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n with minimum degree δ ≥ k, girth g ≥ 3 and clique 
number ω(G) ≤ r, the edge-connectivity κ′(G) ≥ k if 
μn−1(G) ≥ (k−1)n

N(δ,g)(n−N(δ,g)) or if μn−1(G) ≥ (k−1)n
ϕ(δ,r)(n−ϕ(δ,r)) , 

where N(δ, g) is the Moore bound on the smallest possible 
number of vertices such that there exists a δ-regular simple 
graph with girth g, and ϕ(δ, r) = max{δ+1, � rδ

r−1 �}. Analogue 
results involving μn−1(G) and μ1(G)

μn−1(G) to characterize vertex-
connectivity of graphs with fixed girth and clique number are 
also presented. Former results in Liu et al. (2013) [22], Liu et 
al. (2019) [20], Hong et al. (2019) [15], Liu et al. (2019) [21]
and Abiad et al. (2018) [1] are improved or extended.
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1. Introduction

We only consider finite and simple graphs in this paper. Undefined notation and 
terminologies will follow Bondy and Murty [3]. Let G = (V, E) be a graph of order n. We 
use κ(G), κ′(G), δ(G) and Δ(G) to denote the vertex-connectivity, the edge-connectivity, 
the minimum degree and the maximum degree of a graph G, respectively. The girth g(G)
of a graph G is the length of a shortest cycle in G if it contains at least one cycle, and 
g(G) = ∞ if G is acyclic. A clique of a graph is a set of mutually adjacent vertices, and 
that the maximum size of a clique of a graph G, the clique number of G, is denoted by 
ω(G). For a vertex subset S ⊆ V (G), G[S] is the subgraph of G induced by S.

Let G = (V, E) be a simple graph with vertex set V = V (G) = {v1, v2, . . . , vn}
and edge set E = E(G). The adjacency matrix of G is defined to be a (0, 1)-matrix 
A(G) = (aij)n×n, where aij = 1 if vi and vj are adjacent, aij = 0 otherwise. As G is 
simple and undirected, A(G) is a symmetric (0, 1)-matrix. The adjacency eigenvalues of 
G are the eigenvalues of A(G). Denoted by D(G) = diag{dG(v1), dG(v2), . . . , dG(vn)}, 
the degree diagonal matrix of G, where dG(vi) denotes the degree of vi. The matrices 
L(G) = D(G) −A(G) and Q(G) = D(G) +A(G) are called the Laplacian matrix and the 
signless Laplacian matrix of G, respectively. We use λi(G), μi(G) and qi(G) to denote 
the ith largest eigenvalue of A(G), L(G) and Q(G), respectively.

The second smallest Laplacian eigenvalue μn−1(G) is called algebraic connectivity
by Fiedler [9,10]. Fiedler [9] initiated the investigation on the relationship between 
graph connectivity and graph eigenvalues, and showed that μn−1(G) ≤ κ(G) ≤ κ′(G). 
Kirkland, Molitierno, Neumann and Shader [16] investigated the graphs with equal al-
gebraic connectivity and vertex-connectivity. It is worth mentioning that Cioabă in 
[6] investigated the relationship between edge-connectivity and adjacency eigenvalues 
of regular graphs. From then on, the edge-connectivity problem has been intensively 
studied by many researchers, as found in [1,5–7,11,12,17–20,22,23], among others. For 
the vertex-connectivity of graphs, one can refer to [1,15,21,24]. In [1], Abiad, Brimkov, 
Martínez-Rivera, O and Zhang raised the following research problem.

Problem 1.1. (Abiad, Brimkov, Martínez-Rivera, O and Zhang [1]) For a d-regular simple 
graph or multigraph G and for 2 ≤ k ≤ d, what is the best upper bound on λ2(G) which 
guarantees κ′(G) ≥ k or κ(G) ≥ k?

A number of results are related to Problem 1.1, as shown in the following theorem.

Theorem 1.2. Let d, k be integers with d ≥ k ≥ 2, and let G be a simple graph of order 
n with minimum degree δ ≥ k.

(i) (Cioabǎ [6]) If G is d-regular and λ2(G) ≤ d − (k−1)n
(d+1)(n−d−1) , then κ′(G) ≥ k.

(ii) (Li and Shi [17], Liu, Hong and Lai [18]) If λ2(G) ≤ δ − (k−1)n
(δ+1)(n−δ−1) , then 

κ′(G) ≥ k.
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(iii) (Liu, Lu and Tian [22]) If μn−1(G) ≥ (k−1)n
(δ+1)(n−δ−1) or q2(G) ≤ 2δ− (k−1)n

(δ+1)(n−δ−1) , 
then κ′(G) ≥ k.

(iv) (Abiad, Brimkov, Martínez-Rivera, O and Zhang [1]) Let G be a d-regular graph. If 
k ≥ 3 and λ2(G) < d − (k−1)dn

2(d−k+2)(n−d+k−2) , then κ(G) ≥ k. If λ2(G) < d − dn
2(d+1)(n−d−1) , 

then κ(G) ≥ 2.

As can be seen in [15] or will be seen in Section 4, for any real number p > 0, if 
q2(G) ≤ 2δ(G) − p or λ2(G) ≤ δ(G) − p, then μn−1(G) ≥ p. Moreover, it is known 
that if μn−1(G) > 0, then κ′(G) ≥ κ(G) ≥ 1. Therefore, we focus on establishing the 
lower bounds on μn−1(G) which guarantee κ′(G) ≥ k or κ(G) ≥ k. By Theorem 1.2, it 
is natural to discuss Problem 1.1 for bipartite graphs or triangle-free graphs and drop 
the graph regularity. Note that triangle-free graphs have girth at least 4, or equivalently 
clique number at most 2. Thus, to get better lower bounds on algebraic connectivity, 
we consider graphs with fixed girth or clique number. In this paper, we improve or 
extend some recent results. In order to state some known results, we need the following 
definition.

Definition 1.3. For integers δ, g with δ ≥ 2 and g ≥ 3, let t = � g−1
2 �. Define

N(δ, g) =
{

1 + δ
∑t−1

i=0(δ − 1)i, if g = 2t + 1;
2
∑t

i=0(δ − 1)i, if g = 2t + 2.

Tutte [26] initiated the cage problem, which seeks, for any given integers d and g with 
d ≥ 2 and g ≥ 3, the smallest possible number of vertices n(d, g) such that there exists 
a d-regular simple graph with girth g. N(d, g) in Definition 1.3 is a tight lower bound 
(often called the Moore bound) on n(d, g) which can be found in [8].

The results in Theorem 1.2 have been improved or extended in [22,20,21,15] as follows.

Theorem 1.4. (Liu, Lu and Tian [22]) Let k ≥ 2 be an integer, and G be a connected 
graph of order n with girth g ≥ 3 and minimum degree δ ≥ k. If μn−1(G) ≥ (k−1)n

g(n−g) , then 

κ′(G) ≥ k. Moreover, if δ ≥ 3 and μn−1(G) ≥ (k−1)n
4
9N(δ,g)(n− 4

9N(δ,g)) , then κ′(G) ≥ k.

