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A ( k , r )-coloring of a graph G is a proper k -vertex coloring of G such that the neighbors 

of each vertex of degree d will receive at least min{ d , r } different colors. The r -hued chro- 

matic number , denoted by χ r ( G ), is the smallest integer k for which a graph G has a 

( k , r )-coloring. Let f (r) = r + 3 if 1 ≤ r ≤ 2, f (r) = r + 5 if 3 ≤ r ≤ 7 and f (r) = � 3 r/ 2 � + 1 if 

r ≥ 8. In [Discrete Math., 315-316 (2014) 47-52], an extended conjecture of Wegner is pro- 

posed that if G is planar, then χ r ( G ) ≤ f ( r ); and this conjecture was verified for K 4 -minor 

free graphs. For an integer n ≥ 4, let K 4 ( n ) be the set of all subdivisions of K 4 on n vertices. 

We obtain decompositions of K 4 ( n )-minor free graphs with n ∈ {5, 6, 7}. The decomposi- 

tions are applied to show that if G is a K 4 (7)-minor free graph, then χ r ( G ) ≤ f ( r ) if and 

only if G is not isomorphic to K 6 . 

© 2020 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

 

 

1. Introduction 

Graphs in this paper are simple and finite. Undefined terminologies and notations are referred to [3] . As in [3] , κ( G ),

κ ′ ( G ), δ( G ) and �( G ) denote the vertex connectivity, the edge-connectivity, the minimum degree and the maximum degree

of a graph G , respectively. A proper k -coloring is a mapping c : V (G ) 	→ k̄ with k̄ = { 1 , 2 , . . . , k } such that the adjacent vertices

receive different colors. 

For an integer k > 0, let k = { 1 , 2 , . . . , k } . Given a graph G , if c : V (G ) 	→ k is a mapping, and if V 

′ ⊆V ( G ), then define c(V ′ ) =
{ c(v ) : v ∈ V ′ } . For an integer r > 0, a ( k , r ) -coloring of a graph G is a mapping c : V (G ) 	→ k satisfying both the following

conditions. 

(C1) c(u ) � = c(v ) for every edge u v ∈ E(G ) ; 

(C2) | c(N G (v )) | ≥ min { d G (v ) , r} for any v ∈ V (G ) . 

For a fixed integer r > 0, the r-hued chromatic number of G , denoted by χ r ( G ), is the smallest k such that G has a ( k ,

r )-coloring. The study of ( k , r )-coloring was initiated in [11] and [9] . A graph H is a minor of a graph G if H is isomorphic to

the contraction of a subgraph of G . If G does not have a minor isomorphic to a graph J , we say that a graph G is a J -minor
∗ Corresponding author. 
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free graph. For a given collection F of graphs, define 

EX ( F ) = { G : G does not have a minor isomorphic to a member in F } . 
Chen et al. first investigated the r -hued chromatic number of planar graphs [4] . Without turning to the Four Color The-

orem [1,2,12] , they showed that if G is a planar graph, then χ2 ( G ) ≤ 5. As the 5-cycle C 5 satisfies χ2 (C 5 ) = 5 (Theorem 2.5

of [8] ), this bound is best possible. It is conjectured in [4] that C 5 is the only planar graph with 2-hued chromatic number

5. This conjecture was proved by Kim et al. [5] , as an application of the Four Color Theorem. Recently Kim et al. [6] further

extends this result to K 5 -minor free graphs. These are summarized in the theorem below. 

Theorem 1.1. Let G be a connected graph. 

(i) (Chen et al. Theorem 1.1 of [4] ) If G is a planar graph, then χ2 ( G ) ≤ 5 . 

(ii) (Kim, Lee, and Park [5] ) If G is a planar graph other than C 5 , then χ2 ( G ) ≤ 4 . 

(iii) (Kim, Lee and Oum [6] ) If G does not have a K 5 -minor, then either G 

∼= 

C 5 or χ2 ( G ) ≤ 4 . 

Wegner [15] proposed the following conjecture. 

Conjecture 1.2. (G. Wegner [15] ) Let 

φ(r) = 

{
r + 5 , if 4 ≤ r ≤ 7 ;
� 3 r/ 2 � + 1 , if r ≥ 8 . 

If G is a planar graph with � = �(G ) , then χ�( G ) ≤φ( �) . 

Let 

K(r) = 

{
r + 3 , if 1 ≤ r ≤ 3 ;
� 3 r/ 2 � + 1 , if r ≥ 4 . 

(1) 

Lih, Wang and Zhu first proved that Wegner’s conjecture holds for �-hued chromatic number of K 4 -minor free graphs. Song

et al. extended it to the case when � is replaced by a generic r . These are summarized in Theorem 1.3 . 

Theorem 1.3. Let G ∈ EX ( K 4 ) be a graph and let r ≥ 2 be an integer. Then each of the following holds. 

(i) (Lih, Wang and Zhu [10] ) Then χ�( G ) ≤ K ( �( G )) . 

(ii) (Song et al. [13] ) χ r ( G ) ≤ K ( r ) . 

Motivated by Conjecture 1.2 and Theorem 1.3 , a conjecture on the upper bound of r -hued-chromatic number of planar

graphs is proposed in [13] . 

Conjecture 1.4. ( [13] ) Let r ≥ 1 be an integer and let 

f (r) = 

{ 

r + 3 , if 1 ≤ r ≤ 2 ;
r + 5 , if 3 ≤ r ≤ 7 ;
� 3 r/ 2 � + 1 , if r ≥ 8 . 

If G be a connected planar graph, then χ r ( G ) ≤ f ( r ) . 

The Four Color Theorem [1,2,12] and Theorem 1.1 indicate that Conjecture 1.4 holds when 1 ≤ r ≤ 2. The purpose of this

research is to show that Conjecture 1.4 holds in a class of graphs that properly contain all graphs in EX ( K 4 ). Thus it provides

further evidence of Conjecture 1.4 and extends Theorem 1.3 . 

In [14] , it is shown that if r ≥ 8 , then for any planar graph G , χr (G ) ≤ 2 r + 16 . This is quite far away from the expected

bound stated in Conjecture 1.4 . 

Let H be a graph. An edge e ∈ E ( H ) is said to be subdivided when it is deleted and replaced by a path of length two

connecting its end vertices. A subdivision of H is a graph obtained from H by a (possibly empty) sequence of edge subdi-

visions. If a graph G contains subgraph J isomorphic to a subdivision of H , we call J an H -subdivision . Thus by definition, if

�( H ) ≤ 3, then G contains an H -minor if and only if G contains an H -subdivision. For an integer n ≥ 4, define K 4 ( n ) to be the

collection of all non-isomorphic subdivisions of K 4 on n vertices. Thus K 4 (4) = { K 4 } and there is only one graph in K 4 (5), up

to isomorphism, as seen in Fig. 1 . When it is understood in the context, we sometimes use K 4 (4) and K 4 (5) to represent a

member in the collection. 

There are three members in K 4 (6) up to isomorphism, as depicted in Fig. 2 . 

By definition, for each n ≥ 4, we have 

EX (K 4 ) ⊆ ... ⊆ EX (K 4 (n )) ⊆ EX (K 4 (n + 1)) ⊆ ... (2)

and for each fixed integer n ≥ 4, EX ( K 4 ( n )) contains all graphs with order less than n . Hence 
∞ ⋃ 

n =4 

EX(K 4 (n )) contains all

graphs. The following is the main result obtained in this research. 

