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For a given network, the number of spanning trees is a key parameter to measure its

reliability in edge failure cases, while the number of subtrees is a key parameter to

measure its reliability in both vertex and edge failures cases. Zhang et al. investigated

the entropy of spanning trees, spanning forests and connected spanning subgraphs of

Koch networks. In this paper, we extend Koch networks to 3–cactus networks, and study

the entropy of subtrees of 3–cactus networks. We present a linear algorithm to count the

number of subtrees in a 3–cactus network, determine the upper and lower bounds of

the entropy of subtrees of these networks and characterize those attaining the extremal

values. As an application, a linear algorithm is developed to count the number of subtrees

in Koch networks, with complexity O(g), where g is the number of iterations. Finally, we

determine the entropy of subtrees of Koch networks.
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1. INTRODUCTION

The number of subtrees of a connected network is well-studied, as an important parameter to
measure the reliability of a network for both vertex and edge failures. For a network G, let p be
the probability of failure of a vertex in G, and q be the probability of failure of an edge in G. The
reliability of the network G, denoted by R(G; p, q), is the probability that the remaining vertices
can communicate with each other. Zhao [1] showed that for given numbers m and n, among the
networks with n vertices and m edges, if p → 0 and q → 1 with p and 1 − q are equivalent
infinitesimals, then networks with more subtrees are more reliable. Therefore, it is of interest to
develop efficient algorithms to count the number of subtrees in a network and, in a given family of
networks, characterize the networks with extremal number of subtrees. Denote by η(G) the number
of subtrees of G. For a vertex v ∈ V(G), let ηv(G) denote the number of subtrees containing v in G.
Székely and Wang [2] determined the maximum and minimum values of η(G) and characterized
all extremal networks among all treesGwith given number of vertices. Yan and Yeh [3] developed a
linear algorithm to count the number of subtrees of a tree. In the same paper, they also characterized
all trees having diameter at least d with maximum number of subtrees, as well as all trees having
maximum degree at least 1 with minimum number of subtrees. On the other hand, Kirk and
Wang [4] characterized all trees with a given maximum degree that have the maximum number
of subtrees. Zhang and Zhang [5] and Zhang et al. [6, 7] characterized the trees attaining the
maximum and minimum numbers of subtrees among all trees with the given degree sequence.
Xiao et al. [8] showed that 5 + n + 2n−3 ≤ η(T) ≤ 2n−1 + n − 1 for any tree T with n vertices.
Yang et al. [9, 10] studied the number of subtrees in spiro and polyphenyl hexagonal chains and
hexagonal and phenylene chains, respectively. For more results on this topic, we refer the readers
to references [11–17].
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Koch networks, introduced by Zhang et al. [18], are typical
fractal networks. Zhang et al. showed that Koch networks have
some important properties in real life networks, such as a
power law degree distribution with exponent between 2 and 3,
a large clustering coefficient and a small average path length.
However, the number of subtrees in Koch networks has not
been determined. In this paper, we investigate the entropy
and enumeration of subtrees in 3–cactus networks, which is
a generalization of Koch networks. We first establish a linear
algorithm to count the number of subtrees in an arbitrary 3–
cactus network. Then we characterize the 3–cactus networks with
upper and lower bounds of the entropy of subtrees. Finally, as an
application, we obtain the entropy of subtrees in Koch networks.

2. PRELIMINARIES

We first introduce some general notation and definitions that
will be used throughout the paper. Undefined notation and
terminology will follow Bondy and Murty [19].

We follow Zhang et al. [18] and Wu et al. [20] to define Koch
networks. Denote by Gm,g the Koch network after g iterations,
which has Ng vertices, Eg edges and Lg triangles. At g = 0, Gm,0 is
a triangle with three vertices labeled by X, Y , and Z, respectively.
This triangle is called the initial triangle, and its three vertices are
called hub vertices. For g ≥ 1, Gm,g is obtained from Gm,g−1 by
attachingm triangles to each of the three vertices in each triangle
in Gm,g−1. The Koch networks form = 2 are shown in Figure 1.

By definition, L0 = 1 and for g ≥ 1, Lg = (3m+ 1)Lg−1. This
implies that Lg = (3m+ 1)g . Likewise, it is routine to derive that
Ng = 2(3m + 1)g + 1 and Eg = 3(3m + 1)g . More properties of
Koch networks can be found in Zhang et al. [18].

