l) denote the graph obtained from a

K2,mþ1 and a K 0
2, lðw,w0,w00Þ by identifying w,w00 with the

two ends of an edge in K2,mþ1, respectively; let T(m, l)
denote the graph obtained from a K2,mþ2 and a
K0
2, lðw,w0,w00Þ by identifying w,w00 with two vertices of

degree 2 in K2,mþ2, respectively. See Figure 2 for examples
of these graphs. Let

EG ¼ fK1,K2,K2, t ,K
0
2, t ,K

þ
2, t ,K1:3ðs, s0, s00Þ, Sðm, lÞ, Jðm, lÞ,Tðm, lÞ,Pg,

where t, s, s0, s00,m, l are nonnegative integers.

Theorem 1.3 (Chen and Chen [12]). Let G be a connected
graph of order n and with G0 as defined above.

(i) Let dðGÞ � 2 and d2ðGÞ � 2. If n � 6, then G0 ¼ K1,
and if n � 7, then G0 2 fK1,K2g:

(ii) If G 6¼ K1 is reduced, n � 7,j0ðGÞ � 2 and d2ðGÞ ¼ 3,
then G 2 fK2, 3,K1, 3ð1, 1, 1Þ,Tð1, 1Þg:

(iii) If n � 9, d1ðGÞ ¼ 0 and d2ðGÞ � 1, then G0 2 fK1,
K2, K1, 2g:

(iv) If n � 9, j0ðGÞ � 2 and d2ðGÞ � 2, then G0 2 fK1,K2, 3g.
Furthermore, if G is K3-free, G0 ¼ K1:

(v) If n � 10, j0ðGÞ � 2, and d2ðGÞ � 1, then G0 2 fK1,
Pð10Þg:

Theorem 1.4 (Li et al. [20]). Let G be a connected graph of
order n and with G0 as defined above. If n � 8, d1ðGÞ ¼ 0
and d2ðGÞ � 2, then G0 2 fK1,K2,K2, 3g. Furthermore, if
G0 ¼ K2, 3 with D2ðG0Þ ¼ fv1, v2, v3g and D3ðG0Þ ¼ fu1, u2g,
then PIðv1Þ is either K4 or K4 minus an edge, and other verti-
ces in G0 are trivial.

Following Catlin [5], let F(G) be the minimum number
of additional edges that must be added to a graph G to
result in a graph with two edge-disjoint spanning trees.

Theorem 1.5 (Chen and Lai [13]). Let G be a connected
reduced graph with jVðGÞj � 11 and FðGÞ � 3. Then
G 2 EG. In particular, if d1ðGÞ ¼ 0 and d2ðGÞ � 2,
then G 2 fK1, Pð10Þg:

Theorem 1.6 (Chen [10,13]). Let G be a connected simple graph
of order n. Let G0 be the reduction of G. If n � 13 and dðGÞ � 3,
then either G 2 S12, or G0 2 fK1,K2,K1,2,K1,3,Pð10Þg:

To present our results in this paper, more graphs need to
be introduced. Let Tþ

1 ð1, 1Þ,Tþ
2 ð1, 1Þ,K2

2, 3, P
2ð11Þ, P4ð12Þ,

and P5ð12Þ be the graphs as shown in Figure 3. We use
Kþ
1, 3ð1, 1, 1Þ, Cþ

4 , ðP�ð10ÞÞþ, ðK2
2, 3Þþ to denote the graphs

obtained from K1, 3ð1, 1, 1Þ,C4, P�ð10Þ,K2
2, 3, respectively, by

attaching a pendant edge to a vertex of degree two, use
ðPð10ÞÞþ to denote the graph obtained from P(10) by add-
ing a pendant edge, and use Kþ

1, 3 to denote the graph

Figure 1. The graphs P�ð10Þ, Pð11Þ, P1ð12Þ, P2ð12Þ, P3ð12Þ, P1ð13Þ, P2ð13Þ, P1ð14Þ, P2ð14Þ:
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obtained from K1, 3 by adding a pendant edge to a vertex of
degree one. Denote Kþþ

2, 3 be the graph obtained from K2, 3 by
adding two pendant edges to two vertices of degree two,
respectively. Define F 11 ¼ fK1,K2, K1, 2,
K2, 3, Pð10Þ, Pð11Þg, F 12 ¼ fKþ

2, 3g, F 13 ¼ fK1, 3, P4,Kþþ
2, 3 ,K1, 3

ð1, 1, 1Þ, P�ð10Þ, P1ð13Þ, P2ð13Þg, and F 14 ¼ fKþ
1, 3,C

þ
4 ,

ðK2
2, 3Þþ, Kþ

1, 3ð1, 1, 1Þ, Tþ
1 ð1, 1Þ,Tþ

2 ð1, 1Þ, ðP�ð10ÞÞþ,
ðPð10ÞÞþ, P1ð14Þ, P2ð14Þg: For application purposes, relaxa-
tions of the above Theorems are often needed. This moti-
vates our current research.

Theorem 1.7. Let G0 be the reduction of a connected simple
graph G of order n. If n � 11, d1ðGÞ ¼ 0 and d2ðGÞ � 2,
then G0 2 F 11[fP4,C4,Kþ

2,3,K
2
2,3,K1,3ð1,1,1Þ, Tð1,1Þ, Tð1,2Þ,

P�ð10Þ, Kþ
1,3ð1,1,1Þ,Tþ

1 ð1,1Þ,Tþ
2 ð1,1Þg. Furthermore, if

d2ðGÞ� 1, then G0 2F 11:

Theorem 1.8. Let G0 be the reduction of a connected simple
graph G of order n. Suppose that d1ðGÞ ¼ 0 and d2ðGÞ � 1.
Then the following statements hold:

(i) If n � 12, then G0 2F 11[F 12[fP1ð12Þ,P2ð12Þ,P3ð12Þg.
Therefore, either G2S12 or G0 2F 11[F 12:

(ii) If n � 13, then either G 2 S12 [ S13, or G0 2 F 11[
F 12[ F 13:

(iii) If n � 14, then either G 2 S12 [ S13 [ S14, or G0 2 F 11[
F 12[ F 13 [ F 14:

The paper is organized as follows: In Section 2, we present
the needed tools to facilitate our proofs for the main results. In
Section 3, we will prove Theorems 1.7 and 1.8. Applications of
Theorems 1.7 and 1.8 will be given in Section 4.

2. Collapsible graphs

We will present basic properties of collapsible graphs in this
section. The next theorem summarizes some basic properties
needed in our arguments in the proofs.

Theorem 2.1. Let G be a connected graph, H a collapsible
subgraph of G, and G0 the reduction graph of G. Then each
of the following holds:

(i) (Caltin [5]) G is collapsible if and only if G/H is collaps-
ible. In particular, G is collapsible if and only if the reduc-
tion G0 ¼ K1:

(ii) (Caltin [5]) G is reduced if and only if G has no nontri-
vial collapsible subgraphs.

(iii) (Caltin [5]) G0 is simple, girthðG0Þ � 4 and dðG0Þ � 3.
(iv) (Caltin [5]) G is supereulerian if and only if G0 is

supereulerian.
(v) (Caltin [5]) K3 is the smallest nontrivial collapsible sim-

ple graph and the nontrivial reduced graphs with at
most 5 vertices are either a tree, a 4-cycle, K2, 3, or K2, 3

minus an edge.
(vi) (Caltin, Han, and Lai [9]) If G is connected and if

FðGÞ � 2, then G0 2 fK1,K2g [ fK2, t : t � 1g:
(vii) (Caltin, Han, and Lai [9]) If G is reduced,

then FðGÞ ¼ 2jVðGÞj � jEðGÞj � 2 ¼ 1
2 ð3d1ðGÞ þ

2d2ðGÞ þ d3ðGÞ �
P

i�4ði� 4ÞdiðGÞÞ � 2:
(viii) If G is a reduced connected graph with n � 8 and

d1ðGÞ ¼ 0, then either j0ðGÞ � 2, or G is the graph
obtained from two 4-cycles C4 and C0

4 by adding an
edge xx0, where x 2 VðC4Þ and x0 2 VðC0

4Þ:
Proof. We only present a proof of (viii) and refer the reader
to the references cited for others. Let e be a cut edge of G and
let H1 and H2 be the components of G � e. As d1ðGÞ ¼ 0, for
i¼ 1, 2, Hi can not be a tree. By Theorem 2.1(v), H1¼H2¼C4

Thus, G is the graph obtained from two 4-cycles C4 and C0
4 by

adding an edge xx0, where x 2 VðC4Þ and x0 2 VðC0
4Þ: w

Definition 2.2. Let H ¼ C4 ¼ v1v2v3v4v1 be a 4-cycle, or let
H ¼ C8 denote the graph obtained from a 8-cycle avdxbwcua
by adding two edges cd and ab. Consider a partition p ¼
ðV1,V2Þ ¼ ðfv1, v3g, fv2, v4gÞ of VðC4Þ, or a partition p ¼
ðV1,V2Þ ¼ ðfa, b, c, dg, fx,w, u, vgÞ of VðC8Þ: Following [4], if

Figure 2. Some graphs in EG with small parameters.

