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Abstract
There have been researches on sufficient spectral conditions for Hamiltonian

properties and path-coverable properties of graphs. Utilizing the Bondy–Chvátal

closure, we provide a unified approach to study sufficient graph eigenvalue con-

ditions for these properties and sharpen several former spectral Hamiltonian results

on balanced bipartite graphs and complementary graphs.

Keywords Hamiltonian graphs � Traceable graphs � (Almost)balanced

bipartite graphs � complementary graphs � (Signless Laplacian)spectral
radius

Mathematics Subject Classification 05C50 � 15A18 � 15A36

1 Introduction

We study simple undirected graphs, with undefined terms and notation following

[3]. As in [3], dðGÞ, jðGÞ, j0ðGÞ and G denote the minimum degree, the

connectivity, the edge-connectivity and the complement of a graph G, respectively.

For an integer k, a graph G is k-connected (resp. k-edge-connected) if jðGÞ� k
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(resp. j0ðGÞ� k). Throughout this paper, for an integer s� 1, let sK1 be the edgeless

graph with s vertices. Let S � VðGÞ be a subset. For any vertex u 2 VðGÞ, define
NSðuÞ ¼ fv 2 S : uv 2 EðGÞg. If H is a subgraph of G, then we use NHðuÞ for

NVðHÞðuÞ. In particular, NGðuÞ ¼ fv 2 VðGÞ : uv 2 EðGÞg and dGðuÞ ¼ jNGðuÞj. We

often use N(u) and d(u) for NGðuÞ and dGðuÞ, respectively, when G is understood

from the context. A graph G is nontrivial if it has at least one edge. As in [3], G is

Hamiltonian (resp., traceable) if G contains a spanning cycle (resp., spanning path),

and is Hamilton-connected if any pair of distinct vertices are joined by a spanning

path.

Definition 1.1 Let q� 0 be an integers and let G be a graph.

(i) G is q-traceable (resp. q-Hamiltonian, q-Hamilton-connected) if any

removal of at most q vertices from G results in a traceable graph (resp., a

Hamiltonian graph, a Hamilton-connected graph).

(ii) G is q-edge-Hamiltonian if any collection of vertex-disjoint paths with at

most q edges altogether must belong to a Hamiltonian cycle in G.

(iii) G is q-path-coverable if V(G) can be covered by no more than q vertex-

disjoint paths.

Following [3], we use G[X] to denote the subgraph of G induced by X. By

Definition 1.1(i), a q-Hamiltonian graph is also a ðq þ 1Þ-traceable graph. However,
a ðq þ 1Þ-traceable graph is not necessarily a q-Hamiltonian graph. For instance, the

Petersen graph is 1-traceable, but not 0-Hamiltonian. Moreover, a traceable graph is

a 0-traceable graph, and a Hamiltonian graph is both a 0-Hamiltonian and a 1-

traceable graph. If G is Hamilton-connected, then for any pair of vertices fu; vg of

G, there is a Hamiltonian path connecting u and v. Thus, G
�
VðGÞnfu; vg

�
contains a

Hamiltonian path, and hence G is 2-traceable.

As in [3], the join G _ H of two disjoint graphs G and H is defined by VðG _
HÞ ¼ VðGÞ [ VðHÞ and EðG _ HÞ ¼ EðGÞ [ EðHÞ [

�
xy : x 2 VðGÞ and

y 2 VðHÞ
�
. A k-regular graph is a graph with dGðuÞ ¼ k for each vertex

u 2 VðGÞ. For two different nonnegative integers p and q, a (p, q)-semi-regular

bipartite graph is a bipartite graph G with vertex bipartition (U, V) such that

dGðuÞ ¼ p; 8u 2 U and dGðvÞ ¼ q; 8v 2 V . As usual, let Kn, Cn and Kk;n�k be the

complete graph, cycle and complete bipartite graph with n vertices, respectively.

Following [15], for nonnegative integers n, k and s satisfying s� k � 1
2
ðn þ s � 2Þ,

define the graph Mk;s
n with n vertices and minimum degree k as follows:

Mk;s
n ¼ Ks _

�
Kn�k�1 [ Kkþ1�s

�
:

In order to characterize the exceptional graphs in our main results, we introduce

several graph families in the following.

Definition 1.2 Let n, k, p, q, r be five nonnegative integers, and s be an integer.
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(i) Define Bn;k;s;r ¼
n

G1 _ G2 : G1 ¼ ðU;VÞ is a connected ðk � s; n � k � 1Þ-
semi-regular bipartite graph with n � s � 1þ r vertices and G2 is a

spanning subgraph of Ksþ1�r, where 0� r � s þ 1 and r 6¼ 1
o
. In

particular, Bn;k;�1;0 ¼ Mk;0
n

� �
¼

n
Kn�k�1 [ Kkþ1

o
.

(ii) Define Cn;s;r ¼
n

G1 _ G2 : G1 is a connected ðp; n � s � 1� pÞ-semi-

regular bipartite graph with n � s � 1þ r vertices and G2 is a spanning

subgraph of Ksþ1�r, where 0� r � s þ 1, r 6¼ 1 and 1� p� n�s�1
2

o
. In

particular, Cn;�1;0 ¼
n

Kp [ Kn�p : where 1� p� n
2

o
.

(iii) Suppose that n ¼ 2k þ 1� s and s� 1. Define Hn;k;s;r ¼
n

G1 _ G2 : G1 is a

r-regular graph with n � k þ r vertices and G2 is a spanning subgraph of

Kk�r, where 0� r � k
o
. In particular, Hn;k;s;k is the set of all k-regular

graphs with n vertices.

(iv) Let Dn;s;r ¼
n�

G1 _ G2

�
_ G3 : G1 and G2 are two connected n�s�1

2
-regular

graphs with jVðG1Þj þ jVðG2Þj ¼ n � r and G3 is a spanning subgraph of

Kr with l
�
G3

�
� n � s � 1, where 0� r � s � 1

o
. In particular,

Dn;1;0 ¼
�

Kn
2;

n
2

�
.

(v) Let Wn;s;r ¼
n

G1 _ G2: G1 is a connected n�s�1
2

-regular graph with n � r

vertices and G2 is a spanning subgraph of Kr with l
�
G2

�
� n � s � 1,

where 0� r � nþs�1
2

o
. In particular, Wn;�1;0 is the set of n

2
� 1

� �
-regular

graphs.

(vi) Suppose that n[ k � 0, p� k þ 1, and let (X, Y) be the vertex bipartition of

Kn;pþq with jXj ¼ n and jYj ¼ p þ q. Let X1 � X be a subset with

jX1j ¼ n � k, Y1 � Y be a subset with jY1j ¼ q� 1 and K ¼ Kn;pþq½X1 [ Y1�
be the induced subgraph. Define Bk;n�k;p;q ¼ Kn;pþq � EðKÞ. When k is

understood from the context, we often write Bk;n�k;p;q as Zp;q and define

Z0
p;q ¼ Zp;q � e, where e ¼ uv 2 EðZp;qÞ satisfying dZp;q

ðuÞ ¼ n and

dZp;q
ðvÞ ¼ p. To simplify the notation in the proofs, we define

Fn;k;s ¼ Znþs�k�1;kþ1�s and F0
n;k;s ¼ Z0

nþs�k�1;kþ1�s: ð1:1Þ

As examples, let L1, L2, . . ., L6 be the six graphs depicted in Fig. 1. By setting

G1 ¼ K2;4 in Definition 1.2 (i)–(ii), we have L1 2 B9;4;2;0 \ C9;2;0. By taking G1 ¼
C7 in Definition 1.2 (iii), we have L2 2 H9;4;0;2. Let G1 ¼ G2 ¼ K3 and G3 ¼ K1;2 in

Definition 1.2 (iv), it follows that L3 2 D9;4;3. As L4 ¼ C6 [ K3, by Definition
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1.2(v), we have L4 2 W9;4;3. Letting n ¼ 5, k ¼ 2 and s ¼ 1 in Definition 1.2 (vi),

we observe that L5 ¼ B2;3;3;2 ¼ Z3;2 ¼ F5;2;1 and Z0
3;2 ¼ F0

5;2;1 ¼ L6.

Following [3], we use G ¼
�
U;V

�
to denote a bipartite graph with vertex

bipartition (U, V); and G is balanced (respectively, almost balanced) if jUj ¼ jVj
(respectively, if jUj � jVj 2 f1;�1g). Let p and q be two nonnegative integers. A

bipartite graph G ¼ ½U;V � is (p, q)-traceable if for any subset S � G satisfying

jS \ Uj ¼ p, jS \ V j ¼ q and jðjUj � pÞ � ðjV j � qÞj� 1, G � S is traceable; and

G ¼ ½U;V � is (p, q)-Hamiltonian if for any subset S � G satisfying jS \ Uj ¼ p,

jS \ V j ¼ q and jUj � p ¼ jVj � q, G � S is Hamiltonian.

For two graphs G and H, we write H � G if H is a subgraph of G. For

nonnegative integers n and k, let Gn be the class of graphs with n vertices, and

define the k-closure of a graph G following [4], denoted by CkðGÞ, to be the graph

obtained from G by recursively joining pairs of nonadjacent vertices whose degree

sum is at least k until no such pair remains nonadjacent. By definition, G � CkðGÞ.
A graphical property P is k-stable if for any graph G 2 Gn, G has Property P if and

only if CkðGÞ has Property P. It is worth noting that this definition of k-stable is a

slightly different from that in [2].

There is also a closure concept for bipartite graphs [2]. Let k [ 0 be an integer

and G ¼ ½U;V � be a bipartite graph. The bipartite closure graph BkðGÞ of G is the

bipartite graph obtained from G by recursively joining pairs of nonadjacent vertices

u, v with u 2 U and v 2 V whose degree sum is at least k until no such pair remains

nonadjacent. By definition, G � BkðGÞ.
Let A(G) and D(G), respectively, be the adjacency matrix and the diagonal

degree matrix of G. The signless Laplacian matrix of G is defined to be

QðGÞ ¼ DðGÞ þ AðGÞ. The spectral radius of G, denoted by qðGÞ, is the largest

eigenvalue of A(G), and the signless Laplacian spectral radius of G, denoted by

lðGÞ, is the largest eigenvalue of Q(G). Throughout this paper, let a be a

L5

G1

L3

L4

X1
Y1

G1

G2

L1

G1
G2

L2

L6

X1
Y1

v

u

G3

G2

Fig. 1 The graphs L1, L2, . . ., L6
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nonnegative real number and define HðG; aÞ be the largest eigenvalue of the matrix

AðGÞ þ aDðGÞ. By definition, HðG; 0Þ ¼ qðGÞ and HðG; 1Þ ¼ lðGÞ.
There have been lots of studies on graphical properties warranted by various kind

of graph spectral conditions. Our current research is motivated by these studies, as

revealed in the subsections in this section. We will have brief literature reviews on

the relationship between graphical properties and the eigenvalues of the comple-

ment of a graph in Sect. 1.1, and those of balanced and almost balanced bipartite

graphs in Sect. 1.2. As the properties involved are possessed by complete graphs or

complete balanced bipartite graphs, and are stable under taking the corresponding

Bondy–Chvátal closures, we in this paper investigate the relationship between

different types of graph eigenvalues and the property when a related Bondy–Chvátal

closure of the graph is a complete graph or a complete balanced bipartite graph. Our

main results, as shown in Sects. 1.1 and 1.2, present unified conclusions that

generalize several former results in a number of different problems.