To extend the notion of Koch networks, we introduce 3–
cactus networks.

Definition 1. Let G(t) be the set of all 3–cactus networks with
t triangles. We define a 3–cactus network Gt ∈ G(t) by the
following recursive iterations.
Step 1: When t = 0, G0 is isomorphic to K1, the graph with one
vertex and no edges. The only vertex in G0 is called the initial

vertex of Gt .
Step 2: Assume that t ≥ 1 and a 3–cactus network Gt−1 is already
generated by (t − 1) iterations. Then, a 3–cactus network Gt can
be obtained from Gt−1 and a new triangle by identifying a vertex
of the new triangle and a vertex of the Gt−1.

Let G be a subnetwork of G′. If the vertex set (or edge set) of G is
a proper subset of the vertex set (or edge set) of G′, G is called a
proper subnetwork of G′. Let dG(u) denote the degree of vertex u
in G, and (v1, v2, v3) denote the triangle with vertices v1, v2, and
v3. A triangle (v1, v2, v3) in G is called a d-pendant triangle if two
of the vertices v1, v2, v3 have degree 2 in G and the third vertex
has degree equals d in G for some integer d ≥ 3. A d-pendant
triangle is also called a pendant triangle.

By Definition 1, a network Gt ∈ G(t) will contain a pendant
triangle with a vertex of degree at least 4. Define a 3–cactus
networks Gt ∈ G(t) to be in Class I if Gt contains a 4-pendant
triangle, and in Class II if Gt does not contain a 4-pendant
triangle. The following observations follow from Definition 1.

Observation 1. Let t ≥ 0 be an integer, and let Gt ∈ G(t) be
a network formed by Definition 1 using t iterations. Each of the
following holds.
(i) The 3–cactus networks is a generalization of Koch networks,
as building a Koch network Gm,g using g iterations amounts to
(3m+ 1)g iterations in building a 3–cactus network.
(ii) Gt has t triangles, 2t + 1 vertices and 3t edges.
(iii) If (u0, u1, u2) is a pendant triangle of Gt with dGt (u1) =

dGt (u2) = 2, then t ≥ 2 and u0 is a cut vertex of Gt .
(iv) Every Class II 3–cactus network G contains two pendant
triangles (u0, u1, u2) and (u0, v1, v2) sharing a common vertex u0.

Proof: It suffices to justify (iv) as all others are direct
consequences from Definition 1. Let G be a Class II 3–cactus
network. By Definition 1, G ∈ G(t) for some t ≥ 3, and if
G ∈ G(3), then G has a vertex of degree 6 and all other vertices of
degree 2, and so (iv) holds. Assume that t ≥ 4 and (iv) holds
for smaller values of t. By Definition 1, G contains a pendant
triangle (x, z1, z2) with dG(z1) = dG(z2) = 2. Since G is of Class
II, dG(x) > 4. Let G′ = G − {z1, z2}. Then G′ ∈ G(t − 1). If
G′ is of Class II, then by induction, G′ has two pendant triangles
(u0, u1, u2) and (u0, v1, v2) sharing a common vertex u0. But as G
is of Class II, u0 cannot be a vertex of degree 4 in a 4-pendant
triangle in G. If x /∈ {u0, u1, u2, v1, v2}, then (u0, u1, u2) and
(u0, v1, v2) are two pendant triangles in G, and so (iv) holds and
we are done. Hence we assume that x /∈ {u0, u1, u2, v1, v2}. If
x = u0, then (u0, u1, u2), (u0, v1, v2), and (u0, z1, z2) are three
pendant triangles with a common vertex u0, implying (iv) also.
Hence wemust have x ∈ {u1, u2, v1, v2}. By symmetry, we assume
that x = u1. Then the two triangles (u0, u1, u2) and (u1, z1, z2)
sharing a common vertex x = u1 with dG(u1) = 4, and so
(u1, z1, z2) is a 4-pendant triangle. This implies thatG is of Class I,
a contradiction. Therefore, we assume that G′ is of Class I, and so
G′ has a 4-pendant triangle (u′0, u

′
1, u

′
2) with dG′ (u′1) = dG′ (u′2) =

2. SinceG is of Class II, wemay assume that x ∈ {u′0, u
′
1, u

′
2}. Thus

either x = u′0, whence G has two pendant triangles (x, u′1, u
′
2) and

(x, z1, z2) satisfying (iv); or x ∈ {u′1, u
′
2}, whence G is of Class I,

contrary to the assumption that G is of Class II. 2

Thus every Koch network is a 3–cactus network. However,
there exist 3–cactus networks that are not Koch networks, as
shown by the triangle–path P△t and the triangle–star S△t are two
special classes of 3–cactus networks with t triangles. Examples of
these 3–cactus networks are depicted in Figure 2.