Theorem 1.5. Let r ≥ 2 be an integer. If G ∈ EX ( K 4 (7)) and G has no block isomorphic to K 6 , then χ r ( G ) ≤ K ( r ) . 

In the next section, we shall prove decomposition results of graphs in EX ( K 4 ( n )). This decomposition result will be applied

in the proof of Theorem 1.5 , to be presented in the last section. 
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Fig. 1. A graph in K 4 (5). 
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Fig. 2. The three members in K 4 (6). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. Decompositions of K 4 ( n ) 

Throughout the rest of this paper, by H ⊆G we mean that G contains a subgraph isomorphic to H , and when there is no

confusion arises, we also view that H is a subgraph of G . For a graph G and a collection K of subgraphs of G , we define 

[ K , G ] = { H : for some K ∈ K , K ⊆ H ⊆ G } . 
When K = { K} consisting of a single subgraph of G , we often use [ K , G ] for [{ K }, G ]. If for some K ∈ K , H is a K -subdivision,

then we also call H a K -subdivision . 

If X is a set of edges with end vertices in a graph G , then we use G + X to denote the simple graph with vertex set V ( G )

and edge set E ( G ) ∪ X . When X = { e } , we often use G + e for G + { e } . By definition, if e ∈ E ( G ), then G + e = G . Similarly, if X

is a set of edges in E ( G ), then we use G − X to denote the simple graph with vertex set V ( G ) and edge set E(G ) − X . When

X = { e } , we often use G − e for G − { e } . Throughout the discussion, a path P from a vertex u to a vertex v will be called a

(u, v ) -path . 

We state the following proposition, which follows from the definition of K 4 -minors. 

Proposition 2.1. Let G be a graph with a cycle C and a vertex z ∈ V (G ) − V (C) . If for distinct vertices z 1 , z 2 , z 3 ∈ V ( C ), G contains

internally disjoint paths P 1 , P 2 and P 3 such that each P i is a ( z , z i ) -path, then H = G [ E(C) ∪ E(P 1 ) ∪ E(P 2 ) ∪ E(P 3 )] is a subdivision

of K 4 . If n = | V (H) | , then H is a member in K 4 ( n ) . 

We follow [3] to define the union of graphs. Let G and G 

′ be two graphs. The union of G and G 

′ , denoted by G ∪ G 

′ , has

a vertex set V ( G ) ∪ V ( G 

′ ) and an edge set E ( G ) ∪ E ( G 

′ ). 

Definition 2.2. Let k ≥ 1 be an integer, G , G 

′ , H 1 , H 2 , ..., H k be vertex disjoint simple graphs. 

(OP1) Suppose that u ∈ V ( G ) and u ′ ∈ V ( G 

′ ). Define G �1 G 

′ to be the simple graph obtained from G ∪ G 

′ by identifying u

with u ′ to form a new vertex, which is still denoted by u . We sometimes write G �u G 

′ for G �1 G 

′ to emphasize the vertex u .

(OP2) Suppose that u, v ∈ V (G ) and u ′ , v ′ ∈ V (G 

′ ) . Define G �u, v G 

′ to be the simple graph obtained from G ∪ G 

′ by iden-

tifying u with u ′ to form a new vertex (again denoted by u ), and v with v ′ to form a new vertex (again denoted by v ),
respectively. The vertices u, v are called the base vertices of G �u, v G 

′ . Thus if either u v ∈ E(G ) or u ′ v ′ ∈ E(G 

′ ) , then the edge

u v ∈ E(G �u, v G 

′ ) . If u, v are understood or not to be emphasized, we often use G �2 G 

′ for G �u, v G 

′ . 
(OP3) For each j with 1 ≤ j < k , assuming that G (�2 ) 

j 
i =1 

H i is obtained, we define G (�2 ) 
j+1 
i =1 

H i = (G (�2 ) 
j 
i =1 

H i ) �2 H j+1 in

such a way that the base vertices of G (�2 ) 
j+1 
i =1 

H i are in V ( G ), and for each H i , the base vertices may be different. See Fig. 3 (a).
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Fig. 3. (a) An example of Definition 2.2 (OP3), K 4 (�2 ) 
2 
i =1 

H i , where H 1 = K 2 , 2 with base vertices v 1 , v 2 , and H 2 = K 2 , 3 with base vertices v 1 , v 3 . (b) An 

example of Definition 2.3 (ii), SK 2,4, T , where T = (2 , 1 , 0 , 3) , J = K 2 , 4 , J 1 = K 2 , 2 , J 2 = K 2 , 1 , J 3 = K 2 , 0 , J 4 = K 2 , 3 , and special vertices of each J i are x i , y i . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We often also take the convention to assume that in (OP1), V (G ) ∩ V (G 

′ ) = { u } , and in (OP2), V (G ) ∩ V (G 

′ ) = { u, v } . We

now can use the operations in Definition 2.2 to define some related constructions. 

Definition 2.3. Let t ≥ 1 be an integer, and k i ≥ 0 be an integer for 1 ≤ i ≤ t . 

(i) Let K 2, t be a complete bipartite graph with w 1 , w 2 being the two nonadjacent vertices in K 2, t of degree t . The ver-

tices w 1 , w 2 are called the special vertices of K 2, t . Define K 

′ 
2 ,t 

be the graph obtained by adding a maximum matching

u 1 u 2 , u 3 u 4 , . . . , u t−1 u t if t is even, u 1 u 2 , u 3 u 4 , . . . , u t−2 u t−1 if t is odd, among the non special vertices in V (K 2 ,t ) − { w 1 , w 2 } .
The special vertices of K 

′ 
2 ,t 

are the special vertices of the related K 2, t . 

(ii) Let T = (k 1 , k 2 , · · · , k t ) be a t -tuple of non-negative integers. Let J , J 1 , ..., J t be graphs such that J ∼= 

K 2, t with special

vertices w 1 and w 2 , and for 1 ≤ i ≤ t , J i ∼= 

K 2 ,k i 
. Define SK 2, t , T to be a graph isomorphic to J �2 ˙ ∪ 

t 
i =1 J i in such a way that for

each j with 1 ≤ j ≤ t , the base vertices x j , y j in J �2 ˙ ∪ 

t 
i =1 J i are special vertices of each J j , and e j = x j y j is an edge e j ∈ E ( J ) such

that all the edges e 1 , e 2 , ..., e t are mutually distinct and such that for distinct i and j , any vertex incident with both e i and

e j must be in { w 1 , w 2 } . See Fig. 3 (b). 

As each x i y i can be any one of the two edges in a path joining the two special vertices of J ∼= 

K 2, t , SK 2, t , T is not unique. 

2.1. Decomposition of K 4 (5) and K 4 (6) 

For an integer i ≥ 1, define D i (G ) = { v ∈ V (G ) : d G (v ) = i } . By definition, 

for any H ∈ K 4 (n ) , | D 2 (H) | = n − 4 . (3) 

Thus up to isomorphism, there is only one graph in K 4 (5). For an H ∈ K 4 (6), the two vertices in D 2 ( H ) are of distance 1, or

2, or 3 in H . It follows that, up to isomorphism, K 4 (6) = { H 1 , H 2 , H 3 } , where the H i ’s are graphs depicted in Fig. 2 . We first

present a characterization of graphs in EX ( K 4 (5)). 

