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a b s t r a c t

Esperet, de Joannis de Verclos, Le and Thomassé in [SIAM J.
Discrete Math., 32(1) (2018), 534–542] introduced the problem
that for an odd prime p, whether there exists an orientation D of
a graph G for any mapping f : E(G) → Z∗

p and any Zp-boundary b
of G, such that under D, at every vertex, the net out f -flow is the
same as b(v) in Zp. Such an orientation D is called an (f , b; p)-
orientation of G. Esperet et al. indicated that this problem is
closely related to mod p-orientations of graphs, including Tutte’s
nowhere zero 3-flow conjecture. Utilizing properties of additive
bases and contractible configurations, we show that every graph
G with Euler genus g and edge-connectivity κ ′(G) admits an
(f , b; p)-orientation for any mapping f : E(G) → Z∗

p and any
Zp-boundary b of G, provided

κ ′(G) ≥

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
4p − 6 + ⌊g/2⌋ if g ≤ 2,

(p − 2)⌊
√
6g + 0.25 + 2.5⌋

+1 if g ≥ 3,

p
√
4.98g if g is sufficiently large.
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1. The problem

We consider finite loopless graphs with possible multiple edges, and follow [3] for generic
undefined notation and terms, and [10] for those involving graphs embedded on surfaces. In
particular, for a graph G, κ(G), κ ′(G) and δ(G) denote the connectivity, edge-connectivity and the
minimum degree of G, respectively. We write H ⊆ G to mean that H is a subgraph of G. As in [3],
(u, v) in a digraph D denotes an arc oriented from u to v, and for a vertex v ∈ V , let

E−

D (v) = {(u, v) ∈ D(G) : u ∈ V (D)}, and E+

D (v) = {(v, u) ∈ D(G) : u ∈ V (D)}.

The subscript D may be omitted when D is understood from the context. For an integer k > 0,
let Zk denote the (additive) cyclic group of order k. A Zk-boundary of a graph G is a mapping
b : V (G) → Zk satisfying

∑
v∈V (G) b(v) ≡ 0 (mod k). Let A ⊆ Zk, and define F (G, A) = {f : E(G) → A},

and let Z∗

k = Zk − {0}. Fix an orientation D = D(G) for a graph G. For any f ∈ F (G,Z∗

k), define
∂D(f ) : V (G) → Zk as

∂D(f )(v) =

∑
e∈E+

D (v)

f (e) −

∑
e∈E−

D (v)

f (e).

When the orientation D is understood from the context, we often omit the subscript D in the
notation above and write ∂ f for ∂D(f ). It is known that for any f ∈ F (G,Z∗

k), ∂ f is always a
Zk-boundary. Jaeger et al. [13] defined group connectivity of a graph. A graph G is Zk-connected
if for any Zk-boundary b of G, there exists an orientation D of G and a mapping f ∈ F (G,Z∗

k) such
that ∂ f ≡ b (mod k). The following conjecture is proposed in [13] and remains unsolved as of today.

Conjecture 1.1. Let G be a graph.
(i) If κ ′(G) ≥ 3, then G is Z5-connected.
(ii) If κ ′(G) ≥ 5, then G is Z3-connected.

Let b be a Zk-boundary of a graph G. An orientation D of G is a b-orientation of G if for the
constant mapping f = 1, we have ∂ f ≡ b (mod k). In particular, when b = 0, any b-orientation
of G is a mod k-orientation of G. The studies of group connectivity and modulo orientation of
graphs are motivated by the most fascinating nowhere zero flow conjectures of Tutte, as shown in
the surveys [12,17] as well as in the popular monograph [23], among others. Some of the recent
breakthroughs are the following.

Theorem 1.2 (Lovász, Thomassen, Wu and Zhang [21]). Let k > 0 be an integer. Every 6k-edge-
connected graph G has a b-orientation for every Z2k+1-boundary b of G.

Theorem 1.3 (Han, Li, Wu and Zhang [11], Li [19]). Let k > 0 be an integer.
(i) If k ≥ 3, then there exists a 4k-edge-connected graph admitting no mod (2k + 1)-orientation.
(i) If k ≥ 5, then there exists a (4k + 1)-edge-connected graph admitting no mod (2k + 1)-orientation.

In particular, Theorem 1.3 disproved Jaeger’s Circular Flow Conjecture, in which Jaeger [12] con-
jectured that every 4k-edge-connected graph admits a mod (2k+1)-orientation. Further expository
of the problem can be found in the informative monograph by Zhang [23]. Aiming at extending
Theorem 1.2, Esperet et al. in [9] defined a mod k f -weighted b-orientation of a graph G, for a given
mapping f ∈ F (G,Z∗

k) and a Zk-boundary b, to be an orientation D = D(G) satisfying ∂D(f ) ≡ b (mod
k) under D. Throughout the rest of this paper, we shall abbreviate a mod k f -weighted b-orientation
as an (f , b; k)-orientation. Esperet et al. indicated in [9] that to investigate (f , b; k)-orientations of
graphs, it is necessary to assume that k is an odd prime number. The following is proved in [9].

Theorem 1.4 (Esperet, de Joannis de Verclos, Le and Thomassé, [9]). Let p ≥ 3 be a prime number and
G be a (6p2−14p+8)-edge-connected graph. Then for any mapping f ∈ F (G,Z∗

p) and any Zp-boundary
b of G, G has an (f , b; p)-orientation.
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The current study is motivated by Theorems 1.2–1.4. We are going to investigate the relationship
between the edge-connectivity of a graph embedded on a 2-manifold and its (f , b; p)-orientability
over the finite field Zp. We follow [10] to define a 2-cell (or cellular) embedding of a graph G into
a closed surface S to be a continuous one-to-one function i : G → S if every component of S − i(G)
is homeomorphic to an open disk. In this paper, all embeddings of graphs are assumed to be 2-cell.
We use g to denote the Euler genus of G, which is the minimum integer k such that the graph can
be embedded into an orientable surface of genus k/2 or into a nonorientable surface of genus k.
Our main result is the following.