3. ALGORITHM FOR COUNTING THE
NUMBER OF SUBTREES

In this section, we present a linear algorithm to count the number
of subtrees in a 3–cactus network and its proof of the correctness.
Algorithm A: Initial condition: Let Gt = (V ,E) be a 3–
cactus network with t triangles with the vertex set V =

{u0, u1, v1, u2, v2, . . . , ut , vt} and the edge set E = {e1, e2, . . . , e3t},
where ui and vi are the vertices added at the i-th iteration, for
each i = 1, 2, . . . , t. Let η(Gt) be the number of subtrees of Gt .
For every v, we assign an ordered pair of real numbers (1, 0) as
the initial weight of the vertex.
Step 1. Set k = t.
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FIGURE 1 | The Koch networks for m = 2.

FIGURE 2 | The 3–cactus networks P△

t and S△

t .

Step 2. Let (a1, b1), (a2, b2), and (a3, b3) denote the weights of uk,
vk and the common neighbor of uk and vk, respectively. Delete the
vertices uk and vk, and reset the value of (a3, b3) by the following:

{

a3 : = a3(3a1a2 + a1 + a2 + 1),

b3 : = b1 + b2 + b3 + a1a2 + a1 + a2.
(1)

Step 3. If k = 1, then stop, output η(Gt) = a3 + b3. Otherwise,
set k : = k− 1 and go to Step 2.

As there will be t iterations using Step 2, the complexity of
Algorithm A is O(t). Since running Algorithm A to a 3–cactus
networks Gt ∈ G(t) can be performed in a reverse order of
building Gt as described in Definition 1, it is possible to arrange
the iterations in Step 2 during the running of Algorithm A so that
when Algorithm A terminates, only the initial vertex of Gt is left.

Example 1. As examples, it is inspected that η(G0) = 1. Let G1 =

(u0, u1, u2) be a triangle. Then G1 has three subtrees avoiding
u0, namely, {u1}, {u2} and the complete graph on {u1, u2}, in G1

that avoids the vertex u0, and six subtrees containing u0, induced

by the vertex subset {u0} or by the edge subsets, {u0u1}, {u0u2},
{u0u1, u0u2}, {u0u1, u1u2}, {u0u2, u1u2}. It follows that η(G1) =

3 + 6 = 9. On the other hand, using Algorithm A, with each of
u0, u1, u2 assigned the initial weight (1, 0), by (1), we have a3 = 6
and b3 = 3. By Step 3 of Algorithm A, we also have η(G1) = 9.

Example 2. Let H be the 3–cactus network generated by 6
iterations, as depicted in Figure 3. Using Algorithm A to H, the
steps of calculating the number of subtrees of H are shown in
Figure 3, which shows η(H) = 21, 096+ 378 = 21, 474.

Theorem 1 proves the correctness of Algorithm A.

Theorem 1. Let Gt be a 3–cactus network generated by t steps
with vertex set V = {u0, u1, v1, u2, v2, . . . , ut , vt}. Let (a, b) denote
the weight of vertex u0. Each of the following holds when Algorithm
A stops.
(i) The value of a, denoted by ηu0 (Gt), is the number of subtrees
containing vertex u0 in Gt .
(ii) The value of b, denoted by η(Gt−u0), is the number of subtrees
that do notcontain vertex u0 in Gt .
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FIGURE 3 | An example of calculating the number of subtrees by Algorithm

A, where two red vertices are deleted at each step.

(iii) The value of a+b, denoted by η(Gt), is the number of subtrees
in Gt .

Proof:We argue by induction on t. If t = 1, then G1 is a triangle.
By AlgorithmA, we have that a = 6 and b = 3, and by inspection,
η(G1) = 9. Thus, the result holds for t = 1. Suppose that k ≥ 2
and the result holds for all values of t < k.