Proposition 2.4. Let G be a 2-connected simple graph. Then G ∈ EX ( K 4 (5)) if and only if G ∈ { K 4 } ∪ EX ( K 4 ) . 

Proof. By (2) , { K 4 } ∪ EX ( K 4 ) ⊆EX ( K 4 (5)). It remains to assume that G ∈ EX ( K 4 (5)) and G is not isomorphic to K 4 to show that

G ∈ EX ( K 4 ). 

Argue by contradiction and assume that G �∈ EX ( K 4 ). Then G contains a subgraph J that is a subdivision of K 4 . Since

G ∈ EX ( K 4 (5)), we must have | J | ≤ 4, and so J ∼= 

K 4 . As G is not isomorphic to K 4 , there exists a vertex v ∈ V (G ) − V (J) . Since G

is 2-connected, by Menger’s Theorem (Page 208, Theorem 9.1 of [3] ), G contains two internally disjoint paths from v to two

distinct vertices of J . Thus G contains a subdivision of a member in K 4 (5), contrary to the assumption of G ∈ EX ( K 4 (5)). This

proves the proposition. �

Let t denote a positive integer and assume that v 1 v 2 ∈ E(K 4 ) ∩ E(K 2 ,t ) . Define 

L = ∪ t≥1 { K 4 �v 1 , v 2 K 2 ,t − v 1 v 2 , K 4 �v 1 , v 2 K 2 ,t } . (4)

In particular, K 4 �v 1 , v 2 K 2 , 1 − v 1 v 2 is the only graph in K 4 (5), and so K 4 (5) ⊂ L . 

Proposition 2.5. Let G be a 2-connected simple graph. Then G ∈ EX ( K 4 (6)) if and only if G ∈ EX(K 4 (5)) ∪ L ∪ [ K 4 (5) , K 5 ] . 

Proof. By the definition of K 4 ( n ) and (2) , EX ( K 4 (5)) ∪ [ K 4 (5), K 5 ] ⊆EX ( K 4 (6)). As it is routine to verify that L ⊆ EX(K 4 (6)) , it

suffices to assume G ∈ EX(K (6)) − EX(K (5)) ∪ [ K (5) , K ] to show that G ∈ L . 
4 4 4 5 
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Fig. 4. Proof of Proposition 2.5 : The existence of a member in K 4 (6). 
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Since G ∈ EX(K 4 (6)) − EX(K 4 (5)) , G contains a subgraph J which is isomorphic to K 4 (5). We shall use the notation in

Fig. 2 to label the vertices of J . In particular, v 1 , v 2 are two vertices of J that are the neighbors of the only vertex of degree

2 of J . 

If V (G ) = V (J) , then G ∈ [ K 4 (5), K 5 ]. Therefore, there must be a vertex v ∈ V (G ) − V (J) . By Menger’s Theorem, G contains

two internally disjoint paths P 1 and P 2 from v to two distinct vertices x , y of J , respectively, such that V (P 1 ) ∩ V (J) = { x } and

 (P 2 ) ∩ V (J) = { y } . 
In our arguments that follow, we adopt the notation in Definition 2.2 , with v 1 , v 2 denoting the base vertices in the

operation. 

Claim 2.6. { x, y } = { v 1 , v 2 } . 
If xy is an edge in J , then G [ E ( J ) ∪ E ( P 1 ) ∪ E ( P 2 )] contains a K 4 (6)-subdivision, and so xy �∈ E ( J ). If x ∈ D 2 ( J ) and y is not

adjacent to x , then with the notation in Fig. 4 (a), we may assume that y = v 3 and so J has a cycle C = v x v 1 v 4 v 3 v and three

paths v 2 x, v 2 v 4 , v 2 v 3 , forming a K 4 (6)-subdivision also. (See Fig. 4 (a) for an illustration). Either is a contradiction to the

assumption of G ∈ EX ( K 4 (6)). Therefore, { x, y } = { v 1 , v 2 } and the claim holds. 

Since G ∈ EX ( K 4 (6)), we must have P 1 = vv 1 and P 2 = vv 2 . It follows that J = K 4 (5) ⊆ G . Let t ≥ 1 be the largest positive

integer such that L t ∼= 

K 4 �v 1 , v 2 K 2 ,t − v 1 v 2 is a subgraph of G . 

Claim 2.7. V (G ) = V (L t ) . 

If not, then there must be a vertex v ′ ∈ V (G ) − V (L t ) . By the assumption κ( G ) ≥ 2, G has two internally disjoint paths

Q 1 and Q 2 from v ′ to two distinct vertices x ′ , y ′ of L t , respectively, such that V (Q 1 ) ∩ V (L t ) = { x ′ } and V (Q 2 ) ∩ V (L t ) = { y ′ } .
By Claim 2.6 , either x ′ , y ′ ∈ D 2 ( L t ) or x ′ , y ′ ∈ { v 1 , v 2 } . Since t is maximized and since G ∈ EX ( K 4 (6)), that x ′ , y ′ ∈ { v 1 , v 2 } is not

possible, and so we must have x ′ , y ′ ∈ D 2 ( L t ). But then G [ E ( L t ) ∪ E ( Q 1 ) ∪ E ( Q 2 )] contains a subdivision of K 4 (6), contrary to the

assumption that G ∈ EX ( K 4 (6)). This proves Claim 2.7 . 

By Claim 2.7 , if E(G ) = E(L t ) , then G = L t ∈ L . Assume there exists an edge e = zz ′ ∈ E(G ) − E(L t ) . Since G is simple, we

have the following cases, either { z, z ′ } = { v 1 , v 2 } , z , z ′ ∈ D 2 ( L t ), or by symmetry, z ∈ D 2 ( L t ), or z ′ ∈ V (L t ) − (D 2 (L t ) ∪ { v 1 , v 2 } ) .
For the last two cases, it is routine to verify that G has a subdivision of a member in K 4 (6), as illustrated in Fig. 4 (b) and

(c). Thus it suffices to consider the case when { z, z ′ } = { v 1 , v 2 } . In this case, G 

∼= 

K 4 �v 1 , v 2 K 2 ,t ∈ L . This shows that we must

have G ∈ L , and so the proposition is justified. �

2.2. Decomposition of K 4 (7) 

In this section, we shall first show certain graph families are in EX ( K 4 (7)), and then we will prove a characteriza-

tion of graphs in EX ( K 4 (7)). By (2) , it is known that EX ( K 4 (6)) ⊂ EX ( K 4 (7)). Throughout this subsection, we denote K 4 (6) =
{ H 1 , H 2 , H 3 } , where the H i ’s are depicted in Fig. 2 , and the notation in Fig. 2 will be used in our arguments. 

Definition 2.8. Let n , t 1 , t 3 , t 4 be non-negative integers with n ≥ 4, T = (k 1 , k 2 , ..., k t 3 ) be a t 3 -tuple of positive integers. Let

v 1 , v 2 , v 3 , v l with l ∈ {1, 4} be vertices of a K n . Suppose that F 1 ∼= 

K 2 ,t 1 
, F 2 ∼= 

K 

′ 
2 ,t 1 

, F 3 ∼= 

SK 2 ,t 3 ,T 
, and F 4 ∼= 

K 2 ,t 4 
be graphs such

that the special vertices of F 1 , F 2 , F 3 are { v 1 , v 2 } , and the special vertices of F 4 are { v 3 , v l } . 
Lemma 2.9. Then each of the followings holds. 