Theorem 1.5. Let p > 0 be an odd prime, and let G be a graph with Euler genus g and edge connectivity

κ ′(G) ≥

⎧⎪⎨⎪⎩
4p − 6 + ⌊g/2⌋ if g ≤ 2,
(p − 2)⌊

√
6g + 0.25 + 2.5⌋ + 1 if g ≥ 3,

p
√
4.98g if g is sufficiently large.

(1)

Then for any mapping f ∈ F (G,Z∗
p) and any Zp-boundary b of G, the graph G has an (f , b; p)-orientation.

The next section will be focused on developing the needed mechanisms to derive our main result,
utilizing additive bases in the linear space of the boundaries of a given graph, and contractible
configurations of the related properties. The proof of the main result will be in the last section.

2. Preliminaries

Throughout this section, F, n and p denote a field, a positive integer and an odd prime,
respectively. We use Fn to denote the n-dimensional vector space over F. For a graph G on n > 0
vertices, let Z(G,Zk) denote the collection of all Zk-boundaries of G. By definition, Z(G,Zp) is
isomorphic to Zn−1

p .

2.1. Additive bases of Z(G,Zp)

Given a subset S ⊆ Zp, an S-additive basis of Zn
p is a multiset {x1, x2, . . . , xm} ⊆ Zn

p such that for
any x ∈ Zn

p , there exist scalars ci ∈ S such that x =
∑m

i=1 cixi, which is called an S-linear-combination
of x. An additive basis is a {0, 1}-additive basis. As indicated in [13], the mod p-orientation problem
of graphs is closely related to the existence of additive bases of vector spaces over Zp, the field on
p elements.

Let B1, . . . , Bt be a collection of bases of Fn. Define ⊎
t
i=1Bi to be the (multiset) union with

repetitions of B1, . . . , Bt . Let c(n,F) be the smallest positive integer t such that for any t bases
B1, . . . , Bt of Fn, the multiset ⊎

t
i=1Bi is an additive basis of Fn. Define c(n, p) = c(n,Zp). An upper

bound of c(c, p) was obtained by Alon, Linial and Meshulam [1]. In the following, Theorem 2.1(i) can
be derived from Cauchy–Davenport Theorem in [7] (see Theorem 2.4), and Theorem 2.1(ii) verified
a former conjecture by H. B. Mann and J. E. Olson.

Theorem 2.1. Each of the following holds.
(i) (Davenport [7], see also [2]) If p ≥ 3 is a prime, then c(1, p) = p − 1.
(ii) (Mann and Wou [22]) If p ≥ 3 is a prime, then c(2, p) = p − 1.

We develop some more lemmas for our arguments deployed in this research.

Lemma 2.2. Let x, y ∈ F distinct elements. Then each of the following holds.
(i) If A = {a1, . . . , am} is an {x, y}-additive basis of Fn, then (y − x)A = {(y − x)a1, . . . , (y − x)am} is
an additive basis of Fn.
(ii) If A = {a1, . . . , am} is an additive basis of Fn, then (y − x)−1A = {(y − x)−1a1, . . . , (y − x)−1am} is
an {x, y}-additive basis of Fn.
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Proof. Let β be an arbitrary vector in Fn.
(i) Then β +

∑m
i=1 xai ∈ Fn. As {a1, . . . , am} is an {x, y}-additive basis of Fn, there exist scalars

c1, . . . , cm ∈ {x, y} such that β +
∑m

i=1 xai =
∑m

i=1 ciai. For each i ∈ {1, 2, . . . ,m}, let di =

(y − x)−1(ci − x). Thus if ci = x then di = 0, and if ci = y then di = 1. It follows that
β = (y − x)(y − x)−1 ∑m

i=1(ci − x)ai =
∑m

i=1 di(y − x)ai with di ∈ {0, 1}, and so (y − x)A is an
additive basis of Fn.
(ii) Then β − (y − x)−1 ∑m

i=1 xai ∈ Fn. Since {a1, . . . , am} is an additive basis of Fn, there exist
c1, . . . , cm ∈ {0, 1} such that β − (y − x)−1 ∑m

i=1 xai =
∑m

i=1 ciai. For each i ∈ {1, 2, . . . ,m}, let
di = (y−x)ci+x. As ci ∈ {0, 1}, we have di ∈ {x, y}. It follows that β =

∑m
i=1((y−x)ci+x)(y−x)−1ai =∑m

i=1 di(y − x)−1ai, and so (y − x)−1A is a {x, y}-additive basis of Fn. ■

Let G be a connected graph with n = |V (G)| ≥ 1. For each e ∈ E(G), define xe ∈ F (G,Zp) to
be the characteristic function of {e}. Let D be an arbitrary orientation of G. Recall that Z(G,Zp) is
isomorphic to Zn−1

p . Corollary 2.3 reveals a relationship between additive bases in Z(G,Zp) and the
existence of an (f , b; p)-orientation of G.

Corollary 2.3. Let p ≥ 3 be a prime number, and let G be a connected graph with n = |V (G)|. The
following statements are equivalent.
(i) For any mapping f ∈ F (G,Z∗

p) and any Zp-boundary b of G, G has an (f , b; p)-orientation.
(ii) For any given orientation D1 of G and for any mapping f ∈ F (G,Z∗

p), the multiset {f (e)∂D1 (xe) : e ∈

E(G)} is a {−1, 1}-additive basis of Z(G,Zp).
(iii) For any given orientation D2 of G and for any mapping f ∈ F (G,Z∗

p), the multiset {2f (e)∂D2 (xe) :

e ∈ E(G)} is an additive basis of Z(G,Zp).

Proof. The equivalence between (ii) and (iii) is an immediate consequence of Lemma 2.2 by letting
D1 = D2.