Theorem 1.5. (Liu, Lai and Tian [20]) Let k ≥ 2 be an integer, and G be a connected 
graph of order n with girth g ≥ 3 and minimum degree δ ≥ k. Let f(2, g) = g, t = � g−1

2 �
and for δ ≥ 3 f(δ, g) = N(δ, g) −

∑t−1
i=1(δ − 1)i. If μn−1(G) ≥ (k−1)n

f(δ,g)(n−f(δ,g)) , then 
κ′(G) ≥ k.

Theorem 1.6. (Liu, Lai, Tian and Wu [21]) Let k ≥ 2 be an integer, and G be a connected 
graph of order n with maximum degree Δ, minimum degree δ ≥ k, girth g ≥ 3. Let 
t = � g−1

2 � and

ν(δ, g, k) =
{

N(δ, g) − (k − 1)
∑t−1

i=0(δ − 1)i, if g = 2t + 1, or g = 2t + 2 and δ ≥ 3;
2t + 1, if g = 2t + 2 and δ = 2.
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If μn−1(G) ≥ (k−1)nΔ
2ν(δ,g,k)(n−ν(δ,g,k)) , then κ(G) ≥ k.

Theorem 1.7. (Hong, Xia and Lai [15]) Let k be an integer and G be a simple graph of 
order n with maximum degree Δ and minimum degree δ ≥ k ≥ 2.

(i) If μn−1(G) > (k−1)nΔ
(n−k+1)(k−1)+4(δ−k+2)(n−δ−1) , then κ(G) ≥ k.

(ii) If G is triangle-free and μn−1(G) > (k−1)nΔ
(n−k+1)(k−1)+4(2δ−k+1)(n−2δ) , then κ(G) ≥ k.

Although Theorem 1.5 and Theorem 1.6 improve some previous results, there still 
exist some graphs which do not satisfy the sufficient conditions of Theorem 1.5 and 
Theorem 1.6. We aim to find better bounds on μn−1(G) such that the connectivity of 
more graphs can be determined. As will be seen in the appendix, we list some graphs 
whose connectivity can be determined by Theorems 1.8, 1.9, 1.10, 1.12, 1.13 but can not 
be determined by Theorem 1.5 and Theorem 1.6. This is the motivation of the current 
research.

For edge-connectivity, in this paper we obtain the following two theorems, where 
Theorem 1.8 improves Theorems 1.4 and 1.5, and Theorem 1.9 extends Theorem 1.8
when g(G) = 3.

Theorem 1.8. Let k be an integer and G be a connected graph of order n with minimum 
degree δ ≥ k ≥ 2 and girth g ≥ 3. If μn−1(G) ≥ (k−1)n

N(δ,g)(n−N(δ,g)) , then κ′(G) ≥ k.

Theorem 1.9. Let r ≥ 2 and k be integers, and G be a connected graph of order n with 
minimum degree δ ≥ k ≥ 2 and clique number ω(G) ≤ r. Let ϕ(δ, r) = max{δ+1, � rδ

r−1�}. 
If μn−1(G) ≥ (k−1)n

ϕ(δ,r)(n−ϕ(δ,r)) , then κ′(G) ≥ k.

For vertex-connectivity, we obtain the following three theorems, where Theorem 1.10
improves Theorem 1.6 and extends Theorem 1.7 when g(G) ≥ 5, and Theorems 1.11 and 
1.12 extend Theorem 1.10 when g(G) = 3.

Theorem 1.10. Let g, k be integers and G be a connected graph of order n with maximum 
degree Δ, minimum degree δ ≥ k ≥ 2 and girth g ≥ 3. If

μn−1(G) > n(k − 1)Δ
n(n− k + 1) − (n− 2N(δ, g) + k − 1)2 ,

then κ(G) ≥ k.

Theorem 1.11. Let r ≥ 3 and k be integers, and G be a connected graph of order n
with maximum degree Δ, minimum degree δ ≥ k ≥ 2 and clique number ω(G) ≤ r. Let 
φ(δ, k, r) = max{(n − 2(r−1)

r−2 δ + r(k−1)
r−2 )2, (n − 2rδ

r−1 + k − 1)2}. If

μn−1(G) > n(k − 1)Δ
,

n(n− k + 1) − φ(δ, k, r)
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then κ(G) ≥ k.

Theorem 1.12. Let r ≥ 2 and k ≥ 2 be integers, and G be a connected graph of order n
with maximum degree Δ, minimum degree δ > (k−1)(r−1) and clique number ω(G) ≤ r. 
If

μn−1(G) > n(k − 1)Δ
n(n− k + 1) − (n− 2rδ

r−1 + k − 1)2
,

then κ(G) ≥ k.

Applying the result of Brouwer and Haemers [4], we get the following two results for 
vertex-connectivity with respect to μ1(G) and μn−1(G).

Theorem 1.13. Let g, k be integers and G be a connected graph of order n with minimum 
degree δ ≥ k ≥ 2 and girth g ≥ 3. If

μ1(G)
μn−1(G) < s +

√
s2 − 1 or equivalently μn−1(G)

μ1(G) > s−
√

s2 − 1,

then κ(G) ≥ k, where s = 2(N(δ,g)−k+1)(n−N(δ,g))
n(k−1) + 1.

Theorem 1.14. Let r ≥ 2 and k ≥ 2 be integers, and G be a connected graph of order n
with minimum degree δ > (k − 1)(r − 1) and clique number ω(G) ≤ r. If

μ1(G)
μn−1(G) < s +

√
s2 − 1 or equivalently μn−1(G)

μ1(G) > s−
√

s2 − 1,

then κ(G) ≥ k, where s = 2( r
r−1 δ−k+1)(n− r

r−1 δ)
n(k−1) + 1.

In Section 2, we display some preliminaries and mechanisms, including the bounds of 
Laplacian eigenvalues and the scale of the remained connected components when deleting 
vertex subset or edge subset in G. These will be applied in the proofs of the main results, 
to be presented in Section 3. As corollaries, adjacency and signless Laplacian eigenvalue 
conditions which guarantee that κ′(G) ≥ k or κ(G) ≥ k are presented in the last section.

2. Preliminaries

In this section, we present some of the preliminaries to be used in the proof of main 
results. For disjoint subsets X and Y of V (G), let E(X, Y ) be the set of edges between 
X and Y . For X ⊆ V (G), we use dG(X) or simply d(X) to denote the number of edges 
between X and V (G) \ X, that is d(X) = |E(X, V (G) \ X)|. For a vertex v ∈ V (G), 
we use NG(v) to denote the neighbor set of v in G. The following result is the famous 
theorem of Turán [27].
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Lemma 2.1. (Turán [27]) Let r ≥ 1 be an integer, and G be a graph of order n. If the 
clique number ω(G) ≤ r, then |E(G)| ≤

⌊
r−1
2r · n2⌋.