The structural of Gt when t = k ≥ 2 is depicted in Figure 4,
and we shall use Figure 4 and its notation to illustrate our
arguments. Thus, H1, H2 and H3 are the three vertex disjoint
subgraphs ofGt such thatH1 contains exactly one vertex u1 in the
initial 3-cycle G1 = (u0, u1, v1), H2 contains exactly one vertex
v1 in G1 = (u0, u1, v1) and H3 contains exactly one vertex u0 in
G1 = (u0, u1, v1), as described in Definition 1.

Relabel the vertices u1, v1, and u0 asw1,w2, andw3, when each
of them is considered as a vertex in H1, H2, and H3, respectively.
In the rest of the proof of this theorem, we keep in mind that
u1 = w1, v1 = w2, and u0 = w3.

As G1 = (u0, u1, v1) is an initial 3-cycle of Gt , we can view
wi as the initial vertex of the 3–cactus network Hi. For each
i ∈ {1, 2, 3}, since each Hi is a 3–cactus network generated by
at most t − 1 iterations, by applying Algorithm A to Hi ending
at the initial vertex wi of Hi, we obtain the weights (a1, b1),
(a2, b2), (a3, b3) of the vertices w1, w2, and w3, respectively. By
the induction hypothesis, we have, for i ∈ {1, 2, 3}, both (A) and
(B) of the following.

(A) ai is the number of subtrees containing vertexwi in Hi,

(B) bi is the number of subtrees that do not contain vertex

wi in Hi. (2)

At this stage of Algorithm A, the graph to be computed is G1 =

(u0, u1, v1) with the weights assigned to u0, u1, v1 being (a3, b3),

(a1, b1), and (a2, b2), respectively. Running Algorithm A at the
last iteration, we delete the vertices u1 and v1, and reset the weight
(a, b) to the vertex u0 by (1),

a = a3(3a1a2 + a1 + a2 + 1) and

b = b1 + b2 + b3 + a1a2 + a1 + a2. (3)

Let T denote the collection of subtrees of Gt . Define

T 0 = {T ∈ T :w3 ∈ V(T) and w1,w2 /∈ V(T)},

T 3 = {T ∈ T :w1,w2,w3 ∈ V(T)},

T 6 = {T ∈ T :w1,w2 ∈ V(T) and w3 /∈ V(T)},

and for i ∈ {1, 2}, define

T i = {T ∈ T :w3,wi ∈ V(T) and w3−i /∈ V(T)},

T 3+i = {T ∈ T :wi ∈ V(T) and w3,w3−i /∈ V(T)},

T 7 = {T ∈ T :w1,w2,w3 /∈ V(T)}.

Thus T = ∪7
i=0T i is a partition. By (A) and (B) in (2), |T 0| = a3,

|T 4| = a1, |T 5| = a2 and |T 7| = b1 + b2 + b3. As the edge
u0u1 lies in every tree in T 1, we have |T 1| = a1a3. Likewise,
|T 2| = a2a3 and |T 6| = a1a2. Since every tree in T 3 contains
exactly two edges in G1 and there are three pairs of such edges in
G1, we have |T 3| = 3a1a2a3. By definition and (3),

ηu0 (Gt) =

3
∑

i=0

|T i| = a3 + a1a3 + a2a3 + 3a1a2a3

= a3(3a1a2 + a1 + a2 + 1) = a.

With a similar argument and using |T 7| = b1 + b2 + b3, we have

η(Gt − u0) =

7
∑

i=4

|T i| = a1 + a2 + a1a2 + b1 + b2 + b3 = b.

It follows that

η(Gt) =

7
∑

i=0

|T i| = ηu0 (Gt)+ η(Gt − u0) = a+ b.

This shows that when Algorithm A terminates, it outputs the
values as stated in Theorem 1 (i), (ii), and (iii), and justifies the
correctness of Algorithm A.

4. UPPER AND LOWER BOUNDS OF THE
NUMBER OF SUBTREES IN A 3–CACTUS
NETWORK

The following lemma [8] will be used in our proof.

Lemma 1 ([8]). Let G be a connected network with n (n ≥ 3)
vertices and let G1 and G2 be two subnetworks of G such that
G = G1 ∪ G2, V(G1) ∩ V(G2) = {v} and E(G1) ∩ E(G2) = ∅.
Then

η(G) = η(G1)+ η(G2)+ (η(G1)− η(G1 − v)− 1)

(η(G2)− η(G2 − v)− 1)− 1. (4)
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FIGURE 4 | Network Gt.