(i) If |{ v 1 , v 2 , v 3 , v l }| ≥ 3 and l ∈ {1, 4}, then K n �v 1 , v 2 F 1 �v 3 , v l F 4 ∈ EX(K 4 (n + 3)) . 

(ii) K n �v 1 , v 2 F 2 �v 1 , v 2 F 3 ∈ EX(K 4 (n + 3)) . 

(iii) K n �v 1 , v 2 F 1 ∈ EX(K 4 (n + 2)) . 
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Fig. 5. Proof of Case 1 in Lemma 2.11 : N 1 + e contains a K 4 (7)-subdivision. 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

Proof. As (ii) and (iii) can be proved in a similar way, we only prove (i). Let G = K n �v 1 , v 2 F 1 �v 3 , v l F 4 . Let L be a K 4 (n + k ) -

subdivision of G with k maximized. By Definition 2.3 and the definition of K 4 ( n )-minor, | V (L ) ∩ D 2 (F 1 ) | = 1 and | V (L ) ∩
D 2 (F 4 ) | = 1 . It follows that | V (L ) | = | V (K n ) | + 2 = n + 2 , which implies Lemma 2.9 (i). �

Definition 2.10. We continue using the notation in Definition 2.8 . Let t 2 > 0 be an integer and F ′ 1 
∼= 

K 2 ,t 2 
with special vertices

{ v 3 , v l } with l ∈ {1, 4}. Let K denote the complete graph K n in Definition 2.8 with V (K) = { v 1 , v 2 , ..., v n } . 
(i) Define L 1 := L 1 (t 1 , t 2 ) = K 4 �v 1 , v 2 F 1 �v 3 , v � F 

′ 
1 
, N 1 := N 1 (t 1 , t 2 ) = L 1 (t 1 , t 2 ) − { v 1 v 2 , v 3 v � } , and L 1 = { G ∈ [ N 1 , L 1 ] :

| V (G ) | ≥ 6 } . 
(ii) Define L 2 := L 2 (t 1 , t 3 , T ) = K 4 �v 1 , v 2 F 2 �v 1 , v 2 F 3 , where T = (k 1 , k 2 , ..., k t 3 ) is a t 3 -tuple with k 1 ≥ k 2 ≥ ... ≥ k t 3 ≥ 0 ,

N 2 := N 2 (t 1 , t 3 , T ) = K 4 �v 1 , v 2 F 1 �v 1 , v 2 F 3 − v 1 v 2 −
⋃ t 3 

i =1 
e i , where the e i ’s are defined in Definition 2.3 . Define L 2 = { G ∈

[ N 2 , L 2 ] : | V (G ) | ≥ 6 } . 
(iii) Define L 3 := L 3 (t 1 ) = K 5 �v 1 , v 2 F 1 , N 3 := N 3 (t 1 ) = L 3 − { v 1 v 2 , v 1 v 3 , v 2 v 5 } , and L 3 = { G ∈ [ N 3 , L 3 ] : | V (G ) | ≥ 6 } . 
In Definition 2.10 (i), as the vertex v � varies, each pair ( N 1 , L 1 ) represents a family of such pairs with N 1 spans L 1 . Similarly,

as remarked after Definition 2.3 , each pair of ( N 2 , L 2 ) represents a family of such pairs with N 2 spans L 2 . In the arguments

that follow, and in particular in Lemma 2.11 , we always use ( N i , L i ) to denote an arbitrary member in the corresponding

family. 

Lemma 2.11. Let G be a graph and adopt the notation K 4 (6) = { H 1 , H 2 , H 3 } in Fig. 2 . Each of the following holds. 

(i) { G ∈ L 1 : | V (G ) | = 6 } = { H 1 , H 2 } and { G ∈ L 2 : | V (G ) | = 6 } = { H 3 } . 
(ii) L 1 ∪ L 2 ∪ L 3 ⊆ EX(K 4 (7)) . 

(iii) Suppose that | V ( G )| ≥ 7 . For i = 1 , 2 , 3 , if G = N i and e = xy / ∈ E(L i ) with x , y ∈ V ( L i ), then G + e contains a K 4 (7) -

subdivision. 

Proof. Lemma 2.11 (i) follows from definition of K 4 (6). By Lemma 2.9 , we conclude that L 1 ∪ L 2 ∪ L 3 ⊆ EX(K 4 (7)) . It remains

to prove Lemma 2.11 (iii) and so we assume that | V ( G )| ≥ 7. We continue using the notation in Definition 2.10 , and so K =
K s with V (K) = { v 1 , v 2 , ..., v s } and s ∈ {4, 5}. We shall show that for any e = xy / ∈ E(L i ) , with x , y ∈ V ( L i ), we have G + e /∈
EX(K 4 (7)) by finding a K 4 (7)-subdivision in G + e . 

Case 1. G = N 1 

Let G = N 1 = (t 1 , t 2 ) = L 1 (t 1 , t 2 ) − { v 1 v 2 , v 3 v � } and e = xy / ∈ E(L 1 ) . As | V ( G )| ≥ 7, we may assume that t 1 ≥ 2 and t 2 ≥ 1.

Let D 2 (F 1 ) − { v 1 , v 2 } = { u 1 , u 2 , ..., u t 1 } and D 2 (F ′ 1 ) − { v 3 , v � } = { w 1 , w 2 , ..., w t 2 } . By symmetry, for each possible case, the

Table 1 identifies a cycle C , a vertex z ∈ V (G ) − V (C) and internally disjoint ( z , z 1 )-paths for distinct z 1 , z 2 , z 3 ∈ V ( C ). Thus by

Proposition 2.1 , (G + e )[ V (C) ∪ { z} ] contains a K 4 (7)-subdivision (see Fig. 5 and Fig. 6 for an illustration, and Table 1 for the

K 4 (7)-subdivision). This proves Case 1. 

Case 2. G = N 2 

Let G = K 4 �v 1 , v 2 F 1 �v 1 , v 2 F 3 and e = xy / ∈ E(L 2 ) . As | V ( G )| ≥ 7, we may assume that t 3 > 0, and either t 1 > 0 or k 1 ≥ 2 or

both (t 1 , k 1 ) = (0 , 1) and t 3 > 1. Let w 1 , w 2 be the special vertices of the K 2 ,t 3 
in the definition of F 3 ∼= 

SK 2 ,t 3 ,T 
, where where

w 1 = v 1 , w 2 = v 2 and T = (k 1 , k 2 , ..., k t 3 ) is a t 3 -tuple of non-negative integers. For each j ∈ {1, 2, ..., t 3 }, let x j , y j be the special

vertices of J j ∼= 

K 2 ,k j 
in Definition 2.3 (ii) and D 2 (J j ) = { w 

j 
1 
, w 

j 
2 
, ..., w 

j 

k j 
} . Denote D 2 (F 1 ) − { v 1 , v 2 } = { u 1 , u 2 , ..., u t 1 } . By symme-

try, for each possible case, Table 2 identifies a cycle C , a vertex z ∈ V (G ) − V (C) , a vertex z ∈ V (G ) − V (C) and internally

disjoint ( z , z 1 )-paths for distinct z 1 , z 2 , z 3 ∈ V ( C ). Thus by Proposition 2.1 , (G + e )[ V (C) ∪ { z} ] contains a K 4 (7)-subdivision

(see Fig. 7 for an illustration, and Table 2 for the K (7)-subdivision). This proves Case 2. 
4 
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Fig. 6. Proof of Case 1 in Lemma 2.11 : N 1 + e contains a K 4 (7)-subdivision. 