Lemma 2.2. Let r ≥ 2 be an integer, and G be a graph with minimum degree δ and 
clique number ω(G) ≤ r. Let X be a nonempty proper subset of V (G). If d(X) < δ, then 

|X| ≥ max{δ + 1, 
⌊

rδ
r−1

⌋
}.

Proof. We first show that X contains at least δ + 1 vertices. Since each vertex in X is 
adjacent to at most |X| − 1 vertices of X, we obtain

δ|X| ≤
∑
x∈X

dG(x) ≤ |X|(|X| − 1) + d(X) ≤ |X|(|X| − 1) + δ − 1,

and so (|X| − 1)(|X| − δ) ≥ 1, which means that |X| ≥ δ + 1.
Next we show that |X| ≥

⌊
rδ
r−1

⌋
. By Lemma 2.1, we conclude that

|E(G[X])| ≤ (r − 1)|X|2
2r . (2.1)

Since 
∑

x∈X dG(x) = 2|E(G[X])| + d(X), by (2.1)

|X|δ ≤
∑
x∈X

dG(x) ≤ 2(r − 1)|X|2
2r + d(X) ≤ (r − 1)|X|2

r
+ δ − 1

and so |X|2 − rδ
r−1 |X| + r(δ−1)

r−1 ≥ 0. It follows that

(|X| − 1)(|X| − rδ

r − 1 + 1) ≥ 1
r − 1 > 0,

which means that |X| > rδ
r−1 − 1. Therefore we arrive at |X| ≥

⌊
rδ
r−1

⌋
. �

Lemma 2.3. Let r ≥ 2 be an integer, and G be a graph with minimum degree δ ≥ 2
and clique number ω(G) ≤ r. Let S be a vertex-cut of G and X be the vertex set of a 
component of G − S.

(i) If r ≥ 3 and |S| < δ, then |X| ≥ min{ r−1
r−2 (δ − |S|), rδ

r−1 − |S|}.
(ii) If r ≥ 3 and δ

r−1 ≤ |S| < δ, then |X| ≥ r−1
r−2 (δ − |S|).

(iii) If r ≥ 2 and |S| < δ
r−1 , then |X| ≥ rδ

r−1 − |S|.

Proof. (i) If ω(G[X]) ≤ r−1, then by Lemma 2.1, we have 2|E(G[X])| ≤ r−2
r−1 |X|2. Since 

δ > |S|, each vertex in G[X] has degree at least δ − |S| and so

|X|(δ − |S|) ≤ 2|E(G[X])| ≤ r − 2 |X|2.

r − 1
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Thus, in this case, we have |X| ≥ r−1
r−2 (δ − |S|).

If ω(G[X]) = r, then there exists a complete subgraph Kr in G[X]. Consider the 
following two subcases. If δ ≤ r− 1, then |X| ≥ r ≥ δ + 1. If δ > r− 1, then each vertex 
of Kr has at least δ − r + 1 neighbors in (X ∪ S) \ V (Kr) and at most r − 1 vertices of 
Kr have common neighbors in (X ∪ S) \ V (Kr). This leads to |N(Kr)| ≥ r(δ−r+1)

r−1 and 
so

|X| + |S| ≥ |V (Kr)| + |N(Kr)| ≥ r + r(δ − r + 1)
r − 1 = rδ

r − 1 ,

which implies |X| ≥ rδ
r−1 − |S|.

By the discussions above, we conclude that

(A) if δ ≤ r − 1, then |X| ≥ min{ r−1
r−2 (δ − |S|), δ + 1} = r−1

r−2 (δ − |S|);
(B) if δ > r − 1, then |X| ≥ min{ r−1

r−2 (δ − |S|), rδ
r−1 − |S|}.

Combining (A) with (B), (i) is proved.
(ii) If r ≥ 3 and |S| ≥ δ

r−1 , then

rδ

r − 1 − |S| − r − 1
r − 2(δ − |S|) = (r − 1)|S| − δ

(r − 1)(r − 2) ≥ 0.

Therefore, by (i), |X| ≥ min{ r−1
r−2 (δ − |S|), rδ

r−1 − |S|} = r−1
r−2 (δ − |S|).

(iii) If r ≥ 3 and |S| < δ
r−1 , then

rδ

r − 1 − |S| − r − 1
r − 2(δ − |S|) = (r − 1)|S| − δ

(r − 1)(r − 2) < 0.

Therefore, by (i), |X| ≥ min{ r−1
r−2 (δ − |S|), rδ

r−1 − |S|} = rδ
r−1 − |S|.

If r = 2 and |S| < δ, then X contains at least two vertices and there exists one edge xy
in G[X]. As r = 2, G is triangle-free and so N(x) ∩N(y) = ∅. Since N(x) ∪N(y) ⊆ X∪S, 
it follows that

|X| + |S| = |X ∪ S| ≥ |N(x) ∪N(y)| = |N(x)| + |N(y)| ≥ 2δ

and thus |X| ≥ 2δ − |S| = rδ
r−1 − |S|. The result follows. �

For any two vertices u, v in G, let d(u, v) be the length of a shortest path between u
and v in G. For any nonempty set S ⊆ V , let d(v, S) = min{d(v, w), ∀w ∈ S} for any 
vertex v ∈ V (G). In particular, if v ∈ S, then d(v, S) = 0.

Lemma 2.4. Let G be a simple connected graph with minimum degree δ ≥ 2 and girth 
g ≥ 3. Let S be a vertex-cut of G and X be the vertex set of a component of G − S. If 
|S| < δ, then |X| ≥ N(δ, g) − |S|.
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Proof. Claim 1. X contains at least δ + 1 − |S| vertices.
Since each vertex in X is adjacent to at most |X| − 1 vertices of X and at most |S|

vertices of S, we obtain

δ|X| ≤
∑
x∈X

dG(x) ≤ |X|(|X| − 1 + |S|),

and so |X| ≥ δ + 1 − |S|. Thus Claim 1 holds and implies that |X| ≥ 2.
Claim 2. There exists a vertex v ∈ X such that d(v, S) ≥ t.
If t = 1, then Claim 2 holds obviously. So we only need to consider t ≥ 2. Suppose 

to the contrary that each vertex v ∈ X satisfies d(v, S) ≤ t − 1. Let v0 be an arbitrary 
vertex in X and {v1, v2, . . . , vδ} ⊆ N(v0) be the subset of the neighbors of v0 in G. For 
each i ∈ {1, 2, . . . , δ}, let Pi be a shortest path from vi to S, then |E(Pi)| ≤ t − 1. Note 
that vi may be in S and Pi may be trivial. Since |S| ≤ δ−1, there exist at least two paths 
Pj and Pk with 1 ≤ j < k ≤ δ such that V (Pj) ∩V (Pk) = ∅. Thus, Pj ∪Pk∪{v0vj , v0vk}
contains a cycle C of length

	(C) ≤ |E(Pj)| + |E(Pk)| + 2 ≤ 2t < g,

a contradiction to the girth of G is g. Claim 2 is proved.
(i) Assume that g = 2t + 1 is odd and v ∈ X with d(v, S) ≥ t. Then Ni(v) ⊆ X ∪ S

for each 0 ≤ i ≤ t, where Ni(v) = {u ∈ V (G) : d(u, v) = i}. Furthermore, for each 
1 ≤ i ≤ t − 1 and for any distinct vertices x, y ∈ Ni(v), the neighbors of x and y in 
Ni+1(v) are distinct as G[X] contains no cycle of length less than g. Hence,

|X| + |S| = |X ∪ S| ≥ |N0(v)| + |N1(v)| + |N2(v)| + · · · + |Nt(v)|
≥ 1 + δ + δ(δ − 1) + · · · + δ(δ − 1)t−1

= 1 + δ
t−1∑
i=0

(δ − 1)i = N(δ, g).