Theorem 2. For an integer t, S△t is the unique 3–cactus network
with the maximum number of subtrees in G(t).

Proof:We prove the theorem by induction on t, and observe that
the theorem holds when t ∈ {1, 2}. Let k ≥ 3 be an integer and
assume that the result is true for t < k. We consider that case
when t = k.

Let G′ be a 3–cactus network with k triangles, and let (u, v,w)
be a pendant triangle such that dG′ (u) ≥ 4 and dG′ (w) = dG′ (v) =
2. By Observation 1(iii), u is a cut vertex. Let G′

1 = G′ − {w, v}
and G′

2 = (u, v,w).
By the induction hypothesis, η(G′

1) ≤ η(S△
k−1

), where the

equality holds if and only if G′
1 = S△

k−1
. If G′ = S△

k
, then

G′
1 − u = (k − 1)P2, where P2 is the path with 2 vertices. If

G′ 6= S△
k
, then (k− 1)P2 must be a proper subnetwork of G′

1 − u,
which implies η(G′

1 − u) > η((k − 1)P2). Since G
′
2 = (u, v,w)

and G′
2 − u = P2, it follows from (4) that η(G′) ≤ η(S△

k
),

where the equality holds if and only if G′ = S△
k
, which completes

the proof. 2

The next lemma presents some observations which follow
from Algorithm A.

Lemma 2. Let Gt ∈ G(t) be a 3–cactus network with a pendant
triangle (u, v,w) such that dGt (w) = dGt (v) = 2, and let Gt−1 =

Gt − {w, v}. Then
(i) η(Gt) = 5ηu(Gt−1)+ η(Gt−1)+ 3;
(ii) ηw(Gt) = 4ηu(Gt−1)+ 2. 2

Lemma 3. Let t ≥ 3 be an integer and G ∈ G(t) be a Class II 3–
cactus network. Then there exists a Class I 3–cactus network G′ in
G(t) satisfying η(G′) < η(G).

Proof: Let G ∈ G(t) be a Class II 3–cactus network. By
Observation 1(iv), G contains two pendant triangles (u0, u1, u2)
and (u0, u,w) such that dG(u0) ≥ 6 and dG(u1) = dG(u2) =

dG(u) = dG(w) = 2, as depicted in Figure 5A. LetH be the graph
depicted in Figure 5. Denote by a0 (b0, respectively) the number
of subtrees containing u0 (not containing u0) inH. By Algorithm
A, when deleting the vertices u1 and u2 from G, the weight of

FIGURE 5 | (A) The network G. (B) The network G′.

vertex u0, denoted by (au0 , bu0 ), can be reset as follows: au0 = 6a0
and bu0 = b0 + 3. Then in the step of deleting the vertices u0 and
w from G, the weight of vertex u is given by ηu(G) = 4au0 + 2,
η(G− u) = 2au0 + bu0 + 1. Thus, we have η(G) = 36a0 + b0 + 6.

Let G′ denote the graph depicted in Figure 5B, which is
obtained from H by identifying vertex u0 of H and a vertex of
degree 2 in P△2 . By Algorithm A, when deleting the vertices u0
and u2 from G′, the weight of vertex u1, denoted by (au1 , bu1 ), is
obtained as au1 = 4a0 + 2, bu1 = 2a0 + b0 + 1. Then in the step
of deleting the vertices u1 and w from G′, the weight of vertex
u is given by ηu(G

′) = 4au1 + 2, η(G′ − u) = 2au1 + bu1 + 1.
Thus, we have η(G′) = 26a0 + b0 + 16. Algebraic computation
yields that η(G) − η(G′) = 10a0 − 10 > 0, and so the lemma
is proved. 2

Theorem 3. For an integer t, P△t is the unique 3–cactus network
with the minimum number of subtrees in G(t).

Proof: By Lemma 3, within the family G(t), for every 3–cactus
network G in Class II, there is always a 3–cactus network G′

in Class I containing fewer subtrees. Thus, we only need to
show that P△t is the unique 3–cactus network with the minimum
number of subtrees, among all the networks of G(t) in Class I.