It remains to show that equivalence between (i) and (ii). Assume that (i) holds. For any mapping
f ∈ F (G,Z∗

p) and any b ∈ Z(G,Zp), by (i), G admits an (f , b; p)-orientation D. For each e ∈ E(G),
define ce = 1 if e has the same orientation in both D and D1 and ce = −1 if e is oriented differently
in D and in D1. By definition, we have ∂D(f ) = b, and so for each v ∈ V (G),

b(v) = ∂D(f )(v) =

∑
e∈E+

D (v)

f (e) −

∑
e∈E−

D (v)

f (e) =

∑
e∈E

cef (e)∂D1 (xe)(v).

Thus b is a {1, −1}-linear-combination of vectors in {f (e)∂D1 (xe) : e ∈ E(G)}. By definition, the
multiset {f (e)∂D1 (xe) : e ∈ E(G)} is a {−1, 1}-additive basis of Z(G,Zp).

Conversely, we assume that the multiset {f (e)∂D1 (xe) : e ∈ E(G)} is a {−1, 1}-additive basis of
Z(G,Zp). For any b ∈ Z(G,Zp), there exists scalars ce ∈ {1, −1} such that b =

∑
e∈E(G) cef (e)∂D1 (xe).

Let D be an orientation obtained from D1 such that for any edge e ∈ E(G), e has the same orientation
in D as in D1 if ce = 1 and e has an orientation in D opposite to its orientation in D1 if ce = −1. It
follows from b =

∑
e∈E(G) cef (e)∂D1 (xe) that b = ∂D(f ), and so D is an (f , b; p)-orientation of G. ■

For a multisubset {x1, . . . , xk} of Z∗
p , define Ω(x1, . . . , xk) = {

∑k
i=1 ℓixi : ℓi ∈ {1, −1}} to be the

set of {1, −1}-linear combinations of {x1, . . . , xk}. By definition and since p ≥ 3 is an odd prime,

Ω(x1, . . . , xk) = −Ω(x1, . . . , xk), and so |Ω(x1, . . . , xk)| is odd if and only if
0 ∈ Ω(x1, . . . , xk).

(2)

For two nonempty subsets A, B ∈ Zp, let A+ B = {a+ b : a ∈ A, b ∈ B}. The following result was
proved by Cauchy [6] in 1813 and was later rediscovered by Davenport [7] in 1935.

Theorem 2.4 (Cauchy [6] and Davenport [7]). Let p be a prime number, and A and B two nonempty
subsets of Zp. Then |A + B| ≥ min{p, |A| + |B| − 1}.

Lemma 2.5. Let p be an odd prime and let k be a positive integer with 1 ≤ k < p. If {x1, . . . , xk} is a
multisubset of Z∗

p , then |Ω(x1, . . . , xk)| ≥ k + 1.
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Proof. We proceed by induction on k. If k = 1, then Ω(x1) = {x1, −x1}, and the lemma holds.
Let A = Ω(x1, . . . , xk−1). Then by induction, |Ω(x1, . . . , xk−1)| ≥ k. Let B = {xk, −xk}. Note that
Ω(x1, . . . , xk) = A + B. By Theorem 2.4, |A + B| ≥ min{p, |A| + |B| − 1} = min{p, k + 1} = k + 1,
and so |Ω(x1, . . . , xk) ≥ k + 1. ■

2.2. A family of graphs admitting (f , b; p)-orientations

For a graph G and for each edge uv ∈ E(G), let [uv] denote the set of all (parallel) edges joining
the two vertices u and v. If X ⊆ E(G) is an edge subset of a graph G, then the contraction G/X is
obtained from G by identifying the two ends of each edge in X and then deleting all the resulting
loops. If X = {e}, we use G/e for G/{e}. If H is a connected subgraph of G, then we write G/H for
G/E(H).

For a prime p ≥ 3, let Op denote the family of connected graphs such that a graph G ∈ Op if and
only if G admits an (f , b; p)-orientation for any f ∈ F (G,Z∗

p) and any Zp-boundary b. By definition,
K1 ∈ Op. For a subgraph H of a graph G, let AG(H) denote the vertices in V (H) that are adjacent to
some vertices in V (G)− V (H) in G. (Vertices in AG(H) are called the vertices of attachment of H in
G.) We have the following proposition.

Proposition 2.6. Let G be a connected graph. Then each of the following holds.
(i) If G ∈ Op and e ∈ E(G), then G/e ∈ Op.
(ii) If H ⊆ G satisfying H ∈ Op and G/H ∈ Op, then G ∈ Op.

Proof. (i) Let e = {u, v}, G′
= G/e and w be the vertex in G′ onto which e is contracted. Let

f ′
: E(G′) → Z∗

p and b′ be an arbitrary Zp-boundary of G′. Define mappings f and b as follows:

f (h) =

{
f ′(h) if h ∈ E(G′) = E(G) − {e}
1 if h = e.

and b(z) =

⎧⎨⎩
b′(z) if z ∈ V (G) − {u, v}

b′(w) if z = u
0 if z = v.

(3)

Thus f : E(G′) → Z∗
p . As

∑
z∈V (G) b(z) =

∑
z∈V (G′) b

′(z) ≡ 0 (mod p), b is a Zp-boundary of G. Since
G ∈ Op, G admits an (f , b; p)-orientation D. Let D′ be the restriction of D to E(G) − {e}. Then D′ can
be viewed as an orientation of G′. Since

∂D′ f ′(w) =

∑
e′∈E+

D (v)∪E+

D (u)−{e}

f (e′) −

∑
e′∈E−

D (v)∪E−

D (u)−{e}

f (e′)

= ∂Df (u) + ∂Df (v) = b(u) + b(v) = b′(w),

(4)

it follows that ∂D′ f ′
= b′, and so D′ is an (f ′, b′

; p)-orientation of G′. By definition, G/e ∈ Op.
(ii) Suppose H ∈ Op and G/H ∈ Op. By the definition of contraction, we may assume that H is an
induced subgraph of G, and so E(G) is the disjoint union of E(H) and E(G/H). Let vH be the vertex
in G/H onto which H is contracted. We verify the definition to show that G ∈ Op.