Figure 3. Some graphs used in Theorem 1.7.
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H is a subgraph of a graph G, we define G=p to be the graph
obtained from G� EðHÞ by identifying all vertices of V1 to
form a single vertex v0, by identifying all vertices of V2 to form
a single vertex v00, and by adding an edge ep ¼ v0v00:

Theorem 2.3 (Caltin [4]). Let H ¼ C4 ¼ v1v2v3v4v1 be a 4-
cycle in G, or let H ¼ C8 be a subgraph of G obtained from
a 8-cycle avdxbwcua by adding two edges cd and ab. Let G=p
be defined as in Definition 2.2. Then the following hold:

(i) If G=p is collapsible, then G is collapsible.
(ii) If G=p has a spanning eulerian subgraph, then G has a

spanning eulerian subgraph.
(iii) If G is a reduced graph with a 4-cycle C4, then

FðG=pÞ � FðGÞ � 1:

Lemma 2.4. P2ð11Þ, P4ð12Þ, P5ð12Þ are collapsible.

Proof. By definition, each of P2ð11Þ, P4ð12Þ, and P5ð12Þ con-
tains a subgraph isomorphic to C8: Let G=p be the graph
defined as in Definition 2.2. Then G=p contains K3 as a sub-
graph. As cycles of length at most 3 are collapsible, it is a
routine matter to verify that contracting all cycles of length
at most 3 in G=p results in a collapsible graph. By Theorem
2.3(i), P2ð11Þ, P4ð12Þ, P5ð12Þ are collapsible. w

Lemma 2.5. Let G be a connected reduced graph with
n � 11. If d1ðGÞ¼0 and d2ðGÞ�1, then G2fK1,
Pð10Þ, Pð11Þg:

Proof. By Theorem 1.5, if FðGÞ � 3, then G 2 fK1, Pð10Þg,
and so we assume that FðGÞ � 4: By Theorem 2.1(vii),
d3ðGÞ � 10: As n � 11, we have n¼ 11, d2ðGÞ ¼ 1, d3ðGÞ ¼
10, and VðGÞ ¼ D2ðGÞ [ D3ðGÞ: Let D2ðGÞ ¼ fyg:

Assume thatG has a cut edge e. LetH1 andH2 be the compo-
nents of G � e. As d1ðGÞ ¼ 0 and d2ðGÞ ¼ 1, by Theorem
2.1(v), we have jVðHiÞj 62 f1, 2, 3, 4g for i¼ 1, 2. Thus
jVðHiÞj 2 f5, 6g: Since d2ðGÞ ¼ 1, we may assume that y 2
VðH2Þ: Then d1ðH1Þ ¼ 0 and d2ðH1Þ � 1: By Theorem 1.3(iii),
H12fK1, K2, K1,2g, a contradiction. Hence, G must be
2-edge-connected.

Next, we claim that girthðGÞ � 5: Otherwise, let C4 ¼
v1v2v3v4v1 be a 4-cycle of G. Let p ¼ ðfv1, v3g, fv2, v4gÞ be a
partition of VðC4Þ: Form the graph G=p with the new edge
ep defined as in Definition 2.2. Then jVðG=pÞj ¼ 11� 2 ¼
9: As d1ðGÞ ¼ 0 and d2ðGÞ ¼ 1, we have jD2ðGÞ \
fv1, v2, v3, v4gj � 1, d1ðG=pÞ ¼ 0, and d2ðG=pÞ � 1: By
Theorems 1.3(iii) and 2.3(i), G=p is not 2-edge-connected.
As G is 2-edge-connected, ep is the cut edge of G=p, and so
fv1, v2, v3, v4g is a vertex-cut of G. Let L1 and L2 be the com-
ponents of G� fv1, v2, v3, v4g with jVðL1Þj � jVðL2Þj and
NGðv1Þ \ VðL2Þ ¼ NGðv3Þ \ VðL2Þ ¼ ; and NGðv2Þ \
VðL1Þ ¼ NGðv4Þ \ VðL1Þ ¼ ; (see Figure 4). As n¼ 11,
jVðL1Þj 2 f1, 2, 3g: If jVðL1Þj 2 f2, 3g, then L1 is either P2
or P3. As d2ðGÞ ¼ 1, the number of edges between VðL1Þ
and fv1, v3g is at least 3. Thus, either dGðv1Þ � 4 or
dGðv3Þ � 4, contrary the fact that VðGÞ ¼ D2ðGÞ [ D3ðGÞ:
Thus, VðL1Þ ¼ fyg and yv1, yv3 2 EðGÞ: Let L3 ¼

G� fy, v1, v2, v3, v4g: Then jVðL3Þj ¼ 6, and either d1ðL3Þ ¼
1 and d3ðL3Þ ¼ 5, or d2ðL3Þ ¼ 2 and d3ðL3Þ ¼ 4: Thus,
FðL3Þ � 2: As L3 is reduced, by Theorem 2.1(vi), L3 ¼ K2, 4,
a contradiction. Thus, girthðGÞ � 5:

As VðGÞ ¼ D2ðGÞ [ D3ðGÞ, there is a vertex w 2 D3ðGÞ
such that the distance between y and w is 3. For an integer
i � 0, define Ti ¼ fx 2 VðGÞ : distðx,wÞ ¼ ig: Then jT0j ¼
1, jT1j ¼ 3, jT2j ¼ 6, jT3j ¼ 1 and y 2 T3: Let H be the sub-
graph in G induced by T2 [ T3: Then H is a 7-cycle
a1a2 � � � a7a1: Let T1 ¼ fu1, u2, u3g: Then for i¼ 1, 2, 3,
jNGðuiÞ \ VðHÞj ¼ 2: As girthðGÞ � 5, without loss of gen-
erality, we assume that u1a1, u1a4 2 EðGÞ: By symmetry, we
assume that a7 6¼ y and a7u2 2 EðGÞ: As girthðGÞ �
5, u2a3 2 EðGÞ: Thus, u3a2 2 EðGÞ and jNGðu3Þ \ fa5, a6gj ¼
1: Therefore, G ¼ Pð11Þ: w

Lemma 2.6. Let G be a connected simple graph with n � 13
and let G0 be the reduction of G. If dðGÞ � 3,
then G0 2 fK1,K2,K1, 2,K1, 3,Pð10Þ,P1ð12Þ,P2ð12Þ,P3ð12Þg:

Proof. Let n0 ¼ jVðG0Þj: As dðGÞ � 3, by Theorem 2.1(v),
we have 13�P

v2D1ðG0Þ jPIðvÞjþ
P

v2D2ðG0Þ jPIðvÞj � 4d1ðG0Þþ
4d2 ðG0Þ: Thus, d1ðG0Þþd2ðG0Þ � 3:

Assume that G has a cut edge e, and L1 and L2 are the
components of G � e. As dðGÞ � 3, we have jVðLiÞj 62
f1, 2, 3g for i¼ 1, 2. Thus, jVðLiÞj 2 f4, 5, :::, 9g: As d1ðLiÞ ¼
0 and d2ðLiÞ � 1, by Theorem 1.3(iii), the reduction of Li is
in fK1,K2,K1, 2g: Thus, G0 2 fK2,K1, 2,K1, 3g: Next we
assume that G is 2-edge-connected. Then d1ðG0Þ ¼ 0 and
d2ðG0Þ � 3, and so n0 � 13� 3d2ðG0Þ: By Theorem 1.3(ii),
(iv), (v), we have d2ðG0Þ ¼ 0: Thus, dðG0Þ � 3: If n0 6¼ 12,
then, by Theorem 1.6, we have G ¼ Pð10Þ: Next we assume
that n0 ¼ 12: Then G ¼ G0:
Case 1. girthðGÞ � 5:

Assume that w 2 VðGÞ such that dGðwÞ ¼ DðGÞ � 4: For
an integer i � 0, let Ti ¼ fx 2 VðGÞ : distðx,wÞ ¼ ig: Then
jT0j ¼ 1, jT1j ¼ 4, jT2j � 8, and so n � 13, a contradiction.
So G is cubic. By Theorem 1.6, G is Hamiltonian. Let
v0v1 � � � v11v0 be a Hamiltonian cycle of G.

If girthðGÞ � 7, then NGðv0Þ ¼ fv1, v11, v6g and NGðv1Þ ¼
fv0, v2, v7g: This results in a 4-cycle v0v1v7v6v0, a contradic-
tion. If girth(G) ¼ 6, then v0v6 62 EðGÞ and so NGðv0Þ \
fv5, v7g 6¼ ;: Without loss of generality, we assume that
v0v5 2 EðGÞ: Then NGðv1Þ ¼ fv0, v2, v8g: Thus, NGðv2Þ ¼
fv1, v3g, a contradiction, and so girth(G) ¼ 5. Without loss
of generality, we assume that v0v4 2 EðGÞ: Then NGðv5Þ �
fv4, v6, v9, v10g: Similarly, NGðv11Þ � fv0, v10, v6, v7g:

Figure 4. An illustration for the proof of Lemma 2.5.
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Case 1.1. Either v5v10 2 EðGÞ or v6v11 2 EðGÞ:
We assume that v5v10 2 EðGÞ: As NGðv11Þ � fv0, v10,

v6, v7g and girthðGÞ � 5, we have v11v7 2 EðGÞ: Then NG

ðv2Þ \ fv8, v9g ¼ ; (otherwise, NGðv3Þ ¼ fv2, v4g, a contra-
diction). So v2v6 2 EðGÞ: Therefore, we have either v1v9,v3v8
2 E(G), or v1v8, v3v9 2 EðGÞ (Graphs A and B in Figure 5).
In the former case, G ¼ P1ð12Þ, and in the latter
case, G ¼ P2ð12Þ:
Case 1.2. v5v10, v6v11 62 EðGÞ:

Then v5v9, v11v7 2 EðGÞ: Thus, we have either v2v8,
v3v10, v1v6 2 EðGÞ, or v2v10, v3v8, v1v6 2 EðGÞ (Graphs C and
D in Figure 5, respectively). In the former case, G ¼ P2ð12Þ,
and in the latter case, G ¼ P1ð12Þ:
Case 2. girth(G) ¼ 4.