Table 1 

N 1 + e has a K 4 (7)-subdivision. 

Figure z z 1 z 2 z 3 C 

4(a) v 4 v 1 v 2 v 3 u 1 u 2 v 2 v 3 w 1 v 1 u 1 
4(b) v 4 v 1 v 2 v 3 u 1 w 1 v 3 v 2 u 2 v 1 u 1 
4(c) u 1 v 1 v 2 v 4 v 1 u 2 v 2 v 4 v 3 w 1 v 1 
4(d) v 4 v 1 v 2 v 3 u 1 v 2 u 2 v 1 w 1 v 3 u 1 
5(a) u 1 v 1 u 2 v 2 v 1 u 2 v 2 v 3 w 1 v 4 v 1 
5(b) v 4 v 1 w 1 v 2 u 1 v 1 u 2 v 2 v 3 w 1 u 1 
5(c) u 1 v 1 v 4 v 2 v 1 u 2 v 2 v 4 w 1 v 3 v 1 

Table 2 

N 2 + e contains a K 4 (7)-subdivision. 

Figure z z 1 z 2 z 3 C 

6(a) v 3 v 1 v 2 v 4 w 

1 
1 v 4 v 2 y 1 w 

1 
2 v 1 w 

1 
1 

6(b) v 3 v 1 v 2 v 4 u 1 v 4 v 2 y 1 w 

1 
1 v 1 u 1 

6(c) v 3 v 1 v 2 v 4 w 

1 
1 u 1 v 2 v 4 v 1 w 

1 
2 y 1 w 

1 
1 

6(d) v 3 v 1 v 2 v 4 y 1 w 

2 
1 y 2 v 2 v 4 v 1 w 

1 
1 y 1 

6(e) v 3 v 1 v 2 v 4 w 

1 
1 w 

1 
2 y 1 v 2 v 4 v 1 w 

1 
1 

6(f) v 3 v 1 v 2 v 4 w 

1 
1 v 4 v 1 u 1 v 2 y 1 w 

1 
1 

6(g) v 3 v 1 v 2 v 4 y 1 u 1 v 2 v 4 v 1 w 

1 
1 y 1 

6(h) v 3 v 1 v 2 v 4 w 

1 
1 w 

2 
1 y 2 v 2 v 4 v 1 w 

1 
1 

 

 

 

 

 

 

 

 

 

 

Case 3. G = N 3 

We adopt the notation in Definition 2.10 and use v 4 to denote the only vertex of degree 4 in N 3 not adjacent to vertices

in D 2 ( N 3 ). Denote D 2 (F 1 ) − { v 1 , v 2 } = { u 1 , u 2 , ..., u t 1 } . If e = u 1 u 2 , then let z = v 4 and C = v 1 u 1 u 2 v 2 v 3 v 5 ; if e = u 1 v j with j ∈ {3,

4, 5}, then let z = u 1 and C = v 1 u 2 v 2 v 3 v 4 v 5 . In any case, it follows by Proposition 2.1 that N 3 + e contains a K 4 (7)-subdivision.

This proves Case 3. 

The proof of these cases justifies Lemma 2.11 (iii). �

Theorem 2.12. Let G be a 2-connected simple graph. The the following are equivalent. 

(i) G ∈ EX ( K 4 (7)) . 

(ii) G ∈ EX(K 4 (6)) ∪ L 1 ∪ L 2 ∪ L 3 ∪ [ K 4 (6) , K 6 ] . 

Proof. By Lemma 2.11 (i), (ii) and (2) , we conclude that 

EX (K 4 (6)) ∪ L 1 ∪ L 2 ∪ L 3 ∪ [ K 4 (6) , K 6 ] ⊆ EX (K 4 (7)) . (5)

Thus it remains to prove (i) implies (ii). We shall assume G ∈ EX(K 4 (7)) − EX(K 4 (6)) ∪ [ K 4 (6) , K 6 ] to prove that G ∈ L 1 ∪
L 2 ∪ L 3 . In the arguments below, we continue using the notation in Definition 2.10 , and denote K 4 (6) = { H 1 , H 2 , H 3 } as in

Fig. 2 (together with the notation in Fig. 2 (together with the notation in Fig. 2 ). 

As G ∈ EX(K 4 (7)) − EX(K 4 (6)) ∪ [ K 4 (6) , K 6 ] , we must have | V ( G )| ≥ 7 and G has a K 4 (6)-subdivision H as a subgraph. As

any K 4 (6)-subdivision on at least 7 vertices must be a K 4 (7)-subdivision, and as G ∈ EX ( K 4 (7)), we conclude that H ∈ K 4 (6) =
{ H 1 , H 2 , H 3 } . 

By Lemma 2.11 (i), H 1 , H 2 ∈ L 1 and H 3 ∈ L 2 ; by Definition 2.10 , H 1 , H 2 are subgraphs of N 3 . Thus G has a subgraph in

∪ 

3 
i =1 

L i . Let J denote a subgraph of G that is isomorphic to a member in ∪ 

3 
i =1 

L i with | V (J) | + | E(J) | maximized. Since J ∈
∪ 

3 
i =1 

L i , we may assume that G � = J as otherwise, Theorem 2.12 (ii) holds. 
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Fig. 7. Proof of Case 2 in Lemma 2.11 : N 2 + e contains a K 4 (7)-subdivision for the cases in Table 2 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

If | V (G ) | = | V (J) | , then there must be an edge e ∈ E(G ) − E(J) . Since J ∈ ∪ 

3 
i =1 

L i , it follows by Definition 2.10 that there

must be some i ∈ {1, 2, 3} and a pair ( N i , L i ) such that J ∈ [ N i , L i ]. By Lemma 2.11 , either J + e ∈ ∪ 

3 
i =1 

L i , contrary to the choice

of J ; or J + e contains a K 4 (7)-subdivision, contrary to the assumption that G ∈ EX ( K 4 (7)). Hence we must have | V ( G )| > | V ( J )|.

Pick a vertex z ∈ V (G ) − V (J) . By κ( G ) ≥ 2, G contains two internally disjoint paths P 1 and P 2 such that for two distinct

vertices x 1 , x 2 ∈ V ( J ) and i ∈ {1, 2}, P i is a ( z , x i )-path with V (J) ∩ V (P i ) = { x i } . 
By Lemma 2.11 (iii) with the edge e in Lemma 2.11 (iii) being replaced by the ( x 1 , x 2 )-path P = G [ E(P 1 ) ∪ E(P 2 )] , we con-

clude that since G does not have a K 4 (7) minor, we must have either x 1 x 2 ∈ E ( N i ) or x 1 x 2 ∈ E(L i ) − E(N i ) . If x 1 x 2 ∈ E ( N i ), then

by the definition of N i in Definition 2.10 , subdividing an edge in N i would result in a K 4 (7)-minor, leading to the contradic-

tion that G has a K 4 (7)-minor. Hence we must have x 1 x 2 ∈ E(L i ) − E(N i ) , and so x 1 x 2 ∈ E ( K ) for some K ⊆L i , where K is either

a K 4 or a K 5 in Definition 2.10 . But then, (J − x 1 x 2 ) ∪ E(P ) either violates the maximality of J , or yields a K 4 (7)-minor in G .