Arbitrarily take a Zp-boundary b of G and f : E(G) → Z∗
p . Let a0 =

∑
v∈V (H) b(v). Define

b1 : V (G/H) → Zp by

b1(z) =

{
b(z) if z ∈ V (G/H) − {vH}

a0 if z = vH .
(5)

As b is a Zp-boundary, we have
∑

z∈V (G/H) b1(z) =
∑

z∈V (G) b(z) = 0, and so b1 is a Zp-boundary
of G/H . Let f1 : E(G/H) → Z∗

p be the restriction of f to E(G/H). Since G/H ∈ Op, G/H has an
(f1, b1; p)-orientation D1. Define b2 : V (H) → Zp by

b2(z) =

⎧⎪⎨⎪⎩
b(z) +

∑
e∈E−

D1
(vH )∩E−

D (z)

f1(e) −

∑
e∈E+

D1
(vH )∩E+

D (z)

f1(e) if z ∈ AG(H)

b(z) otherwise.

(6)
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As a0 =
∑

v∈V (H) b(v), we have∑
z∈V (H)

b2(z) =

∑
z∈V (H)

b(z) +

∑
e∈E−

D1
(vH )

f1(e) −

∑
e∈E+

D1
(vH )

f1(e) = a0 − ∂D1 f1(vH ) = 0,

and so b2 is a Zp-boundary of H . Let f2 : E(H) → Z∗
p be the restriction of f to E(H). Since H ∈ Op,

H has an (f2, b2; p)-orientation D2. Obtain an orientation D of G by taking the union of D1 and D2.
It remains to show that D is an (f , b; p)-orientation of G. For any vertex z ∈ V (G) − AG(H), by the
definition of D1 and D2, we have ∂Df (z) = b(z). For any vertex z ∈ AG(H), by (5) and (6), it follows
that

∂Df (z) = ∂D1 f1(z) + ∂D2 f2(z) = ∂D1 f1(z) + b(z) − ∂D1 f1(z) = b(z).

Therefore G ∈ Op. ■

Nonempty families of connected graphs satisfying Proposition 2.6(i) and (ii) are called complete
families and investigated in [4,5,15]. Complete families have quite a few interesting properties and
are associated with certain reduction methods.

Corollary 2.7. Let G be a connected graph and p be an odd prime. Then G ∈ Op if and only if every
block of G is in Op.

Proof. Let B1, B2, . . . , Bc be blocks of G. The corollary holds trivially if c = 1, and so we assume
c ≥ 2. If G ∈ Op, then by Proposition 2.6(i), Bi = G/(∪j̸=iBj) ∈ Op. Conversely, assume that every
Bi ∈ Op, we proceed by induction on c to show that G ∈ Op. As G/Bc has blocks B1, B2, . . . , Bc−1
and Bi ∈ Op for each i ∈ {1, . . . , c − 1}. By induction on c , we have that G/Bc ∈ Op. As Bc ∈ Op, by
Proposition 2.6(ii) we have that G ∈ Op. ■

For a given odd prime p, a graph G is strongly Zp-connected if for any f : E(G) → {1, −1} ⊆ Zp,
and any Zp-boundary b, G admits an (f , b; p)-orientation. The study of strongly Zp-connected graphs
were initiated and investigated in [14,16,18–20], among others. By definition, a graph is strongly
Z3-connected if and only if it is Z3-connected. Lemma 2.8(i) follows from the definition, and
Lemma 2.8(iv) follows from Lemma 2.8(i) and (iii).

Lemma 2.8. Let p be an odd prime. Each of the following holds.
(i) Every graph G ∈ Op is strongly Zp-connected.
(ii) (Jaeger et al. Proposition 2.2 of [13]) A graph G is Z3-connected if and only if G ∈ O3.
(iii) (Proposition 3.9 of [20]) Every strongly Zp-connected graph contains p − 1 edge-disjoint spanning
trees.
(iv) Every graph in Op contains p − 1 edge-disjoint spanning trees and is thus (p − 1)-edge-connected.

For an integer m > 0 and a graph H , define H (m) to be the graph obtained from H by replacing
each edge of H by a set of m parallel edges joining the same pair of vertices. In particular, K (m)

2
is a loopless graph on two vertices and m edges. Lemma 2.9 is a consequence of Theorem 2.1(i),
Corollary 2.3 and Lemma 2.8(iv).

Lemma 2.9. Let G be a graph and p be an odd prime. Then K (m)
2 ∈ Op if and only if m ≥ p − 1.

Lemma 2.10 (Jaeger et al. [13]). A graph G = (V , E) is connected if and only if for any b ∈ Z(G,Zp)
and for any orientation D, there exists and f ∈ F (G,Zp) such that ∂ f = b.

Let |V (G)| = n, and let the underlying simple graph of the graph G be Cn, where V (G) = {vj : j ∈

Zn}. We denote Cn the cycle with the same vertex set and such that vjvj+1 is an edge for each j ∈ Zn.
Similarly, we denote Cn(i1, . . . , in) the graph with the same vertex set and such that ij = |[vjvj+1]|

for each j ∈ Zn. By definition, C2(i1, i2) = K (i1+i2)
2 .
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Lemma 2.11. Let G = Cn(i1, i2, . . . , in). If for each j ∈ Zn, ij ≤ p − 1, and if
∑n

j=1 ij ≥ (n − 1)(p − 1),
then G ∈ Op.

Proof. Let f ∈ F (G,Z∗
p) and b ∈ Z(G,Zp) be given. We are going to find an orientation D of G such

that ∂D(f ) = b. Orient the edges of E(Cn) so that for each j ∈ Zn, the edge ej is oriented from vj to
vj+1, and let D1 denote the resulting orientation of Cn.