Let C4 ¼ v1v2v3v4v1 be a 4-cycle in G. Let H ¼ G=p be
defined as in Definition 2.2. Then dðHÞ � 3 and jVðHÞj ¼
10: Assume that H is not 2-edge-connected. Then ep is a cut
edge of H. Thus, fv1, v2, v3, v4g is the vertex-cut of G. Let L1
and L2 be the components of G� fv1, v2, v3, v4g such that
NGðxÞ \ VðL2Þ ¼ ; for x 2 fv1, v3g, and let Qiði ¼ 1, 2Þ be
the subgraph induced by VðLiÞ [ fv1, v2, v3, v4g: As dðGÞ �
3, by Theorem 1.4, jVðQiÞj � 9: Thus, jVðLiÞj � 5 and so
jVðGÞj � 5þ 5þ 4 ¼ 14, a contradiction. Hence j0ðHÞ � 2:
By Theorem 1.6, H ¼ Pð10Þ: Thus, G ¼ P3ð12Þ: w

Lemma 2.7. Let G be a 2-edge-connected reduced graph
with n¼ 13. If d1ðGÞ ¼ 0, d2ðGÞ ¼ 1, d3ðGÞ ¼ 12, and
girthðGÞ � 5, then G is supereulerian.

Proof. Let D2ðGÞ ¼ fvg: As girthðGÞ � 5 and VðGÞ ¼
D2ðGÞ [ D3ðGÞ, we have jfx 2 VðGÞ : distðx, vÞ � 2gj ¼ 7:
Thus, there exists a vertex w such that the distance between
w and v is at least three. For an integer i � 0, let Ti ¼ fx 2
VðGÞ : distðx,wÞ ¼ ig: Then jT0j ¼ 1, jT1j ¼ 3, jT2j ¼ 6,
jT3 [ T4j ¼ 3, and v 2 T3 [ T4: Let T1¼fu1, u2, u3g and let
H be the subgraph in G induced by T2 [ T3 [ T4: Then
jVðHÞj ¼ 9 with d3ðHÞ ¼ 2 and d2ðHÞ ¼ 7: As girthðGÞ �
5, H is a 9-cycle C9 ¼ v1v2 � � � v9v1 by adding a chord v1v5:
Thus, for i¼ 1, 2, 3, jNGðuiÞ \ fv2, v3, v4, v6, :::, v9gj ¼ 2:

First, we claim that v 2 fv2, v3, v4g: Otherwise, we may
assume that u1v2, u2v3, u3v4 2 EðGÞ: If u3v9 2 EðGÞ, then
u3v9v8v7v6v5v1v2u1wu2v3v4u3 is a Hamiltonian cycle of G, a
contradiction. So u3v9 62 EðGÞ: Similarly, u1v6 62 EðGÞ: As
girthðGÞ � 5, u3v6, u1v9 62 EðGÞ: Thus, NGðu2Þ \ fv6, v9g 6¼
;: Without loss of generality, we assume that u2v9 2 EðGÞ:
Then v9u2v3 v4u3wu1v2v1v5v6v7v8v9 is a Hamiltonian cycle, a
contradiction. So v 2 fv2, v3, v4g:

As girthðGÞ � 5, we may assume that u3v6, u2v7, u1v8 2
EðGÞ: As NGðv9Þ \ fu1, u2, u3g 6¼ ;, u3v9 2 EðGÞ: If u1v4 2
EðGÞ, then v4u1v8v9u3wu2v7v6v5v1v2v3v4 is a Hamiltonian
cycle of G, a contradiction. So u1v4 62 EðGÞ: Similarly, u2v2 62
EðGÞ: If v ¼ v3, then u1v2, u2v4 2 EðGÞ: Thus, wu1v2v3v4
u2v7v8v9v1v5v6u3w is a Hamiltonian cycle of G, a contradic-
tion. So v 2 fv2, v4g: Without loss of generality, we assume
that v ¼ v2. As v4u1 62 EðGÞ, we have v4u2 2 EðGÞ: Thus,
v3u1 2 EðGÞ: So v3v2v1v9v8v7u2v4v5v6u3wu1v3 is a
Hamiltonian cycle of G, a contradiction. w

Lemma 2.8. Let G be a 2-edge-connected reduced graph with
n¼ 14. If d1ðGÞ ¼ 0, d2ðGÞ ¼ 1, d3ðGÞ ¼ 12, d4ðGÞ ¼ 1, and
girthðGÞ � 5, then G is supereulerian.

Proof. By contradiction, we assume that G is not supereu-
lerian. Let D2ðGÞ ¼ fvg and D4ðGÞ ¼ fwg: For an integer
i � 0, define Ti ¼ fx 2VðGÞ : distðx,wÞ ¼ ig: Then jT0j ¼ 1
and jT1j ¼ 4: Let T1 ¼ fu1,u2,u3,u4g and H be the subgraph
in G induced by VðGÞ� ðT0 [T1Þ: Then jVðHÞj ¼ 9:

Claim 1. vw 2 EðGÞ:
Assume that vw 62 EðGÞ: Then jT2j ¼ 8, jT3j ¼ 1, v 2

T2 [ T3, jNGðuiÞ \ VðHÞj ¼ 2 for i ¼ 1, 2, 3, 4, and jNGðxÞ \
T1j ¼ 1 for each x 2 T2:

If v 2 T3, then dHðxÞ ¼ 2 for each x 2 VðHÞ: As
girthðGÞ � 5, H ¼ C9. Assume that C9 ¼ a1a2 � � � a9a1,
where a9 ¼ v: As girthðGÞ � 5, we may assume that
u1a1, u2a2, u3a3 2 EðGÞ: If u1a4 2 EðGÞ, then a5u4, a8u4 2
EðGÞ: Thus, wu4a5a6a7a8a9a1a2u2wu3a3a4u1w is a spanning
eulerian subgraph of G, a contradiction. So u1a4 62 EðGÞ:
Therefore, u4a4 2 EðGÞ and wu2a2a3u3wu4a4a5a6a7a8
a9a1u1w is a spanning Eulerian subgraph of G, a contradic-
tion. So v 2 T2:

Then d1ðHÞ ¼ 1, d2ðHÞ ¼ 7, d3ðHÞ ¼ 1: As girthðGÞ � 5,
H is connected. Thus, H is a cycle Ck ¼ a1a2 � � � aka1 by attach-
ing a path akakþ1 � � � v9, where a9 ¼ v and ak 2 T3: As
girthðGÞ � 5, k 2 f5, 6, 7, 8g: If k¼ 8, as girthðGÞ � 5, we
assume that u1a9, u2a1, u3a7 2 EðGÞ: As G is not supereuler-
ian, NGðu4Þ \ fa2, a6g ¼ ;: Thus, NGðu4Þ � fw, a3, a4, a5g:
This implies that girthðGÞ � 4, a contradiction. If k¼ 7, then
we assume that a9u4, a8u3 2 EðGÞ: Thus, ðNGða1Þ [ NGða6ÞÞ \
fu1, u2g 6¼ ;: Without loss of generality, we assume that
u1a2 62 EðGÞ: As G is not supereulerian, u1a2 62 EðGÞ: Thus,
u1a3, u1a6 2 EðGÞ: As girthðGÞ � 5, NGðu2Þ \ fa4, a5g 6¼ ;:
This would result in a spanning subgraph of G, a contradic-
tion. If k¼ 6, by symmetry, we assume that u2a7, u3a8, u4a9 2

Figure 5. Illustrations for the proof of Lemma 2.6.
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EðGÞ: Thus, NGðu1Þ \ fa1,a5g 6¼ ;: Without loss of generality,
we assume that u1a1 2 EðGÞ: Thus,
wu1a1a2a3a4a5a6a7u2wu3a8a9u4w is a spanning eulerian sub-
graph of G, a contradiction. So k¼5. As girthðGÞ � 5, we
assume that u1a1,u2a2,u3a3 2 EðGÞ: Then u4a9 62 EðGÞ (other-
wise, wu3a3a4a5a6a7a8a9u4wu2a2a1u1w is a spanning eulerian
subgraph of G, a contradiction). Thus, u4a4 2 EðGÞ: Notice
that jNGða9Þ \ fu1,u2,u3gj ¼ 1: If a9u3 2 EðGÞ, then wu4a4a3
a2u2wu1a1a5a6a7a8a9u3w is a spanning eulerian subgraph of
G; if a9u2 2 EðGÞ, then wu2a9a8a7a6a5a4u4w u1a1a2a3u3w is a
spanning eulerian subgraph of G; if a9u1 2 EðGÞ, then
wu4a4a3u3wu2 a2a1a5a6a7a8a9u1w is a spanning eulerian sub-
graph of G. We finish the proof of Claim 1.