1.1 Spectral Results of Complement Graphs on Hamiltonian Problem

There have been researches on describing the Hamiltonian properties of a graph G

in terms of the eigenvalues of G. The following are the related pioneer results.

Theorem 1.3 Let G be a graph on n vertices.

(i) (Fiedler and Nikiforov [8]) If q
�
G
�
�

ffiffiffiffiffiffiffiffiffiffiffi
n � 1

p
, then G is traceable unless

G ¼ M0;0
n .

(ii) (Fiedler and Nikiforov [8]) If q
�
G
�
�

ffiffiffiffiffiffiffiffiffiffiffi
n � 2

p
, then G is Hamiltonian unless

G ¼ M1;1
n .

(iii) (Yu and Fan [18]) If n� 4 and if q
�
G
�
�

ffiffiffiffiffiffiffiffiffiffi
ðn�2Þ2

n

q
, then G is Hamilton-

connected.

(iv) (Li and Ning [12]) Suppose that n� 2k þ 2 and dðGÞ� k � 0. If

q
�
G
�
� q M

k;0
n

	 

, then G is traceable unless G 2 Bn;k;�1;0 or G 2 Hn;k;�1;0.

(v) (Li and Ning [12]) Suppose that n� 2k þ 1 and dðGÞ� k � 1. If

q
�
G
�
� q M

k;1
n

	 

, then G is Hamiltonian unless G 2 Bn;k;0;0 or G 2 Hn;k;0;0.

Extensions of some of the results stated in Theorem 1.3 have been obtained by

several researchers, as seen in the theorem below.

Theorem 1.4 Let G be a connected graph on n vertices.

(i) (Yu et al. [20]) Suppose that n� 2k þ 1 and dðGÞ� k � q þ 1� 1. If

q
�
G
�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk � qÞðn � k � 1Þ

p
, then G is q-Hamiltonian and q-edge-Hamil-

tonian unless G 2 Bn;k;q;r or G 2 Hn;k;q;r.

(ii) (Yu et al. [19], Chen and Zhang [5]) Suppose that n� 2k and dðGÞ� k � 2.

If q
�
G
�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk � 1Þðn � k � 1Þ

p
, then G is Hamilton-connected unless G 2

Bn;k;1;0 or G 2 Hn;k;1;r.
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Analogous adjacency and signless Laplacian spectral conditions of the

completeness of a graph to warrant similar or other properties have also been

investigated. The following results come from Theorems 3.1, 3.4 and Corollary 3.2

of Yu et al. [20].

Theorem 1.5 (Yu et al. [20]) Let G be a graph on n vertices.

(i) Suppose that n� 2k þ 1, dðGÞ� k � maxfq � 1; 1g and q� 1. If

q
�
G
�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk � q þ 2Þðn � k � 1Þ

p
, then G is q-connected and q-edge-

connected unless G 2 Bn;k;q�2;r or G 2 Hn;k;q�2;r.

(ii) Suppose that n� 2k þ q þ 1, dðGÞ� k � 1 and q� 1. If

q
�
G
�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk þ qÞðn � k � 1Þ

p
, then G is q-path-coverable unless G 2

Hn;k;�q;r or G ¼ Kkþ1 [ Kn�k�1 when q ¼ 1.

Theorem 1.6 Let G be a graph with n vertices.

(i) (Zhou [21]) If l
�
G
�
� n, then G is traceable unless G 2 Cn;�1;0 or

G 2 Wn;�1;r.

(ii) (Zhou [21]) If l
�
G
�
� n � 1 and n� 3, then G is Hamiltonian unless G 2

Cn;0;0 or G 2 Wn;0;r, where 1� r � n�1
2
.

(iii) (Yu and Fan [18]) If l
�
G
�
� n � 2 and n� 6, then G is Hamilton-

connected unless G 2 Cn;1;0 or G 2 Dn;1;0 or G 2 Wn;1;r, where 1� r � n
2
.

It is observed that in the theorems above, all the graphical properties warranted

by the various spectral properties satisfy certain level of stability, as shown in the

result of Bondy and Chvátal below.

Theorem 1.7 Let n and q be two integers with n� 3 and q� 0. Each of the

following holds for a graph on n vertices.

(i) (Bondy and Chvátal [2]) The property that ‘‘G is q-connected’’ is

ðn þ q � 2Þ-stable.
(ii) (Bondy and Chvátal [2]) The property that ‘‘G is q-edge-connected’’ is

ðn þ q � 2Þ-stable.
(iii) (Bondy and Chvátal [2]) The property that ‘‘G is q-path-coverable’’ is

ðn � qÞ-stable.
(iv) (Bondy and Chvátal [2]) The property that ‘‘G is q-edge-Hamiltonian’’ is

ðn þ qÞ-stable.
(v) (Bondy and Chvátal [2]) The property that ‘‘G is q-Hamiltonian connected’’

is ðn þ q þ 1Þ-stable.
(vi) (Bondy and Chvátal [2]) The property that ‘‘G is q-Hamiltonian’’ is

ðn þ qÞ-stable.
(vii) (Liu et al. [15]) The property that ‘‘G is q-traceable’’ is ðn þ q � 1Þ-stable.

These motivate our current study. The main result of this paper is the following.
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Theorem 1.8 Let n, k and s be three integers and let G be a graph on n vertices.

(i) Suppose that n� maxf2k; 2k þ 1� sg and dðGÞ� k� max
�

s; 1
�
. If

q
�
G
�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk � sÞðn � k � 1Þ

p
, then either CnþsðGÞ ¼ Kn or

G 2 Bn;k;s;r [Hn;k;s;r, or both s ¼ k � 1 and G ¼ K1;k�1 _ K1;k�1.

(ii) Suppose that n� 3s þ 2. If l
�
G
�
� n � s � 1, then either CnþsðGÞ ¼ Kn, or

G 2 Cn;s;r [Dn;s;r [Wn;s;r.

Since Kn is q-traceable for any 0� q� n, the corollary below follows

immediately from Theorem 1.7(vii) and Theorem 1.8 with s ¼ q � 1.

Corollary 1.9 Let n, k and q be three nonnegative integers and G be a graph with

jVðGÞj ¼ n.

(i) Suppose that n� maxf2k; 2k þ 2� qg and dðGÞ� k � max
�

q � 1; 1
�
. If

q
�
G
�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk þ 1� qÞðn � k � 1Þ

p
, then G is q-traceable, unless G 2

Bn;k;q�1;r [Hn;k;q�1;r or both G ¼ K1;k�1 _ K1;k�1 and q ¼ k.

(ii) Suppose that n� 3q � 1. If lðGÞ� n � q, then G is q-traceable unless

G 2 Cn;q�1;r [Dn;q�1;r [Wn;q�1;r.

As the complete graph has all the properties listed in Theorems 1.7 and 1.8

generalizes the corresponding results in Theorems 1.3, 1.4, 1.5 and 1.6, when s is taking

different appropriate values. Motivated by Theorem 1.6, it is natural to consider

whether the possibility that ‘‘G 2 Wn;q�1;r’’ can be removed from the statement of

Corollary 1.9(ii). The following example suggests that the answer is negative.

Example 1.10 Let n and q be two integers such that q� 2, n� 3q � 5 and n þ q is

even. If G1 is a ðq � 2Þ-regular graph with nþq�2
2

vertices, then G ¼ G1 _ n�qþ2
2

� �
K1

is nþq�2
2

-regular, and hence G 2 Wn;q�1;r. Note that any deletion of q vertices from

G1 to G results in a non-traceable graph. Thus, G is not q-traceable.

1.2 Spectral Results of Balanced Bipartite Graphs on Hamilton Problem

Researches on predicting traceable and Hamiltonian bipartite graphs by graph

spectral conditions have been attracted many researchers, as seen in

[9, 12, 14, 16, 17], among others. The following theorem displays some of the

spectral results on Hamiltonian properties of balanced bipartite graphs.

Theorem 1.11 Let G be a balanced bipartite graph on 2n vertices.

(i) (Liu et al. [16]) If n� 3, dðGÞ� 1 and qðGÞ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � 2n þ 3

p
, then G is

traceable.

(ii) (Li and Ning [13]) If n�ðk þ 2Þ2, dðGÞ� k� 2 and either

qðGÞ� qðFn;k;0Þ or lðGÞ� lðFn;k;0Þ, then G is traceable unless

G ¼ Fn;k;0.
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(iii) (Jiang et al. [10]) If n� maxfðk þ 2Þ2; k2ðkþ1Þ
2

þ k þ 3g, dðGÞ� k � 2

and qðGÞ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðn � k � 1Þ

p
, then G is traceable unless G ¼ Fn;k;0.

(vi) (Liu et al. [16]) If n� 4, dðGÞ� 2 and qðGÞ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � 2n þ 4

p
, then G is

Hamiltonian unless G ¼ B2;n�2;n�2;2.

(v) (Li and Ning [12]) If n�ðk þ 1Þ2, dðGÞ� k � 1 and qðGÞ� q
�
Zn�k;k

�
,

then G is Hamiltonian unless G ¼ Zn�k;k.

(vi) (Ge and Ning [9]) If n� k3 þ 2k þ 4, dðGÞ� k � 1 and

qðGÞ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðn � kÞ

p
, then G is Hamiltonian unless G ¼ Zn�k;k.

(vii) (Jiang et al. [10]) If n� maxfðk þ 1Þ2; k3

2
þ k þ 3g, dðGÞ� k� 1 and

qðGÞ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðn � kÞ

p
, then G is Hamiltonian unless G ¼ Zn�k;k.

(viii) (Li and Ning [12]) If n�ðk þ 1Þ2, dðGÞ� k � 1 and lðGÞ� l
�
Zn�k;k

�
,

then G is Hamiltonian unless G ¼ Zn�k;k.

Our current research is also motivated by the results in Theorem 1.11. The

following is a useful tool.

Theorem 1.12 (Bondy and Chvátal [2]) A balanced bipartite graph G with 2n

vertices is Hamiltonian if and only if Bnþ1ðGÞ is Hamiltonian.

To extend results in Theorem 1.11, we need a more general form of Theorem 1.12

in our arguments, as stated in the following Proposition 1.13.

Proposition 1.13 Let G be a balanced bipartite graph with 2n vertices and q� 0 be

an integer,

(i) G is (q, q)-Hamiltonian if and only if Bnþqþ1ðGÞ is (q, q)-Hamiltonian.

(ii) G is (q, q)-traceable if and only if Bnþqþ1ðGÞ is (q, q)-traceable.

The main result in this subsection is to find a unified approach as a generalization

of all the former results stated in Theorem 1.11, as shown in the following theorem.