By Lemma 2.10, there is a mapping f ′

0 ∈ F (Cn,Zp) such that ∂D1 f
′

0 = b. For each constant
c ∈ {1, . . . , p − 1}, let f ′

c be the mapping given by f ′
c (e) = f ′

0(e) + c for any e ∈ E(Cn). It follows that
∂D1 f

′
c = ∂D1 f

′

0 = b.
Fix an arbitrary j ∈ Zn, and let [ej] denote the edges parallel to ej in G. By assumption, we may

denote [ej] = {e1j , . . . , e
ij
j } (with ej = e1j ). Define a bipartite graph K with vertex bipartition (V1, V2),

where V1 = {f ′

0, f
′

1, . . . , f
′

p−1} and V2 = {e1, e2, . . . , en} such that f ′
c is adjacent to ej in K if and only

if f ′
c (ej) /∈ Ω(f (e1j ), . . . , f (e

ij
j )). Thus dK (ej) = |Zp − Ω(f (e1j ), . . . , f (e

ij
j ))|. By Lemma 2.5 and since

ij ≤ p − 1 for each j ∈ Zn, we have
∑n

j=1 |Ω(f (e1j ), . . . , f (e
ij
j ))| ≥

∑n
j=1(ij + 1). It follows by the

assumption
∑n

j=1 ij ≥ (n − 1)(p − 1) that

|E(K )| =

n∑
j=1

dK (ej) =

n∑
j=1

|Zp − Ω(f (e1j ), . . . , f (e
ij
j ))|

=

n∑
j=1

|Zp| −

n∑
j=1

|Ω(f (e1j ), . . . , f (e
ij
j ))|

≤ np −

n∑
j=1

(ij + 1) ≤ n(p − 1) −

n∑
j=1

ij ≤ p − 1.

Hence there exists at least one c ∈ Zp such that f ′
c is of degree zero in K . This implies that for any

j ∈ Zn, we always have f ′
c (ej) ∈ Ω(f (e1j ), . . . , f (e

ij
j )).

Consider a c ∈ Zp such that f ′
c is of degree zero in K . We now construct an orientation D of G so

that ∂Df = b to complete the proof. For each j ∈ Zn, we orient the edges {e1j , . . . , e
ij
j }. Since f ′

c (ej) ∈

Ω(f (e1j ), . . . , f (e
ij
j )), by the definition of Ω(f (e1j ), . . . , f (e

ij
j )), there exist scalars ℓt ∈ {1, −1} ⊂ Zp

such that f ′
c (ej) =

∑
t=1 ijℓt f (e

t
j ). For each t with 1 ≤ t ≤ ij, orient etj from vj to vj+1 if ℓt = 1 and

from vj+1 to vj if ℓt = −1. Denote the resulting orientation of G by D. By the definition of D, we
have ∑

e∈E+

D (vj)∩[ej]

f (e) −

∑
e∈E−

D (vj)∩[ej]

f (e) = f ′

c (e).

This implies that ∂Df = ∂D1 f
′

0 = b, and so D is an (f , b; p)-orientation of G. This proves the
lemma. ■

Corollary 2.12. Let G = Cn(i1, i2, . . . , in). The following are equivalent.
(i) G ∈ Op.
(ii) G has p − 1 edge-disjoint spanning trees.

Proof. By Lemma 2.8(iv), we have (i) implies (ii). We proceed by induction to prove that (ii) implies
(i), and assume that G has p − 1 edge-disjoint spanning trees. If n = 2, then (i) follows from
Lemma 2.9. Assume that n ≥ 3 and that (ii) implies (i) for smaller values of n. If Cn has an edge,
say en = vnv1 with |[en]| ≥ p − 1, then we induce on G′

= G/[en]. As G′
= Cn−1(i1, i2, . . . , in−1) and

as G′ also has p − 1 edge-disjoint spanning trees, G′
∈ Op. By Lemma 2.9 and Proposition 2.6, we

have G ∈ Op. Therefore, we may assume that |[e]| ≤ p − 2 for any e ∈ E(Cn). Since G has p − 1
edge-disjoint spanning trees, we have

∑n
j=1 ij = |E(G)| ≥ (n − 1)(p − 1), and so by Lemma 2.11,

G ∈ Op. ■
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3. Proof of Theorem 1.5

We first make some remarks before proving Theorem 1.5. In the original version of this paper,
for a graph with large Euler genus g , we proved edge connectivity bound 2gp, roughly, through a
different method. A referee of this paper kindly shared his/her ideas to improve the bound from
the fact that every simple graph with Euler genus g is O(

√
g)-degenerate, which eventually helps

us to achieve the current bound (p− 2)⌊
√
6g + 0.25 + 2.5⌋ + 1 for g ≥ 3. Digging deeper on those

arguments and ideas, with the help of Theorem 3.1, we are also able to get a better bound p
√
4.98g

for a sufficiently large g . We would like to thank the referees for very helpful suggestions.

Theorem 3.1 (Delcourt and Postle [8]). For a sufficiently large integer n, every simple graph on n vertices
with minimum degree at least 0.8274n can be edge-decomposed into triangles if each vertex has degree
even and its number of edges is divisible by 3.

The following is a consequence of Theorem 3.1.

Lemma 3.2. For a sufficiently large integer n, every simple graph on n vertices with minimum degree
at least 0.8275n can be edge-decomposed into triangles, plus at most 0.5n + 7 single edges.

Proof. Let G be a graph on n vertices with minimum degree at least 0.8275n. Then G has a
Hamiltonian cycle C by Dirac’s Theorem. Let T be the set of odd degree vertices in G. Clearly, |T |

is even, and so let |T | = 2t , where t ≥ 0. We label the vertices of T as v1, v2, . . . , v2t in the cyclic
order along the Hamiltonian cycle C . Then for each 1 ≤ i ≤ t , there is a path Pi in the cyclic order of
C from v2i−1 to v2i. Define X = ∪

t
i=1E(Pi) if |∪

t
i=1E(Pi)| ≤ 0.5n, and X = E(C) \ (∪t

i=1E(Pi)) otherwise.
Then we have |X | ≤ 0.5n and each vertex of T has degree odd in X . Let G1 = G − X . Then each
vertex of G1 has degree even. If |E(G1)| is divisible by 3, then let G2 = G1. If |E(G1)| is not divisible
by 3, noting that G1 contains both 5-cycles and 7-cycles by Turán’s Theorem, then we delete the
edges of a 5-cycle or a 7-cycle in G1 to obtain a new graph G2 whose number of edges is divisible by
3. Now G2 has minimum degree at least 0.8275n − 4 > 0.8274n, and each vertex of G2 has degree
even. So Theorem 3.1 is applicable for G2 in any case. Hence E(G2) can be edge-decomposed into
triangles by Theorem 3.1. As E(G) \ E(G2) has at most 0.5n + 7 edges, the lemma follows. ■

Now we are going to prove Theorem 1.5. As Theorem 1.5 holds trivially if G = K1, we assume
that |V (G)| ≥ 2. In the following, we always let G̃ denote the underlying simple graph of G. For
fixed integer p ≥ 3, define a function on the interval [3, ∞) as follows.