By Claim 1, vw 2 EðGÞ: Then jT2j ¼ 7 and jT3j ¼ 2:
Thus, d2ðHÞ ¼ 7 and d3ðHÞ ¼ 2: As girthðGÞ � 5, H is
2-connected. Thus, H is the 9-cycle C9 ¼ a1a2 � � � a9a1 by
adding the chord a1a5: Since girthðGÞ � 5, we assume that
u1a2, u2a3, u3a4 2 EðGÞ: Then NGðu4Þ \ fa6, a9g ¼ ;: Thus,
NGðu4Þ \ fa7, a8g 6¼ ;: Without loss of generality, we assume
that u4a7 2 EðGÞ: Then u4 ¼ v: Thus, u2a6 62 EðGÞ (other-
wise, wu2a6a5a1a9a8a7u4wu1a2a3a4u3w is a spanning eulerian
subgraph of G, a contradiction), Similarly, u2a8 62 EðGÞ Thus,
u2a9 2 EðGÞ: As girthðGÞ � 5, u3a8 2 EðGÞ and so u1a6 2
EðGÞ: Hence wu3a8a7u4wu1a6a5a4a3a2a1a9u2w is a spanning
eulerian subgraph of G, a contradiction. w

Lemma 2.9. Let G be a 2-edge-connected reduced graph with
n¼ 14. If d1ðGÞ¼ 0,d2ðGÞ¼ 1, DðGÞ¼ 4, and girthðGÞ� 5,
then G is supereulerian.

Proof. By Theorem 2.1(vi), FðGÞ � 3: By Theorem 2.1(vii),
2d2ðGÞ þ d3ðGÞ � 10: Thus, d3ðGÞ � 8: By Lemma 2.8, it
suffices to consider the cases when ðd2ðGÞ, d3ðGÞ, d4ðGÞÞ 2
fð1, 8, 5Þ, ð1, 10, 3Þg: Let D2ðGÞ ¼ fvg:
Claim 1. If d2ðGÞ ¼ 1, d3ðGÞ ¼ 10 and d4ðGÞ ¼ 3, then G is
supereulerian.

By Lemma 2.8, D4ðGÞ is independant. As d4ðGÞ ¼ 3,
there is a vertex w 2 D4ðGÞ such that v 62 NGðwÞ: Choose
such the vertex w such that the distance between w and v is
longest. Thus for any x 2 NGðwÞ, x 2 D3ðGÞ: For an integer
i � 0, define Ti ¼ fx 2 VðGÞ : distðx,wÞ ¼ ig: Then jT0j ¼
1, jT1j ¼ 4, jT2j ¼ 8, jT3j ¼ 1, and v 2 T2 [ T3: Let T1 ¼
fu1, u2, u3, u4g, T3 ¼ fzg and let H be the subgraph in G
induced by T2 [ T3: Then dGðzÞ 2 f2, 3, 4g:

If dGðzÞ ¼ 4, then v 2 T2: Thus, d1ðHÞ ¼ 1, d2ðGÞ ¼ 6,
d3ðHÞ ¼ 1 and d4ðHÞ ¼ 1: As girthðGÞ � 5, H is formed
from the 8-cycle a1a2 � � � a8a1 by adding the chord a1a5 and
the pendant edge a1v 2 EðGÞ, where a1 ¼ x 2 D4ðGÞ: As
D4ðGÞ is independant, NGða5Þ \ fu1, u2, u3, u4g ¼ ;: Since
the number of edges between fu1, u2, u3, u4g and fv, a2, a3,
a4, a6, a7, a8g is 8 and v 2 D2ðGÞ, there is a vertex y 2
fa2, a3, a4, a6, a7, a8g such that jNGðyÞ \ fu1, u2, u3, u4gj � 2:
This results in a 4-cycle in G, a contradiction. If dGðzÞ ¼ 2,
then d2ðHÞ ¼ 7 and d3ðHÞ ¼ 2: As girthðGÞ � 5, H is a
9-cycle a1a2 � � � a9a1 by adding a chord, say a1a5: As
girthðGÞ � 5, jNGðyÞ\fu1,u2,u3,u4gj� 1 for y2fa1,a2, :::,
a9g: As D4ðGÞ¼ 3,a1,a5 2D4ðGÞ, contrary to the fact that

D4ðGÞ is independant. Thus, dGðzÞ¼ 3 and the distance
between w and v is 2.

Therefore, d1ðHÞ ¼ 1, d2ðHÞ ¼ 5 and d3ðHÞ ¼ 3: As
girthðGÞ � 5, H is formed from the 8-cycle a1a2 � � � a8a1 by
adding the chord a1a5 and the pendant edge vai0 2 EðGÞ, where
i0 62 f1, 5g: By symmetry, we assume that vai0 2 EðGÞ, where
i0 2 f2, 3g: As D4ðGÞ is independant, ai0 2 D4ðGÞ and
jfa1, a5g \ D4ðGÞj ¼ 1: Without loss of generality, we assume
that a5 2 D4ðGÞ: Thus, a1 ¼ z, and the distance between a5 and
v is 3. This contradicts the choose of w. Hence Claim 1 follows.

By Claim 1, we assume that d2ðGÞ ¼ 1, d3ðGÞ ¼ 8 and
d4ðGÞ ¼ 5: By Claim 1, D4ðGÞ is independant. As d4ðGÞ ¼ 5,
choose w 2 D4ðGÞ such that v 62 NGðwÞ: Thus, for any x 2
NGðwÞ, x 2 D3ðGÞ: For an integer i � 0, define Ti ¼ fu 2
VðGÞ : distðu,wÞ ¼ ig: Then jT0j ¼ 1, jT1j ¼ 4, jT2j ¼ 8,
jT3j ¼ 1, and v 2 T2 [ T3: Let T1 ¼ fu1, u2, u3, u4g, and let
T2 ¼ fx1, x2, :::, x8g such that x2i�1, x2i 2 NGðuiÞ for i ¼
1, 2, 3, 4: Let T3 ¼ fxg:

We claim that x 62 D4ðGÞ: Otherwise, as girthðGÞ � 5, we
may assume that NGðxÞ ¼ fx1, x3, x5, x7g: Then jfx2, x4,
x6, x8g \ D4ðGÞj ¼ 3: Without loss of generality, we assume
that x4, x6, x8 2 D4ðGÞ: Thus, jfx1, x2g \ NGðx4Þj ¼ 1 and
x5, x7 2 NGðx4Þ: It implies that x4x5xx7x4 is a 4-cycle, a
contradiction. So x2D2ðGÞ[D3ðGÞ: Thus, jT2\D4ðGÞj ¼ 4:

Assume that x1 2 D4ðGÞ such that xx1 62 EðGÞ: As
girthðGÞ � 5, we assume that NGðx1Þ ¼ fu1, x3, x5, x7g: Then
jfx2, x4, x6, x8g \ D4ðGÞj ¼ 3 and NGðx2Þ \ fx1, x3, x5, x7g ¼
;: Thus, NGðx2Þ � fu1, x, x4, x6, x8g: As D4ðGÞ is independ-
ant, x2 62 D4ðGÞ: Thus, x4, x6, x8 2 D4ðGÞ: Therefore,
NGðx4Þ � fx, u2, x2, x5, x7g: Notice that x4x5x1x7x4 would be
a 4-cycle if x4x5, x4x7 2 EðGÞ: We have xx4, x2x4 2 EðGÞ:
Similarly, xx6, x2x6 2 EðGÞ: This results in a 4-cycle
x2x4xx6x2, a contradiction. w

Figure 6. An illustration for Claim 8 in the proof of Theorem 1.8.

Figure 7. An illustration for Claim 8 in the proof of Theorem 1.8.
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3. Proof of Theorems 1.7 and 1.8

In this section, we will justify both Theorems 1.7 and 1.8. Some of
the parts (or graphs) in Figures 6–8 are adapted from [12].

Proof of Theorem 1.7. Let G0 be the reduction ofG. Assume that

the conclusion of Theorem 1:7 is false, and in particular, G0 6¼ K1:

(1)

By assumption, it is known that

n � 11, d1ðGÞ ¼ 0, and d2ðGÞ � 2: (2)

By Theorem 2.1(v), we have
j[v2D1ðG0ÞPIGðvÞj � 4d1ðG0Þ, and if d2ðG0Þ � 2, then j[v2D2ðG0Þ
PIGðvÞj � 4ðd2ðG0Þ � 2Þ þ 2:

(3)
By (2) and (3), we must have d1ðG0Þ � 2 and d1ðG0Þ þ
d2ðG0Þ � 4: In particular, if d1ðG0Þ þ d2ðG0Þ ¼ 4, then n 2
f10, 11g, jVðG0Þj ¼ 4 with d2ðGÞ ¼ 2 and G0 2 fP4,C4g,
contrary to (1). Therefore, we assume that d1ðG0Þ þ
d2ðG0Þ � 3: Let m0 ¼ jEðG0Þj and n0 ¼ jVðG0Þj:
Claim 1. d1ðG0Þ ¼ 0:

Otherwise, d1ðG0Þ 2 f1, 2g: If d1ðG0Þ ¼ 2, then n0 � 11�
8þ 2 ¼ 5 and d2ðG0Þ � 3� 2 ¼ 1: By Theorem 2.1(vii),
FðG0Þ � 3: By Theorem 1.5, G0 2 fK2,K1, 2g, contrary to (1).
If d1ðG0Þ ¼ 1, then d2ðG0Þ � 3� 1 ¼ 2: Assume that
D1ðG0Þ ¼ fa1g: Let a1a2 � � � akðk � 2Þ be a path in G0 such
that dG0 ðaiÞ ¼ 2ði ¼ 2, :::, k� 1Þ and dG0 ðakÞ � 3 and H ¼
G0 � fa1, :::, ak�1g: Then d1ðHÞ ¼ 0, d2ðHÞ � 3 and
jVðHÞj � 11� 4 ¼ 7, implying that j0ðHÞ � 2: By Theorem
1.3(ii) and (iv), H 2 fK2, 3,K1, 3ð1, 1, 1Þ,Tð1, 1Þg and so G0 2
fKþ

2, 3,K
þ
1, 3ð1, 1, 1Þ,Tþ

1 ð1, 1Þ,Tþ
2 ð1, 1Þg: If G0 2 fKþ

1, 3ð1, 1, 1Þ,
Tþ
1 ð1, 1Þ,Tþ

2 ð1, 1Þg, then n¼ 11 and d2ðGÞ ¼ 2; and if G0 ¼
Kþ
2, 3, then d2ðGÞ ¼ 2, contrary to (1) in either case. Hence,

Claim 1 must hold.