Theorem 1.14 Let k and s be two nonnegative integers and let G be a balanced

bipartite graph with jVðGÞj ¼ 2n� 8kðk þ 1Þ and dðGÞ� k � maxfs; 1g. If either

qðGÞ� q
�
F0

n;k;s

�
or lðGÞ� l

�
F0

n;k;s

�
, then BnþsðGÞ ¼ Kn;n unless

G 2 Fn;k;s; F0
n;k;s

n o
.

Since Kn;n is (q, q)-Hamiltonian for 0� q� n � 2, from Proposition 1.13(i) and

Theorem 1.14 we deduce the following result.

Corollary 1.15 Let q and k be two nonnegative integers and let G be a balanced

bipartite graph with jVðGÞj ¼ 2n� 8kðk þ 1Þ. If dðGÞ� k � q þ 1 and if either

qðGÞ� q
�
F0

n;k;qþ1

�
or lðGÞ� l

�
F0

n;k;qþ1

�
, then G is (q, q)-Hamiltonian unless

G 2 Fn;k;qþ1; F0
n;k;qþ1

n o
.
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Theorem 1.16 Let q and k be two nonnegative integers and let G be a balanced

bipartite graph with jVðGÞj ¼ 2n� maxf6kðk þ 1Þ; 4ðk þ 2Þ2g and dðGÞ� k � 2. If

either qðGÞ� q
�
F0

n;k;0

�
or lðGÞ� l

�
F0

n;k;0

�
, then G is traceable unless

G 2 Fn;k;0; F0
n;k;0

n o
.

With Proposition 1.17 below, Corollary 1.15 and Theorem 1.16 extend

Theorem 1.11 for sufficiently large n.

Proposition 1.17 Let n, k and s be three nonnegative integers. If n� maxf1
2

�
k2 þ

4
�
ðk þ 1Þ; ðk þ 1Þðk � s þ 2Þ þ 2g and k � maxfs; 1g, then q F0

n;k;s

	 

\

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðn þ s � k � 1Þ

p
.

In [15], studies have been done on the relationship between Hamiltonian

properties of a graph G and the value of HðG; aÞ, the largest eigenvalue of the

matrix AðGÞ þ aDðGÞ for a real number a. To further the studies in [15], we in this

paper will show a lower bound to HðG; aÞ that assures a balanced bipartite graph G

to be (q, q)-traceable as well as to be (q, q)-Hamiltonian. Towards this aim, for

integers k, n, s and a real number a, we define

e0ðsÞ ¼nðn þ s � k � 2Þ þ ðk þ 1Þðk þ 2� sÞ; and

H0ðsÞ ¼a
e0ðsÞ

n
þ n

� �
þ ð1� aÞ

ffiffiffiffiffiffiffiffiffiffi
e0ðsÞ

p
:

ð1:2Þ

Theorem 1.18 Let k and s� � 2 be two integers and let G be a balanced bipartite

graph with jVðGÞj ¼ 2n� 6k þ 8 and dðGÞ� k � max
�
jsj; 1

�
. If HðG; aÞ[H0ðsÞ

and 0� a� 1, then either BnþsðGÞ ¼ Kn;n or G � Fn;k;s.

As Kn;n is (q, q)-Hamiltonian for 0� q� n � 2, Corollary 1.19 follows imme-

diately from Proposition 1.13(i) and Theorem 1.18.

Corollary 1.19 Let q and k be two nonnegative integers and let G be a balanced

bipartite graph with jVðGÞj ¼ 2n� 6k þ 8. If dðGÞ� k � q þ 1 and if both

HðG; aÞ[H0ðq þ 1Þ and 0� a� 1, then G is (q, q)-Hamiltonian unless

G � Fn;k;qþ1.

The following theorem summarizes some of the former results using the spectral

radius qðGÞ or the signless Laplacian spectral radius lðGÞ to study the traceability

of an almost balanced bipartite graph G.

Theorem 1.20 Let G
�
U; V

�
be an almost balanced bipartite graph with

jVðGÞj ¼ 2n � 1.

(i) (Liu et al. [16]) Suppose that n� 4, dðGÞ� 1, and for any v 2 V , dGðvÞ� 2.

If qðGÞ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � 3n þ 4

p
, then G is traceable unless

G 2
�

B2;n�2;n�3;2; B2;n�2;n�2;1

�
.
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(ii) (Yu et al. [19]) Suppose that n� max 1
2
ðk3 þ 2k þ 4Þ; ðk þ 1Þ2

n o
and

dðGÞ� k � 1. If qðGÞ[
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðn � k � 1Þ

p
, then G is traceable unless

G ¼ Zn�k�1;k.

(iii) (Yu et al. [19]) Suppose that n�ðk þ 1Þ2 and dðGÞ� k� 1. If

lðGÞ[ 2n � k � 2þ ðkþ1Þ2
n

, then G is traceable unless G � Zn�k�1;k.

This also motivates our research along the same line. For a real number a, define

XðaÞ ¼a 2n þ q � k � 2þ ðk þ 1Þðk þ 1� qÞ
n

� �

þ ð1� aÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðn þ q � k � 2Þ þ ðk þ 1Þðk þ 1� qÞ

p
:

ð1:3Þ

Our main result in this direction is Theorem 1.21, which generalizes Theorem 1.20

when n is sufficiently large.

Theorem 1.21 Let q and k be two nonnegative integers and let G be an almost

balanced bipartite graph with jVðGÞj ¼ 2n � 1 and dðGÞ� k � q þ 1.

(i) If n� 3k þ 4, 0� a� 1, and HðG; aÞ[XðaÞ, then G is (q, q)-traceable

unless G � Znþq�k�1;k�q.

(ii) If n� 4kðk þ 1Þ, and if either qðGÞ� q Z0
nþq�k�1;k�q

	 

or

lðGÞ� l Z0
nþq�k�1;k�q

	 

, then G is (q, q)-traceable unless

G 2 Znþq�k�1;k�q; Z0
nþq�k�1;k�q

n o
.

The organization of this paper is as follows. In Sect. 2, we present the proof to

Theorem 1.8. Proposition 1.13 will be justified in Sect. 3. Section 4 is denoted to the

verification of Theorem 1.18. Utilizing Theorem 1.18, we then present the proof of

Theorem 1.14 in Sect. 5. In Sect. 6, we prove Theorem 1.16 and Proposition 1.17,

and then we complete the proof of Theorem 1.21 in Sect. 7.

2 The proof of Theorem 1.8

We start with a few additional lemmas, which are needed in our arguments.

Lemma 2.1 Let G be a graph with jEðGÞj[ 0. Each of the following holds:

(i) (Cvetković et al. [7]) lðGÞ� min
�

dðuÞ þ dðvÞ : uv 2 EðGÞ
�
. Moreover, if

G is connected, then equality holds if and only if G is regular or semi-regular

bipartite.

(ii) (Li and Ning [12]) qðGÞ� min
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

dðuÞdðvÞ
p

: uv 2 EðGÞ
�
. Moreover, if

G is connected, then equality holds if and only if G is regular or semi-regular

bipartite.
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Lemma 2.2 Let p and q be integers with p� q� 1. If G is a (p, q)-semi-regular

bipartite graph, then jVðGÞj 6¼ q þ p þ 1.

Proof By contradiction, let G ¼ ½U;V � be a (p, q)-semi-regular bipartite graph with

jVðGÞj ¼ q þ p þ 1. By the definition of a (p, q)-semi-regular bipartite graph, we

have

jUj þ jV j ¼ p þ q þ 1; pjUj ¼ qjVj; jUj � q� 1; and jV j � p� 1:

Since the order of a (p, q)-semi-regular bipartite graph [U, V] is p þ q þ 1, either

ðjUj; jV jÞ ¼ ðq; p þ 1Þ or ðjUj; jV jÞ ¼ ðq þ 1; pÞ, but, as p[ 0 and q[ 0, neither of

the two possibilities is consistent with pjUj ¼ qjVj. h

Proof of Theorem 1.8 For the sake of notational simplicity, throughout the proof,

we let H ¼ CnþsðGÞ. Our argument is to assume that H 6¼ Kn to prove that in

Theorem 1.8 (i), G 2 Bn;k;s;r [Hn;k;s;r unless G ¼ K1;k�1 _ K1;k�1 and s ¼ k � 1� 2,

and in Theorem 1.8 (ii), G 2 Cn;s;r [Dn;s;r [Wn;s;r.

Since H 6¼ Kn, H contains at least one non-trivial component. We shall let F

denote a non-trivial component of H. For any u; v 2 VðHÞ with uv 62 EðHÞ and

dHðuÞ� dHðvÞ, as H ¼ CnþsðGÞ, we conclude that dHðuÞ þ dHðvÞ� n þ s � 1, and

so for any edge uv 2 E
�
H
�
,

dHðuÞ þ dHðvÞ� 2ðn � 1Þ � ðn þ s � 1Þ ¼ n � s � 1: ð2:1Þ

h

Proof of Theorem 1.8 (i) Our proof of Theorem 1.8 (i) takes an approach similar to

those in the justifications of Theorem 1.6(ii) in [12] and of Theorem 3.1 in [20].

Here, for the completeness of the proof, we present it in detail. By (2.1), we have

dHðuÞdHðvÞ� dHðuÞ
�
n � s � 1� dHðuÞ

�
: ð2:2Þ

Since dðHÞ� dðGÞ� k, we have dHðvÞ� n � k � 1. This, together with (2.1),

implies that dHðvÞ� dHðuÞ� n � s � 1� dHðvÞ� k � s. Hence for each uv 2 E
�
H
�
,

we have

k � s� dHðuÞ� dHðvÞ� n � k � 1:

Let UðxÞ ¼ xðn � s � 1� xÞ with k � s� x� n � k � 1. The concavity of quadratic

functions implies that

UðxÞ� min
�
Uðk � sÞ; Uðn � k � 1Þ

�
¼ ðk � sÞðn � k � 1Þ: ð2:3Þ

By Lemma 2.1(ii), and by (2.2) and (2.3), we have

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk � sÞðn � k � 1Þ

p
� min

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dHðuÞdHðvÞ

q
: uv 2 EðFÞ

n o

� q
�
H
�
� q

�
G
�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk � sÞðn � k � 1Þ

p
:

Claim 1 below follows from Lemma 2.1(ii). h
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Claim 1 For any nontrivial component F of H, each of the following holds.

(i) F is either regular or semi-regular bipartite.

(ii) For any edge uv 2 EðFÞ, we have dHðuÞ ¼ k � s� n � k � 1 ¼ dHðvÞ.
(iii) n � k� jVðFÞj� n.

We shall complete the proof of Theorem 1.8(i) by examining the following two

cases.

Case 1. H contains at least two non-trivial components.