(ii) Assume that g = 2t + 2 is even and v ∈ X with d(v, S) ≥ t. Let {v1, v2, . . . , vδ} ⊆
N(v) be the subset of the neighbors of v. Without loss of generality, assume that P is 
the shortest path from v to v′ ∈ S passing v1 and P1 is the subpath of P from v1 to S. 
Let Pi be a shortest path from vi to S for each i ∈ {2, 3, . . . , δ}.

Claim 3. There exists a neighbor u ∈ X of v such that d(u, S) ≥ t.
Suppose that d(vi, S) ≤ t − 1 for each 2 ≤ i ≤ δ. If there exists some i ≥ 2 such that 

V (Pi) ∩ V (P1) = ∅, then

t− 1 ≥ d(vi, S) = |E(Pi)| ≥ |E(P1)| = |E(P )| − 1 ≥ t− 1

and so Pi∪P1∪{vv1, vvi} contains a cycle C of length 	(C) ≤ 2t, a contradiction. In this 
case, if δ = 2, then |S| = 1 and V (P2) ∩V (P1) = ∅, which yields a contradiction to g > 2t. 
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Hence, Claim 3 is true for δ = 2. Next, it suffices to consider δ ≥ 3. If V (Pi) ∩V (P1) = ∅
for each 2 ≤ i ≤ δ, then there exist at least two paths Pi and Pj with 2 ≤ i < j ≤ δ such 
that V (Pi) ∩ V (Pj) = ∅ as |S \ {v′}| ≤ δ − 2. Thus, Pi ∪ Pj ∪ {vvi, vvj} contains a cycle 
C of length 	(C) ≤ 2t, a contradiction. This completes the proof of Claim 3.

By Claim 3, assume that u is a neighbor of v such that d(u, S) ≥ t. Then Ni(uv) ⊆
X∪S for each 1 ≤ i ≤ t, where Ni(uv) = {w ∈ V \{u, v} : d(w, {u, v}) = i}. Furthermore, 
for each 1 ≤ i ≤ t − 1 and for any distinct vertices x, y ∈ Ni(uv), the neighbors of x and 
y in Ni+1(uv) are distinct and N(u) ∩N(v) = ∅ as g(G[X ∪ S]) ≥ g = 2t + 2. Hence,

|X| + |S| = |X ∪ S| ≥ 2 + |N1(uv)| + |N2(uv)| + · · · + |Nt(uv)|
≥ 2 + 2(δ − 1) + 2(δ − 1)(δ − 1) + · · · + 2(δ − 1)(δ − 1)t−1

= 2
t∑

i=0
(δ − 1)i = N(δ, g).

The result follows. �
Lemma 2.5. Let G be a simple connected graph with minimum degree δ ≥ 2 and girth 
g ≥ 3, X be a non-empty proper subset of V (G). If d(X) < δ, then |X| ≥ N(δ, g).

Proof. Let F be the set of edges between X and V (G) \X, and S = V (F ) ∩X be the 
set of end-vertices of F in X. Since d(X) < δ, by Lemma 2.2 we have |X| ≥ δ+1. Thus, 
X \S = ∅ and so S is a vertex cut of G with |S| ≤ d(X) < δ. Let X1, . . . , Xk ⊆ X be the 
vertex sets of the components of G −S, where k ≥ 1. By Lemma 2.4, |X1| ≥ N(δ, g) −|S|
and so |X| ≥ |X1| + |S| ≥ N(δ, g). �
Corollary 2.6. Let G be a simple graph of order n with minimum degree δ ≥ 2 and girth 
g ≥ 3.

(i) If n < 2N(δ, g) − κ(G), then κ(G) = δ(G).
(ii) If n < 2N(δ, g), then κ′(G) = δ(G).

Proof. (i) Suppose to the contrary that κ(G) < δ(G). Assume that S is a minimum 
vertex-cut of G and X is the vertex set of a minimum component of G − S. Let Y =
V (G) \ (X ∪S). By Lemma 2.4, |Y | ≥ |X| ≥ N(δ, g) −κ(G) and so n = |X| + |Y | + |S| ≥
2N(δ, g) − κ(G), which is a contradiction.

(ii) Suppose to the contrary that κ′(G) < δ(G). Assume that F = E(X, Y ) is a 
minimum edge-cut of G and |Y | ≥ |X|. By Lemma 2.5, |Y | ≥ |X| ≥ N(δ, g) and so 
n = |X| + |Y | ≥ 2N(δ, g), which is a contradiction. �

Let x = (x1, x2, . . . , xn)T ∈ Rn, and let G be a graph with vertex set V (G) =
{1, 2, . . . , n}. Then x can be considered as a function defined on V (G), that is, for any 
vertex i, we map it to xi = x(i). Fiedler [10] derived a very useful expression for algebraic 
connectivity as follows.
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Lemma 2.7. (Fiedler [10]) Let G be a connected graph with vertex set V = {1, 2, . . . , n}
and edge set E. Then the algebraic connectivity of G is positive and

μn−1(G) = min
x

f(x) = min
x

n
∑

ij∈E

(xi − xj)2∑
i,j∈V,i<j

(xi − xj)2
,

where the minimum is taken over all non-constant vectors x = (x1, x2, . . . , xn)T ∈ Rn. 
The characteristic vectors y = (y1, y2, . . . , yn)T of G corresponding to μn−1(G) are then 
those non-constant vectors for which the minimum of f(x) is attained and for which ∑n

i=1 yi = 0.

The following lemma is one of the most important applications of algebraic connec-
tivity and its proof could be found in [13]. By Lemma 2.7, we present an intuitive proof 
of this lemma as follows.

Lemma 2.8. (Godsil and Royle, Lemma 13.7.1 in [13]) Let G = (V, E) be a graph, and 
X be a nonempty proper subset of V and Y = V \X. Then

μn−1(G) ≤ nd(X)
|X||Y | .

Proof. Let x = (x1, x2, . . . , xn)T be a real vector. If i ∈ X, then set xi = 1; if i ∈ Y , 
then set xi = −1. By Lemma 2.7,

μn−1(G) ≤
n

∑
ij∈E

(xi − xj)2∑
i,j∈V,i<j

(xi − xj)2
(2.2)

holds for the real vector x. Applying the values of the entries of x into the inequality 
(2.2), we obtain

∑
ij∈E

(xi − xj)2 =
∑

ij∈E(X,Y )

(1 − (−1))2 = 4d(X),

∑
i,j∈V,i<j

(xi − xj)2 =
∑

i∈X,j∈Y

(1 − (−1))2 = 4|X||Y |.