In either case, a contradiction is found. This proves the theorem. �

3. Proof of Theorem 1.5 

Recall that K ( r ) is defined in (1) . In this section, we shall show that if G is a K 4 (7)-subdivision free graph, then for any

r ≥ 1, χ r ( G ) ≤ K ( r ) unless r = 2 and G has a block isomorphic to K 6 . The following lemma suggests that it suffices to verify

the statement for 2-connected graphs. A proof of Lemma 3.1 can also be found in [7] . We present its short proof here for

the sake of completeness. 

Lemma 3.1. Let G = G 1 �1 G 2 . Then χr (G ) ≤ max { χr (G 1 ) , χr (G 2 ) , r + 1 } . 
Proof. Let V (G 1 ) ∩ V (G 2 ) = { w } and let k = max { χr (G 1 ) , χr (G 2 ) , r + 1 } . For i ∈ {1, 2}, G i has a proper ( k , r )-coloring c i :

V (G i ) → k̄ . By permuting the colors in G 1 , we may assume that c 1 (w ) = c 2 (w ) . Define c : V (G ) → k̄ as 

c(v ) = 

{
c 1 (v ) , if v ∈ V (G 1 ) ;
c 2 (v ) , if v ∈ V (G 2 ) . 

(6) 

Then for any v ∈ V (G ) − { w } , both (C1) and (C2) in the definition of r -hued colorings are satisfied at v . We are to prove

(C1) and (C2) are satisfied at w . In particular, c(w ) � = c(u ) for any u ∈ N(w ) . Let h 1 = | N G 1 
(w ) | and h 2 = | N G 2 

(w ) | . If max { h 1 ,

h 2 } ≥ r or | c(N(w )) | ≥ r, then (C2) is satisfied at w under the coloring c . Therefore we assume that both max { h 1 , h 2 } ≤ r − 1

and | c(N(w )) | ≤ r − 1 . Hence | c(N G 1 
(w )) | = | N G 1 

(w ) | = h 1 and | c(N G 2 
(w )) | = | N G 2 

(w ) | = h 2 . 

Let t = min { h 2 , r − h 1 } . Since k ≥ r + 1 , and t ≤ r − h 1 < k − h 1 = k − | N G 1 
(w ) | , there exist t distinct colors

{ α1 , α2 , ..., αt } ⊂ k̄ − c(N G 1 
[ w ]) . As t ≤ h 2 , there exist t distinct vertices { u 1 , u 2 , ..., u t } ⊆ N G 2 

(w ) . Define a permutation
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on colors in k̄ by 

π = 

(
c 2 (w ) c 2 (u 1 ) c 2 (u 2 ) ... c 2 (u t ) ... 

c 2 (w ) α1 α2 ... αt ... 

)

and define a new coloring c ′ : V (G ) → k̄ as follows: 

c ′ (v ) = 

{
c 1 (v ) , if v ∈ V (G 1 ) ;
π(c 2 (v )) , if v ∈ V (G 2 ) − { w } . (7)

Then | c ′ (w ) | = | c ′ G 1 (w ) ∪ c ′ G 2 (w ) | ≥ h 1 + t = h 1 + min { h 2 , r − h 1 } = min { h 1 + h 2 , r} , and so c ′ is a proper ( k , r )-coloring of G ,

hence Proposition 3.1 holds. �

Lemma 3.2. Let r ≥ 2 be an integer and let G be a 2-connected graph. Each of the following holds. 

(i) If G ∈ EX ( K 4 (5)), then χ r ( G ) ≤ K ( r ) . 

(ii) If G ∈ EX ( K 4 (6)), then χ r ( G ) ≤ K ( r ) . 

(iii) If r ≥ 3 and G ∈ [ K 4 (6), K 6 ], then χ r ( G ) ≤ K ( r ) and if G ∈ [ K 4 (6) , K 6 ] − { K 6 } , then χ2 ( G ) ≤ K (2) . 

Proof. By Proposition 2.4 , EX(K 4 (5)) = { K 4 } ∪ EX(K 4 ) . As χr (K 4 ) = 4 ≤ K(r) , Lemma 3.2 (i) follows from Theorem 1.3 (ii). 

By Proposition 2.5 , EX(K 4 (6)) − EX(K 4 (5)) ⊆ L ∪ [ K 4 (5) , K 5 ] , where L is defined in (4) . Since for any r ≥ 2, K ( r ) ≥ 5, it

suffices to assume that G ∈ L with | V ( G )| ≥ 6 to show that χ r ( G ) ≤ K ( r ). Let { v 1 , v 2 , v 3 , v 4 } denote the vertices of the K 4 in the

definition of K 4 �v 1 , v 2 K 2 ,t . By (4) , G ∈ { K 4 �v 1 , v 2 K 2 ,s − v 1 v 2 , K 4 �v 1 , v 2 K 2 ,s } for some integer s . Denote D 2 (G ) = { u 1 , u 2 , ..., u s } .
Define c : V (G ) → r + 2 as follows: 

c(z) = i + (r − 2) , if z = v i and 1 ≤ i ≤ 4 . 
c(z) ≡ j (mod r − 2 ) , if z = u j and 1 ≤ j ≤ s . 

Note that c ( z ) is equal to r − 2 if j (mod r − 2 ) ≡ 0 . It is routine to verify that c is a proper coloring, and every v i has

min { r, d G (v i ) } different colors assigned to its neighbors and every u j has 2 colors in its neighbors. Thus c is a (r + 2 , r) -

coloring of G , and so χr (G ) ≤ r + 2 ≤ K(r) . This proves Lemma 3.2 (ii). 

We adopt the notation in Fig. 2 for the graphs in K 4 (6) and let G ∈ [ K 4 (6), K 6 ]. Thus G has a spanning subgraph

H ∈ K 4 (6) = { H 1 , H 2 , H 3 } . Using the notation in Fig. 2 , we denote V (G ) = { v 1 , v 2 , v 3 , v 4 , u 1 , u 2 } , with u 1 and u 2 denoting the

only two vertices in D 2 ( H ), where we label u 1 to be the vertex with u 1 v 1 ∈ E(G ) and u 1 v 3 / ∈ E(H) . In the following proof,

we view that G is a spanning subgraph of K 6 . Since G � = K 6 , G must have a pair of vertices x , y ∈ V ( G ) with xy �∈ E ( G ). If ev-

ery edge in E(K 6 ) − E(G ) has the form v i v j for some 1 ≤ i < j ≤ 4, then we by symmetry assume that v 1 v 2 / ∈ E(G ) . Define

(c(u 1 ) c(u 2 ) , c(v 3 ) , c(v 4 )) = (1 , 2 , 3 , 4) and c(v 1 ) = c(v 2 ) = 5 . As in this case, u i is adjacent to every vertex of V (G ) − { u i }
and each v j is adjacent to two vertices colored differently, it follows by definition that c is a (5,2)-coloring of G . Hence we

assume, by symmetry, that xy ∈ { u 1 v 3 , u 1 u 2 } (or we can convert the other cases to these two by relabeling the vertices). 

Initially define c : V (G ) → 5 by starting from c(v i ) = i, 1 ≤ i ≤ 4, with c ( u 1 ), c ( u 2 ) to be assigned. If H ∈ { H 1 , H 2 }, then u 2
is adjacent to two different colored vertices. Extend c by assigning 

(c(u 1 ) , c(u 2 )) = 

{
(3 , 2) if u 1 v 3 / ∈ E(G ) ; 
(5 , 5) if u 1 u 2 / ∈ E(G ) . 