We prove the conclusion by induction on t. Let Gt ∈ G(t)
be a 3–cactus network with a pendant triangle (u, v,w) such that
dGt (u) = 4 and dGt (w) = dGt (v) = 2.Wewill prove the following
results: (i) P△t is the unique 3–cactus network with the minimum
number of subtrees in G(t); (ii) ηw(Gt) attains theminimum value
if and only if Gt = P△t .

The results hold for t = 1 and 2. Suppose that k ≥ 3 and the
results are true for t < k, we consider the case when t = k. Let
Gk−1 = Gk − {w, v}. Since dGk−1

(u) = 2, by Lemma 2 and the
induction hypothesis, we have that

ηw(Gk) = 4ηu(Gk−1)+ 2 ≥ 4ηu(P
△

k−1)+ 2

and

η(Gk) = 5ηu(Gk−1)+ η(Gk−1)+ 3 ≥ 5ηu(P
△

k−1)+ η(P△k−1)+ 3,

where the equalities hold if and only if Gk = P△
k
. 2

With Algorithm A, we can compute the numbers of subtrees
of S△t and P△t , respectively. Let u0 be the center of S

△

t and v0 be
a vertex of degree 2 in a pendant triangle of P△t . From Algorithm
A, it follows that

{

ηu0 (S
△

t ) = 6ηu0 (S
△

t−1), ηu0 (S
△

0 ) = 1,

η(S△t − u0) = η(S△t−1 − u0)+ 3, η(S△0 − u0) = 0,
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FIGURE 6 | Log-log plot of η(P△

t ) and η(S△

t ) vs. t.

and

{

ηv0 (P
△

t ) = 4ηv0 (P
△

t−1)+ 2, ηv0 (P
△

0 ) = 1,

η(P△t − v0) = η(P△t−1 − v0)+ 2ηv0 (P
△

t−1)+ 1, η(P△0 − v0) = 0.

By algebraic manipulations, we obtain that

η(S△t ) = 6t + 3t (5)

and

η(P△t ) =
25

9
× 4t −

t

3
−

16

9
. (6)

By Theorems 2 and 3, η(S△t ) and η(P△t ) represent the upper
and lower bounds of the number of subtrees in a 3–cactus
network with t triangles, respectively. As shown in (5) and (6),
the numbers of subtrees in S△t and P△t grow exponentially as
the number of triangles increases, as seen in Figure 6, where the
curves of values of η(S△t ) and η(P△t ) vs. t are plotted.

5. THE ENTROPY OF SUBTREES OF KOCH
NETWORKS

The entropy of spanning trees has been well-studied, as seen in
Lyons et al. [21] and Zhang et al. [22, 23], among others. The
entropy of subtrees can be similarly defined.

Definition 2. Let G be a network with N(G) vertices. The entropy
of subtrees of G is defined as follows:

E(G) = lim
N(G)→∞

ln η(G)

N(G)
.

Let T be a tree with n vertices. Székely and Wang [2] and Yan
and Yeh[3] obtained the results of the number of subtrees in
a tree as follows: n(n+1)

2 = η(Pn) ≤ η(T) ≤ η(K1,n−1) =

2n−1 + n − 1, where Pn and K1,n−1 are the path and star with
n vertices, respectively. So, we have

E(K1,n−1) = lim
n→∞

ln(2n−1 + n− 1)

n
= ln2

FIGURE 7 | Another construction of Koch networks. The network after g

iterations, Gm,g, consists of 3m copies of Gm,i labeled by

G
j
m,i (j = 1, 2, . . . , 3m; i = 0, 1, 2, . . . , g− 1).

and

E(Pn) = lim
n→∞

ln n(n+1)
2

n
= 0.

From Equations (5) and (6), we can calculate the entropies of
subtrees of S△t and P△t , respectively, as follows:

E(S△t ) = lim
t→∞

ln(6t + 3t)

2t + 1
=

ln6

2

and

E(P△t ) = lim
t→∞

ln( 259 × 4t − t
3 −

16
9 )

2t + 1
= ln2.

Therefore, for a tree T with n vertices and a 3–cactus network Gt

with t triangles, we have

E(Pn) ≤ E(T) ≤ E(K1,n−1) = E(P△t ) ≤ E(Gt) ≤ E(S△t ).