By (2.2), the result follows. �
In [25], in terms of the Laplacian eigenvalues, Pothen, Simon and Liou considered the 

lower bound on the size of vertex separator separating any pair of vertex disjoint sets 
A and B that are at a distance ρ from each other and generalized a result of Alon and 
Milman [2]. As a special case, we have the following result involving the upper bound on 
μn−1(G) by setting ρ = 2 and present the upper bound more precisely.
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Lemma 2.9. (Pothen, Simon and Liou [25]) Let G = (V, E) be a graph of order n, and 
S be an arbitrary minimum vertex-cut of G and X be the vertex set of a component of 
G − S, and Y = V \ (S ∪X). Then

μn−1(G) ≤ nd(S)
n(n− |S|) − (|X| − |Y |)2 .

Proof. Let x = (x1, x2, . . . , xn)T be a real vector. If i ∈ X, then set xi = 1; if i ∈ Y , 
then set xi = −1; if i ∈ S, then set xi = 0. By Lemma 2.7,

μn−1(G) ≤
n

∑
ij∈E

(xi − xj)2∑
i,j∈V,i<j

(xi − xj)2
(2.3)

holds for the real vector x. Applying the values of the entries of x into the inequality 
(2.3), we obtain

∑
ij∈E

(xi − xj)2 =
∑

ij∈E(S,X∪Y )

(xi − xj)2 =
∑

ij∈E(S,X∪Y )

1 = d(S), (2.4)

∑
i,j∈V,i<j

(xi − xj)2 =
∑

i∈X,j∈S

(xi − xj)2 +
∑

i∈Y,j∈S

(xi − xj)2 +
∑

i∈X,j∈Y

(xi − xj)2

=
∑

i∈X,j∈S

(1 − 0)2 +
∑

i∈Y,j∈S

((−1) − 0)2 +
∑

i∈X,j∈Y

(1 − (−1))2

= |S||X| + |S||Y | + 4|X||Y |

= (n− |X| − |Y |)(|X| + |Y |) + 4|X||Y |

= n(n− |S|) − (|X| − |Y |)2. (2.5)

Substituting (2.4) and (2.5) in (2.3), the result follows. �
The upper bounds in Lemma 2.8 and Lemma 2.9 are sharp. The hypercube Qn is one 

of the graphs attaining the upper bound on μn−1(G) of Lemma 2.8. In fact, by setting 
X = V (Qn−1), we have μn−1(Qn) = 2 = 2nd(X)

2n−12n−1 . The graph G in Example 5.1 of 
Appendix is one of the graphs attaining the upper bound on μn−1(G) of Lemma 2.9. 
In fact, by setting S = {v5, v6, v7, v8} and X = {v1, v2, v3, v4}, we get μn−1(G) = 2 =

12·d(S)
12·(12−|S|)−(4−4)2 .

Lemma 2.10. (Haemers [14]) Let G be a graph on n vertices, and let X and Y be disjoint 
sets of vertices, such that there is no edge between X and Y . Then

|X||Y | ≤
(
μ1(G) − μn−1(G)

)2

.
(n− |X|)(n− |Y |) μ1(G) + μn−1(G)
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For applications, a useful Lemma can be derived from Lemma 2.10 as follows.

Lemma 2.11. (Brouwer and Haemers, Proposition 4.6.1 in [4]) Let G be a connected 
graph on n vertices, and let X and Y be disjoint sets of vertices, such that there is no 
edge between X and Y . Then

|X||Y |
n(n− |X| − |Y |) ≤ (μ1(G) − μn−1(G))2

4μ1(G)μn−1(G) .

3. The proof of main results

Proof of Theorem 1.8. To the contrary, suppose that 1 ≤ κ′(G) ≤ k − 1. Let F be an 
arbitrary minimum edge-cut of G, and X, Y be the vertex sets of two components of 
G − F with |X| ≤ |Y |. Thus d(X) = κ′(G) ≤ k − 1. By Lemma 2.5 and d(X) < δ, we 
obtain |X| ≥ N(δ, g). Since |Y | ≥ |X| and |X| + |Y | = n,

|X| · |Y | ≥ N(δ, g)(n−N(δ, g)). (3.1)

By Lemma 2.8 and (3.1), we have

μn−1(G) ≤ nd(X)
|X||Y | ≤

(k − 1)n
N(δ, g)(n−N(δ, g)) .

According to the hypothesis, it follows that μn−1(G) = nd(X)
|X||Y | = (k−1)n

N(δ,g)(n−N(δ,g)) . By 

the proof of Lemma 2.8, μn−1(G) = n
∑

ij∈E(xi−xj)2∑
i,j∈V,i<j(xi−xj)2 , where xi = 1 if i ∈ X and 

xi = −1 if i ∈ Y . By Lemma 2.7, x is a characteristic vector of G corresponding to 
μn−1(G). Since d(X) < δ and |X| ≥ N(δ, g) ≥ δ + 1, there exists one vertex j in 
X such that its neighbor set NG(j) ⊂ X. Thus, by μn−1(G)x = (D − A)x, we have 
μn−1(G)xj = |NG(j)|xj −

∑
�∈NG(j) x�. Since xj = x� = 1, it indicates μn−1(G) = 0 and 

so k − 1 = 0, which is a contradiction to k ≥ 2. Hence, κ′(G) ≥ k. �
Remark 3.1. The result in Theorem 1.8 improves the result of Theorem 1.4 when δ ≥ 3
and improves the result of Theorem 1.5 when δ ≥ 3 and g ≥ 5. In fact, if n < 2N(δ, g), 
then by Corollary 2.6 we have κ′(G) = δ(G). Therefore, we only need to compare the 
bounds when n ≥ 2N(δ, g). Note that N(δ, g) > N(δ, g) −

∑t−1
i=1(δ − 1)i = f(δ, g) when 

δ ≥ 3 and g ≥ 5, and N(δ, g) > 4
9N(δ, g). As N(δ, g) ≤ n

2 , it follows that N(δ, g)(n −
N(δ, g)) > 4

9N(δ, g)(n − 4
9N(δ, g)) and N(δ, g)(n −N(δ, g)) > f(δ, g)(n − f(δ, g)), and so

(k − 1)n
N(δ, g)(n−N(δ, g)) <

(k − 1)n
4
9N(δ, g)(n− 4

9N(δ, g))
,

(k − 1)n
<

(k − 1)n
.