If H = H 3 , then u 2 is adjacent to u 1 and v 1 , and u 1 v 3 / ∈ E(G ) . Extend c by defining c(u 1 ) = 3 and c(u 2 ) = 5 . In any case, c is

a (5,2)-coloring of G . This justifies Lemma 3.2 (iii) and completes the proof of the lemma. �

Lemma 3.3. Let r ≥ 2 be an integer, and G ∈ EX ( K 4 (7)) be a 2-connected graph. Each of the following holds. 

(i) χ2 ( G ) ≤ K (2) if and only if G is not isomorphic to K 6 . 

(ii) If r ≥ 3, then χ r ( G ) ≤ K ( r ) . 

Proof. By Theorem 2.12 , EX(K 4 (7)) − (EX(K 4 (6)) ∪ [ K 4 (6) , K 6 ]) ⊆ L 1 ∪ L 3 ∪ L 3 . Thus by Lemma 3.2 , it suffices to assume that

G ∈ L 1 ∪ L 3 ∪ L 3 to prove that χ r ( G ) ≤ K ( r ). To proceed the proof, we continue adopting the notation in Definition 2.8 and

Definition 2.10 . The lemma will then be proved after we justify each of the following three claims. 

Claim 3.4. If G ∈ L 1 , then χr (G ) ≤ r + 2 ≤ K(r) . 

By Definition 2.10 , there exist integers t 1 ≥ 2 and t 2 ≥ 2 such that G is spanned by an N 1 ( t 1 , t 2 ) with possibly v 1 v 2 , v 3 v � ∈
E(G ) . Recall that V (K 4 ) = { v 1 , v 2 , v 3 , v 4 } and denote D 2 (F 1 ) − { v 1 , v 2 , v 3 , v 4 } = { u 1 , u 2 , ..., u t 1 } and D 2 (F ′ 

1 
) − { v 1 , v 2 , v 3 , v 4 } =

{ u t 1 +1 , u t 1 +2 , ..., u t 1 + t 2 } . By the definition of L 1 , we assume that each u j , (1 ≤ j ≤ t 1 ), is not incident with v 3 and each u t 1 + j ′ ,
(1 ≤ j ′ ≤ t 2 ), is not incident with v 2 . 

For the case when r = 2 , we define c 1 : V (G ) → r + 2 by letting c 1 (v i ) = i for 1 ≤ i ≤ 4, c 1 (u j ) = 3 , for 1 ≤ j ≤ t 1 and

c 1 (u t 1 + j ′ ) = 2 , for 1 ≤ j ′ ≤ t 2 . 

Assume that r ≥ 3. Define c : V (G ) → r + 2 as follows: 

c 1 (z) = i + (r − 2) , if z = v , for 1 ≤ i ≤ 4 ; 
i 
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c 1 (z) ≡ j (mod r − 2 ) , if z = u j and 1 ≤ j ≤ t 1 + t 2 . 

Note that c 1 ( z ) is equal to r − 2 if j (mod r − 2 ) ≡ 0 . It is routine to verify that c 1 satisfies both (C1) and (C2) and is an

(r + 2 , r) -coloring of G , independent of whether the edges v 1 v 2 , v 3 v � are in E ( G ) or not. Thus χr (G ) ≤ r + 2 ≤ K(r) . 

Claim 3.5. If G ∈ L 2 , then χr (G ) ≤ r + 3 ≤ K(r) . 

By Definition 2.10 , every graph in L 2 is a planar graph. Thus by Theorem 1.1 (i), if G ∈ L 2 , then χ2 ( G ) ≤ K (2). Therefore, we

assume that r ≥ 3 and | V (G ) | ≥ K(3) + 1 = 7 , and continue using the notation in Definition 2.10 . Let G ∈ [ N 2 ( t 1 , t 3 , T ), L 2 ( t 1 , t 3 ,

T )] with t 1 ≥ 0 and t 3 > 0, where T = (k 1 , k 2 , ..., k t 3 ) with k 1 ≥ k 2 ≥ ... ≥ k t 3 ≥ 0 . Recall that V (K 4 ) = { v 1 , v 2 , v 3 , v 4 } , F 1 ∼= 

K 2 ,t 1 
,

F 2 ∼= 

K 

′ 
2 ,t 1 

and F 3 ∼= 

SK 2 ,t 3 ,T 
, and L 2 := L 2 (t 1 , t 3 , T ) = K 4 �v 1 , v 2 F 2 �v 1 , v 2 F 3 . Let D 2 (F 1 ) = { u 1 , u 2 , ..., u t 1 } , and for each j ∈ {1, 2, ...,

t 3 }, let x j , y j be the special vertices of J j ∼= 

K 2 ,k j 
in Definition 2.3 (ii) with x 1 = x 2 = ... = x f = v 1 , y f+1 = y f+2 = ... = y t 3 = v 2 ,

and D 2 (J j ) = { w 

j 
1 
, w 

j 
2 
, ..., w 

j 

k j 
} . See Fig. 8 . 

We shall construct an (r + 3 , r) -coloring c of G in the following steps. Before the coloring, we define these sequences 

W 1 = w 

1 
1 , w 

1 
2 , ..., w 

1 
k 1 

, w 

2 
1 , w 

2 
2 , ..., w 

2 
k 2 

, ..., w 

f 
1 
, w 

f 
2 
, ..., w 

f 

k f 
, (8) 

W 2 = w 

f+1 
1 

, w 

f+1 
2 

, ..., w 

f+1 

k f+1 
, w 

f+2 
1 

, w 

f+2 
2 

, ..., w 

f+2 

k f+2 
, ..., w 

t 3 
1 
, w 

t 3 
2 
, ..., w 

t 3 
k t 3 

. 

We are to define the mapping c 2 : V (G ) → r + 3 in the following steps then verify that c 2 satisfies the hued coloring

conditions (C1) and (C2) after that. 

Step 1. In this step, we color the vertices in V ( K 4 ) ∪ V ( F 1 ). 

Let b 1 = min { t 1 , r − 1 } , Define 

c 2 (z) = i + (r − 1) , if z = v i and 1 ≤ i ≤ 4 ; 

c 2 (z) ≡ j (mod r − 1 ) , if z = u j , 1 ≤ j ≤ t 1 . (9) 

Note that c 2 ( z ) is equal to r − 1 if j (mod r − 1 ) ≡ 0 . If t 1 ≥ r − 1 , then b 1 = min { t 1 , r − 1 } = r − 1 . (See Fig. 8 for an example

of the coloring in this case.) Hence the coloring of all the vertices colored in Step 1 would satisfy both (C1) and (C2). We

then color c({ y 1 , y 2 , ..., y f } ) = { r + 2 } , c({ x f+1 , x f+2 , ..., x t 3 } ) = { r + 3 } . For the other vertices, we color the vertices in the

sequence W 1 subsequently using colors 1 , 2 , ..., r − 2 , r − 1 , 1 , 2 , ..., r − 2 , r − 1 , ..., and do the same to color the vertices in

the sequence W 2 , to obtain a coloring c 2 : V (G ) → r + 3 . It is routine to verify that c is an (r + 3 , r) -coloring of G . Therefore,

in the following, we assume that b 1 = t 1 < r − 1 , and continue with the following steps by extending the partial coloring

defined in (9) . 