Claim 2. d2ðG0Þ ¼ 2, and D2ðG0Þ is independant.
Assume that d2ðG0Þ ¼ 3: Then n0 � 11� 6þ 3 ¼ 8: By

Claim 1 and Theorem 2.1(viii), G0 is 2-edge connected. If
n0 � 7, Theorem 1.3(ii) G0 2 fK2, 3,K1, 3ð1, 1, 1Þ,Tð1, 1Þg and
when G0 2 fK1, 3ð1, 1, 1Þ,Tð1, 1Þg, d2ðGÞ ¼ 2, contrary to (1).
If n0 ¼ 8, then, by Theorem 2.1(vii), m0 � 11 and FðG0Þ �
3: By Theorem 1.5, G0 ¼ Tð1, 2Þ and d2ðGÞ ¼ 2, contrary to
(1). Hence d2ðG0Þ � 2: By Lemma 2.5, d2ðG0Þ ¼ 2:

Let D2ðG0Þ ¼ fa1, a2g: If a1a2 2 EðG0Þ, then setting L4 ¼
G0 � fa1, a2g, we have jVðL4Þj � 9: As d2ðG0Þ ¼ 2, we have
d1ðL4Þ ¼ 0 and d2ðL4Þ � 2: By Theorem 1.4, jVðL4Þj ¼ 9: By
Theorem 1.3(iv), L4 has a cut edge e. Assume that Y1 and

Y2 are components of L4 � e with jVðY1Þj � jVðY2Þj: As
jVðL4Þj ¼ 9, jVðY1Þj 2 f1, 2, 3, 4g: Since G0 is reduced, Y1 2
fK1,K2,K1, 2,K1, 3, P4,C4g: For each of these four cases, we
have either d1ðG0Þ 6¼ 0 or d2ðG0Þ � 3, a contradiction occur-
ring in any case. Hence D2ðG0Þ must be independant. This
proves Claim 2.

Claim 3. G0 is 2-edge-connected.
If G0 has a cut edge e, then we assume that H1 and H2

are components of G0 � e: Notice that G0 is reduced.
For i¼ 1, 2, by Theorem 2.1(v) and by Claims 1 and 2,
jVðHiÞj 62 f1, 2, 3, 4g, and if jVðHiÞj ¼ 5, then Hi ¼ K2, 3: By
Claim 2, we assume that jVðH1Þj ¼ 5 and jVðH2Þj ¼ 6: As
H1 ¼ K2, 3 and d2ðG0Þ ¼ 2, we have d1ðH2Þ ¼ 0, d2ðH2Þ � 1:
By Theorem 1.3(iii), H2 2 fK1,K2,K1, 2g, contrary to Claim
1. This justifies Claim 3.

By Theorem 1.3(iv), n0 2 f10, 11g: Thus, G is reduced. By
Theorem 1.5, FðG0Þ � 4: Thus, d3ðG0Þ ¼ 8 if n0 ¼ 10, or
d3ðG0Þ ¼ 8 and d4ðG0Þ ¼ 1 if n0 ¼ 11:

Claim 4. girthðG0Þ ¼ 4:
Assume that girthðG0Þ � 5: First of all, we assume that

n0 ¼ 11: Let D4ðG0Þ ¼ fw1g: For an integer i � 0, define
Ti ¼ fu 2 VðG0Þ : distðu,w1Þ ¼ ig: Then jT0j ¼ 1, jT1j ¼
4, jT2j ¼ 6, and D2ðG0Þ � T1: Let L1 be the subgraph in G0

induced by T2. Then L1 is a 6-cycle a1a2 � � � a6a1: Let T1 ¼
fu1, u2, u3, u4g, where u1, u4 2 D2ðG0Þ and u2, u3 2 D3ðG0Þ:
Then for i¼ 2, 3, jNG0 ðuiÞ \ T2j ¼ 2, and for i¼ 1, 4,
jNG0 ðuiÞ \ T2j ¼ 1: By symmetry and girthðG0Þ � 5, we may
assume that u2a1, u2a4 2 EðG0Þ, and u3a2, u3a5 2 EðG0Þ: We
also assume that u1a3, u4a6 2 EðG0Þ: So G0 ¼ P2ð11Þ: By
Lemma 2.4, G0 is collapsible, a contradiction. Next we
assume that n0 ¼ 10 and so VðG0Þ ¼ D2ðG0Þ [ D3ðG0Þ:

As d3ðG0Þ ¼ 8, there is a vertex w2 2 D3ðG0Þ such that
NG0 ðw2Þ\D2ðG0Þ ¼ ;: Define Ti¼fu2VðGÞ :distðu,w2Þ¼ ig:
Then jT0j¼1,jT1j¼3,jT2j¼6, and D2ðG0Þ�T2: Let T1¼
fu1,u2,u3g and let L2 be the subgraph in G0 induced by T2.
Then L2 is a 6-path a1a2a3a4a5a6: Notice that for i¼1, 2, 3,
jNG0 ðuiÞ\T2j¼2: As girthðG0Þ�5, by symmetry, we may
assume that u1a2,u1a52EðGÞ,u2a1,u2a42EðGÞ and
u3a3,u3a62EðGÞ: Then G0 ¼P�ð10Þ and d2ðGÞ¼2, contrary
to (1). This proves Claim 4.

Let C4 ¼ v1v2v3v4v1 be a 4-cycle in G0: Let p ¼
ðV1,V2Þ ¼ ðfv1, v3g, fv2, v4gÞ be a partition of VðC4Þ: Form
the graph G0=p with the new edge ep as in Definition 2.2.
Then jVðG0=pÞj 2 f8, 9g:
Claim 5. G0=p is not 2-edge-connected.

Assume that G0=p is 2-edge-connected. As d1ðG0Þ ¼ 0
and d2ðG0Þ ¼ 2, we have d2ðG0=pÞ � 2: If G0=p is K3-free,

Figure 8. An illustration for Claim 8 in the proof of Theorem 1.8.
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then by Theorem 1.3(iv), the reduction of G0=p is K1, Thus,
G0 ¼ K1, contrary to (1). Hence G0=p must contains a K3.
Let uvxu be a K3 in G0=p: As G0 is reduced, either x 2
fv1, v3g or x 2 fv2, v4g: Without loss of generality, we
assume that x 2 fv1, v3g, and uv1, vv3 2 EðG0Þ: By Claim 2,
either dG0 ðuÞ � 3 or dG0 ðvÞ � 3: Without loss of generality,
we assume that dG0 ðuÞ � 3: Let H be the graph obtained
from G0=p by contracting uvxu and let z be the vertex on
which uvxu is contracted. Then jVðHÞj 2 f6, 7g and H is 2-
edge-connected. If d2ðHÞ � 2, then by Theorem 1.3(i), H is
collapsible, forcing that G0 is collapsible, a contradiction.
Thus, d2ðHÞ � 3: As d2ðG0=pÞ � 2, dHðzÞ ¼ 2: It implies
that dG0=pðvÞ ¼ 2, and so d2ðG0=pÞ ¼ 3, contrary to the fact
that d2ðG0=pÞ � 2: Claim 5 follows.

Claim 6. dG0 ðv1Þ þ dG0 ðv3Þ � 5 and dG0 ðv2Þ þ dG0 ðv4Þ � 5:
Assume that dG0 ðv1Þ þ dG0 ðv3Þ � 4: Then v1, v3 2 D2ðG0Þ:

Thus, dG0 ðv2Þ � 3 and dG0 ðv4Þ � 3: If dG0 ðv2Þ ¼ 4, then we
set Q1 ¼ G0 � fv1, v3, v4g: Thus, Q1 is connected, jVðQ1Þj 2
f7, 8g, d1ðQ1Þ ¼ 0 and d2ðQ1Þ � 2: By Theorem 1.4, Q2 2
fK1,K2,K2, 3g, a contradiction. So dG0 ðv2Þ ¼ dG0 ðv4Þ ¼ 3: Let
Q2 ¼ G0 � fv1, v3, v2, v4g: Then Q2 is connected, jVðQ2Þj 2
f6, 7g, d1ðQ2Þ ¼ 0 and d2ðQ2Þ � 2: By Theorem 1.4, Q2 2
fK1,K2,K2, 3g, a contradiction. Claim 6 is justified.