φ(x) =
2(x − 1)
x − 2

p −
2x

x − 2
.

As on [3, ∞), the derivative of the function is

φ′(x) =
4 − 2p
(x − 2)2

< 0,

it follows that

φ(x) is a decreasing function on [3, ∞). (7)

We prove the following equivalent statement of Theorem 1.5.

Theorem 3.3. Let p > 0 be an odd prime, and let G be a graph with κ ′(G) ≥ p − 1. Then each of the
following holds.
(i) If G has Euler genus g ≤ 2 and κ ′(G) ≥ 4p − 6 + ⌊g/2⌋, then G ∈ Op.
(ii) If G has Euler genus g ≥ 3 and κ ′(G) ≥ (p − 2)⌊2.5 +

√
6g + 0.25⌋ + 1, then G ∈ Op.

(iii) If G has sufficiently large Euler genus (independent of p) and κ ′(G) ≥ p
√
4.98g, then G ∈ Op.

Proof. To prove Theorem 3.3, we argue by contradiction and assume that

G is a counterexample to Theorem 3.3 with |V (G)| minimized. (8)
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Thus one of (i), (ii) and (iii) holds but G /∈ Op, and so by (8), we have the following claim.

Claim 3.4. Each of the following holds.
(i) κ(G) ≥ 2.
(ii) G does not have a nontrivial subgraph H such that H ∈ Op.
(iii) G does not have a subgraph isomorphic to a K (m)

2 with m ≥ p − 1.
(iv) G does not have a subgraph isomorphic to a Cℓ(i1, i2, . . . , iℓ) with

∑ℓ

j=1 ij ≥ (ℓ − 1)(p − 1).

Since κ ′(G) ≥ p − 1 ≥ 2, G is connected. Let B1, B2, . . . , Bc be blocks of G. If c ≥ 2, then the
definition of edge-connectivity implies κ ′(G) = min{κ ′(Bi) : 1 ≤ i ≤ c}, and so by (8), each Bi ∈ Op.
It follows by Corollary 2.7 that G ∈ Op, a contradiction to (8). Thus, c = 1 and Claim 3.4(i) holds.

Let H be a subgraph of G such that |V (H)| > 1 and H ∈ Op. Let G′
= G/H with Euler genus

g ′. Then by definition, κ ′(G′) ≥ κ ′(G) and g ≥ g ′. As |V (H)| > 1, |V (G′)| < |V (G)|, and so by (8),
G′

∈ Op. By Proposition 2.6(ii), we have G ∈ Op, a contradiction to (8). Thus Claim 3.4(ii) holds.
By Lemma 2.9, K (m)

2 ∈ Op when m ≥ p − 1, and by Lemma 2.11, Cℓ(i1, i2, . . . , iℓ) ∈ Op when∑ℓ

j=1 ij ≥ (ℓ − 1)(p − 1). Hence Claim 3.4(iii) and (iv) are consequences of Claim 3.4(ii), and so the
claim holds.

Notice that if n = |V (G)| ≤ 3, then by Claim 3.4(i), we have that the underling simple graph G̃
is isomorphic to Kn. When n = 2, 3, the edge connectivity implies that G contains a subgraph in Op
(as in Claim 3.4(iii) or (iv)), contrary to Claim 3.4(ii). Hence we have

Observation 3.5. |V (G)| ≥ 4.

By Claim 3.4(iii), for any edge e ∈ E(G), there are at most p− 2 edges parallel to e in G; and if G
has a subgraph J isomorphic to a Cℓ(i1, i2, . . . , iℓ), then |E(J)| ≤ (ℓ − 1)(p− 1)− 1. This is a key fact
in later proofs.

Let S be a surface of Euler genus g and suppose G is embedded into S in such a way that for
each edge e ∈ E(G), if [e] = {e1, e2, . . . , es} with s = |[e]| ≥ 2, then, re-embedding the edges in
[e] if needed, the 2-cycles {e1, e2}, {e2, e3}, . . . , {es−1, es} are the boundaries of some 2-faces of the
embedding.

Define F (G) to be the set of faces of G. For each f ∈ F (G), we define dG(f ) to be the number of
edges incident with f , and for each integer i ≥ 1, let Fi be the number of faces of degree i in G. A
face of degree ℓ is often called an ℓ-face. If the two edges of a 2-face are parallel to or contain an
edge of an ℓ-face for some ℓ ≥ 3, then we say this 2-face is related to the ℓ-face, or is a related
2-face of the ℓ-face.

Recall Euler’s formula that

|V (G)| + |F (G)| − |E(G)| = 2 − g.

To find a contradiction, we use a discharging argument. Define k as follows,

k =

⎧⎪⎨⎪⎩
4p − 6 + ⌊g/2⌋ if g ≤ 2,
(p − 2)⌊

√
6g + 0.25 + 2.5⌋ + 1 if g ≥ 3,

p
√
4.98g if g is sufficiently large.

(9)

As in a 2-cell embedding of a graph G on a surface, every edge is incident with one or two faces.
It follows that every 2-face of G in this 2-cell embedding is related to either one or two faces of
degree at least 3. Define, for i ∈ {1, 2},

Xi(G) = {f ∈ F (G) : f is a 2-face and is related to i faces of degree at least 3
in the embedding.}

For each face f ∈ F (G), we assign an initial charge w(f ) equaling the degree of f in the embedding.
Now we define the discharging rule as follows.