Let F1 and F2 be two non-trivial components of H. By Claim 1, each of F1 and

F2 is either regular or semi-regular bipartite, and for any edge uv 2 EðHÞ,
dHðuÞ ¼ k � s� n � k � 1 ¼ dHðvÞ. By Claim 1 (iii), we have 2ðn � kÞ� n, and so

2k � maxf2k þ 1� s; 2kg� n� 2k. Thus n ¼ 2k, s� 1 and H must have exactly

two non-trivial components F1 and F2 with jVðF1Þj ¼ jVðF2Þj ¼ k. Pick an

Fi 2 fF1;F2g.
If Fi is regular, then k � s ¼ n � k � 1 ¼ k � 1, and so s ¼ 1. As jVðF1Þj ¼

jVðF2Þj ¼ k and by Claim 1(ii), F1 ¼ F2 ¼ Kk. Since q
�
G
�
¼ q

�
H
�
¼ k � 1 and

H � G, we have G ¼ Kk [ Kk, and so G 2 Hn;k;1;0.

If Fi is semi-regular bipartite, then dHðvÞ ¼ n � k � 1 ¼ k � 1 ¼ jVðFiÞj � 1,

and so Fi ¼ K1;k�1 and 1 ¼ dHðuÞ ¼ k � s. As s ¼ k � 1 and by Claim 1(ii), it

follows that F1 ¼ F2 ¼ K1;k�1. Since q
�
G
�
¼ q

�
H
�
¼

ffiffiffiffiffiffiffiffiffiffiffi
k � 1

p
and H � G, we have

G ¼ K1;k�1 [ K1;k�1, and so G ¼ K1;k�1 _ K1;k�1, as desired.

Case 2. H contains only one non-trivial component.

Let F denote this only nontrivial component of H. By Claim 1(i), F is a regular or

semi-regular bipartite graph. Assume first that F is a semi-regular bipartite graph.

By Claim 1(ii), F is a connected ðn � k � 1; k � sÞ-semi-regular bipartite graph, and

so for some integer r with 0� r � k, jVðFÞj ¼ n � s � 1þ r. It follows that

H ¼ F [ ðs þ 1� rÞK1. Since q
�
H
�
¼ q

�
G
�
and H is a spanning subgraph of G, we

have F [ ðs þ 1� rÞK1 � G � F [ Ksþ1�r, and so

F _ ðs þ 1� rÞK1 � G � F _ Ksþ1�r. By Lemma 2.2, this implies that G 2 Bn;k;s;r.

Hence we may assume that F is regular. By Claim 1 (ii), k � s ¼ n � k � 1 and

so 2k þ 1� s ¼ n� 2k, implying s� 1. By Claim 1 (iii), we conclude that

jVðFÞj ¼ n � k þ r, for some integer r with 0� r � k. It follows that

H ¼ F [ ðk � rÞK1. As q
�
H
�
¼ q

�
G
�
and H is a spanning subgraph of G, we

have F [ ðk � rÞK1 � G � F [ Kk�r, and so F _ ðk � rÞK1 � G � F _ Kk�r. Since

F is a r-regular graph with jVðFÞj ¼ n þ r � k, by Definition 1.2(ii), G 2 Hn;k;s;r.

This completes the proof of Theorem 1.8 (i). h

Proof of Theorem 1.8 (ii) By (2.1) and Lemma 2.1(i), we conclude that, for each

nontrivial component F of H, n � s � 1� lðFÞ� lðHÞ� lðGÞ� n � s � 1, F is

either a regular or a semi-regular bipartite graph, and for any uv 2 E
�
H
�
,
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lðFÞ ¼ l
�
H
�
¼ l

�
G
�
¼ dHðuÞ þ dHðvÞ ¼ n � s � 1: ð2:4Þ

Similar to the proof of Theorem 1.8 (i), we justify Theorem 1.8 (ii) by a case

analysis. h

Claim 2 If H has a semi-regular bipartite component, then H has exactly one

nontrivial component.

Assume that F is a semi-regular bipartite component of H. By (2.4),

jVðFÞj � n � s � 1. If H � VðFÞ contains a nontrivial component F0, then by

(2.4), jVðF0Þj � 1
2
ðn � s þ 1Þ. It follows from n � s � 1þ n�sþ1

2
� n that n� 3s þ 1,

contrary to the assumption that n� 3s þ 2. Hence F is the unique non-trivial

component of H. This validates the claim.

Case 1. H has a semi-regular bipartite component.

We assume that F is a semi-regular bipartite component of H. By Claim 2, F is

the only nontrivial component of H. We may assume that F is a connected (p, q)-

semi-regular graph with 1� p� q, and for some integer r with 0� r � s þ 1,

jVðFÞj ¼ n � s � 1þ r. Thus s� � 1, H ¼ F [ ðs þ 1� rÞK1, and 1� p� 1
2
ðn �

s � 1Þ by (2.4).

Since l
�
G
�
¼ l

�
H
�

and H is a spanning subgraph of G, we have

F [ ðs þ 1� rÞK1 � G � F [ Ksþ1�r, and so

F _ ðs þ 1� rÞK1 � G � F _ Ksþ1�r. By Lemma 2.2, we conclude that

G 2 Cn;s;r. This proves Theorem 1.8 (ii) if Case 1 occurs.

Case 2. H does not have a semi-regular bipartite component.

By Lemma 2.1(i) and the assumption of Case 2, every non-trivial component of

H is regular. Let F denote a component of H. Then for any vertex u 2 VðFÞ, by
(2.4), dHðuÞ ¼ 1

2
ðn � s � 1Þ, and so jVðFÞj � 1

2
ðn � s þ 1Þ.

If H contains at least three non-trivial components, then
3ðn�sþ1Þ

2
� n, implying

n� 3ðs � 1Þ, contrary to the assumption that n� 3s þ 2. Hence H contains at most

two nontrivial components. Let F0 denote the possible nontrivial component of

H � VðFÞ, if it exists.
We first suppose that H is regular, and so H is 1

2
ðn � s � 1Þ-regular. In this case,

either H ¼ F or H ¼ F [ F0, where F and F0 are both connected 1
2
ðn � s � 1Þ-

regular. Since H � G and lðGÞ ¼ lðHÞ, it follows that H ¼ G, and so G ¼ H 2
Wn;s;0 for H ¼ F or G ¼ H 2 Dn;s;0 for H ¼ F [ F0.

Hence we may assume that H is not regular, and so H 6¼ F. Assume first that F

and F0 are two nontrivial components of H containing 1
2
ðn � s þ 1Þ þ r1 and

1
2
ðn �

s þ 1Þ þ r2 vertices, respectively. Thus H ¼ F [ F0 [ ðs � 1� r1 � r2ÞK1. Since

lðGÞ ¼ lðHÞ and since H is a spanning subgraph of G, we conclude that

F _
�
F0 _ ðs � 1� r1 � r2ÞK1

�
� G � F _

�
F0 _ Ks�1�r1�r2

�
, and so G 2 Dn;s;r,

where 1� r � s � 1:

Therefore, we may assume that F is the only non-trivial component of H, and so

H ¼ F [ rK1, where r ¼ jVðGÞnVðFÞj. Since F is 1
2
ðn � s � 1Þ-regular, we have

1
2
ðn � s þ 1Þ� jVðFÞj � n � 1. Since l

�
G
�
¼ l

�
H
�

and since H is a spanning
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subgraph of G, it follows that F [ rK1 � G � F [ Kr, and so

F _ rK1 � G � F _ Kr. This implies that G 2 Wn;s;r, where 1� r � 1
2
ðn þ s � 1Þ.

h

3 The Proof of Proposition 1.13

The following result initiated the study of the Bondy–Chvátal closure concept for

balanced bipartite graphs.

Lemma 3.1 (Lemma 7.3.5 of [1]) Let G ¼ ½U;V � be a balanced bipartite graph

with 2n vertices. Let u 2 U and v 2 V be two non-adjacent vertices with

dGðuÞ þ dGðvÞ� n þ 1. Then G is Hamiltonian if and only if G þ uv is Hamiltonian.

To prove Proposition 1.13, it suffices to prove the following two lemmas.

Lemma 3.2 Let G ¼ ½U;V� be a balanced bipartite graph with 2n vertices and q be

a nonnegative integer. Let w1 2 U and w2 2 V be two vertices satisfying w1w2 62
EðGÞ and dGðw1Þ þ dGðw2Þ� n þ q þ 1. Then the following are equivalent.

(i) G is (q, q)-Hamiltonian.

(ii) G0 ¼ G þ w1w2 is (q, q)-Hamiltonian.

Proof As (i) implies (ii) by definition, it remains to show that (ii) implies (i). Let

S � VðGÞ satisfying jS \ Uj ¼ jS \ Vj ¼ q and G1 ¼ G
�
VðGÞnS

�
. We are to show

that G1 has a Hamilton cycle.

Since G0 is (q, q)-Hamiltonian, G0�VðGÞnS
�
contains a Hamilton cycle C. If C is

not a Hamilton cycle of G1, then w1w2 2 EðCÞ, and so this Hamilton cycle C can be

expressed as C ¼ w1w2. . .w2n�2qw1. Since w1 2 U and w2 2 V , we observe that

jNSðw1Þj þ jNSðw2Þj� jSj ¼ 2q. As dGðw1Þ þ dGðw2Þ� n þ q þ 1, we have

dG1
ðw1Þ þ dG1

ðw2Þ� n � q þ 1.

Note that G1 is a balanced bipartite graph with 2ðn � qÞ vertices. By Lemma 3.1,

G1 is Hamiltonian if and only if G1 þ w1w2 is Hamiltonian. h

Lemma 3.3 Let G ¼ ½U;V� be a balanced bipartite graph with 2n vertices and q be

a nonnegative integer. Let w1 2 U and w2 2 V be two vertices satisfying w1w2 62
EðGÞ and dGðw1Þ þ dGðw2Þ� n þ q þ 1. Then the following are equivalent.

(i) G is (q, q)-traceable.

(ii) G0 ¼ G þ w1w2 is (q, q)-traceable.

Proof By definition, we observe that (i) implies (ii), and so it suffices to show that

(ii) implies (i). Let S � VðGÞ satisfying jS \ Uj ¼ jS \ Vj ¼ q and

G1 ¼ G
�
VðGÞnS

�
. We are to show that G1 has a Hamilton path. Since G0 is

(q, q)-traceable, G1 þ w1w2 contains a Hamilton path P.

If P is not a Hamilton path of G1, then w1w2 2 EðPÞ. We suppose that

P ¼ u1u2 � � � u2n�2q, where w1 ¼ ui and w2 ¼ uiþ1. As G0½U;V� is bipartite with
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ui 2 U and uiþ1 2 V , we observe that jNSðuiÞj þ jNSðuiþ1Þj � jSj ¼ 2q. By the

assumption that dGðuiÞ þ dGðuiþ1Þ� n þ q þ 1, we conclude that

dG1
ðuiÞ þ dG1

ðuiþ1Þ� n � q þ 1: ð3:1Þ

Case 1. u1 2 U.