Now we calculate the entropy of subtrees of Koch networks. The
following definition and notation will be used in this section.

Let α(x) and β(x) be two infinities when x is close to infinity. If

lim
x→∞

α(x)
β(x)

= 1, we say that α(x) and β(x) are equivalent infinities,

and write α(x) ∼ β(x) (x → ∞).
For Koch networks, another construction is given as follows.

The network Gm,g is obtained from Gm,i (i = 0, 1, 2, . . . , g − 1)
and the initial triangle by adding m copies of Gm,i to each of the
three hub vertices of the initial triangle, as shown in Figure 7.

According to the construction, Gm,g has the form illustrated
in Figure 8, where Hg is the subnetwork of Gm,g obtained from
m copies of Gm,i (i = 0, 1, 2, . . . , g − 1) by identifying mg hub
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FIGURE 8 | Koch network Gm,g.

verticesX inm copies ofGm,i (i = 0, 1, 2, . . . , g−1). Then ηX(Hg)
and η(Hg − X) are given by



















ηX(Hg) = (
g−1
∏

i=0
ηX(Gm,i))

m,

η(Hg − X) = m
g−1
∑

i=0
η(Gm,i − X).

(7)

By Algorithm A to the initial triangle (X,Y ,Z), we get that

{

ηX(Gm,g) = ηX(Hg)[3(ηX(Hg))
2 + 2ηX(Hg)+ 1],

η(Gm,g − X) = 3η(Hg − X)+ (ηX(Hg))
2 + 2ηX(Hg)

(8)

and initial conditions are ηX(Gm,0) = 6 and η(Gm,0−X) = 3. So,
we arrive at

η(Gm,g) = 3ηX(Hg)[(ηX(Hg))
2 + ηX(Hg)+ 1]+ 3η(Hg − X). (9)

From Equation (7), we obtain

{

ηX(Hg) = ηX(Hg−1)(ηX(Gm,g−1))
m,

η(Hg − X) = η(Hg−1 − X)+m η(Gm,g−1 − X).
(10)

According to the above theoretical analysis, we give a linear
algorithm for counting the number of subtrees in a Koch
network, as follows.
Algorithm B: Initial condition: Let Gm,g be a Koch network
generated by g iterations and X, Y and Z be three hub vertices
in Gm,g . Let η(Gm,g) denote the number of subtrees of Gm,g .
Step 1. Take k = 1, a = 6, b = 3, x = 1 and y = 0.
Step 2. Suppose that, at iteration k, the number of subtrees
containing X in Hk and the number of subtrees not containing
X in Hk are denoted by x and y, respectively. One gets the values
x and y as

{

x : = x(a)m,

y : = y+mb.

Step 3. Suppose that a and b denote the number of subtrees
containing X in Gm,k and the number of subtrees not containing
X in Gm,k, respectively. We get a and b by

{

a : = x(3x2 + 2x+ 1),

b : = 3y+ x2 + 2x.

Step 4. If k = g, then stop, output η(Gm,g) = a + b. Otherwise,
k : = k+ 1, go to Step 2.

It is not difficult to see that the complexity of the above
algorithm is O(g). In order to calculate the entropy of subtrees
of Koch networks, we need the following lemma:

Lemma 4. Let Gm,g be a Koch network generated by g iterations.
Then

η(Gm,g) ∼ 3(3m+1)g−1
× 63m(3m+1)g−1

(g → ∞).

Proof: From Equation (10), we have the following recurrence
relations:
{

ηX(Hg) = ηX(Hg−1)[ηX(Hg−1)(3(ηX(Hg−1))
2 + 2ηX(Hg−1)+ 1)]m,

η(Hg − X) = (3m+ 1)η(Hg−1 − X)+m[(ηX(Hg−1))
2 + 2ηX(Hg−1)].

It is easy to obtain ηX(Hg) ∼ 3m × (ηX(Hg−1))
3m+1 (g → ∞).

Note that ηX(H1) = 6m.
It follows that

ηX(Hg) ∼ 3
1
3 [(3m+1)g−1−1] × 6m(3m+1)g−1

(g → ∞). (11)

Since η(H1 − X) = 3m, we have

η(Hg − X) = 3m(3m+ 1)g−1 +m

g−1
∑

i=1

(3m+ 1)g−1−i[(ηX(Hi))
2

+2ηX(Hi)]

≤ 3m(3m+ 1)g−1 +m(g − 1)(3m+ 1)g−2 (12)

[(ηX(Hg−1))
2 + 2ηX(Hg−1)]

∼ m(g − 1)(3m+ 1)g−2(ηX(Hg−1))
2 (g → ∞).