For ℓ ≥ 3 and i ∈ 1, 2, every ℓ-face f gives
2(3 − i)
k − 2

to each of the 2-faces in Xi(G)

related to f .
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For any f ∈ F (G), let w∗(f ) be the resulting charge of f after recharging. As every 2-face in F (G)
is either in X1(G) or in X2(G), by the discharging rule, we conclude that

For any 2-face f of G, w∗(f ) = 2 +
4

k − 2
. (10)

For an integer ℓ ≥ 3 and for any f ∈ F (G) with dG(f ) = ℓ, let Ē(f ) be the set of edges that are in
2-faces related to f or contained in f , and let E1(f ) be the set of edges in 2-faces related to f and in
X1(G). Let Y be the edge-induced graph by Ē(f ) − E1(f ) and assume that Y has c components. Note
that each component of Ē(f ) − E1(f ) is a Cℓj (i

j
1, . . . , i

j
ℓj
) for j ∈ {1, 2, . . . , c}. Here Cℓj (i

j
1, . . . , i

j
ℓj
) is a

single vertex when ℓj = 0. We may, without loss of generality, assume all those single vertices are
Cℓj (i

j
1, . . . , i

j
ℓj
)’s for j ≥ c ′

+ 1, where c ′
≤ c . Hence ℓ =

∑c
j=1 ℓj + 2(c − 1) =

∑c′
j=1 ℓj + 2c − 2, and

so
∑c′

j=1 ℓj = ℓ + 2 − 2c.
By Claim 3.4(iii) and (iv), |Ē(f )| ≤ (c − 1)(p − 2) +

∑c′
j=1((ℓj − 1)(p − 1) − 1). By the discharging

rule, for any ℓ-face f of G with ℓ ≥ 3,

w∗(f ) ≥ ℓ −
2

k − 2

[
2(c − 1)(p − 3) +

c′∑
j=1

((ℓj − 1)(p − 1) − 1 − ℓj)
]

= ℓ −
2

k − 2

[
2(c − 1)(p − 3) + (p − 2)

c′∑
j=1

ℓj − pc ′

]
= ℓ −

2
k − 2

[
2(c − 1)(p − 3) + (p − 2)(ℓ + 2 − 2c) − pc ′

]
= ℓ −

2
k − 2

[
−pc ′

− 2c + ℓ(p − 2) + 2
]
.

By the definition of 2-cell embedding and 2-connectivity of G, one has c ≥ c ′
≥ 1. Hence, for

any ℓ-face f of G with ℓ ≥ 3,

w∗(f ) ≥ ℓ −
2

k − 2
[−p − 2 + ℓ(p − 2) + 2] = ℓ − (ℓp − 2ℓ − p)

2
k − 2

. (11)

By (1), we have that κ ′(G) ≥ k. Then 2|E(G)| ≥ κ ′(G)|V (G)| ≥ k|V (G)|. It follows from Euler’s formula

|V (G)| + |F (G)| − |E(G)| = 2 − g that
k

k − 2
(|F (G)| − 2 + g) ≥ |E(G)|, and so

∑
i≥2

(
2 +

4
k − 2

)
fi−

2k(2 − g)
k − 2

=
2k

k − 2
(|F (G)|−2+g) ≥ 2|E(G)| =

∑
f∈F (G)

w(f ) =

∑
f∈F (G)

w∗(f ).

(12)

Case A g ∈ {0, 1, 2}.
Then κ ′(G) ≥ k = 4p − 6 + ⌊g/2⌋ ≥ 4p − 6. Let k′

= 4p − 6. By (7), for any f ∈ F (G) with
dG(f ) = ℓ ≥ 3, we have

k ≥ k′
= 4p − 6 = φ(3) ≥ φ(ℓ) =

2(ℓ − 1)
ℓ − 2

p −
2ℓ

ℓ − 2
=

2ℓp − 2p − 2ℓ
ℓ − 2

, (13)

which is equivalent to (k′
− 2)ℓ − 2(ℓp − 2ℓ − p) ≥ 2k′. Hence

ℓ − (ℓp − 2ℓ − p)
2

k′ − 2
≥

2k′

k′ − 2
. (14)

If g = 0, 1, then k′
= k, and so by (11) and (14) we have for any f ∈ F (G) with dG(f ) = ℓ ≥ 3,

w∗(f ) ≥
2k
k−2 = 2+

4
k−2 . This, together with (10), implies

∑
f∈F (G)

w(f ) =

∑
f∈F (G)

w∗(f ) ≥

∑
i≥2

(2+
4

k − 2
)fi,

contrary to (12). Thus the theorem must hold in Case A with g = 0, 1.
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Now assume that g = 2. Then k > k′
= 4p− 6 = φ(3). It follows by (13) and by k > k′ that (14)

holds with strict inequality if we replace k′ by k in (14). This leads to ℓ − (ℓp − 2ℓ − p) 2
k−2 > 2k

k−2 .
This, together with (11), implies that for any f ∈ F (G) with dG(f ) = ℓ ≥ 3, w∗(f ) > 2k

k−2 = 2 +
4

k−2 .

Thus, in conjunction with (10), we have∑
f∈F (G)

w(f ) =

∑
f∈F (G)

w∗(f ) >
∑
i≥2

(2 +
4

k − 2
)fi,

contrary to (12). This settles Case A.
In the rest of the arguments, we let δ = δ(G̃) to be the minimum degree of G̃, the underling

simple graph of G. By Claim 3.4(iii), for any edge e ∈ E(G) there are at most p − 2 edges parallel to
edge e. Hence the minimum degree of G is at most (p−2)δ. This provides the following observation.

Observation 3.6. (p − 2)δ ≥ κ ′(G) ≥ k.