Then, as ui 2 U, i is odd. If uiu2n�2q 2 EðGÞ, then P � fuiuiþ1g þ fuiu2n�2qg is a

Hamilton path of G1. Hence we may assume that uiuiþ1; uiu2n�2q 62 EðGÞ. Similarly,

we have uiþ1u1 62 EðGÞ.
Claim 1. There is an index j with either i þ 3� j� 2n � 2q � 2 or 2� j� i � 3,

such that uiuj; uiþ1ujþ1 2 EðG1Þ.
Since G is bipartite, we may suppose that NG1

ðuiÞ ¼
�

us1 ; us2 ; . . .; usp

�
, where

2n � 2q 62
�

s1; s2; . . .; sp

�
¼ ; and for t 2

�
1; 2; . . .; p

�
, st is even. If Claim 1 fails,

then NG1
ðuiþ1Þ � u1; u3; u5; . . .; u2n�2q�1

� �
n us1þ1; us2þ1; . . .; uspþ1

� �
. Thus,

dG1
ðuiþ1Þ� n � q � p and so by (3.1),

n � q þ 1� dG1
ðuiÞ þ dG1

ðuiþ1Þ� p þ ðn � q � pÞ ¼ n � q, a contradiction. This

completes the proof of Claim 1.

By Claim 1, either for some j with 2� j� i � 3, both uiuj 2 EðG1Þ and

uiþ1ujþ1 2 EðG1Þ, whence u1u2. . .ujuiui�1. . .ujþ1uiþ1uiþ2 � � � u2n�2q is a Hamiltonian

path of G
�
VðGÞnS

�
; or for some j with i þ 3� j� 2n � 2q � 2, both uiuj 2 EðG1Þ

and uiþ1ujþ1 2 EðG1Þ, whence u1u2. . .uiujuj�1. . .uiþ1ujþ1ujþ2. . .u2n�2q is a Hamil-

tonian path of G
�
VðGÞnS

�
. This proves that Lemma 3.3 (ii) implies Lemma3.3 (i) in

this case.

Case 2. u1 2 V .

As ui 2 U, i is even. We first justify the following claim.

Claim 2. There is an index j with either i þ 3� j� 2n � 2q � 1 or 1� j� i � 3,

such that uiuj and uiþ1ujþ1 2 EðG1Þ.
Since G is bipartite, we may suppose that NG1

ðuiÞ ¼
�

us1 ; us2 ; . . .; usp

�
, where st

is odd for t 2
�
1; 2; . . .; p

�
. If Claim 1 fails, then

NG1
ðuiþ1Þ � u2; u4; u6; . . .; u2n�2q

� �
n us1þ1; us2þ1; . . .; uspþ1

� �
. Thus, by (3.1),

n � q þ 1� dG1
ðuiÞ þ dG1

ðuiþ1Þ� p þ ðn � q � pÞ ¼ n � q, a contradiction. This

completes the proof of Claim 2.

By Claim 2, either for some j with 1� j� i � 3, both uiuj 2 EðG1Þ and

uiþ1ujþ1 2 EðG1Þ, whence u1u2. . .ujuiui�1. . .ujþ1uiþ1uiþ2 � � � u2n�2q is a Hamiltonian

path of G
�
VðGÞnS

�
; or for some j with i þ 3� j� 2n � 2q � 1, both uiuj 2 EðG1Þ

and uiþ1ujþ1 2 EðG1Þ, whence u1u2. . .uiujuj�1. . .uiþ1ujþ1ujþ2. . .u2n�2q is a Hamil-

tonian path of G
�
VðGÞnS

�
. Thus in any case, Lemma3.3 holds always. h

4 The Proof of Theorem 1.18

Following the notation in [3], if A, B are disjoint subsets of V(G), then define

EG½A;B� ¼
�

xy 2 EðGÞ : x 2 A and y 2 B
�

and eGðA;BÞ ¼
EG½A;B�

. The func-

tions e0ðsÞ and H0ðsÞ, defined in (1.2), will be used in the arguments in this section.
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Throughout this section, let k, n and s be integers, and unless otherwise stated, we

always assume that G ¼ ½U;V� is a balanced bipartite graph with jVðGÞj ¼ 2n and

H ¼ BnþsðGÞ. By definition, we have

dðHÞ� dðGÞ; jEðHÞj � jEðGÞj;
and 8u 2 U; v 2 V with uv 62 EðHÞ; dHðuÞ þ dHðvÞ� n þ s � 1:

ð4:1Þ

Lemma 4.1 If n� 3k þ 4, s� � 2, dðGÞ� k � max
�
jsj; 1

�
, and jEðGÞj[ e0ðsÞ,

then BnþsðGÞ ¼ Kn;n unless Kn;nþs�k�1 � BnþsðGÞ.

Proof We assume that H 6¼ Kn;n to prove that Kn;nþs�k�1 must be a subgraph of H.

Define

U0 ¼
�

w 2 U : dGðwÞ�
1

2
ðn þ sÞ

�
; nU ¼ jU0j;

V0 ¼
�

w 2 V : dGðwÞ�
1

2
ðn þ sÞ

�
and nV ¼ jV0j:

Claim 1. nU � k þ s þ 3 and nV � k þ s þ 3.

By symmetry, it suffices to prove nU � k þ s þ 3. Direct counting yields that

jEðGÞj � jEðHÞj ¼
X

v2U

dHðvÞ ¼
X

v2U0

dHðvÞ

þ
X

v2U�U0

dHðvÞ� nnU þ 1

2
ðn þ s � 1Þðn � nUÞ:

ð4:2Þ

It follows by (4.2) and by jEðGÞj[ e0ðsÞ that

nU � 2jEðGÞj
n þ 1� s

� nðn þ s � 1Þ
n þ 1� s

[
2nðn þ s � k � 2Þ þ 2ðk þ 1Þðk þ 2� sÞ � nðn þ s � 1Þ

n þ 1� s

¼ n2 � ð2k þ 3� sÞn þ 2ðk þ 1Þðk � s þ 2Þ
n þ 1� s

¼ k þ s þ 2þ UðnÞ
n þ 1� s

;

ð4:3Þ

where UðnÞ ¼ n2 � ð2k þ 3� sÞn þ 2ðk þ 1Þðk � s þ 2Þ�
ðn þ 1� sÞðk þ s þ 2Þ ¼ n2 � ð3k þ 5Þn þ 2k2 � ks þ 5k þ s2 � s þ 2.

Since n� 3k þ 4, we have U0ðnÞ ¼ 2n � ð3k þ 5Þ[ 0, and so

UðnÞ�U
�
3k þ 4

�
¼ kð2k � sÞ þ 2ðk � 1Þ þ sðs � 1Þ[ 0. It follows by (4.3) that

Claim 1 holds.

Let p0 and q0 be two positive integers such that p0 � q0 and p0 þ q0 ¼
max

�
p þ q; where Kp;q � H

�
. By Claim 1, we may assume that

p0 � q0 � k þ s þ 3. Let U0 � U and V 0 � V such that H
�
U0 [ V 0� ¼ Kp0;q0 with

jU0j ¼ p0 and jV 0j ¼ q0. For any v 2 VnV 0, if v will be adjacent with every vertex of

U0, then a violation to the maximality of p0 þ q0 occurs. Hence v is not adjacent to
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at least one vertex in U0. By the definition of the ðn þ sÞ-closure of G and by

symmetry, we have

8v 2 VnV 0; dHðvÞ� n þ s � q0 � 1 and 8u 2 UnU0; dHðuÞ� n þ s � p0 � 1:

ð4:4Þ

Claim 2. q0 � n þ s � k � 2.

Assume that Claim 2 does not hold. Then k þ s þ 3� q0 � n þ s � k � 3. Define

U1ðxÞ ¼ x2 � ðn þ s � 1Þx þ nðn þ s � 1Þ. Since H is bipartite, and by (4.4), we

have

jEðHÞj ¼
X

v2V

dHðvÞ ¼
X

v2V 0
dHðvÞ þ

X

v2V�V 0
dHðvÞ

� nq0 þ
�
n � q0

��
n þ s � q0 � 1

�

¼ q2
0 � ðn þ s � 1Þq0 þ nðn þ s � 1Þ ¼ U1ðq0Þ:

As k þ s þ 3� q0 � n þ s � k � 3, we have

U1ðq0Þ� max
n
U1

�
k þ s þ 3

�
; U1

�
n þ s � k � 3

�o
:

Since n� 3k þ 4, we have both e0ðsÞ � U1

�
n þ s � k � 3

�
¼

n � ð2k � s þ 4Þ� k þ s� 0, and e0ðsÞ � U1

�
k þ s þ 3

�
¼ ðsþ 2Þðn � 2k � 5Þ� 0.

Thus, e0ðsÞ\jEðGÞj � jEðHÞj �U1ðq0Þ� e0ðsÞ, a contradiction. This completes the

proof of Claim 2.

Claim 3. p0 þ q0 � 2n þ s � k � 1.

Assume that Claim 3 fails, and so p0 þ q0 � 2n þ s � k � 2. By Claim 2, we have

p0 � q0 � n þ s � k � 2. By (4.4),

jEðHÞj � eH

�
U0; V 0�þ eH

�
UnU0; V

�
þ eH

�
U; VnV 0�

� p0q0 þ ðn þ s � 1� p0Þðn � p0Þ þ ðn þ s � 1� q0Þðn � q0Þ:
ð4:5Þ

If p0 � n þ s � k, then as dðGÞ� k, it follows from the definition of the ðn þ sÞ-
closure of G that each vertex of V 0 must be adjacent to every vertex of U, and so

p0 ¼ n and q0 ¼ n þ s � k � 2. It follows by (4.5) that

e0ðsÞ\jEðGÞj� jEðHÞj � nðn þ s � k � 2Þ þ ðk þ 1Þðk þ 2� sÞ ¼ e0ðsÞ, a contra-

diction. Hence we may assume that n þ s � k � 2� q0 � p0 � n þ s � k � 1.

If p0 ¼ q0 ¼ n þ s � k � 1, then by (4.5) we have

jEðHÞj� ðn þ s � k � 1Þ2 þ 2kðk þ 1� sÞ. As n� 3k þ 4, this leads to

e0ðsÞ � jEðHÞj
� e0ðsÞ �

�
ðn þ s � k � 1Þ2 þ 2kðk þ 1� sÞ

�

¼ ðk � sÞðn þ s � 2k � 1Þ þ 1�ðk � sÞðð3k þ 4Þ þ s � 2k � 1Þ þ 1

¼ ðk � sÞðk þ s þ 3Þ þ 1[ 0:

Hence jEðGÞj � jEðHÞj\e0ðsÞ, contrary to the assumption of the lemma.

If p0 ¼ n þ s � k � 1 and q0 ¼ n þ s � k � 2, then by (4.5) and n� 3k þ 4 we
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have jEðGÞj � ðn þ s � k � 1Þðn þ s � k � 2Þ þ kðk þ 1� sÞþ
ðk þ 1Þðk þ 2� sÞ\e0ðsÞ, again a contradiction.

If p0 ¼ n þ s � k � 2 ¼ q0, then by (4.5) and n� 3k þ 4 we have

jEðGÞj � ðn þ s � k � 2Þ2 þ 2ðk þ 1Þðk þ 2� sÞ\e0ðsÞ, contrary to the assumption

of the lemma, and so Claim 3 is justified.