As G0 is 2-edge-connected, by Claims 5 and 6, fv1,
v2, v3, v4g is a vertex-cut of G0: Let L1 and L2 be the compo-
nents of G0 � fv1, v2, v3, v4g such that NG0 ðv1Þ \ VðL2Þ ¼
NG0 ðv3Þ \ VðL2Þ ¼ ; and NG0 ðv2Þ \ VðL1Þ ¼ NG0 ðv4Þ \
VðL1Þ ¼ ;: Also we assume that jVðL1Þj � jVðL2Þj: As n0 2
f10, 11g, jVðL1Þj 2 f1, 2, 3g: By Claims 2 and 3, jVðL1Þj 6¼ 3:
If jVðL1Þj ¼ 2, as G0 has no triangles, we have D2ðG0Þ ¼
VðL2Þ, contrary to Claim 2. So jVðL1Þj ¼ 1:

Let VðL1Þ ¼ fvg: Then vv1, vv3 2 EðG0Þ: If dG0 ðv2Þ ¼ 4,
then we set Q3 ¼ G0 � fv, v1, v3, v4g: Thus, Q3 is connected,
jVðQ3j 2 f6, 7g, d1ðQ3Þ ¼ 0 and d2ðQ3Þ � 2: By Theorem
1.4, Q3 2 fK1,K2,K2, 3g, a contradiction. Hence dG0 ðv2Þ ¼
dG0 ðv4Þ ¼ 3: Let Q4 ¼ G0 � fv, v1, v3, v2, v4g: Then Q4 is
connected, jVðQ4Þj 2 f5, 6g, d1ðQ4Þ ¼ 0 and d2ðQ4Þ � 2: By
Theorem 1.4, Q4 ¼ K2, 3: Therefore, n0 ¼ 10 and G ¼ K2

2, 3, a
contradiction. w

Proof of Theorem 1.8. Let G0 be the reduction of G. By
Theorem 1.7, if n � 11, then G0 2 F 11: Hence we assume
that n 2 f12, 13, 14g: Arguing by contradiction to prove
Theorem 1.8, we assume that

G0 6¼ K1, and none of ðiÞ, ðiiÞ, andðiiiÞholds: (4)

By assumption, it is known that

d1ðGÞ ¼ 0, and d2ðGÞ � 1: (5)

By Theorem 2.1(v), we have

j[v2D1ðG0ÞPIGðvÞj � 4d1ðG0Þ, and if d2ðG0Þ � 1, then j[v2D2ðG0Þ
PIGðvÞj � 4ðd2ðG0Þ � 1Þ þ 1:

(6)

By (5) and (6), we must have d1ðG0Þ � 3 and d1ðG0Þ þ
d2ðG0Þ � 5: Let n0 ¼ jVðG0Þj:
Claim 1. d1ðG0Þ þ d2ðG0Þ � 3:

Otherwise, d1ðG0Þ þ d2ðG0Þ ¼ 4: Thus, ðd1ðG0Þ, d2ðG0ÞÞ 2
fð3, 1Þ, ð2, 2Þ, ð1, 3Þ, ð0, 4Þg: If d1ðG0Þ ¼ 3 and d2ðG0Þ ¼ 1,
then n0 ¼ 5, and so G0 ¼ Kþ

1, 3 and n¼ 14; if d1ðG0Þ ¼ 2 and
d2ðG0Þ ¼ 2, then n0 ¼ 4, n 2 f13, 14g, and G0 ¼ P4; if
d1ðG0Þ ¼ 1 and d2ðG0Þ ¼ 3, then n0 ¼ 5,G0 ¼ Cþ

4 and
n¼ 14; if d1ðG0Þ ¼ 0 and d2ðG0Þ ¼ 4, then n 2 f13, 14g and
G0 ¼ C4, and so G 2 S13 [ S14, contrary to (4).

Claim 2. d1ðG0Þ ¼ 0:
Otherwise, d1ðG0Þ 2 f1, 2, 3g: Assume that d1ðG0Þ ¼ 3: By

Claim 1, d2ðG0Þ ¼ 0: Thus, n0 ¼ 4, n 2 f13, 14g and G0 ¼
K1, 3, contrary to (4).

Assume that d1ðG0Þ ¼ 2 and D1ðG0Þ ¼ fa1, b1g with
NG0 ða1Þ ¼ a2 and NG0 ðb1Þ ¼ b2: By Claim 1, d2ðG0Þ � 1: If
a2 ¼ b2 and dG0 ða2Þ ¼ 2, then G0 ¼ K1, 2 and n � 14; if
a2 ¼ b2 and dG0 ða2Þ � 3, then jVðG0Þ � fa1, b1gj �
14� 8 ¼ 6, d1ðG0 � fa1, b1gÞ � 1 and d1ðG0 � fa1, b1gÞ þ
d2ðG0 � fa1, b1gÞ � 2: By Theorem 1.7, d1ðG0 � fa1, b1gÞ ¼
1: As the number of odd degree vertices in a graph is even,
by Theorem 2.1(vii), FðG0 � fa1, b1gÞ � 2: Thus, G0 �
fa1, b1g 2 fK2,K2, tg, t 2 f1, 2, 3, 4g, contrary to Claim 1 and
the hypothesis that d1ðG0Þ ¼ 2: So a2 6¼ b2 and either
dG0 ða2Þ � 3 or dG0 ðb2Þ � 3: Hence, jVðG0Þ � fa1, b1gj �
14� 8 ¼ 6: If dG0 ða2Þ � 3 and dG0 ðb2Þ � 3, then d1ðG0 �
fa1, b1gÞ ¼ 0 and d2ðG0

1 � fa1, b1gÞ � 3: By Theorem
2.1(vii), FðG0 � fa1, b1gÞ � 2, and so G0 � fa1, b1g ¼
K2, 3,G0 ¼ Kþþ

2, 3 and n 2 f13, 14g: If dG0 ða2Þ ¼ 2 and
dG0 ðb2Þ � 3, then by Claim 1, d1ðG0 � fa1, b1gÞ ¼ 1 and
d2ðG0

1 � fa1, b1gÞ ¼ 1: By Theorem 2.1(vii), FðG0 �
fa1, b1gÞ � 2, and so G0 � fa1, b1g ¼ K2, a contradiction.

Assume that d1ðG0Þ ¼ 1 with D1ðG0Þ ¼ fa1g: Let
a1a2 � � � akðk � 2Þ be a path in G0 such that dG0 ðaiÞ ¼ 2ði ¼
2, :::, k� 1Þ and dG0 ðakÞ � 3 and H ¼ G0 � fa1, :::, ak�1g:
Then d1ðHÞ ¼ 0, and d2ðHÞ � 3 and jVðHÞj � 14� 4 ¼ 10:
If d2ðHÞ � 2, by Theorem 1.7, H 2 fK2

2, 3, P
�ð10Þ, Pð10Þg:

So n¼ 14, and G0 2 fðK2
2, 3Þþ, ðP�ð10ÞÞþ, ðPð10ÞÞþg: If

d2ðHÞ ¼ 3, then jVðHÞj � 14� 4� 3 ¼ 7: By Theorem
2.1(vii), FðHÞ � 3: By Theorem 1.5, H 2 fK2, 3,K1, 3

ð1, 1, 1Þ,Tð1, 1Þg: Thus, G0 2 fKþ
2, 3,K

þ
1, 3ð1, 1, 1Þ,Tþ

1 ð1, 1Þ,
Tþ
2 ð1, 1Þg, and if G0 ¼ Kþ

2, 3, then n 2 f12, 13, 14g, and if
G0 2 fTþ

1 ð1, 1Þ,Tþ
2 ð1, 1Þ,Kþ

1, 3ð1, 1, 1Þg, then n¼ 14. Claim
2 holds.

Claim 3. d2ðG0Þ ¼ 1:
Otherwise, d2ðG0Þ 2 f0, 2, 3g: If d2ðG0Þ ¼ 3, then n0 �

14� 8þ 2 ¼ 8: By Theorem 2.1(vii), FðG0Þ � 3: By
Theorem 1.5, G0 2 fK1, 3ð1, 1, 1Þ,K2, 3,Tð1, 1Þg: If G0 ¼
K1, 3ð1, 1, 1Þ, then n 2 f13, 14g, and if G0 ¼ Tð1, 1Þ, then
G 2 S13 [ S14, contrary to (4). If d2ðG0Þ ¼ 2, then n0 �
14� 4þ 1 ¼ 11: By Theorem 1.7 and Claim 2, G0 2
fK2

2, 3,P
�ð10Þ,P2ð11Þg: If G0 ¼ K2

2, 3, then G0 2 S13 [ S14; if
G0 ¼ P2ð11Þ, then G0 2 S14; if G0 ¼ P�ð10Þ, then n 2
f13, 14g, contrary to (4).

Next we assume that d2ðG0Þ ¼ 0: Then dðG0Þ � 3: By
Theorem 1.6 and Lemma 2.5, n0 2 f12, 14g: If n0 ¼ 12, by
Lemma 2.6, G0 2 fP1ð12Þ,P2ð12Þ,P3ð12Þg, contrary to (4). If
n0 ¼ 14, then G ¼ G0: If G has an edge-cut X with jXj � 2,
then we set Z1 and Z2 are the components of G � X with
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jZ1j � jZ2j: Thus, jZ1j 2 f6, 7g and FðZ1Þ � 2: Therefore,
Z1 ¼ K2, tðt ¼ 4, 5Þ, a contradiction. So G is 3-edge-con-
nected. By Theorem 1.2(iv), either G 2 S14 or G ¼ P1ð14Þ,
contrary to (4). Claim 3 holds.

By Claim 3, we denote D2ðG0Þ ¼ fvg:
Claim 4. G0 is 2-edge-connected.