N(δ, g)(n−N(δ, g)) f(δ, g)(n− f(δ, g))
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Proof of Theorem 1.9. To the contrary, suppose that 1 ≤ κ′(G) ≤ k − 1. Let F be an 
arbitrary minimum edge-cut of G, and X, Y be the vertex sets of two components of 
G − F with |X| ≤ |Y |. Thus d(X) = κ′(G) ≤ k − 1. By Lemma 2.2 and d(X) < δ, we 
obtain |X| ≥ ϕ(δ, r) = max{δ + 1, � rδ

r−1�}. Since |Y | ≥ |X| and |X| + |Y | = n,

|X| · |Y | ≥ ϕ(δ, r)(n− ϕ(δ, r)). (3.2)

By Lemma 2.8 and (3.2), we have

μn−1(G) ≤ nd(X)
|X||Y | ≤

(k − 1)n
ϕ(δ, r)(n− ϕ(δ, r)) .

According to the hypothesis, it follows that μn−1(G) = nd(X)
|X||Y | = (k−1)n

ϕ(δ,r)(n−ϕ(δ,r)) . By the 

proof of Lemma 2.8, μn−1(G) = n
∑

ij∈E(xi−xj)2∑
i,j∈V,i<j(xi−xj)2 , where xi = 1 if i ∈ X and xi = −1 if 

i ∈ Y . By Lemma 2.7, x is a characteristic vector of G corresponding to μn−1(G). Since 
d(X) < δ and |X| ≥ ϕ(δ, r) ≥ δ+1, there exists one vertex j in X such that NG(j) ⊂ X. 
Thus, by μn−1(G)x = (D − A)x, we have μn−1(G)xj = |NG(j)|xj −

∑
�∈NG(j) x�. Since 

xj = x� = 1, it indicates μn−1(G) = 0 and so k − 1 = 0, which is a contradiction to 
k ≥ 2. Hence, κ′(G) ≥ k. �
Proof of Theorem 1.10. To the contrary, suppose that 1 ≤ κ = κ(G) ≤ k − 1. Let S
be an arbitrary minimum vertex-cut and X be the vertex set of a minimum component 
of G − S, and Y = V \ (S ∪ X). By Lemma 2.4 and |S| = κ ≤ k − 1 < δ, we obtain 
|X| ≥ N(δ, g) − |S|. Thus

N(δ, g) − k + 1 ≤ |X| ≤ |Y | ≤ n−N(δ, g), (3.3)

and so (|X| − |Y |)2 ≤ (n − 2N(δ, g) + k − 1)2. Therefore,

n(n− |S|) − (|X| − |Y |)2 ≥ n(n− k + 1) − (n− 2N(δ, g) + k − 1)2. (3.4)

By N(δ, g) ≥ δ + 1 > k and (3.3), we have n − k + 1 > n − 2N(δ, g) + k − 1 ≥ 0, which 
implies n(n − k + 1) − (n − 2N(δ, g) + k − 1)2 > 0. Combining Lemma 2.9 with the 
inequality (3.4), we have

μn−1(G) ≤ nd(S)
n(n− |S|) − (|X| − |Y |)2 ≤ n(k − 1)Δ

n(n− k + 1) − (n− 2N(δ, g) + k − 1)2 ,

which is a contradiction to the hypothesis. Hence, κ(G) ≥ k. �
Remark 3.2. Theorem 1.10 improves Theorem 1.6 and extends Theorem 1.7 when g ≥ 5. 
In fact, if n < 2N(δ, g) − κ(G), then by Corollary 2.6 we have κ(G) = δ(G). Therefore, 
we only need to compare the bounds when n ≥ 2N(δ, g) − κ(G).
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(i) Theorem 1.10 improves Theorem 1.6. Denote N := N(δ, g), κ := κ(G) and ν :=
ν(δ, g, k). Then n ≥ 2N − k + 1 > N and so n − k + 1 ≥ 2(N − k + 1). As ν =
N − (k − 1) 

∑t−1
i=0(δ − 1)i ≤ N − k + 1, we get n > 2(N − k + 1) ≥ 2ν. Hence,

n(n− k + 1) − (n− 2N + k − 1)2 = (n− k + 1)(k − 1) + 4(N − k + 1)(n−N)

≥ 2(N − k + 1)(k − 1) + 4(N − k + 1)(n−N)

= 2(N − k + 1)(n− (N − k + 1) + (n−N))

> 2(N − k + 1)(n− (N − k + 1)) ≥ 2ν(n− ν),

and we arrive at n(k−1)Δ
n(n−k+1)−(n−2N(δ,g)+k−1)2 < n(k−1)Δ

2ν(n−ν) .
(ii) Theorem 1.10 extends Theorem 1.7. Suppose n ≥ 2N(δ, g) − k + 1 and δ ≥ 2. If 

g ≥ 3, then N(δ, g) ≥ N(δ, 3) = δ + 1 and so

n(n− k + 1) − (n− 2N(δ, g) + k − 1)2 ≥ n(n− k + 1) − (n− 2(δ + 1) + k − 1)2

= (n− k + 1)(k − 1) + 4(δ − k + 2)(n− δ − 1).

If G is triangle-free, then g ≥ 4 and N(δ, g) ≥ N(δ, 4) = 2δ, and thus

n(n− k + 1) − (n− 2N(δ, g) + k − 1)2 ≥ n(n− k + 1) − (n− 4δ + k − 1)2

= (n− k + 1)(k − 1) + 4(2δ − k + 1)(n− 2δ).

Therefore, the lower bound on μn−1(G) in Theorem 1.10 is less than or equal to the one 
in Theorem 1.7, and Theorem 1.10 extends Theorem 1.7 when g(G) ≥ 5.

Proof of Theorem 1.11. To the contrary, suppose that 1 ≤ κ = κ(G) ≤ k − 1. Let S be 
an arbitrary minimum vertex-cut and X be the vertex set of a minimum component of 
G − S, and Y = V \ (S ∪X). Consider the following two cases.

(i) δ
r−1 ≤ |S| = κ < δ. By Lemma 2.3 (ii),

r − 1
r − 2(δ − κ) ≤ |X| ≤ |Y | ≤ n− κ− r − 1

r − 2(δ − κ), (3.5)

and so n − 2(r−1)
r−2 δ + rκ

r−2 ≥ 0 and (|X| − |Y |)2 ≤ (n − 2(r−1)
r−2 δ + rκ

r−2 )2. Therefore,

n(n− |S|) − (|X| − |Y |)2 ≥ n(n− κ) − (n− 2(r − 1)
r − 2 δ + rκ

r − 2)2

≥ n(n− k + 1) − (n− 2(r − 1)
r − 2 δ + r(k − 1)

r − 2 )2. (3.6)

By δ > k − 1 and (3.5), we have n − k + 1 > n − 2(r−1)
r−2 δ + r(k−1)

r−2 ≥ 0, which implies 
n(n − k + 1) − (n − 2(r−1)

r−2 δ + r(k−1)
r−2 )2 > 0. Combining (3.6) with d(S) ≤ (k − 1)Δ, by 

Lemma 2.9, we have



Z.-M. Hong et al. / Linear Algebra and its Applications 607 (2020) 319–340 333
μn−1(G) ≤ n(k − 1)Δ
n(n− k + 1) − (n− 2(r−1)

r−2 δ + r(k−1)
r−2 )2

. (3.7)