If p0 ¼ n, then the lemma follows from Claim 3. Assume that p0 � n � 1, and so

q0 � n þ s � k by Claim 3. As dðGÞ� k, we conclude that every vertex of U0 must

be adjacent to all vertices of V, implying that p0 � q0 ¼ n, contrary to the

assumption that H 6¼ Kn;n. h

Theorem 4.2 If n� 3k þ 4, s� � 2, dðGÞ� k � max
�
jsj; 1

�
and jEðGÞj[ e0ðsÞ,

then BnþsðGÞ is isomorphic to a member in fKn;n;Fn;k;sg.

Proof We assume that H 6¼ Kn;n to show that H ¼ Fn;k;s. Let t be the largest integer

such that Kn;t � H. By Lemma 4.1, n þ s � k � 1� t\n. Let V 0 � V be the vertex

sets of H such that H
�
U [ V 0� ¼ Kn;t. If t� n þ s � k, since every vertex in U has

degree at least t � n þ s � k in H and dðHÞ� k, we have H ¼ Kn;n, contrary to the

assumption. Hence we must have t ¼ n þ s � k � 1.

Define U0 ¼
�

u 2 U : dHðuÞ� n þ s � k
�
. Since dðHÞ� k and since every

vertex in U has degree at least n þ s � k � 1 in H, it follows from the definition

of the ðn þ sÞ-closure of G that every vertex in VnV 0 has degree exactly k in H, and

is adjacent to every vertex in U0. This implies that jU0j ¼ k, and so H ¼ Fn;k;s. h

We need the following two lemmas to complete the proof of Theorem 1.18.

Lemma 4.3 (Li and Ning [12]) If G is a balanced bipartite graph with jVðGÞj ¼ 2n,

then lðGÞ� jEðGÞj
n

þ n:

When jVðGÞj� 2, let q1ðGÞ and q2ðGÞ denote the largest and the second largest

eigenvalues of A(G), respectively. Thus, q1ðGÞ ¼ qðGÞ.

Lemma 4.4 (Lai et al. [11]) If G is a bipartite graph with jVðGÞj � 2, then
�
q1ðGÞ

�2 þ
�
q2ðGÞ

�2 � jEðGÞj.

When 0� a� 1, since AðGÞ þ aDðGÞ ¼ aQðGÞ þ ð1� aÞAðGÞ, from the prop-

erties of Rayleigh quotients we have HðG; aÞ� alðGÞ þ ð1� aÞqðGÞ. Thus, the
corollary below follows immediately from Lemmas 4.3 and 4.4.

Corollary 4.5 Let a be a real number with 0� a� 1. If jVðGÞj ¼ 2n� 2, then

HðG; aÞ� alðGÞ þ ð1� aÞqðGÞ� a
jEðGÞj

n
þ n

� �
þ ð1� aÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
jEðGÞj

p
: ð4:6Þ

Recall that H0ðsÞ and e0ðsÞ have been defined in (1.2). If jEðGÞj � e0ðsÞ, then
Corollary 4.5 implies that HðG; aÞ�H0ðsÞ. This deduces the following result.

Corollary 4.6 Let a be a real number with 0� a� 1. If jVðGÞj ¼ 2n� 2 and

HðG; aÞ[H0ðsÞ, then jEðGÞj[ e0ðsÞ.
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Proof of Theorem 1.18 In our hypotheses, HðG; aÞ[H0ðsÞ, hence, Theorem 4.2

and Corollary 4.6 imply that BnþsðGÞ is isomorphic to a member in
�

Fn;k;s; Kn;n

�
.

h

5 The Proof of Theorem 1.14

Given two distinct vertices u, v in a graph G, if

NGðvÞn
�
NGðuÞ [ fug

�
6¼ ; 6¼ NGðuÞn

�
NGðvÞ [ fvg

�
, then we construct a new graph

G0 ¼ G0ðu; vÞ by replacing all edges vw by uw for each w 2 NGðvÞn
�
NGðuÞ [ fug

�
.

This operation is called the Kelmans transformation from v to u (see [6]).

Lemma 5.1 (Liu et al. [15]) Let G be a connected graph. If G0 is a graph obtained

from G by some Kelmans transformation and a� 0, then HðG0; aÞ[HðG; aÞ:

In the discussion of Lemma 5.2 below, the notation in Definition 1.2 (vi) will be

adopted.

Lemma 5.2 Let G be a graph obtained from Zp;q by deleting one edge. If p� k þ 1,

q� 1, a� 0 and dðGÞ� k � 1, then HðG; aÞ�H Z0
p;q; a

	 

, with equality if and only

if G ¼ Z0
p;q.

Proof Let G0 ¼ Zp;q and G0 ¼ Z0
p;q. Let e ¼ w0z0 2 EðG0Þ, and G ¼ G0 � e. It

suffices to show that if G 6¼ G0, then

HðG; aÞ\HðG0; aÞ: ð5:1Þ

Let U and V be the bipartition of G0 such that V contains q vertices of degree k and U

contains k vertices of degree p þ q in G0. Let U0 and V 0 be the vertices of degrees

p þ q and n, respectively, in U and V of G0. Since every vertex of VnV 0 has degree k

and since G 6¼ G0, by symmetry, we may assume that w0 2 U0 and z0 2 V 0.

Choose v 2 UnU0. Then, NGðvÞn
�
NGðw0Þ [ fw0g

�
¼ fz0g and

NGðw0Þn
�
NGðvÞ [ fvg

�
6¼ ;. It is routine to verify that G0 is isomorphic to the graph

obtained from G by a Kelmans transformation from v to w0. By Lemma 5.1,

HðG; aÞ\HðG0; aÞ, and so (5.1) holds. h

Let G be a connected graph. For any real number a� 0, it is well known that

A(G) is nonnegative and irreducible if and only if G is connected, and thus AðGÞ þ
aDðGÞ is a nonnegative irreducible matrix. This implies the existence of a unique

positive unit eigenvector f ¼
�
f ðv1Þ; f ðv2Þ; . . .; f ðvnÞ

�T
corresponding to HðG; aÞ.

This vector f is often called the Perron vector of G.

Lemma 5.3 For any integers n, q and a real number a, define a polynomial in h as

follows:
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WðhÞ ¼h4 � 2ðn þ q � 1Þah3 þ
	
a2
�
n2 þ 4nq � 3n þ q2 � 3q þ 1

�
� nq þ 1



h2

� a
	
a2ð2nq � q � nÞðn þ q � 1Þ � nqðn þ q � 2Þ



h

þ
�
a2 � 1

�
ðn � 1Þðq � 1Þ

�
nqa2 � 1

�
:

If 2� q� n and a� 0, then HðKn;q � e; aÞ is the maximum root of WðhÞ.

Proof Denote G ¼ Kn;q � e and H ¼ HðKn;q � e; aÞ. Let f be the Perron vector of

G, and let U and V be the two partite sets of G such that jUj ¼ n and jV j ¼ q. For

convenience, we suppose that e ¼ w0z0 with w0 2 U and z0 2 V .

Let x1 ¼ f ðwÞ for w 2 Unfw0g, let x2 ¼ f ðwÞ for w 2 Vnfz0g, let x3 ¼ f ðw0Þ and
x4 ¼ f ðz0Þ. it follows from

�
AðGÞ þ aDðGÞ

�
f ¼ Hf that

�
H� qa

�
x1 ¼ ðq � 1Þx2 þ x4;�

H� na
�

x2 ¼ ðn � 1Þx1 þ x3;�
H� ðq � 1Þa

�
x3 ¼ ðq � 1Þx2;�

H� ðn � 1Þa
�

x4 ¼ ðn � 1Þx1:

8
>>><

>>>:

ð5:2Þ

By multiplying H� ðn � 1Þa in both side of the first equation of (5.2), and then

multiplyingH� ðq � 1Þa in both side of the second equation of (5.2), it follows that
�
H� qa

��
H� ðn � 1Þa

�
x1 ¼ ðq � 1Þ

�
H� ðn � 1Þa

�
x2 þ

�
H� ðn � 1Þa

�
x4;�

H� na
��
H� ðq � 1Þa

�
x2 ¼

�
H� ðq � 1Þa

�
ðn � 1Þx1 þ

�
H� ðq � 1Þa

�
x3:

(

ð5:3Þ

By substituting the last two equation of (5.2) into (5.3), we have

�
ðH� qaÞðH� ðn � 1ÞaÞ � ðn � 1Þ

�
x1 ¼ ðq � 1ÞðH� ðn � 1ÞaÞx2;�

ðH� naÞðH� ðq � 1ÞaÞ � ðq � 1Þ
�

x2 ¼ ðH� ðq � 1ÞaÞðn � 1Þx1:

(

ð5:4Þ

Now, by (5.4), H is equal to the maximum root of WðhÞ, as required. h

Corollary 5.4 Let k and s be two nonnegative integers such that k� maxfs; 1g.

Each of the following holds.

(i) If n�ðk þ 1Þðk � s þ 2Þ þ 2, then q
�
Kn;nþs�k�1 � e

�
[

ffiffiffiffiffiffiffiffiffiffi
e0ðsÞ

p
.

(ii) If n� 4kðk þ 1Þ, then l
�
Kn;nþs�k�1 � e

�
[ n þ e0ðsÞ

n
:

Proof In proofs below, denote G ¼ Kn;nþs�k�1 � e and use q and l for qðGÞ and
lðGÞ, respectively. Define
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W1ðhÞ ¼h4 �
�
nðn þ s � k � 1Þ � 1

�
h2 þ ðn þ s � k � 2Þðn � 1Þ; and

W2ðhÞ ¼h3 � 2ð2n þ s � k � 2Þh2 þ
�
ðk � sÞ2 þ ðn � 1Þð5n þ 5s � 5k � 6Þ

�
h

� ðn � 1Þðn þ s � k � 2Þð2n þ s � k � 1Þ:

By setting q ¼ n þ s � k � 1 and a 2 f0; 1g in Lemma 5.3, q and l are equal to the

maximum roots of W1ðhÞ and W2ðhÞ, respectively. As n�ðk þ 1Þðk � s þ 2Þ þ
2[ k � s þ 4 and by W1ðqÞ ¼ 0 it follows that

q2 ¼ 1

2
nðn þ s � k � 1Þ � 1ð

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
nðn þ s � k � 1Þ � 1

�2 � 4ðn þ s � k � 2Þðn � 1Þ
q �

[ nðn þ s � k � 1Þ � 2� e0ðsÞ:

This completes the proof of (i).

To prove (ii), we first prove the following claim.