Let e be an edge-cut of G0 and let H1 and H2 be the com-
ponents of G0 � e such that VðH1Þ \ D2ðG0Þ ¼ ;: By Claims
2 and 3 and by Theorem 2.1(v), jVðHiÞj � 6ði ¼ 1, 2Þ: Thus,
jVðH1Þj 2 f6, 7, 8g: Since d1ðH1Þ ¼ 0 and d2ðH1Þ � 1 and
since H1 is reduced, by Theorem 1.4, H1 ¼ K2, 3, a contra-
diction. Claim 4 holds.

Claim 5. n0 2 f13, 14g: Therefore, G0 ¼ G and Theorem
1.8(i) holds.

Otherwise, by Lemma 2.5, n0 ¼ 12, Let H ¼ G0 � v and
NG0 ðvÞ ¼ fu1, u2g: As H is reduced and jVðHÞj ¼ 11, by
Theorem 1.2(i), either u1 2 D3ðG0Þ or u2 2 D3ðG0Þ: Thus,
d2ðHÞ 2 f1, 2g: By Theorem 1.7, H ¼ Pð11Þ: Thus, G0 ¼
P5ð12Þ: By Lemma 2.4, G0 is collapsible, a contradiction. So
Claim 5 holds.

Claim 6. (i) If n0 ¼ 13, then d2ðG0Þ ¼ 1, d3ðG0Þ 2
f8, 9, 10, 11, 12g, and DðG0Þ � 7: Furthermore, if DðG0Þ ¼ 3,
then d3ðG0Þ ¼ 12 and girthðG0Þ ¼ 4:

(ii) If n0 ¼ 14, then d2ðG0Þ ¼ 1 and d3ðG0Þ 2 f8, 9, :::, 12g
and DðG0Þ 2 f4, 5, :::, 8g: Furthermore, if DðG0Þ � 5,
then girthðG0Þ ¼ 4:

(i) Assume that n0 ¼ 13: Then FðG0Þ � 3: By Claims 2
and 3, we have d3ðG0Þ � 8 and DðG0Þ � 7: If DðG0Þ ¼ 3,
then d3ðG0Þ ¼ 12: By Lemma 2.7, girthðG0Þ ¼ 4:

(ii) Assume that n0 ¼ 14: As FðG0Þ � 3, we have
d3ðG0Þ � 8 and DðG0Þ � 8: Assume that v 2 VðG0Þ such that
dG0 ðvÞ ¼ DðG0Þ � 5 and girthðG0Þ � 5: Let Ti ¼ fx 2 VðG0Þ :
distG0 ðx, vÞ ¼ ig: Then jT0j ¼ 1, jT1j ¼ 5 and jT2j � 9: Thus,
n0 � 1þ 5þ 9 � 15, a contradiction. So, if DðG0Þ � 5,
then girthðG0Þ ¼ 4:

Claim 7. girthðG0Þ ¼ 4:
Assume that girthðG0Þ � 5: If n0 ¼ 14, by Claim 5(ii),

DðGÞ ¼ 4: By Lemma 2.9, G is supereulerian, contrary to
(4). Next we assume that n0 ¼ 13: Notice that G ¼ G0: As
girthðGÞ � 5,DðGÞ ¼ 4: So we have ðd2ðGÞ, d3ðGÞ, d4ðGÞÞ 2
fð1, 8, 4Þ, ð1, 10, 2Þg: If jNGðvÞ \ D4ðGÞj � 1, then jVðG�
vÞj ¼ 12, d1ðG� vÞ ¼ 0 and d2ðG� vÞ � 1: By Theorem
1.8(i), G� v 2 fP1ð12Þ, P2ð12Þ, P3ð12Þg: Thus, G 2 S13, con-
trary to (4). So jNGðvÞ \ D4ðGÞj ¼ 0: Choose w 2 D4ðGÞ:
For an integer i � 0, define Ti ¼ fu 2 VðGÞjdistðu,wÞ ¼ ig
Then jT0j ¼ 1, jT1j ¼ 4, jT2j � 8 and v 2 T2: As n¼ 13,

jT2j ¼ 8: Thus, for any x 2 T1, x 2 D3ðGÞ: Let T1 ¼
fu1, u2, u3, u4g: As v 2 T2, we assume that vu1 2 EðGÞ:

Consider H ¼ G� fu1, vg: Then jVðHÞj ¼ 11, d1ðHÞ ¼ 0
and d2ðHÞ � 2: By Claim 4, H is connected. By Theorem
1.7, H ¼ Pð11Þ: Let D2ðHÞ ¼ fzg: Then either vz 2 EðGÞ
or u1z 2 EðGÞ: If zv 2 EðGÞ, then NGðvÞ ¼ fz, u1g: As
jNGðu1Þ \ VðHÞj ¼ 2, G must have a 4-cycle, a contradic-
tion. So u1z 2 EðGÞ: Therefore, jNGðuÞ \ ðVðHÞ � fzgÞj ¼ 1
and NGðvÞ \ ðVðHÞ � fzgÞj ¼ 1: As girthðGÞ � 5, the sub-
graph induced by VðHÞ [ fu1g is P5ð12Þ: By Lemma 2.4, G
is collapsible, a contradiction. So Claim 7 holds.

By Claim 7, we assume that G has a 4-cycle C4 ¼
v1v2v3v4v1: Let p ¼ ðV1,V2Þ ¼ ðfv1, v3g, fv2, v4gÞ be a parti-
tion of VðC4Þ: Form the graph G=p with the new edge ep as
in Definition 2.2.
Claim 8. j0ðG0=pÞ � 2:

By Claim 4, j0ðG0Þ � 2: If G0=p has a cut edge, then it
must be ep: Thus, fv1, v2, v3, v4g is a vertex-cut of G0: Let H1

and H2 be the components of G0 � fv1, v2, v3, v4g such that
jVðH1Þj � jVðH2Þj: Also we assume that NG0 ðv1Þ \ VðH2Þ ¼
NG0 ðv3Þ \ VðH2Þ ¼ ; and NG0 ðv2Þ \ VðH1Þ ¼ NG0 ðv4Þ \
VðH1Þ ¼ ;: As n0 2 f13, 14g, jVðH1Þj 2 f1, 2, 3, 4, 5g: For
i¼ 1, 2, let Li induced by VðHiÞ [ fv1, v2, v3, v4g: By Claims
2, 3, and 4, j0ðLiÞ � 2 and d2ðLiÞ � 3: If jVðH1Þj � 3, by
Theorem 1.3(ii) and (iv), we have jVðL1Þj ¼ 7 and L1 2
fK1, 3ð1, 1, 1Þ,Tð1, 1Þg: It contradicts the fact that NL1ðv2Þ ¼
NL1ðv4Þ: So jVðH1Þj 2 f4, 5g and jVðL1Þj 2 f8, 9g: By
Theorem 1.3(iv), d2ðL1Þ ¼ 3: As d2ðGÞ ¼ 1, we have
d2ðL2Þ ¼ 2: By Theorem 1.3(iv), jVðL2Þj ¼ 10: By Theorem
1.7, L2 ¼ P�ð10Þ: It contradicts the hypothesis that L2 con-
tains the 4-cycle v1v2v3v4v1: Claim 8 holds.

Consider the reduction ðG=pÞ0 of G=p: Let x 2 VðG=pÞ0:
with dðG=pÞ0 ðxÞ ¼ 2, either x 2 D2ðGÞ or PI(x) contains

either u1 or u2. So d2ððG=pÞ0Þ � 3: In particular, if
d2ððGpÞ0Þ ¼ 3 with x, y 2 D2ððG=pÞ0Þ such that u1 2 PIðxÞ
and u2 2 PIðyÞ, then xy 2 EððG=pÞ0Þ: Next we will use
ðG=pÞ0 to find the graph G. Figures 6–8 are originally
from [12].

Assume that n0 ¼ 13: Then jVðG=pÞj ¼ 11, d1ðG=pÞ ¼ 0
and d2ðG=pÞ � 1: By Claim 8 and Theorem 1.7, ðG=pÞ0 2
fPð10Þ,Pð11Þg: If ðG=pÞ0 ¼ Pð10Þ, then G=p contains the
parallel edges. Thus, G ¼ P2ð13Þ as shown in Figure 9.

If ðG=pÞ0 ¼ P11, then G=p ¼ Pð11Þ: If ep is incident to
the degree two vertex in G=p, then G ¼ P1ð13Þ as shown in
Figure 10. If ep is not incident to the degree two vertex,
then G ¼ P3ð12ÞðeÞ meaning subdividing an edge e in

Figure 9. An illustration for Claim 8 in the proof of Theorem 1.8.
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P3ð12Þ as shown in Figure 1, where e 2 EðP3ð12ÞÞ � EðC4Þ:
Thus, G 2 S13: So Theorem 1.8(ii) holds.

Next we assume that n0 ¼ 14: Then jVðG=pÞj ¼ 12,
d1ðG=pÞ ¼ 0 and d2ðG=pÞ � 1: By Theorem 1.8(ii) and
Claim 8, ðG=pÞ0 2 fPð10Þ, Pð11Þ, P1ð12Þ, P2ð12Þ, P3ð12Þg: If
ðG=pÞ0 2 fP1ð12Þ,P2ð12Þ,P3ð12Þg, then is supereulerian.
Thus, G 2 S14:

Assume that ðG=pÞ0 ¼ Pð10Þ: Then G=p either contains a
K3 or two C2 such that ðG=pÞ=K3 ¼ P10 or ðG=pÞ=ðC2 [
C2Þ ¼ Pð10Þ: Assume that ðG=pÞ=K3 ¼ Pð10Þ: If ep 2 EðK3Þ,
since G is K3-free, G is the a graph with the structure as
shown in Figure 6. Thus, G contains a collapsible subgraph
K3, contrary to the fact that G ¼ G0 is reduced. If ep 62
EðK3Þ, then G=p and G are graphs as shown in Figure 7.
Thus, G 2 S14, contrary to (4).