(ii) |S| = κ < δ
r−1 . By Lemma 2.3 (iii), we get

rδ

r − 1 − k + 1 ≤ rδ

r − 1 − κ ≤ |X| ≤ |Y | ≤ n− rδ

r − 1 , (3.8)

and so (|X| − |Y |)2 ≤ (n − 2rδ
r−2 + k − 1)2. Therefore,

n(n− |S|) − (|X| − |Y |)2 ≥ n(n− k + 1) − (n− 2rδ
r − 1 + k − 1)2. (3.9)

By δ > k − 1 and (3.8), we have n − k + 1 > n − 2rδ
r−1 + k − 1 ≥ 0, which implies 

n(n − k + 1) − (n − 2rδ
r−1 + k − 1)2 > 0. Combining (3.9) with d(S) ≤ (k − 1)Δ, by 

Lemma 2.9, we have

μn−1(G) ≤ n(k − 1)Δ
n(n− k + 1) − (n− 2rδ

r−1 + k − 1)2
. (3.10)

Now, let φ(δ, k, r) = max{(n − 2(r−1)
r−2 δ + r(k−1)

r−2 )2, (n − 2rδ
r−1 + k − 1)2}. By (3.7) and 

(3.10), we have

μn−1(G) ≤ n(k − 1)Δ
n(n− k + 1) − φ(δ, k, r) ,

which is a contradiction to the hypothesis. Hence, κ(G) ≥ k. �
Proof of Theorem 1.12. If r = 2, then g(G) ≥ 4 and so N(δ, g) ≥ N(δ, 4) = 2δ = r

r−1δ. 
Thus, by Theorem 1.10, the theorem holds when r = 2. Next we consider r ≥ 3. To the 
contrary, suppose that 1 ≤ κ = κ(G) ≤ k−1. Let S be an arbitrary minimum vertex-cut 
and X be the vertex set of a minimum component of G − S, and Y = V \ (S ∪X). By 
Lemma 2.3 and |S| = κ ≤ k − 1 < δ

r−1 , we obtain |X| ≥ rδ
r−1 − κ. Thus,

rδ

r − 1 − k + 1 ≤ rδ

r − 1 − κ ≤ |X| ≤ |Y | ≤ n− rδ

r − 1 .

Using a similar argument as in the proof of Theorem 1.11, we have

μn−1(G) ≤ n(k − 1)Δ
n(n− k + 1) − (n− 2rδ

r−1 + k − 1)2
,

which is a contradiction to the hypothesis. Hence, κ(G) ≥ k and the result follows. �



334 Z.-M. Hong et al. / Linear Algebra and its Applications 607 (2020) 319–340
Remark 3.3. If ω(G) ≥ 3, then g(G) = 3. In this case, since rδ
r−1 ≥ δ+1 for 2 ≤ r ≤ δ+1

and rδ
r−1 > δ + 1 for 3 ≤ r ≤ δ, it follows that Theorem 1.9 extends Theorem 1.8, and 

Theorems 1.11 and 1.12 extends Theorem 1.10 when g(G) = 3.

Proof of Theorem 1.13. To the contrary, suppose that 1 ≤ κ = κ(G) ≤ k − 1. Let S be 
an arbitrary minimum vertex-cut and X be the vertex set of a minimum component of 
G − S, and Y = V \ (S ∪X). By Lemma 2.4 and 1 ≤ κ ≤ k − 1 < δ, we obtain

N(δ, g) − κ ≤ |X| ≤ |Y | ≤ n−N(δ, g),

and so

|X| · |Y | ≥ (N(δ, g) − κ)(n−N(δ, g)) ≥ (N(δ, g) − k + 1)(n−N(δ, g)).

Combining this with n − |X| − |Y | = κ ≤ k − 1, by Lemma 2.11,

(μ1(G) − μn−1(G))2

4μ1(G)μn−1(G) ≥ |X||Y |
n(n− |X| − |Y |) ≥ (N(δ, g) − k + 1)(n−N(δ, g))

n(k − 1) . (3.11)

Set t = μ1(G)
μn−1(G) and s = 2(N(δ,g)−k+1)(n−N(δ,g))

n(k−1) + 1. Substituting t and s in (3.11), we 

obtain t + t−1 ≥ 2s. Since t ≥ 1 and s ≥ 1, t ≥ s +
√
s2 − 1 is necessary. This contradicts 

to the hypothesis. Therefore, κ(G) ≥ k. �
Proof of Theorem 1.14. To the contrary, suppose that 1 ≤ κ = κ(G) ≤ k − 1. Let S be 
an arbitrary minimum vertex-cut and X be the vertex set of a minimum component of 
G − S, and Y = V \ (S ∪ X). By Lemma 2.3 (iii) and |S| ≤ k − 1 < δ

r−1 , we obtain 
|X| ≥ rδ

r−1 − |S|. Thus,

rδ

r − 1 − κ ≤ |X| ≤ |Y | ≤ n− rδ

r − 1 ,

and so

|X| · |Y | ≥ ( rδ

r − 1 − κ)(n− rδ

r − 1) ≥ ( rδ

r − 1 − k + 1)(n− rδ

r − 1).

Combining this with n − |X| − |Y | = κ ≤ k − 1, by Lemma 2.11,

(μ1(G) − μn−1(G))2

4μ1(G)μn−1(G) ≥ |X||Y |
n(n− |X| − |Y |) ≥

( rδ
r−1 − k + 1)(n− rδ

r−1 )
n(k − 1) . (3.12)

Set t = μ1(G)
μn−1(G) and s = 2( rδ

r−1−k+1)(n− rδ
r−1 )

n(k−1) +1. Substituting t and s in (3.12), we obtain 

t + t−1 ≥ 2s. Since t ≥ 1 and s ≥ 1, t ≥ s +
√
s2 − 1 is necessary. This contradicts to the 

hypothesis. Therefore, κ(G) ≥ k. �
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4. Connectivity and adjacency or signless Laplacian eigenvalues

In this section, we present the relationship between (edge-)connectivity and the second 
largest adjacency eigenvalue or the second largest signless Laplacian eigenvalue.

Theorem 4.1. (Weyl, Theorem 2.6.1 in [4]) Let A and B be Hermitian matrices of order 
n, and let 1 ≤ i, j ≤ n. If i + j ≤ n + 1, then λi(A) + λj(B) ≥ λi+j−1(A + B).

For real numbers a, b with b > 0 and a ≥ −b, let λi(G, a, b) be the ith largest eigenvalue 
of the matrix aD + bA.

Corollary 4.2. Let p ≥ 0, b > 0 and a ≥ −b be real numbers and G be a graph of order n
with minimum degree δ.
(i) If λ2(G, a, b) < (a + b)δ − bp, then μn−1(G) > p. In particular, if q2(G) < 2δ − p or 
λ2(G) < δ − p, then μn−1(G) > p.
(ii) If λ2(G, a, b) ≤ (a + b)δ − bp, then μn−1(G) ≥ p. In particular, if q2(G) ≤ 2δ − p or 
λ2(G) ≤ δ − p, then μn−1(G) ≥ p.