Step 2. In this step, we color the vertices { y 1 , y 2 , ..., y f } and { x f+1 , x f+2 , ..., x t 3 } . Define 

c 2 (z) ≡ t 1 + j (mod r − 1 ) , if z = y j and 1 ≤ j ≤ f ; 

c 2 (z) ≡ t 1 + j (mod r − 1 ) , if z = x f+ j and 1 ≤ j ≤ t 3 − f . (10) 

Note that c 2 ( z ) is equal to r − 1 if t 1 + j (mod r − 1 ) ≡ 0 . Let s 2 = r − 1 − t 1 , b 
′ 
2 = min { f, s 2 } , and b ′′ 2 = min { t 3 − f, s 2 } . Thus by

definition, there exists an index j with f ≥ j > b ′ 2 only if b ′ 2 = s 2 , which implies r − 1 ∪ { r + 2 , r + 3 } ⊆ c(N G (v 1 )) . Similarly,

there exists an index j with t 3 − f ≥ j > b ′′ 
2 

only if b ′′ 
2 

= s 2 , which implies r − 1 ∪ { r + 2 , r + 3 } ⊆ c(N G (v 2 )) . (See Fig. 9 for an

example of the coloring in this case.) 

Step 3. Continuing the coloring process in Steps 1 and 2, we in this step shall color all the other vertices, listed in the

two sequence W and W defined in (8) . 
1 2 
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Fig. 9. Coloring in Steps 2 and 3 of Claim 3.5 : Numbers in the circles are colors. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For vertices in the sequences W 1 , we define an infinite color vector C 1 = (b ′′ 2 + 1 , b ′′ 2 + 2 , ..., r − 1 , r + 2 , r + 3 , 1 , 2 , ..., r −
1 , r + 2 , r + 3 , 1 , 2 , ..., r − 1 , r + 2 , r + 3 , ... ) , and let c 1 

i 
denote the i th component of C 1 . To color w 

1 
1 
, w 

1 
2 
, ..., w 

1 
k 1 

, if c ( y 1 ) is in

the colors of { c 1 
1 
, c 1 

2 
, ..., c 1 

k 1 
} , then permute the all the components in the first k 1 components of C 1 that is equal to c ( y 1 ) by

the first color in (c 1 
k 1 +1 

, c 1 
k 1 +2 

, ... ) not equal to c ( y 1 ) and obtain a new color vector, still denoted by C 1 (to simplify notation).

After this adjustment, we color w 

1 
1 
, w 

1 
2 
, ..., w 

1 
k 1 

using the first k 1 components of (the possibly adjusted) C 1 . 

Assuming that j > h ≥ 1 and we have colored the vertices w 

1 
1 
, w 

1 
2 
, ..., w 

1 
k 1 

, w 

2 
1 
, w 

2 
2 
, ..., w 

2 
k 2 

, ..., w 

h 
1 
, w 

h 
2 
, ..., w 

h 
k h 

, using the first

h ′ := k 1 + k 2 ... + k h of (currently adjusted) C 1 , To color w 

h +1 
1 

, w 

h +1 
2 

, ..., w 

h +1 
k h +1 

, if c(y h +1 ) is in { c 1 
h ′ +1 

, c 1 
h ′ +2 

, ..., c 1 
h ′ + k h +1 

} , then

permute the all the components in this group of colors that is equal to c(y h +1 ) by the first color in (c 1 
h ′ + k h +1 +1 

, c 1 
h ′ + k h +1 +2 

, ... )

not equal to c(y h +1 ) and obtain a new color vector, again denoted by C 1 (to simplify notation). After this adjustment, we

color w 

h +1 
1 

, w 

h +1 
2 

, ..., w 

h +1 
k h +1 

using the colors from the (h ′ + 1) th to the (h ′ + k h +1 ) th components of (the possibly adjusted)

C 1 . Thus the coloring of vertices in W 1 is done by such an inductive color assignment. 

Similarly, for vertices in the sequence W 2 , we define an infinite color vector C 2 = (b ′ 
2 

+ 1 , b ′ 
2 

+ 2 , ..., r − 1 , r + 2 , r +
3 , 1 , 2 , ..., r − 1 , r + 2 , r + 3 , ... 1 , 2 , ..., r − 1 , r + 2 , r + 3 , ... ) , and using the same coloring process described in the previous

paragraph with the color vector C 1 replaced by the color vector C 2 to complete the definition of the coloring c . 

Now the coloring of G is completed. By definition, c 2 is a proper (r + 3) -coloring. In Step 1, (C2) is satisfied for vertices

in { v 3 , v 4 } ∪ { u 1 , u 2 , ..., u t 1 } . After the completion of Step 3, every vertex in the sequence of W 1 and W 2 has two different

colors in their neighbors, and so (C2) is satisfied for each of these vertices. For each vertex y ∈ { y 1 , y 2 , ..., y f }, by Step 3, at

least min { r , d G ( y )} different colors in r + 3 − { r, c(y ) } appear in c ( N G ( y )). Similarly, For each vertex x ∈ { x f+1 , x f+2 , ..., x t 3 } , by

Step 3, at least min { r , d G ( x )} different colors in r + 3 − { r + 1 , c(x ) } appear in c ( N G ( x )). For v 1 , we have { 1 , 2 , ..., b ′ 
2 
} ∪ { r +

2 , r + 3 } ⊆ c(N G (v 1 )) in Steps 1 and 2, and in Step 3, at least min { d G (v 1 ) − b ′ 2 , r − b ′ 2 } different colors in { b ′ 2 + 1 , ..., r − 1 } are

in c(N G (v 1 )) . This implies that (C2) is satisfied at v 1 . Similarly, (C2) is satisfied at v 2 . Thus c is indeed an (r + 3 , r) -coloring

of G , which completes the proof of the claim. 

Claim 3.6. If G ∈ L 3 , then χr (G ) ≤ r + 3 ≤ K(r) . 

By Definition 2.10 , for an integer t 1 ≥ 2, G is a spanning subgraph of L 3 (t 1 ) = K 5 �v 1 , v 2 F 1 where F 1 = K 2 ,t 1 
and V (K 5 ) =

{ v 1 , v 2 , v 3 , v 4 , v 5 } . Let D 2 (F 1 ) = { u 1 , u 2 , ..., u t 1 } . For r = 2 , define c 3 : V (G ) → r + 2 as c 3 (v i ) = i and c(u j ) = 3 for all i , j . 

For r ≥ 3, define c 3 : V (G ) → r + 3 as follows: 

c 3 (z) = i + (r − 2) , if z = v i and 1 ≤ i ≤ 5 ; 

c 3 (z) ≡ j (mod r − 2 ) , if z = u j and 1 ≤ j ≤ t 1 . 

Note that c 3 ( z ) is equal to r − 2 if j (mod r − 2 ) ≡ 0 . It is routine to verify that c 3 is an (r + 3 , r) -coloring of G , and so

χr (G ) ≤ r + 3 . �

Proof of Theorem 1.5. By Lemma 3.1 , it suffices to prove Theorem 1.5 within 2-connected graphs. By Theorem 2.12 , it

remains to prove Lemmas 3.2 and 3.3 . Thus the validity of these lemmas completes the proof of Theorem 1.5 . �
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