Assume that ðG=pÞ=ðC2 [ C2Þ ¼ Pð10Þ: Then two C2 cycles
must be incident with the edge ep in G=p: Thus, G=p and G
are shown in Figure 8. Let p0 ¼ ðfx1, x3g, fx2, x4gÞ be a parti-
tion of a 4-cycle in G as shown in Figure 8. Then G=p0 contains
two C2. Let J ¼ ðG=p0Þ=ðC2 [ C2Þ: Then jVðJÞj ¼ 10, dðJÞ �
3 and j0ðJÞ � 3: By Theorem 1.2(i), J is collapsible. By
Theorem 2.3(i), G is collapsible, a contradiction.

Next, we assume that ðG=pÞ0 ¼ Pð11Þ: As d2ðGÞ ¼ 1,G=p
and G are the graphs as shown in Figure 11. So Theorem
1.8(iii) holds. The proof of Theorem 1.8 is now complete. w

4. Applications

Spanning trailable graphs are a special class of supereulerian
graphs. Let e, e0 2 EðGÞ: A trail from e to e0 is called an
ðe, e0Þ-trail. A graph is spanning trailable if for any pair of
edges e, e0 2 EðGÞ, G has a spanning ðe, e0Þ-trail. As e ¼ e0 is
possible, spanning trailable graphs are supereulerian. Luo
et al. [23] first studied spanning trailable graphs (called
Eulerian-connected graphs in [23]). They showed that every

4-edge-connected graph is spanning trailable, improving the
former result of Caltin [5] and Jaeger [16] that every 4-
edge-connected graph is supereulerian. Thus it is natural to
study which 3-edge-connected graphs are spanning trailable.

Suppose that e ¼ u1v1, e0 ¼ u2v2 2 EðGÞ denote two edges
of G. If e 6¼ e0, then the graph Gðe, e0Þ is obtained from G
by replacing e ¼ u1v1 by a path u1vev1 and by replacing e0 ¼
u2v2 by a path u2ve0v2, where ve, ve0 are two new vertices not
in V(G). If e ¼ e0, then Gðe, e0Þ is also denoted by G(e) and
is obtained from G by replacing e ¼ u1v1 by a path u1vev1:
Let u, v 2 VðGÞ, a (u, v)-trail is a trail from u to v. A graph
G is strongly spanning trailable if for any e, e0 2 EðGÞ,Gðe, e0Þ
has a spanning ðve, ve0 Þ-trail. By definition,

every strongly spanning trailable graphis also spanning trailable:

(7)
Let Z8 denote the set of integers modulo 8, and V8 denote

theWagner graph, which has vertex set .VðV8Þ ¼ fvi : i 2 Z8g
and edge set EðV8Þ ¼ fviviþ1 : i 2Z8g[fv1v5,v2v6,v3v7, v4v8g:
As the Wagner graph V8 is spanning trailable but not strongly
spanning trailable [27], strongly spanning trailable graphs and
spanning trailable graphs are not equivalent.

Theorem 4.1. Let G be a 3-edge-connected non-strongly
spanning spanning trailable simple graph. If jVðGÞj � 11,
then G 2 fV8,Pð10Þg:
Proof. Let G be a non-strongly spanning trailable graph with
j0ðGÞ � 3: Then there exist edges e, e0 2 EðGÞ such that
Gðe, e0Þ does not have a spanning ðve, ve0 Þ-trail. Let H be the
graph obtained from Gðe0, e00Þ by adding a new vertex z0 and
new edges z0ve0 , z0ve00 : Then H is not supereulerian. As
jVðGÞj � 11, we have jVðHÞj � 14: Let H0 be the reduction
of H. As G is 3-edge-connected, H0 6¼ K1 is 2-edge-con-
nected, and d2ðH0Þ � 1: In addition, if d2ðH0Þ ¼ 0, then
jVðH0Þj � 11� 4 ¼ 7, and if d2ðH0Þ ¼ 1, then D2ðH0Þ ¼
fz0g: By Theorem 1.8(iii), H0 2 fPð11Þ, P1ð13Þ, P2ð13Þ,
P2ð14Þg: Since G is a simple graph, H0 62 fP2ð13Þ, P2ð14Þg: If
H0 ¼Pð11Þ, then G ¼ V8. If H0 ¼ P1ð13Þ, then G¼Pð10Þ: w

Harary and Nash-Williams showed that there is a close
relationship between a graph and its line graph concerning
Hamilton cycles.

Theorem 4.2 (Harary and Nash-Williams [15]). Let G be a
graph with jE(G)j � 3. Then L(G) is hamiltonian if and only
if G has an eulerian subgraph H with EðG� VðHÞÞ ¼ ;:

Figure 10. An illustration for Claim 8 in the proof of Theorem 1.8.

Figure 11. An illustration for Claim 8 in the proof of Theorem 1.8.
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Let G be a graph such that jðLðGÞÞ � 3 and G 6¼ K1, n�1:
The core of this graph G, denoted by G0, is obtained from
G� D1ðGÞ by contracting exactly one edge xy or yz for each
path xyz in G with dGðyÞ ¼ 2:

Lemma 4.3 (Shao [26]). Let G be a connected nontrivial graph
such that jðLðGÞÞ � 3, and let G0 denote the core of G.

(i) G0 is uniquely determined by G with j0ðG0Þ � 3:
(ii) (see also Lemma 2.9 of [19]) If for any e, e0 2

EðG0Þ,G0ðe, e0Þ has a spanning ðve, ve0 Þ-trail, then L(G)
is Hamilton-connected.

In [1] and [2], Bauer proposed the problems of determin-
ing best possible sufficient conditions on the vertex degrees
of a simple graph (or a simple bipartite graph, or a simple
triangle-free graph, respectively) G to ensure that its line
graph L(G) is Hamiltonian. These problems have been set-
tled by Catlin [5] and Lai [17], respectively. Similar prob-
lems are considered in this paper. We seek best possible
sufficient degree conditions of a simple graph G to assure
that L(G) is Hamilton-connected. In [22], Liu et al. proved
several results which imply that for a simple graph G with
sufficiently large n ¼ jVðGÞj, if either dðGÞ � n

8 � 1, or G is
bipartite and dðGÞ � n

16 � 1, then L(G) is Hamilton-con-
nected if and only if jðGÞ � 3 and V8 is not a nontrivial
contraction of G. As an application of our main result, we
prove the following.

Theorem 4.4. Let G be a connected simple graph on n verti-
ces. Each of the following holds:

(i) If dðGÞ � n
10, then for sufficiently large n, L(G) is

Hamilton-connected if and only if both jðGÞ � 3 and G
are not nontrivially contractible to V8.

(ii) If G is bipartite and dðGÞ > n
20, then for sufficiently large n,

L(G) is Hamilton-connected if and only if both jðGÞ � 3
and G are not nontrivially contractible to V8.

Proof. As the proof for (ii) is similar to that for (i), we only
present the proof for (ii). Let G be a graph satisfying the
hypotheses of Theorem with jðLðGÞÞ � 3 and n � 141:
Then dðGÞ � 8, and so DiðGÞ ¼ ; for i 2 f1, 2, :::, 7g: As G
is essentially 3-edge-connected, G is 3-edge-connected. Thus,
G ¼ G0. Let e1, e2 2 EðGÞ and G0 be the reduction of
Gðe1, e2Þ: Then D2ðG0Þ � fve1 , ve2g: Let v 2 VðG0Þ � fve1 , ve2g
such that dG0 ðvÞ � 7: Then PI(v) is nontivial and there is a
vertex x 2 VðPIðvÞÞ such that NGðxÞ � VðPIðvÞÞ: As G is
bipartite, PI(v) is also bipartite. Assume that the vertex par-
tition of PI(v) is (A, B) and x 2 A: Then NGðxÞ � B: Thus,
jBj � dGðxÞ � 8: As dG0 ðvÞ � 7, there is a vertex y 2 B such
that NGðyÞ � VðPIðvÞÞ: Thus, jVðPIðvÞÞj � dGðxÞ þ dGðyÞ >
n
10 : So d3ðG0Þ þ � � � þ d7ðG0Þ � 9: As FðG0Þ � 2, we have
2d2ðG0Þ þ d3ðG0Þ � 10þP

i�5ði� 4ÞdiðG0Þ: As d2ðG0Þ � 2,
we have diðG0Þ ¼ 0 for i � 8: So

jVðG0Þj ¼ d2ðG0Þ þ d3ðG0Þ þ � � � þ d7ðG0Þ � 2þ 9 ¼ 11:

In addition, if jVðG0Þj ¼ 11, then d2ðG0Þ ¼ 2: By Theorem

1.7, G0 2 fK2
2, 3, P

�ð10Þg: If G0 ¼ K2
2, 3, then G0 has a span-

ning ðve1 , ve2Þ-trail. Thus, L(G) is Hamilton-connected. If
G0 ¼ P�ð10Þ, then D2ðP�ð10ÞÞ ¼ fve1 , ve2g and G is con-
tractible to V8. w
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