Claim 1. W2 2n þ s � k � 2þ ðkþ1Þðkþ2Þ
n

	 

\0:

By algebraic manipulations, we have

W2 2n þ s � k � 2þ ðk þ 1Þðk þ 2Þ
n

� �
¼ � 1

n3
W3ðnÞ;

where W3ðnÞ ¼ n5 �
	

kðk þ 4Þ � s þ 5



n4 �
	
ðk þ 2Þðk þ 1Þs � ðk þ 2Þ3 þ

s



n3 � ðk þ 2Þðk þ 1Þ
�
2k2 þ 7k � sþ

6
�
n2 þ ðk þ 2Þ2ðk þ 1Þ2ðk � s þ 2Þn � ðk þ 2Þ3ðk þ 1Þ3.
Recall that n� 4kðk þ 1Þ. Thus, W000

3 ðnÞ ¼ 6
	
10n2 � 4

�
kðk þ 4Þ � s þ 5

�
n �

ðk þ 2Þðk þ 1Þs þ ðk þ 2Þ3 � s


� W000

3 ð4kðk þ 1ÞÞ ¼ 6
	

s
�
15k2 þ 13k � 3

�
þ

k
�
144k3 þ 241k2 þ 22k � 68

�
þ 8



[ 0, and so W00

3ðnÞ�W00
3ð4kðk þ 1ÞÞ ¼ 2ðk þ

1Þ
	

s
�
84k3 þ 60k2 � 35kþ

2
�
þ k2

�
544k3 þ 812k2 � 154k � 347

�
þ 76k � 12



[ 0.

This leads to W0
3ðnÞ�W0

3ð4kðk þ 1ÞÞ ¼ ðk þ 1Þ2
	

s
�
208k4 þ 112k3 � 137k2 þ

12k � 4
�
þ k

�
1024k5 þ 1328k4 � 752k3 � 791k2 þ 230k � 84

�
þ 8



[ 0, and so

W3ðnÞ�W3ð4kðk þ 1ÞÞ ¼ ðk þ 1Þ3
	
4ks

�
48k4 þ 16k3 � 45k2þ 4k � 4

�
þ

k2
�
768k5 þ 832k4 � 928k3 � 684k2þ 215k � 150

�
þ 4ð5k � 2Þ



[ 0. This com-

pletes the proof of Claim 1.

Direct computation yields that W2ð0Þ ¼ �ðn � 1Þðn þ s � k � 2Þð2n þ s � k �
1Þ\0 and W2ðn þ s � k � 2Þ ¼ n þ s � k � 2[ 0. It is observed that W2ðhÞ tends
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to infinity when h tends to infinity. Combining this with

W2 2n þ s � k � 2þ ðkþ1Þðkþ2Þ
n

	 

\0 by Claim 1, we conclude that

l[ 2n þ s � k � 2þ ðk þ 1Þðk þ 2Þ
n

� n þ e0ðsÞ
n

;

and so (ii) follows. h

Proof of Theorem 1.14 Since Kn;nþs�k�1 � e � F0
n;k;s, by Corollary 5.4,

q
�
F0

n;k;s

�
[

ffiffiffiffiffiffiffiffiffiffi
e0ðsÞ

p
and l

�
F0

n;k;s

�
[ n þ e0ðsÞ

n
. Thus Theorem 1.14 follows from

Lemma 5.2 and Theorem 1.18. h

6 The proofs of Theorem 1.16 and Proposition 1.17

By Definition 1.2 (vi) and (1.1), for an edge w0z0 2 EðFn;k;sÞ with dFn;k;s
ðw0Þ ¼

n þ s � k � 1 and dFn;k;s
ðz0Þ ¼ n, F0

n;k;s ¼ Fn;k;s � w0z0. Throughout this section, we

let J ¼ F0
n;k;s and J0 ¼ F0

n;k;0. Unless specially indicated, we assume that k and s are

two nonnegative integers such that k � maxfs; 1g.

Lemma 6.1 If n�ðk þ 1Þðk � s þ 2Þ þ 2, then q2ðF0
n;k;sÞ\

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðn þ s � k � 1Þ

p
.

Proof By Corollary 5.4 and as Kn;nþs�k�1 � e � F0
n;k;s ¼ J, we have

qðJÞ[
ffiffiffiffiffiffiffiffiffiffi
e0ðsÞ

p
. By Lemma 4.4, it follows that

q2ðJÞ\
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jEðJÞj � e0ðsÞ

p

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � ðk þ 1� sÞðn � kÞ � 1� nðn þ s � k � 2Þ � ðk þ 1Þðk þ 2� sÞ

p

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n � ð2k � s þ 3Þ

p
:

Since n[ 2ðk þ 1Þ, nðn þ s � k � 1Þ �
�
n � ð2k � s þ 3Þ

�
¼

n2 � ðk þ 2� sÞn þ 2k � s þ 3� 2kðk þ sÞ þ 4k þ s þ 3[ 0. This completes the

proof of the lemma. h

Lemma 6.2 If n� 2ðk þ 1Þ � s, then qðF0
n;k;sÞ is equal to the maximum root of

W4ðxÞ, where W4ðxÞ ¼ x2
	

x2 � ðn þ s � k � 2Þ

	

x2 � kðk þ 1� sÞ


�

	
x2 þ ðn þ s � k � 2Þðx2 � 1Þ


	
kx2 þ ðn � k � 1Þðx2 � kðk þ 1� sÞÞ



:

Proof By Definition 1.2 (vi) and (1.1), J ¼ ½U;V � is a bipartite graph and we may

assume that V contains k þ 1� s vertices of degree k and U contains k vertices of

degree n in J. Define

U1 ¼
�

u 2 U : dJðuÞ ¼ n
�
and U2 ¼ UnU1;

V1 ¼
�

v 2 V : n � 1� dJðvÞ� n
�
and V2 ¼ VnV1:

ð6:1Þ

By symmetry, we may assume that w0 2 U2 and z0 2 V1.
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Let f be the Perron vector of J, and let q ¼ qðJÞ. We shall adopt the following

notation in the rest of the arguments:

x1 ¼ f ðwÞ if w 2 U1;

x2 ¼ f ðwÞ if w 2 V2;

x3 ¼ f ðwÞ if w 2 V1nfz0g;
x4 ¼ f ðwÞ if w 2 U2nfw0g;

x5 ¼ f ðw0Þ; and x6 ¼ f ðz0Þ:

8
>>>>>><

>>>>>>:

ð6:2Þ

As
�
AðJÞ

�
f ¼ qf , it follows that

q x1 ¼ ðk þ 1� sÞx2 þ ðn þ s � k � 2Þx3 þ x6;

q x2 ¼ kx1;

q x3 ¼ kx1 þ ðn � k � 1Þx4 þ x5;

q x4 ¼ ðn þ s � k � 2Þx3 þ x6;

q x5 ¼ ðn þ s � k � 2Þx3;
q x6 ¼ kx1 þ ðn � k � 1Þx4:

8
>>>>>>>><

>>>>>>>>:

ð6:3Þ

The first four equations of (6.3) imply that

x4 ¼ 1� kðk þ 1� sÞ
q2

� �
x1: ð6:4Þ

The equations on x3, x5 and x6 of (6.3) lead to

x3 ¼
q2

q2 � ðn þ s � k � 2Þ x6: ð6:5Þ

It follows from (6.5) and the first two equations of (6.3) that

x6 ¼
�
q2 � ðn þ s � k � 2Þ

��
q2 � kðk þ 1� sÞ

�

q
�
q2 þ ðn þ s � k � 2Þðq2 � 1Þ

� x1: ð6:6Þ

With algebraic manipulations and utilizing (6.4), (6.6) and the sixth equation of

(6.3), q is equal to the maximum root of W4ðxÞ, as desired. h

Proof of Proposition 1.17 Let W4ðxÞ as defined in Lemma 6.2.

To complete the proof, by Lemma 6.1, it suffices to show that

W4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðn þ s � k � 1Þ

p	 

[ 0: ð6:7Þ

Let U2ðnÞ ¼ W4

	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðn þ s � k � 1Þ

p 

. Algebraic manipulation yields U2ðnÞ ¼

2n4 �
	
ðk2 þ 4Þðk þ 1� sÞ þ 2



n3 þ

	
2k3ðk � 2s þ 2Þþ 2k2ðs � 1Þ2 � ð2s �

5Þðk � sÞ � 2ðs � 3Þ



n2 � ðk � s þ 1Þðk � s þ 2Þ
	

k2ðk � sÞ � 2k þ 1



n � kðk þ 1Þðk � s þ 1Þðk � s þ 2Þ.
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Case 1. s� 1.

Let U3ðnÞ ¼
	
2k3ðk � 2s þ 2Þ þ 2k2ðs � 1Þ2 � ð2s � 5Þðk � sÞ � 2ðs � 3Þ



n2 �

ðk � s þ 1Þðk � s þ 2Þ
	

k2ðk � sÞ � 2k þ 1



n � kðk þ 1Þðk � s þ 1Þðk � s þ 2Þ
and U4ðnÞ ¼ 2n4 �

�
ðk2 þ 4Þðk þ 1� sÞ þ 2

�
n3.

When 2n�ðk2 þ 4Þðk þ 1Þ, we have U0
3ðnÞ�U0

3

	
1
2
ðk2 þ 4Þðk þ 1Þ



¼ 2k5ðk �

sÞ2 þ 2k4ðk � sÞð3k � sÞ þ k3ðk � sÞð13k � 6s þ 28Þ þ k3ðs2 � 7s þ 13Þþ 7k2ðs �
1Þs þ 22k2ðk � sÞ þ k2ðs3 � 4s þ 4Þþ
5kð2s2 � 8s þ 7kÞ þ 45k � 25s þ 7s2 þ 22[ 0. This implies that

U3ðnÞ�U3

	
1
2
ðk2 þ 4Þðk þ 1Þ



¼ 1

4
ðk þ 1Þ

	
2k7ðk � sÞ2 þ 2k6ðk � sÞð3k � sÞ þ

4k5ðk � sÞð5k � 3sÞ þ k4ðk � sÞð49k � 12sÞþ k3ðk � sÞð83k � 16sÞ þ 12k3
�
sðs �

1Þ þ 12ðk � sÞ
�
þ 2k2s

�
k2s2 � 2k þ 4s2

�
þ 2k2ð11s2 � 77s þ 91kÞ þ 4ð46k2 �

41ks þ 6s2Þ þ 44ðks2 � 2s þ 4kÞ þ 80


[ 0:

When 2n�ðk2 þ 4Þðk þ 1Þ, we have

2n �
�
ðk2 þ 4Þðk þ 1� sÞ þ 2

�
� sðk2 þ 4Þ � 2� k2 þ 2[ 0, and so U4ðnÞ[ 0.

As U2ðnÞ ¼ U3ðnÞ þ U4ðnÞ[ 0, it follows that (6.7) must hold.

Case 2. s ¼ 0.

Define U5ðnÞ ¼ 2n3 �
	

k2ðk þ 1Þ þ 2k þ 4



n2þ
ðk þ 2Þ

�
k3 � k þ 1

�
n þ kðk þ 2Þðk þ 1Þ. As s ¼ 0, U2ðnÞ ¼ ðn � k � 1ÞU5ðnÞ.

Since 2n�ðk2 þ 4Þðk þ 1Þ[ k2ðk þ 1Þ þ 2k þ 4, we have

U5ðnÞ[ ðk þ 2Þ
�
k3 � k þ 1

�
n þ kðk þ 2Þðk þ 1Þ[ kðk þ 2Þðk þ 1Þ[ 0. Thus,

U2ðnÞ[ 0 and so (6.7) holds. h

Lemma 6.3 If n� 3kðk þ 1Þ and k � 2, then qðF0
n;k;0Þ[ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nðn � k � 2Þ þ ðk þ 2Þ2
q

.