From Equations (11) and (12), we get that lim
g→∞

η(Hg−X)

(ηX(Hg ))3
= 0.

From Equation (9), it is easy to see that

η(Gm,g) ∼ 3(ηX(Hg))
3 (g → ∞). (13)

From Equations (11) and (13), we conclude that

η(Gm,g) ∼ 3(3m+1)g−1
× 63m(3m+1)g−1

(g → ∞).

The proof is thus complete. 2

From Lemma 4, we can calculate the entropy of subtrees of
Koch networks, as

E(Gm,g) = lim
g→∞

ln η(Gm,g)

2(3m+ 1)g + 1

= lim
g→∞

ln[3(3m+1)g−1
× 63m(3m+1)g−1

]

2(3m+ 1)g + 1
=

ln6

2
−

ln2

2(3m+ 1)
.
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Next, we can compare the entropy of subtrees of Koch networks

with those of P△t and S△t . Observe that ln2 < ln6
2 − ln2

2(3m+1)
< ln6

2

and lim
m→∞

E(Gm,g) = lim
m→∞

( ln62 − ln2
2(3m+1)

) = ln6
2 . Thus, the

following inequality holds.

E(P△t ) < E(Gm,g) < E(S△t ).

The entropy of subtrees of Koch networks reflects the fact
that although the number of subtrees of Koch networks grows
exponentially, the growth rate is lower than that of the triangle–
star and higher than that of the triangle–path. This result suggests
that if the vertex failure probability p satisfies p → 0, the edge
failure probability q satisfies q → 1, and p and 1−q are equivalent
infinitesimals, then Koch networks are less reliable than the
triangle–star, and more reliable than the triangle–path. Noticing
that E(Gm,g) can be considered as a function of the variable m, it
is easy to see that the entropy of subtrees of Koch networks tends
to the maximum entropy of subtrees of all 3–cactus networks as
m tends to infinity.

6. CONCLUSIONS

In this paper, we have given the definition of the entropy of
subtrees, which is used to compare the average number of
subtrees for networks of different sizes. We have established a
linear algorithm for counting the number of subtrees in any 3–
cactus network, and characterized the 3–cactus networks with
upper and lower bounds of the entropy of subtrees among all 3–
cactus networks with t triangles. In order to avoid exponential
computation, we have also proposed a linear algorithm for
calculating the number of subtrees in Koch networks. Finally,
we have determined the entropy of subtrees of Koch networks
which tends to the maximum entropy of subtrees of all 3–cactus
networks asm tends to infinity.
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the Erdős-Rényi giant component.Combin Probab Comput. (2008) 17:711–26.

doi: 10.1017/S0963548308009188

22. Zhang ZZ, Liu HX, Wu B, Zou T. Spanning trees in a fractal scale-

free lattice. Phys Rev E. (2011) 83:016116. doi: 10.1103/PhysRevE.83.

016116

23. Zhang ZZ, Wu B, Comellas F. The number of spanning trees

in Apollonian networks. Discrete Appl Math. (2014) 169:206–13.

doi: 10.1016/j.dam.2014.01.015

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2020 Dong, Zhao and Lai. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is permitted, provided the original

author(s) and the copyright owner(s) are credited and that the original publication

in this journal is cited, in accordance with accepted academic practice. No use,

distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Physics | www.frontiersin.org 9 October 2020 | Volume 8 | Article 575648

https://doi.org/10.1088/1751-8113/43/39/395101
https://doi.org/10.1088/1751-8113/45/2/025102
https://doi.org/10.1017/S0963548308009188
https://doi.org/10.1103/PhysRevE.83.016116
https://doi.org/10.1016/j.dam.2014.01.015
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles

	Entropy and Enumeration of Subtrees in a Cactus Network
	1. Introduction
	2. Preliminaries
	3. Algorithm for Counting the Number of Subtrees
	4. Upper and Lower Bounds of the Number of Subtrees in a 3–Cactus Network
	5. The Entropy of Subtrees of Koch Networks
	6. Conclusions
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	References