Proof. Let A and D be the adjacency matrix and degree diagonal matrix of G, respec-
tively. Since b(D−A) +(aD+bA) = (a +b)D, by Theorem 4.1, λn−1(b(D−A)) +λ2(aD+
bA) ≥ λn((a +b)D). As b > 0 and a +b ≥ 0, bμn−1(G) +λ2(G, a, b) ≥ (a +b)δ. Therefore, 
if λ2(G, a, b) < (a + b)δ − bp, then μn−1(G) > p. In particular, λ2(G, 1, 1) = q2(G) and 
λ2(G, 0, 1) = λ2(G). Thus, (i) is proved and (ii) can be proved similarly. �

By Corollary 4.2, from the sufficient conditions on μn−1(G) in Theorems 1.8-1.12, 
we can obtain sufficient conditions on λ2(G, a, b), especially on λ2(G) and q2(G). For 
example, by Corollary 4.2 and Theorem 1.8, we have the following corollary.

Corollary 4.3. Let k be an integer and G be a connected graph of order n with minimum 
degree δ ≥ k ≥ 2 and girth g ≥ 3. If λ2(G) ≤ δ − (k−1)n

N(δ,g)(n−N(δ,g)) or q2(G) ≤ 2δ −
(k−1)n

N(δ,g)(n−N(δ,g)) , then κ′(G) ≥ k.

5. Appendix

Example 5.1. Let G be the 4-regular graph in Fig. 1, where n = |V (G)| = 12, Δ(G) =
δ(G) = κ(G) = 4, g(G) = 3, N(δ, g) = 5 and μn−1(G) = 2. The following table illustrates 
the lower bounds on μn−1(G) of Theorem 1.6 and Theorem 1.10 and the upper bound 
on μ1(G)

μn−1(G) of Theorem 1.13 for k = 4.

Theorem 1.6 μn−1(G) Theorem 1.10 μ1(G)
μn−1(G) Theorem 1.13

3.6 > 2 > 1.7349 3 < 3.2476
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v5
v9

v2

v6
v10

v3

v7
v11

v4

v8
v12

Fig. 1. The graph G in Example 5.1.

Example 5.2. Let G be the bipartite graph in Fig. 2, where n = |V (G)| = 14, Δ(G) = 5, 
δ(G) = κ(G) = 4, g(G) = 4, N(δ, g) = 8 and μn−1(G) = 2. The following table illustrates 
the lower bounds on μn−1(G) of Theorem 1.6 and Theorem 1.10 and the upper bound 
on μ1(G)

μn−1(G) of Theorem 1.13 for k = 4.

Theorem 1.6 μn−1(G) Theorem 1.10 μ1(G)
μn−1(G) Theorem 1.13

2.3333 > 2 > 1.3725 4.3508 < 4.6417

�

�

�

�

�

�

�

Fig. 2. The graph G in Example 5.2.

Example 5.3. Let G be the bipartite graph in Fig. 3 obtained from the union of two Ka,2a

and two Ka,a, where n = |V (G)| = 6a (a ≥ 2), g(G) = 4, Δ(G) = δ(G) = κ(G) = 2a
and N(δ, g) = 2δ = 4a. The following table illustrates the lower bounds on μn−1(G) of 
Theorem 1.6 and Theorem 1.10 for k = 2a. Since the characteristic polynomial of the 
Laplacian matrix of G is

λ(λ− a)2(λ− 2a)6(a−1)(λ− 3a)2(λ− 4a),

we have μn−1(G) = a.
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Theorem 1.6 μn−1(G) Theorem 1.10 κ(G)
6a2(2a−1)

(2a+1)(4a−1) > a > 12a2(2a−1)
6a(4a+1)−1 2a

· · ·

· · · · · ·

· · · · · ·

· · ·

Ka,2a

Ka,a Ka,a

Ka,2a

Fig. 3. The graph G in Example 5.3.

Example 5.4. Let G be the 3-regular graph in Fig. 4, where n = |V (G)| = 20, Δ(G) =
δ(G) = κ(G) = 3, g(G) = 5, N(δ, g) = 10 and μn−1(G) = 0.2215. The following table 
shows the lower bounds on μn−1(G) of Theorem 1.6 and Theorem 1.10 for k = 2.

Theorem 1.6 μn−1(G) Theorem 1.10 κ(G)
0.3297 > 0.2215 > 0.1583 2

Fig. 4. The graph G in Example 5.4.

Example 5.5. Let G be the graph in Fig. 5, where n = |V (G)| = 20, Δ(G) = 4, δ(G) =
κ(G) = 3, g(G) = 5, N(δ, g) = 10, f(δ, g) = 8 and μn−1(G) = 0.4158. The following 
table shows the lower bounds on μn−1(G) of Theorem 1.5 and Theorem 1.8 for k = 3.

Theorem 1.5 μn−1(G) Theorem 1.8 κ′(G)
0.4167 > 0.4158 > 0.4 3
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Fig. 5. The graph G in Example 5.5.

Example 5.6. Let G be the graph in Fig. 6 obtained from the disjoint union of two copies 
of K5,5,5 by adding a matching, where n = |V (G)| = 30, Δ(G) = 11, δ(G) = κ′(G) = 10, 
g(G) = ω(G) = 3, N(δ, g) = 11, ϕ(δ, 3) = 15 and μn−1(G) = 1.27158. The following 
table shows the lower bounds on μn−1(G) of Theorem 1.8 and Theorem 1.9 for k = 10.

Theorem 1.8 μn−1(G) Theorem 1.9 κ′(G)
1.2919 > 1.27158 > 1.2 10

Fig. 6. The graph G in Example 5.6.

Example 5.7. Let K6,6,6 be the complete 3-partite graph with partition U = U1 ∪
U2 ∪ U3, where Ui = {u6i−5, u6i−4, u6i−3, u6i−2, u6i−1, u6i} for i = 1, 2, 3, and K5,5,5
be the complete 3-partite graph with partition V = V1 ∪ V2 ∪ V3, where Vi =
{v5i−4, v5i−3, v5i−2, v5i−1, v5i} for i = 1, 2, 3. Let G be the graph in Fig. 7 obtained from 
the disjoint union of K6,6,6 and K5,5,5 by adding the edges u6vj+5, u12vj and u18vj+5
for each j = 1, 2, 3, 4, 5, where n = |V (G)| = 33, Δ(G) = 17, δ(G) = 10, κ(G) = 3, 
g(G) = ω(G) = 3, N(δ, g) = 11, 2rδ

r−1 = 30 and μn−1(G) = 1.27637. The following table 
gives the lower bounds on μn−1(G) of Theorem 1.10 and Theorem 1.12 for k = 3.

Theorem 1.10 μn−1(G) Theorem 1.12 κ(G)
1.3138 > 1.27637 > 1.1242 3
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K6,6,6 K5,5,5

u6

u12

u18

v5

v10

v15

Fig. 7. The graph G in Example 5.7.
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