Proof Throughout this proof, we let q ¼ qðJ0Þ to simplify the notation.

By Lemma 6.2, q is equal to the maximum root of W5ðxÞ, where W5ðxÞ ¼

x2
	

x2 � ðn � k � 2Þ

	

x2 � kðk þ 1Þ


�

	
x2 þ ðn � k � 2Þðx2 � 1Þ


	
kx2 þ ðn �

k � 1Þðx2 � kðk þ 1ÞÞ


: To show that q[

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðn � k � 2Þ þ ðk þ 2Þ2

q
, it suffices

to prove W5ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðn � k � 2Þ þ ðk þ 2Þ2

q
Þ\0:

Denote by U6ðnÞ ¼ Uð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðn � k � 2Þ þ ðk þ 2Þ2

q
Þ ¼ �n5 þ ðk2 þ 6k þ 10Þn4�

�
3kðk2 þ 5k þ 13Þ þ 37

�
n3 þ ðk þ 2Þð4k3 þ 17k2 þ 45k þ 44Þn2� ðk3ð3k2 þ

22k þ 78Þ þ 174k2 þ 219k þ 112Þnþ
ðk þ 2Þðk5 þ 7k4 þ 26k3 þ 64k2 þ 85k þ 44Þ.

When n� 3kðk þ 1Þ and k � 2, we have U0000
6ðnÞ ¼ 24

�
� 5n þ k2 þ 6k þ
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10
�
� � 24ð14k2 þ 9k � 10Þ\0 and thus U000

6ðnÞ�U000
6ð3kðk þ 1ÞÞ ¼

�6
�
k2ð78k2 � 87Þ þ 9kð11k2 � 9Þ þ 37

�
\0. Once again, since n� 3kðk þ 1Þ and

k � 2, we have U00
6ðnÞ�U00

6ð3kðk þ 1ÞÞ ¼ �2
�
k4ð216k2 � 274Þ þ k3ð405k2 �

673Þ þ 65k2 þ 199k � 88
�
\0 and so U0

6ðnÞ�U0
6ð3kðk þ 1ÞÞ ¼ �

�
k3ð297k5þ

729k4 � 375k3 � 1899k2 � 575k þ 303Þ þ 159k2ðk � 1Þþ 309kðk2 � 1Þ þ
112

�
\0:

This implies that

U6ðnÞ�U6ð3kðk þ 1ÞÞ ¼ �
�
162k10 þ 486k9 � 198k8 � 1827k7�-

. Denote by U7ðkÞ ¼ 162k4 þ 486k3 � 198k2 � 1827k � 1339. Since U7ð2Þ ¼
695[ 0 and U7ðkÞ ¼ 175k3 � 1339þ k2ð311k � 198Þ þ kð162k3 � 1827Þ[ 0 for

k � 3, we have U6ðnÞ\0, as desired. h

Lemma 6.4 If n� 2ðk þ 2Þ2 and k � 1, then lðF0
n;k;0Þ[ 2n � k � 1:5.

Proof Throughout this proof, we let l ¼ lðJ0Þ to simplify the notation. Define U1,

U2, V1 and V2 as in (6.1) with s ¼ 0 and let w0 2 U2 and z0 2 V1. Moreover, we let f

be the Perron vector of J0 and we also adopt the same notation from (6.2). As�
QðJ0Þ

�
f ¼ lf , it follows that

ðl� nÞ x1 ¼ ðk þ 1Þx2 þ ðn � k � 2Þx3 þ x6;

ðl� kÞ x2 ¼ kx1;

ðl� nÞ x3 ¼ kx1 þ ðn � k � 1Þx4 þ x5;

ðl� n þ k þ 1Þ x4 ¼ ðn � k � 2Þx3 þ x6;

ðl� n þ k þ 2Þ x5 ¼ ðn � k � 2Þx3;
ðl� n þ 1Þx6 ¼ kx1 þ ðn � k � 1Þx4:

8
>>>>>>>><

>>>>>>>>:

ð6:8Þ

The first four equations of (6.8) imply that

x4 ¼
ðl� nÞðl� kÞ � kðk þ 1Þ
ðl� kÞðl� n þ k þ 1Þ x1: ð6:9Þ

The equations on x3, x5 and x6 of (6.8) lead to

x3 ¼
ðl� n þ 1Þðl� n þ k þ 2Þ

ðl� nÞðl� n þ k þ 2Þ � ðn � k � 2Þ x6: ð6:10Þ

It follows from (6.10) and the first two equations of (6.8) that

x6 ¼
ðl2 � ðk þ nÞlþ kðn � k � 1ÞÞðl2 � ð2n � k � 2Þlþ ðn � 1Þðn � k � 2ÞÞ

ðl� kÞððn � k � 1Þl2 � ð2n2 � ð3k þ 5Þn þ ðk þ 2Þ2Þx þ ðn � 1Þðn � k � 1Þðn � k � 2ÞÞ
x1:

ð6:11Þ

With algebraic manipulations and utilizing (6.9), (6.11) and the sixth equation of

(6.8), l is equal to the maximum root of W6ðxÞ, where W6ðxÞ ¼ x4 �
�
4n � 4�

k
�
x3 þ

�
5n2 � ðk þ 11Þn � 2k2 þ 6

�
x2 �

�
2n3 þ ð2k � 7Þn2� ð6k2 þ 7k � 7Þn þ

2k3 þ 8k2 þ 6k � 2
�
x þ 2kðn � 1Þðn � k � 1Þðn � k � 2Þ:
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Since W6ð2n � k � 1:5Þ ¼ �1
16
U8ðnÞ; where U8ðnÞ ¼ 16n3 þ 4ð4k2 � 4k �

19Þn2 � 4ð4k3 � 25k � 23Þn� 8k3 � 36k2 � 66k � 33 ¼ 4nð4n2 � 19n � 4k3 þ
25k þ 23Þþ 16kðk � 1Þn2 � 8k3 � 36k2 � 66k � 33. Note that n� 2ðk þ 2Þ2. Thus,
U00

8ðnÞ ¼ 8ð12n þ 4k2 � 4k � 19Þ�U00
8ð2ðk þ 2Þ2Þ ¼ 8ð28k2 þ 92k þ 77Þ[ 0 and

so U0
8ðnÞ�U0

8ð2ðk þ 2Þ2Þ ¼ 4ð64k4 þ 428k3 þ 1076k2 þ 1193k þ 487Þ[ 0. This

implies that U8ðnÞ�U8ð2ðk þ 2Þ2Þ ¼ 192k6 þ 1952k5þ
8272k4 þ 18624k3 þ 23348k2 þ 15294k þ 4031. Now, we can conclude that

W6ð2n � k � 1:5Þ\0, completing the proof of this result. h

Lemma 6.5 (Li and Ning [13]) Let G be a balanced bipartite graph on 2n vertices.

If dðGÞ� k� 1, n� 2k þ 3 and jEðGÞj[ nðn � k � 2Þ þ ðk þ 2Þ2, then G is

traceable unless G � Fn;k;0 or k ¼ 1 and G � Kn�1;n�1 [ K2:

Proof of Theorem 1.16 Let G denote the balanced bipartite graph satisfying the

hypotheses of Theorem 1.16. By (4.6) and Lemmas 6.3–6.4, we have

n þ nðn � k � 2Þ þ ðk þ 2Þ2

n
� 2n � k � 1:5\lðJ0Þ�

jEðJ0Þj
n

þ n; ð6:12Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðn � k � 2Þ þ ðk þ 2Þ2

q
\qðJ0Þ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jEðJ0Þj

p
: ð6:13Þ

Each of (6.12) and (6.13) implies that jEðJ0Þj[ nðn � k � 2Þ þ ðk þ 2Þ2. By

Lemma 6.5, by the assumption that either qðGÞ� q
�
F0

n;k;s

�
or lðGÞ� l

�
F0

n;k;s

�
, and

as dðGÞ� 2, we conclude that either G is traceable or G � Fn;k;0. It follows by

Lemma 5.2 that G 2 Fn;k;0; F0
n;k;0

n o
. h

7 The proof of Theorem 1.21

Throughout this section, we assume that G ¼ ½U;V � is an almost balanced bipartite

graph with jUj ¼ jV j þ 1 ¼ n. Let v0 be a vertex not in V(G) and define a balanced

bipartite graph Gv0 from G by adding v0 and n edges joining v0 to all vertices of U.

Lemma 7.1 If Gv0 is (q, q)-Hamiltonian, then G is (q, q)-traceable.

Proof As the case when q ¼ 0 follows from definition immediately, we assume that

q� 1. Let S be an arbitrary set of 2q vertices of G such that jS \ Uj ¼ q ¼ jS \ Vj.
Choose a vertex v 2 S \ V . Let S1 ¼

�
Snfvg

�
[ fv0g and V1 ¼ V [ fv0g. Then

jS1 \ Uj ¼ q ¼ jS1 \ V1j. Since Gv0 is (q, q)-Hamiltonian, Gv0
�
V Gv0ð ÞnS1

�
contains

a Hamiltonian cycle, and hence G
�
VðGÞnS

�
is traceable, as

Gv0
�

V Gv0ð ÞnS1ð Þnfvg
�
¼ G

�
VðGÞnS

�
. By the arbitrariness of S, G is (q, q)-

traceable. h
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Proof of Theorem 1.21 (i): We first show that, under the assumption of

Theorem 1.21, we have

jEðGÞj[ nðn þ q � k � 2Þ þ ðk þ 1Þðk þ 1� qÞ: ð7:1Þ

Assume that jEðGÞj� nðn þ q � k � 2Þ þ ðk þ 1Þðk þ 1� qÞ. By (1.3) and Corol-

lary 4.5, we have XðaÞ� a jEðGÞj
n

þ n
	 


þ ð1� aÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
jEðGÞj

p
�HðG; aÞ, contrary to

the assumption that XðaÞ\HðG; aÞ. Hence (7.1) follows.

From (7.1), it follows that

jEðGv0Þj[ nðn þ q � k � 1Þ þ ðk þ 1Þðk þ 1� qÞ ¼ e0ðq þ 1Þ. By Theorem 4.2

and Proposition 1.13, either Gv0 is (q, q)-Hamiltonian or Gv0 � Fn;k;qþ1. It follows

by Lemma 7.1 that either G is (q, q)-traceable or G � Znþq�k�1;k�q. h

Proof of Theorem 1.21 (ii): By Corollary 5.4, we have q
�
Kn;nþq�k�1 �

e
�
[

ffiffiffiffiffiffiffiffiffiffi
e0ðqÞ

p
[Xð0Þ and l

�
Kn;nþq�k�1 � e

�
[ n þ e0ðqÞ

n
[Xð1Þ. Note that

Kn;nþq�k�1 � e � Z0
nþq�k�1;k�q. Thus, Theorem 1.21 (i) implies that G is (q, q)-

traceable unless G � Znþq�k�1;k�q. Now, the result follows from Lemma 5.2. h
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