Case B g ≥ 3.
In this case, by (9) and Observation 3.6, we have

δ(G̃) = δ ≥ ⌊

√
6g + 0.25 + 2.5⌋ +

1
p − 2

> ⌊

√
6g + 0.25 + 2.5⌋.

Note that δ is a positive integer. Thus we have

δ >
√
6g + 0.25 + 2.5. (15)

Since G̃ is a simple graph, every face of the embedding of G̃ has degree at least 3, and so 2|E(G̃)| =∑
f∈F (G̃) d(f ) ≥ 3|F (G̃)|. Note that the Euler genus of G̃ is the same as the Euler genus of G. Applying

Euler’s formula |V (G̃)|+|F (G̃)|−|E(G̃)| = 2−g for G̃, we have 2
3 |E(G̃)| ≥ |F (G̃)| = 2−g+|E(G̃)|−|V (G̃)|,

which gives

g − 2 ≥
1
3
|E(G̃)| − |V (G̃)| =

1
3
|V (G̃)|(

|E(G̃)|

|V (G̃)|
− 3) ≥

1
3
(δ(G̃) + 1)(

δ(G̃)
2

− 3).

Combining with (15), it follows that g−2 ≥
1
6 (δ

2
−5δ−6) > 1

6 [(
√
6g + 0.25+2.5)2−5(

√
6g + 0.25+

2.5) − 6] = g − 2, a contradiction. This settles Case B.
Case C g is sufficiently large.

For any ℓ-face f of G with ℓ ≥ 3, by (11), we have

w∗(f ) ≥ ℓ(1 −
2(p − 2)
k − 2

) +
2p

k − 2
≥ 3(1 −

2(p − 2)
k − 2

) +
2p

k − 2
=

3k − 4p + 6
k − 2

.

Thus, by (10) and (12), we have∑
i≥2

(
2 +

4
k − 2

)
fi −

2k(2 − g)
k − 2

≥

∑
f∈F (G)

w∗(f ) ≥ (2 +
4

k − 2
)f2 +

∑
i≥3

3k − 4p + 6
k − 2

fi,

which gives 2k(g−2)
k−2 ≥

k−4p+6
k−2

∑
i≥3 fi and

2k(g − 2) ≥ (k − 4p + 6)
∑
i≥3

fi. (16)

Notice that, since G is embedded into S, the embedding of G̃ on S may be obtained from embedding
G by deleting parallel edges. So for any ℓ ≥ 3, each ℓ-face of G is exactly an ℓ-face of G̃. Hence we
have

∑
i≥3 fi = |F (G̃)| = 2 − g + |E(G̃)| − |V (G̃)|. By (16), we have

2k(g − 2) ≥ (k − 4p + 6)(2 − g + |E(G̃)| − |V (G̃)|). (17)
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If |V (G̃)| > δ
0.828 + 6, then it follows from (17) and Observation 3.6 that

2k(g − 2) ≥ (k − 4p + 6)(2 − g + |E(G̃)| − |V (G̃)|)

≥ (k − 4p + 6)(2 − g +
δ

2
|V (G̃)| − |V (G̃)|)

≥ (k − 4p + 6)
(
2 − g + (

δ

2
− 1)(

δ

0.828
+ 6)

)
≥ (k − 4p + 6)

(
2 − g + (

k
2(p − 2)

− 1)(
k

0.828(p − 2)
+ 6)

)
.

Since k = p
√
4.98g , k

p−2 >
√
4.98g , and g is sufficiently large, we further obtain from the above

inequality that

2p
√
4.98g(g − 2) ≥ (k − 4p + 6)

(
2 − g + (

k
2(p − 2)

− 1)(
k

0.828(p − 2)
+ 6)

)
> (p

√
4.98g − 4p + 6)

(
2 − g + (0.5

√
4.98g − 1)(

√
4.98g
0.828

+ 6)
)

> (p
√
4.98g − 4p + 6)(2 − g + 3.007g)

> 2.006gp
√
4.98g,

a contradiction.
Assume instead that |V (G̃)| ≤

δ
0.828 + 6 < δ

0.8275 . Then δ(G̃) = δ ≥ 0.8275|V (G̃)| and
|V (G̃)| ≥ δ + 1 ≥

√
4.98g is sufficiently large. Hence Lemma 3.2 is applicable to G̃. It follows

by Lemma 3.2 that G̃ can be decomposed into edge-disjoint triangles, plus at most 0.5|V (G)| + 7
single edges. By Claim 3.4(iv), each such triangle of G̃ corresponds to at most 2p− 3 edge of G, and
each single edge corresponds to at most p− 2 edge of G. As there are at most 1

3 ·
|V (G)|(|V (G)|−1)

2 such
triangles in G̃, this gives an estimation on the number of edges in G as follows:

|E(G)| ≤ (2p − 3) ·
|V (G)|(|V (G)| − 1)

6
+ (p − 2) · (0.5|V (G)| + 7) <

2p|V (G)|2

6
.

Hence we have

|V (G̃)| = |V (G)| >
6|E(G)|
2p|V (G)|

≥
3k
2p

=
3p

√
4.98g
2p

= 1.5
√
4.98g.

Thus, by (17) and since δ
2 ≥

k
2(p−2) > 1

2

√
4.98g + 1, we obtain a contradiction as follows:

2p
√
4.98g(g − 2) = 2k(g − 2) ≥ (k − 4p + 6)(2 − g +

δ

2
|V (G̃)| − |V (G̃)|)

> (k − 4p + 6)(2 − g + (
δ

2
− 1) · 1.5

√
4.98g)

> (p
√
4.98g − 4p + 6)(2 − g + 0.75 · 4.98g)

> 2.5gp
√
4.98g,

a contradiction. This completes the proof for this case and justifies Theorem 3.3. ■

Theorem 1.4 indicates that if the edge connectivity of a graph G is at least some quadratic
function of p, then G is in Op. In view of our main result, we believe that it is possible that a linear
function would suffice. We conclude this paper with the following conjecture.

Conjecture 3.7. There exists a constant c independent of p such that every cp-edge-connected graph
is in Op.
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